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Abstract

Current commercial databases allow application programmers to trade off consistency for per-
formance. However, existing definitions of weak consistency levels are either imprecise or they
disallow efficient implementation techniques such as optimism. Ruling out these techniques is es-
pecially unfortunate because commercial databases support optimistic mechanisms. Furthermore,
optimism is likely to be the implementation technique of choice in the geographically distributed
and mobile systems of the future.

This thesis presents the first implementation-independent specifications of existing ANSI isola-
tion levels and a number of levels that are widely used in commercial systems, e.g., Cursor Stability,
Snapshot Isolation. It also specifies a variety of guarantees for predicate-based operations in an
implementation-independent manner. Two new levels are defined that provide useful consistency
guarantees to application writers; one is the weakest level that ensures consistent reads, while the
other captures some useful consistency properties provided by pessimistic implementations. We
use a graph-based approach to define different isolation levels in a simple and intuitive manner.

The thesis describes new implementation techniques for supporting different weak consistency
levels in distributed client-server environments. The mechanisms are based on optimism and make
use of multipart timestamps. A new technique is presented that allows multipart timestamps to scale
well with the number of clients and servers in our system; the technique takes advantage of loosely
synchronized clocks for removing old information in multipart timestamps.

This thesis also presents the results of a simulation study to evaluate the performance of our
optimistic schemes in data-shipping client-server systems The results show that the cost of providing
serializability relative to mechanisms that provide lower consistency guarantees is negligible for
low-contention workloads; furthermore, even for workloads with moderate to high-contention
workloads, the cost of serializability is low. The simulation study also shows that our mechanisms
based on multipart timestamps impose very low CPU, memory, and network costs while providing
strong consistency guarantees to read-only and executing transactions.

Thesis Supervisor: Barbara H. Liskov
Title: Ford Professor of Engineering
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Chapter 1

Introduction

This thesis is concerned with providing good performance along with strong semantic guarantees for

atomic transactions in a database system. Databases use transactions to ensure that computations

transform the system from one consistent state to another in spite of concurrency and failures.

To allow programmers to reason about their code in the presence of concurrency, the notion of

serializability is provided by many databases, i.e., even though transactions run simultaneously, it

seems as if they execute in some sequential order. However, over the years there has been a great

deal of interest in weak consistency levels that provide guarantees weaker than serializability to

applications. Many weak consistency levels have been proposed in the database literature and all

commercial databases allow transactions to run with weaker consistency guarantees; in fact, some

systems do not even support serializability.

This thesis makes a number of contributions in the area of weak consistency:

� It presents the first implementation-independent definitions of weak consistency levels that

are widely used in commercial database systems. Our definitions also handle predicate-based

operations correctly at all consistency levels in an implementation-independent manner. The

previous definitions are either incorrect and allow bad behaviors, or are not sufficiently

flexible and rule out correct behaviors that might be produced by real concurrency control

implementations such as optimism [AGLM95, BOS91, BBG
�

95, KR81, ABGS87, FCL97].

Our specifications overcome these difficulties and are flexible enough to allow a wide range

of concurrency control techniques.

� It specifies two new levels that provide useful consistency guarantees to application writers.

One of the new levels, PL-2+, is the weakest level that ensures consistent reads; the other

level, PL-2L, captures a useful monotonicity property.

� It also presents implementation-independent specifications of a number of consistency levels

that are commonly used in commercial databases, e.g., Cursor Stability, Snapshot Isola-

tion [Ora95]. Earlier definitions were either informal or based on locking implementations.
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� It presents new implementation techniques for supporting different weak consistency levels

in client-server distributed environments. Our protocols are based on optimism and take

advantage of the system structure to offload work from servers to clients thereby making the

system more scalable. Some of our schemes make use of multipart timestamps; we describe

a new technique that allows multipart timestamps to scale well with the number of clients and

servers in our system.

� It also evaluates the performance of our consistency schemes via simulation. Our results show

that implementations that provide strong consistency guarantees such as serializability need

not have high performance penalties compared to schemes that provide weak guarantees.

1.1 Why Weak Consistency Levels are Useful

Weak consistency levels have been of interest over the years for two reasons: they are useful for

certain applications, and they can be implemented more efficiently than stronger levels thereby

allowing applications to achieve a higher throughput.

Implementations of weak levels have been considered primarily in centralized systems using

pessimistic approaches such as locking. Weak consistency levels are desirable in such systems

because transactions either acquire fewer locks, or hold them for shorter periods of time. In

either case, the result is less delay, since fewer transactions attempt to access the same objects

in conflicting modes; additionally, the possibility of deadlock is reduced. We also expect these

performance benefits to be important in the wide-area distributed systems and in mobile systems of

the future. In these environments, optimistic concurrency control mechanisms appear to be better

than pessimistic ones. However, irrespective of the type of concurrency control mechanism used,

weaker levels are advantageous in many circumstances. Again, the advantage of weaker consistency

levels is that there are fewer conflicts; this can lead to reduced communication, fewer aborts (in

an optimistic system), or fewer delays (in a pessimistic system). Thus, it is desirable to allow

application programmers to take advantage of weaker levels (when this makes sense) and trade off

consistency for better performance.

Applications that can be executed at lower degrees of consistency must be written taking program

semantics into account. There are two kinds of applications that can run below serializability. In the

first kind, the program writer is aware that certain kinds of conflicts will not occur. Such programs

can be executed at a consistency level that need not provide guarantees with respect to these kinds

of conflicts. Thus, even though the transaction is executed at a level below serializability, it is still

serializable. Here is an example.

Suppose that a brokerage firm provides advice to its preferred clients about whether the prices

of stocks of a few companies are expected to rise or fall. An analyzer transaction T reads the stock

data of these companies for the past few weeks, performs an analysis of the data, writes the results

12



to a report log, and sends email to the clients. In this case, the brokerage firm knows that the stock

data will not be modified by any application and transaction T updates a private part of the database

(only T generates the report and has exclusive access to this region). Thus, T can be executed at

a consistency level below serializability; T will still be serializable because of its access patterns.

If the overheads of providing serializability are higher than the overheads of a weaker consistency

level implementation, the analyzer transaction can achieve better performance by executing at a

lower level.

In the second class of applications that can be executed below serializability, the program writer

handles inconsistent reads and writes in the code itself. Here are a few examples of applications

that follow this style:

� Programs that read approximate or non-serializable information: In this class of

applications, reading an approximate (and inconsistent) state of the database is sufficient. For

example, a manager in a grocery store may browse the database to determine the approximate

earnings achieved since the morning.

� Programs based on weak invariants: Some applications only need to observe a consistent

state of the database; they are programmed such that they require fewer constraints between

multiple objects. For example, suppose that a bank considers a customer to be in good

standing if the allowed credit is less than the customer’s current bank balance. Suppose

that a transaction T � increases a customer’s credit limit to the current bank balance. In a

later transaction T� , the customer deposits money in his account, i.e., T � is ordered before

T� . If a bank transaction T � observes the new balance and the old credit limit, the customer

will be considered in good standing. Since T � reads T� ’s updates but does not observe T � ’s

modifications, it must be ordered before T � and after T� , which is not possible. Thus, in this

scenario, transactions T � , T� , and T � cannot be serialized even though T � observes a consistent

database state. Thus, the bank application could be written based on requirements weaker

than serializability and still function correctly.

� Programs that check for violated invariants: Some programs observe broken invariants

but the application programmer writes the code to take these inconsistencies into account. For

example, in a producer-consumer scenario, suppose that a consumer transaction S removes

all elements from a list containing 10 elements. Transaction S reads the number of entries,

processes each entry and removes it. In the meanwhile, another consumer transaction T

removes 3 elements from the list. After iterating over 7 elements, transaction S receives an

exception that the list is empty. If S has been coded to terminate early, it can be executed at

a lower consistency level. However, if it is written assuming that the list contains exactly 10

elements, serializability would be needed.
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� False conflicts: False conflicts occur due to grouping of information. Different transactions

may read/write different fields of an object and not conflict at all; such transactions are not

serializable when we consider concurrency control based on objects but are serializable if we

treat the fields as separate objects.

Such grouping of information may be done for a variety of reasons. First, keeping track

of individual fields may increase concurrency control overheads substantially. In a locking

scheme, more locks have to be acquired, released, and kept track of; in an optimistic scheme,

more information has to be sent to servers, resulting in higher network and server CPU over-

heads. Second, grouping of attributes into one object may be done for space considerations.

For example, an age attribute may be an integer in a personal record of an employee; making

a separate object or tuple for age will increase space overheads. Finally, grouping of objects

may be done for better abstraction properties, e.g., keeping complete information about a

person’s medical information in one tuple/object is preferable compared to spreading the data

over many objects.

The above examples demonstrate that weak consistency levels are sufficient for a large class

of applications. Thus, if weaker levels can be supported more efficiently than higher levels, it

will be worthwhile to execute applications below serializability. However, an important drawback

of weak consistency guarantees is that it is much more difficult to reason about an application’s

correctness: the possibility of destroying database integrity can increase significantly compared to

serializability; an application writer has to be fully aware of conflicts of the program code with

other transactions. Thus, unless serializability costs are prohibitive, we believe that transactions

that modify the database should not be executed at low consistency levels.

1.2 Why New Consistency Definitions are Needed

Any set of definitions for weak consistency levels must satisfy two goals. First, they must be

sufficiently restrictive to disallow all behavior that is considered undesirable by application pro-

grammers and end-users, e.g., non-serializable histories should be disallowed by the consistency

level that provides serializability. Second, they must also be permissive enough to allow all good

behavior that is expected by applications, or at least all histories that can occur using some realistic

concurrency control technique. In particular, we would like to allow both pessimistic and optimistic

concurrency control approaches.

Pessimistic schemes such as 2-phase locking require appropriate permission (e.g., read or write)

to be obtained before an object can be accessed. On the other hand, optimistic concurrency control

schemes allow immediate access to objects. At the end of a transaction, the database system checks

for conflicts and, the transaction is aborted if necessary.
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Most systems in the past have used locking to provide concurrency control. However, it is

important to have definitions of consistency levels that allow other concurrency control implemen-

tations such as optimism and multi-version schemes because such techniques may perform better

in some environments. For example, optimism appears to be a good approach for wide-area dis-

tributed systems and systems with disconnected nodes [GKLS94, KS91, TTP
�

95]. Furthermore, it

is imperative that consistency definitions allow optimistic mechanisms since commercial databases

provide different consistency levels using such schemes. For example, Gemstone [BOS91] provides

serializability using a multi-version optimistic concurrency control scheme.

There have been three attempts in the past to specify weak consistency levels. We now discuss

why the goals of correctness and flexibility have not been met by them; they are discussed in more

detail in Chapter 2.

The notion of weak consistency levels in database systems was first introduced in [GLPT76].

These levels are also referred to as degrees of isolation in [GR93]. The degrees are numbered from

0 to 3, where degree 3 is the same as serializability. The levels proposed in [GLPT76] are based

on notions of locking rather than being independent of a concurrency control technique. Further

refinements to the original isolation levels along with new levels such as Cursor Stability were

introduced in [Dat90].

The second set of consistency specifications, the ANSI/ISO SQL-92 definitions [ANS92], had

the goal of coming up with an industry standard that was implementation-independent. In particular,

the aim was to allow different concurrency control schemes such as locking and optimism. The

ANSI specifications are widely used in database products [IBM99, Ora95]. The ANSI definitions

were based on the work in [GLPT76] and [Dat90] and are stated as a set of phenomena that different

isolation levels were intended to exclude.

A subsequent paper [BBG
�

95] showed that the ANSI-SQL definitions were ambiguous and

could be interpreted to allow histories that result in inconsistencies. They proposed a third set of

consistency definitions by proposing a different set of phenomena that was correct and precise.

However, the new definitions were simply equivalent to locking, as was shown in [BBG
�

95].

Therefore, the definitions in [BBG
�

95] failed to meet the goals of ANSI-SQL with respect to

implementation independence.

Thus, at present, there is a real need for new specifications of weak consistency levels that are

correct and yet flexible enough to allow a variety of concurrency control techniques.

1.3 Contributions: Specifying Degrees of Isolation

Our first set of contributions is in the area of redefining and extending isolation levels to permit a

wide range of concurrency control implementations. We present new definitions that capture the

intent of the ANSI/SQL properties, yet allow a wide variety of concurrency control techniques
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including optimistic and multi-version schemes. Our specifications have the following important

attributes:

Implementation-Independence: They allow a range of concurrency control mechanisms including

locking, optimism and multi-version schemes. Our definitions are complete (they allow all

good histories); in particular, they provide conflict-serializability [BHG87]. It is difficult

to prove completeness for lower isolation levels, but we show that our definitions are more

permissive than those given in [BBG
�

95].

Correctness: Our definitions for PL-3 rule out all non-serializable histories since they provide

conflict-serializability. It is difficult to prove correctness for lower levels since well-defined

requirements of these levels have not been specified in the past. However, situations described

as undesirable in the literature are disallowed by our conditions.

Intuitive and Backwards Compatible: Our specifications capture the essence of the ANSI spec-

ifications and are similar to the existing definitions making it easy for programmers to

understand them.

Commercial Applicability: Our specifications characterize a large number of isolation levels that

are in common use by commercial DBMS products, e.g., Cursor Stability, Snapshot Isolation

used in the Oracle server.

Flexibility for Predicate-based Operations: We specify a variety of guarantees that can be pro-

vided to predicate-based operations at weak consistency levels in an implementation-independent

manner; a database system can choose the guarantees that it wants to support at each con-

sistency level. Earlier definitions for these operations were either incomplete, ambiguous, or

specified in terms of an implementation such as locking or in terms of a particular database

language such as SQL.

Our definitions are based on the observation that any set of consistency specifications must

not allow transactions to observe violations of multi-object constraints; these are invariants of the

type ������� 10 that involve multiple objects. The approach suggested in [BBG
�

95] captures

multi-object constraints by disallowing conflicting operations to run concurrently on individual

objects, i.e., the conditions are specified in terms of single-object histories. However, optimistic

schemes allow conflicting operations to execute simultaneously and still correctly preserve multi-

object constraints; the reason is that the consistency checks take all objects that were accessed

by the committing transaction into account. Thus, any consistency definition that tries to capture

such constraints using a fixed number of objects and transactions will be either incorrect or overly

restrictive and disallow valid histories, i.e., consistency levels must be specified by considering all

accesses of a transaction.
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We have achieved this goal by using a combination of constraints on object histories and serial-

ization graphs [BHG87]. These graphs provide a simple way of capturing multi-object constraints.

Each node in this graph corresponds to some committed transaction T � and edges are added between

nodes corresponding to every read and write performed by T � . Some of our conditions are specified

in terms of the different types of cycles (based on different types of conflicts) that must be disallowed

in these graphs, e.g., serializability disallows all types of cycles whereas the lowest isolation level

disallows only cycles involving updates (and not reads). We also use graphs for defining correctness

conditions in mixed systems in which different transactions may commit at different isolation levels.

Specifying consistency conditions using graphs and different types of conflicts/dependencies is

a well-known technique and has been used in the literature for specifying serializability [BHG87,

KSS97, GR93], semantics-based correctness criteria [AAS93], and for defining extended transaction

models [CR94]. Our approach is the first that applies these techniques to defining ANSI and

commercial isolation levels in an implementation-independent manner.

In [GLPT76], it has been shown that locking-based definitions of weak consistency levels

can also be expressed in terms of constraints on graphs. Since these graph-based definitions are

intended to be equivalent to locking, they are not as flexible as our specifications. Furthermore,

those definitions do not consider predicate-based operations and also lack some conditions that are

required for correctness.

Another property of our isolation definitions is that they allow an application to request different

isolation guarantees for committed and running transactions. This characteristic provides more

flexibility to system builders and allows efficient implementations for providing various consistency

levels. We show our approach in the form of a graph in Figure 1-1. The graph shows guarantees

provided for committed transactions on the Y-axis and guarantees for running transactions on the

X-axis. Our specifications permit any scheme in the X-Y plane. The approach in [BBG
�

95]

allows only schemes that are on the diagonal because their specifications require that a concurrency

control scheme provide the same guarantees for running and committed transactions (a lock-based

implementation does indeed have this property). Thus, we have extended the isolation specification

space from a single line to a two-dimensional grid. This flexibility ensures that a wide range

of concurrency control mechanisms are permitted by our isolation specifications. For example,

CLOCC [AGLM95, Gru97] and CLOCC with EPL-2+ (discussed in Chapter 5) are disallowed by

the definitions in [BBG
�

95] (since they do not lie on the diagonal) but are permitted by our

specifications.

1.3.1 Definitions of Existing Isolation Levels

We have arrived at our new specifications for weak consistency levels by understanding the motiva-

tion of the original definitions [GLPT76] and the problems that were addressed in [BBG
�

95]. Our

isolation conditions capture the essence of the ANSI specifications [ANS92]; for each ANSI-
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Figure 1-1: Separate guarantees for running and committed transactions as provided by our isolation
definitions allows schemes such as CLOCC.

SQL degree, we have developed a corresponding portable isolation level that is precise and

implementation-independent. Our levels for committed transactions are called PL-1, PL-2, and

PL-3 where PL-3 is the same as serializability.

Along with the levels specified by ANSI, we present definitions of existing commercial lev-

els such as Cursor Stability [Dat90] Snapshot Isolation [BBG
�

95], and Oracle’s Read Consis-

tency [Ora95]. Unlike earlier definitions, our specifications are implementation-independent. We

specify these levels by extending the graphs used for defining the ANSI levels; different types

of nodes and edges are added to capture the constraints relevant to each level. These definitions

demonstrate that the graph-based approach for specifying isolation levels is flexible; as new degrees

are developed in the future, graphs can be used to specify them.

1.3.2 New Isolation Levels

There is a wide gap between degree 2 (which does not provide consistent reads or writes) and degree

3 (which provides serializability). We have developed two new and useful levels between degree 2

and degree 3 and related them to existing commercial consistency guarantees.

Our first level, PL-2+, is the weakest level that ensures that transactions do not observe violated

multi-object constraints. However, it allows transactions to update the database in an inconsistent

manner. Thus, PL-2+ lies “halfway” between degrees 2 and 3 since it ensures consistent reads but

allows inconsistent writes. Level PL-2+ ensures that a transaction is placed after all transactions

that causally affect it, i.e., it provides a notion of “causal consistency”. This level disallows all

phenomena that Snapshot Isolation was intended to disallow. Since PL-2+ is weaker than Snapshot

Isolation, it has the potential of being implemented more efficiently, especially in a distributed

client-server system (an efficient optimistic scheme for providing PL-2+ in such environments is

presented in Chapter 5). Thus, PL-2+ may be preferable to Snapshot Isolation.
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Our second new level, PL-2L, captures useful properties of a lock-based implementation of

degree 2. It ensures that a transaction observes a monotonically increasing prefix of the database

history as it executes, e.g., in an online auction system, if a transaction closes the auction to sell

a product and a user transaction observes this closure and then the value of the product, PL-2L

will ensure that the user observes the final value of the product. PL-2L can be useful for legacy

applications that execute at degree 2 and assume such monotonicity properties are provided by

a locking implementation; when the system is changed from locking to a different concurrency

control mechanism, PL-2L can be used to ensure that these applications continue to run correctly.

An interesting observation about PL-2L is that it is similar to the Read Consistency guarantees

provided by the Oracle server [Ora95]. Level PL-2L disallows phenomena that Read Consistency

was intended to disallow. Since PL-2L is weaker than Read Consistency, it may be less expensive

to provide PL-2L than Read Consistency, especially in distributed client-server systems.

1.4 Contributions: New Implementation Techniques

Our second set of contributions addresses the problem of providing high-performance consistency

mechanisms in distributed client-server systems. In such systems, objects are stored at servers

and clients execute transactions on cached copies of their machines. This architecture is desirable

because a large fraction of the application’s work can be offloaded from servers to clients, thereby

enhancing the scalability of the system. It is important to develop efficient consistency mechanisms

for such systems since they are expected to be common in the future.

We have designed optimistic schemes to support new and existing isolation levels in distributed

client-server systems. Optimistic mechanisms are appealing in client-caching systems since they

allow clients to execute transactions using cached information without extra communication with the

servers; lock-based schemes may require such communication when an object has to be modified.

This intuition has been borne out by Gruber’s work [Gru97], which shows that an optimistic scheme

called CLOCC or Clock-based Lazy Optimistic Concurrency Control (CLOCC was earlier referred to

as AOCC) outperforms the best-known locking implementation for client-server systems across a

wide range of workloads and system parameters: this research also shows that CLOCC scales well

with the number of clients. An additional advantage of optimism is that it can be easily applied to

disconnected and mobile environments [KS91, TTP
�

95, GKLS94].

However, Gruber’s work studied only serializability in client-server systems. Efficient and scal-

able optimistic schemes for lower consistency levels in such environments do not exist. Thus, the

first challenge is to design efficient consistency techniques for these levels with low communication

and server overheads. Furthermore, high-performance optimistic schemes such as CLOCC provide

strong serializability guarantees for committed transactions but provide very weak guarantees as

transactions execute. These guarantees are important since application writers may expect certain
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integrity constraints to be valid while a transaction executes; otherwise, the application may behave

in an unexpected manner (e.g., crash or go into an infinite loop). Optimistic schemes such as

O2PL [FCL97] provide strong guarantees for running transactions but they do so at a high commu-

nication cost (to the extent that they lose the advantages of optimism over locking). Thus, another

challenge for client-server systems is to provide strong consistency guarantees to transactions as

they execute yet ensure that the cost of these mechanisms is low.

Multistamp-based Mechanisms and Multistamp Truncation

We have developed efficient implementations for providing different isolation guarantees to trans-

actions in distributed client-server systems. We have taken advantage of the system structure

and also utilized characteristics of real systems to optimize our mechanisms, e.g., we use loosely

synchronized clocks to truncate some of our data structures.

Our isolation levels have been defined in terms of different types of conflicts and we use

multipart timestamps or multistamps to capture these consistency constraints. Multistamps are

propagated to clients to warn them of potential violations of consistency; if a client does not have

information as indicated by the multistamp, it communicates with the relevant servers. Clients act

on the multistamp information only if it might affect the current transaction. Being lazy buys time

so that the needed consistency information is highly likely to be present by the time it is needed.

Furthermore, it allows us to piggyback most of the information on existing messages in the system

thereby reducing the overheads of our schemes.

A negative aspect of multistamps is that they do not scale well with a large number of clients

and servers; mechanisms that send multistamps incrementally [BSS91] still require complete mul-

tistamps to be stored at different servers. Instead, we have devised a novel mechanism called

multistamp truncation that keeps them small; this technique takes advantage of the fact that our

multistamps contain real time clock values. Based on the stored time values, the mechanism de-

termines the consistency constraints that are old and replaces them with approximate information.

In our system, this approximation may lead to extra messages sent by clients called consistency

stalls. However, since the removed multistamp constraints are old, it is likely that the consistency

information has been received by the relevant clients from the servers. Thus, discarding it has little

impact on system performance; our simulation study shows that multistamps impose negligible

space and time overheads.

This technique assumes that clocks are loosely synchronized; this assumption is realistic in

today’s environment where protocols such as the Network Time Protocol [Mil92] are able to

achieve low synchronization even in wide-area networks [Mil96]. The correctness of our schemes

is not affected if the multistamps are truncated too early or if the clock synchronization is poor.

We also use our multistamp-based mechanisms for providing consistent views to transactions

as they execute and for efficiently committing read-only transactions. Read-only transactions are
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common in transaction processing workloads and improving their performance can significantly

improve overall system performance. Our techniques help in reducing latency of read-only trans-

actions since they can commit these transactions without communicating with the servers in most

cases; CLOCC requires a message roundtrip for committing all read-only transactions. They also

make the system more scalable since there are fewer network messages and most of the work for

committing read-only transactions is offloaded to clients. Furthermore, the server need not vali-

date (i.e., check for serializability) read-only transactions; it needs to validate update transactions

only with other update transactions. Even though we present our mechanisms in conjunction with

CLOCC, they can be used for committing read-only transactions in hybrid systems, i.e., where update

transactions are committed using optimism or locking and read-only transactions are committed

optimistically using our mechanisms; such a system was presented in [CG85].

1.5 Contributions: Experimental Evaluation

This thesis also evaluates the relative performance of implementations of different isolation levels

in a distributed client-server system in which clients cache objects and the transaction code is

executed at client machines (i.e., a data-shipping system architecture). To our knowledge, this is the

first published study that compares implementations of different isolation levels in such systems.

We used a simulator to evaluate different isolation mechanisms using workloads with low to high

contention in LAN and WAN environments.

In our study, we assume that clients can cache the accessed objects for the duration of the

transaction; this assumption is valid for a large class of applications because we have developed

an efficient object-caching mechanism [CALM97]. We also expect our results to hold for some

applications in which a transaction’s accessed data cannot be cached at a client machine; in many

such applications, contention rarely occurs and our simulation results for low-contention workloads

can be applied to such cases as well.

We wanted to understand the performance gains offered by committing update transactions at

weaker isolation levels since these gains have a high productivity cost: a database programmer must

carefully analyze the application code and ensure that it does not corrupt the database when executed

at a low isolation level. We were also interested in determining the overheads of high isolation level

implementations such as PL-2+ and serializability for read-only and executing transactions since

providing stronger consistency guarantees for these transactions further reduces the burden on a

database programmer by making it relatively easier to reason about correctness of the application

code.

Our results show that providing strong consistency guarantees to update, read-only, and running

transactions in client-server systems is not expensive:

� The cost of providing strong consistency guarantees such as serializability to update trans-
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actions is negligible for low-contention workloads. The reason is that CLOCC (which we

use for providing serializability) has low CPU and communication overheads when there are

few conflicts in the workload. This is an important result since many applications exhibit

low-contention and such workloads are one of the main environments recommended for using

weaker isolation levels; this recommendation is based on the assumption that a higher isolation

level mechanism imposes unnecessary performance penalties for such an application.

� For workloads with moderate to high contention, the cost of providing serializability to

update transactions is more but it is still not high. At higher contention, the number of aborts

is higher in any optimistic scheme including CLOCC. However, in CLOCC, the performance

degradation due to serializability is not proportional to the abort rate. The reason is that CLOCC

has low costs for restarted transactions and it prevents excessive wasted work by aborting a

transaction T early during T’s execution. Thus, very high abort rates do not necessarily result

in a corresponding performance penalty. For example, even at very high contention (with

a high abort rate of more than 100%), the throughput degradation due to serializability was

observed to be approximately 10%. In general, we observed that the performance degradation

due to serializability is significant only when contention is high and the cost of restarting a

transaction is high.

� The cost of providing strong consistency guarantees such as PL-2+ using our multistamp-

based mechanisms to read-only transactions is low in all workloads; a performance penalty of

2-10% is incurred in such an implementation compared to a system that provides serializability

only for update transactions. Unlike CLOCC, these schemes are able to avoid sending a commit

message to the servers for most read-only transactions. The results show that the CPU,

memory, and network costs imposed by multistamps are very low: the multistamp truncation

technique is effective and multistamps smaller than 100 bytes are sufficient for ensuring that

few extra messages are sent in the system for maintaining consistency information. The

results also show that our multistamp-based mechanisms can be used for providing strong

consistency guarantees to executing transactions at very low costs.

1.6 Thesis Outline

This thesis is organized as follows.

Chapter 2 analyses the definitions for different isolation degrees that have been presented in the

literature; it shows why the current definitions are inadequate and motivates the need for our work.

Chapter 3 presents our new specifications for the existing ANSI degrees of isolation and proves

that they are more flexible than the existing definitions; we provide definitions for both committed

and executing transactions. This chapter also discusses how various levels interact with each other.
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Chapter 4 presents definitions of our two new isolation levels, PL-2+ and PL-2L, for committed

transactions. It describes the implementation-independent specifications of Cursor Stability, and

Oracle’s Snapshot Isolation and compares it with PL-2+; it also presents a level that captures the

essence of Oracle’s Read Consistency and compares it with PL-2L.

Chapter 5 presents our mechanisms for providing different isolation guarantees to committed

and running transactions. It describes CLOCC and our multistamp-based techniques for efficiently

committing transactions and for providing strong guarantees to running transactions.

Chapter 6 discusses our experimental framework. It describes our simulator environment and

the workloads that we use for the performance study.

Chapter 7 presents the simulation results for comparing implementations of various isolation

levels; it also evaluates the cost of multistamps and the cost of committing read-only transactions.

Chapter 8 concludes the thesis with a summary of our work and suggestions for future research.
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Chapter 2

Existing Definitions

This chapter discusses the specifications for different consistency levels that have been presented

earlier in the literature [GLPT76, ANS92, BBG
�

95] and motivates the need for our work.

The chapter is organized in the following manner. Section 2.1 presents the original definitions

of consistency [GLPT76] and Section 2.2 describes the ANSI/ISO SQL-92 definitions that were

later developed [ANS92]. Section 2.3 summarizes the discussion from [BBG
�

95]. In Section 2.4,

we demonstrate why the solution suggested in [BBG
�

95] is inadequate.

2.1 Degrees of Isolation

The concept of weak consistency levels was first introduced in [GLPT76] under the name Degrees

of Consistency, with the aim of providing improved concurrency (and hence better performance) for

some workloads by sacrificing the guarantees of full serializability. The degrees were also referred

to as Levels of Consistency in a companion paper [A
�

76] and Degrees of Isolation in [Dat90, GR93].

The definitions were based on notions of locking: weaker isolation was achieved by reducing the

duration (long to short) for which read or write-locks were held. Long-term locks are held until the

transaction taking them commits; short-term locks are released immediately after the transaction

completes the desired read or write that triggers the lock attempt.

Four degrees of consistency were defined in [GLPT76]. At degree 0, only short write-locks are

acquired by a transaction (no read-locks); at degree 1, there are only long write-locks; at degree 2,

there are short read-locks and long write-locks; and at degree 3, there are long read and write-locks.

Degree 3 provides serializability since a history acting under 2-phase locking protocol is seri-

alizable [BHG87, GR93]. Early release of locks permits histories that are not serializable. Degree

2 requires transactions performing reads to take (at least) short read-locks, which implies that these

transactions are unable to read uncommitted updates of transaction acting under degree 1 or higher

(due to long write-locks). Transactions at all levels acquire long-term write-locks to prevent con-

current transactions from overwriting each others’ changes. Transactions at degree 0 and 1 are not

normally expected to perform any writes, but only to get an approximate idea of the database state.
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The word “isolation” was chosen to emphasize the fact that different isolation degrees provide

varying levels of non-interference of various transactions against each other. Serializability offers

the highest degree of isolation since a programmer can write the transaction code with the assumption

that the operations of other transactions will not interfere with his/her transaction’s execution.

The work in [GLPT76] also suggests a promising approach that defines isolation levels in terms

of graphs. However, since the authors wanted to give an alternate definition of locking behavior

using constraints on cycles, their definitions disallow many histories that are permitted by us; such

behavior can occur with optimistic or multi-version schemes. Furthermore, those definitions do not

consider predicate-based operations and also lack some conditions that are required for correctness.

2.2 ANSI/ISO SQL-92 Definitions

Further refinements to the original isolation levels along with new levels such as Cursor Stability

were introduced in [Dat90]. The work in [GLPT76] and [Dat90] set the stage for the ANSI/ISO

SQL-92 definitions [ANS92] for isolation levels. The ANSI levels were informally defined in terms

of English statements that proscribed certain types of behavior or phenomena for each isolation level;

a completely serializable system disallowed all these situations whereas lower levels of consistency

prevented some situations but allow others.

ANSI/ISO SQL-92 [ANS92] defines the phenomena in English as follows:

Dirty Read — Transaction T1 modifies x. Another transaction T2 then reads x before T1

commits or aborts. If T1 then aborts, T2 has read a data item that was never committed
and so never really existed.

Fuzzy or Non-repeatable Read — Transaction T1 reads x and then T2 modifies or
deletes x and commits. If T1 then attempts to reread x, it receives a modified value or
discovers that the data item has been deleted.

Phantom — Transaction T1 reads a set of data items satisfying some <search
condition>. Transaction T2 then creates data items that satisfy T1’s <search
condition> and commits. If T1 then repeats its read with the same <search
condition>, it gets a set of data items different from the first read.

The phenomena have not been stated in terms of any particular concurrency control scheme. An

important goal of the ANSI/ISO isolation designers was to have flexible definitions that permit a

variety of concurrency control mechanisms. Furthermore, the designers also wanted a higher isola-

tion level to be obtained from a lower one by simply disallowing more phenomena or bad situations

(i.e., an “additive” kind of property). They defined successively more restrictive isolation levels:

READ COMMITTED, REPEATABLE READ, and SERIALIZABLE, which were intended to correspond to

degrees 1-3 of [GLPT76] respectively. The ANSI levels are defined as follows: READ COMMITTED

disallows Dirty Read, REPEATABLE READ disallows Fuzzy Read as well, and SERIALIZABLE pre-

vents all the above phenomena; the intent of the SERIALIZABLE isolation level is that disallowing
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all bad situations should provide the normally accepted notion of serializability, i.e., even though

transactions execute concurrently, it seems as if they ran in some serial order. There was also a

lowest isolation level, READ UNCOMMITTED, that proscribed none of the phenomena. However,

READ UNCOMMITTED was not allowed to operate in SQL except in the read-only access mode.

2.3 Preventative Phenomena Approach

The authors of [BBG
�

95] analyzed the ANSI-SQL standard and demonstrated several problems in

its isolation level definitions: some definitions were ambiguous, while others were missing entirely.

They showed that the ANSI/ISO definitions have at least two possible interpretations. The first

interpretation follows the written description closely and disallows the described situation; we will

call this interpretation as the anomaly interpretation. The other interpretation prevents any execution

sequence that may lead to undesirable behavior; we shall call this interpretation the preventative in-

terpretation (the work in [ABJ97] presents a different way of stating the preventative interpretation).

Thus, the anomaly interpretation allows more histories than the preventative interpretation.

[BBG
�

95] shows that the anomaly interpretation is incorrect since disallowing all phenomena

does not necessarily disallow all non-serializable histories, i.e., a database system that provides

isolation guarantees using this interpretation can cause applications to behave incorrectly. Thus,

the authors suggest that the preventative interpretation is the correct interpretation of the ANSI

definitions. We now summarize this discussion.

We have shown the two different interpretations of the ANSI levels in Figure 2-1. The anomaly

interpretation is prefixed by A and the preventative interpretation is prefixed by P. Reads and writes

are denoted by “r” and “w” respectively; “a” and “c” denote abort and commit. An operation “r1(x,

v)” indicates that transaction T1 has read object x and the read value is v. Similarly, “w1(x, v)”

indicates that transaction T1 has modified object x’s value to be v. Each entry in the table shows an

undesirable situation that must be disallowed.

For dirty reads, proscribing A1 ensures that if T2 reads from an uncommitted transaction T1 that

aborts, T2 must not be allowed to commit. The preventative interpretation, P1, is more restrictive

and requires that a transaction T2 must not read any object from an uncommitted transaction T1

(there is no abort or commit action for T1 between w1(x) and r2(x)); the lack of an abort or commit

Phenomenon Anomaly Interpretation Preventative Interpretation

Dirty Write None P0: w1(x) ����� w2(x)
Dirty Read A1: w1(x) ����� r2(x) ����� (a1 and c2 in any order) P1: w1(x) ����� r2(x)
Fuzzy Read A2: r1(x) ����� w2(x) ����� c2 ����� r1(x) ����� c1 P2: r1(x) ����� w2(x)
Phantom A3: r1(P) ����� w2(y in P) ����� c2 ����� r1(P) ����� c1 P3: r1(P) ����� w2(y in P)

Figure 2-1: Anomaly and Preventative Interpretations of ANSI levels
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action in the condition simply means that all combinations of aborts and commits after r2(x) are

disallowed.

For fuzzy reads, proscribing A2 prevents a transaction T1 from committing if T1 reads an object

x twice and another transaction T2 overwrites x between the two reads by T1. Phenomenon P2

simply rules out the overwriting of an object being read by an uncommitted transaction.

In databases, queries and updates may be performed on a set of objects if a certain condition

called the predicate is satisfied. Phenomena A3 and P3 deal with inconsistencies involving predicates

and are similar to A2 and P2. The notation “r1(P)” means that transaction T1 has read objects based

on a predicate P and “w2(y in P)” says that an object which satisfies P has been modified by T2.

Proscribing P3 requires that T2 cannot modify a predicate P by inserting, updating, or deleting a

row if an uncommitted transaction T1 has observed objects based on P.

However, phenomenon P3 does not prevent all problems with phantoms. For example, a

phenomenon similar to A1 can occur with respect to predicate reads; phenomenon P1 does not

prevent such a scenario as well.

An additional property, not included in ANSI/ISO SQL-92, is introduced in [BBG
�

95]:

Dirty Write — Suppose T1 modifies x and T2 further modifies x before T1 commits or

aborts. If either T1 or T2 aborts, it is unclear what the real value of x should be.

The preventative interpretation of dirty write, P0, says that a transaction cannot overwrite the changes

made by an uncommitted transaction. There is no anomaly interpretation given in [BBG
�

95]; the

authors assume P0 to be a basic requirement that should be included in all levels of consistency.

The paper noted that proscribing these phenomena to define isolation levels is simply a disguised

form of imposing a locking protocol on a history. Proscribing P0 is simply a disguised locking

definition, requiring T1 and T2 to acquire long write-locks. Similarly, proscribing P1 requires T1

to acquire a long write-lock and T2 to acquire (at least) a short-term read-lock, and proscribing P2

requires the use of long read and write-locks; disallowing P3 requires acquisition of long phantom

read-locks [GR93].

The ANSI levels are redefined in [BBG
�

95] as follows: READ UNCOMMITTED disallows P0,

READ COMMITTED disallows P0 and P1, REPEATABLE READ disallows P0 - P2, and SERIALIZABLE

disallows P0 - P3. Figure 2-2 relates isolation levels, preventative phenomena, and the use of locks.

We now present two examples from [BBG
�

95] that differentiate the preventative and anomaly

interpretations. Since P0, P1, P2, and P3 together are equivalent to two-phase locking, all histories

permitted by them are serializable. However, the same is not true for anomaly serializable histories,

which disallow P0, A1, A2, and A3.

The examples concern a transfer from x to y, where the invariant is that � � � � 100. History H1

differentiates P1 from A1; it shows that A1 is not sufficiently strong to prevent anomalous behavior:

�
1: r1(x, 50) w1(x, 10) r2(x, 10) r2(y, 50) c2 r1(y, 50) w1(y, 90) c1
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Locking Isolation Level Proscribed
Phenomena

Read-Locks on Data Items
and Phantoms (same unless
noted)

Write-Locks on Data
Items and Phantoms
(always the same)

Degree 0 none none Short write-locks
Degree 1 = READ UNCOMMITTED P0 none Long write-locks
Degree 2 = READ COMMITTED P0, P1 Short read-locks Long write-locks
REPEATABLE READ P0, P1, P2 Long data-item read-locks,

Short phantom read-locks
Long write-locks

Degree 3 = SERIALIZABLE P0, P1, P2, P3 Long read-locks Long write-locks

Figure 2-2: ANSI isolation levels based on locking (preventative interpretation)

Transaction T1 does the transfer properly yet transaction T2 observes the total to be only $60. H1

is anomaly serializable: phenomenon P0 does not occur because there are no concurrent writes in

the system, A1 does not happen since both transactions commit, and A2 does not occur since no

transaction reads the same data item twice. However, H1 is not serializable because T2 observes an

inconsistent state of the database and commits. On the other hand, the preventative interpretation

disallows this history since P1 has been violated (T2 performs a dirty read of object x).

History H2 differentiates A2 and P2 (a similar history can be used for A3 and P3):

�
2: r2(x, 50) r1(x, 50) w1(x, 10) r1(y, 50) w1(y, 90) c1 r2(y, 90) c2

With the anomaly interpretation, A2 is not violated since T2 never reads x again after T1 has modified

it (P0 and A1 are also not violated). Thus, history H2 is anomaly serializable but it is not serializable

since T2 observes the sum of x and y to be $140 and commits. The preventative interpretation

disallows H2 because condition P2 has been violated (due to r2(x) and w1(x)).

Thus, the authors conclude that the ANSI/ISO SQL-92 isolation definitions should be interpreted

using the preventative interpretation and not the anomaly interpretation.

2.4 Analysis of Preventative Definitions

The ANSI definitions are imprecise because they allow at least two interpretations; furthermore, the

anomaly interpretation is definitely incorrect. The preventative interpretation is correct in the sense

that it rules out undesirable (i.e., non-serializable) histories. However, this interpretation is overly

restrictive since it also rules out correct behavior that does not lead to inconsistencies and can occur

in a real system. Thus, any system that allows such histories is disallowed by this interpretation, e.g.,

databases based on optimistic mechanisms [AGLM95, BOS91, BBG
�

95, KR81, ABGS87, FCL97].

We first show that the preventative interpretation is overly restrictive since it rules out serializable

histories. Next we briefly discuss how optimistic schemes deal with good and bad histories; finally,

we show why the preventative interpretation disallows optimistic and multi-version mechanisms.
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2.4.1 Restrictiveness

This section illustrates the restrictiveness of the preventative interpretation by giving examples of

serializable behavior that it rules out. First, consider the non-serializable history H1, which was

presented in the previous section:

�
1: r1(x, 50) w1(x, 10) r2(x, 10) r2(y, 50) c2 r1(y, 50) w1(y, 90) c1

H1 is clearly not serializable and ought not to be permitted by any concurrency control scheme.

However, suppose that transaction T2 reads the new values of x and y as installed by T1:

�
1

� : r1(x, 50) w1(x, 10) r1(y, 50) w1(y, 90) r2(x, 10) r2(y, 90) c1 c2

In this case, T2’s reads happen after T1’s writes have occurred but before T1 commits. History H1
�

is serializable but is not permitted by the preventative interpretation because it violates P1. Now

consider history H2 which is not serializable since T2 reads x’s old value and y’s new value:

�
2: r2(x, 50) r1(x, 50) w1(x, 10) r1(y, 50) w1(y, 90) c1 r2(y, 90) c2

Instead of reading the new value of y, suppose that T2 reads the old values of x and y. The resulting

history, H2
� , is serializable:

�
2

� : r2(x, 50) r1(x, 50) w1(x, 10) r1(y, 50) r2(y, 50) w1(y, 90) c2 c1

However, H2
� is disallowed by the preventative interpretation because it violates P2 (T1 overwrites

objects x and y that have been read by an uncommitted transaction T2).

It is not surprising that the preventative interpretation rules out histories like H1
� and H2

� . This

interpretation prevents conflicting operations from executing concurrently; it disallows all histories

that would not occur in a lock-based implementation. Thus, even though the operations in H1
� and

H2
� have been scheduled such that these histories are serializable, the preventative interpretation

disallows them because they allow conflicting reads and writes to run simultaneously.

The real problem with the preventative approach is that the phenomena are expressed in terms

of single-object histories. However, the properties of interest are often multi-object constraints.

To avoid problems with such constraints, the phenomena need to restrict what can be done with

individual objects more than is necessary. Our approach avoids this difficulty by using specifications

that capture constraints on multiple objects directly.

2.4.2 Optimism

The fact that some legal histories are ruled out by the preventative interpretation would not be

important if those histories did not arise in real implementations. But in fact both histories H1
�

and H2
� are allowed by optimistic and multi-version mechanisms. Since an important goal of the

ANSI/ISO SQL-92 isolation levels is to permit non-locking implementations while providing useful
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guarantees to a database programmer, providing a definition of these levels that precludes all but

lock-based implementations is undesirable.

Before we describe how optimistic schemes deal with histories such as H2 and H2
� , we briefly

discuss the characteristics of these schemes. Unlike a locking scheme, optimistic implementations

allow conflicting operations by concurrent transactions and abort some transactions if necessary.

In these schemes, modifications are not made to the database directly; instead they are made to

volatile copies. These copies are installed in the database at commit time if the transaction validates

successfully. During the validation process, the database system checks if a committing transaction

T can be serialized by comparing T’s reads/writes with the reads/writes of other transactions. If

validation fails, T is aborted.

Validation is done in two different ways — forward and backward validation [Hae84]. Forward

validation compares the transaction with all uncommitted transactions; if a committing transaction

T has modified any object that has been read by an uncommitted transaction S, T is aborted. Thus,

when transaction S commits, only its writes will have to be validated; its reads are certain to be

valid. (Forward validation schemes are similar to “optimistic locking” implementations [FCL97].)

Backward validation checks the committing transaction T against all previously committed trans-

actions; if T has read any object x that has been modified by a committed transaction since T read

x, T is aborted. Since backward validation does not consider uncommitted transactions, the commit

of a transaction may cause an uncommitted transaction to abort later; furthermore, unlike forward

validation, a preparing transaction’s reads must be validated as well.

Disallowing Bad Histories

Both forward and backward schemes will reject H1 and H2. History H1 is not permitted by most

optimistic implementations since these schemes operate on local copies and disallow dirty reads.

Consider a prefix of history H2:

�
2 (prefix): r2(x, 50) r1(x, 50) w1(x, 10) r1(y, 50) w1(y, 90) A

If T1 tries to commit at point A, a forward validation scheme will abort T1 since T1’s modifications

conflict with the reads of an uncommitted transaction T2. A backward validation scheme will allow

T1 to commit. However, when T2 tries to commit, it will be aborted because a committed transaction

T1 has overwritten an object x that was read by T2.

Accepting Good Histories

We now discuss why phenomena P0, P1, and P2 rule out optimistic schemes when each phenomenon

is considered individually.

Phenomenon P0 can occur in optimistic implementations since there can be many uncommitted

transactions modifying local copies of the same object concurrently; if necessary, some of them will
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be forced to abort so that serializability can be provided. Thus, disallowing P0 can rule out optimistic

implementations, e.g., the following serializable history that is allowed by many optimistic schemes

is ruled out by P0:

�
0

� : w1(x, 10) w1(y, 90) w2(x, 50) w2(y, 50) c1 a2

Proscribing P1 disallows transactions from reading updates by uncommitted transactions. Such

reads are disallowed by many optimistic schemes, but they are desirable in mobile environments,

where commits may take a long time if clients are disconnected from the servers [GHOS96,

GKLS94]. For example, history H1
� can occur in a mobile system, but P1 disallows it. In

such a system, commits can be assumed to have happened “tentatively” at client machines; later

transactions may observe modifications of those tentative transactions. When the client reconnects

with the servers, its work is checked to determine if consistency has been violated and the relevant

transactions are aborted. Of course, if dirty reads are allowed, cascading aborts can occur, e.g.,

in history H1
� , T2 must abort if T1 aborts; this problem can be alleviated by using compensating

actions [KS91, TTP
�

95, KSS97]. Another environment where reads from uncommitted transactions

may be desirable are high traffic hotspots [O’N86]; disallowing P1 rules out mechanisms designed

for these situations.

Proscribing P2 disallows a transaction to modify an object that has been read by another un-

committed transaction (P3 rules out a similar situation with respect to predicates). As with P0,

uncommitted transactions may read/write the same object concurrently in an optimistic implemen-

tation. There is no harm in allowing phenomenon P2 if transactions commit in the right order. For

example, history H2
� is accepted by both forward and backward validation schemes. Consider a

prefix of history H2
� :

�
2

� (prefix): r2(x, 50) r1(x, 50) w1(x, 10) r1(y, 50) r2(y, 50) w1(y, 90) A

If T2 and T1 try to commit at point A (in the order T2 followed by T1), both validation schemes

will allow the commits; T1 will be serialized after T2. When T2 tries to commit, it succeeds

validation with a forward validation scheme since it has not modified any object. When T1 tries to

commit later, it succeeds since its modifications do not conflict with any uncommitted transaction’s

reads/writes. With a backward scheme, T2 commits successfully since it does not conflict with an

already committed transaction; similarly, T1 is also allowed to commit later.

2.4.3 Multi-version schemes

Multi-version schemes [Ree78, BHG87, BBG
�

95, Wei87] allow multiple versions of the same

object to exist in the database state. Thus, in a history such as H2, when transaction T2 tries to

read object y, it can be provided with an old version of y (and not the latest version) resulting

in a serializable history. However, the conditions in the ANSI definitions (and the preventative

interpretation) are specified in terms of single-version object histories rather than multi-version
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histories. Thus, they are inadequate for analyzing multi-version schemes. In fact, the authors

in [BBG
�

95] point out that in order to place multi-version schemes such as Snapshot Isolation in

the isolation hierarchy, the designer of the scheme must first map the histories of such schemes to

single-version histories and then apply the consistency conditions. We address his problem directly

by specifying our conditions in terms of multi-version histories.

2.5 Summary

This chapter has analyzed the existing definitions for various degrees of isolation. The original

definitions presented in [GLPT76] were inspired by a lock-based interpretation. That work also

presented informal English statements that formed the basis of the ANSI/ISO SQL-92 definitions, an

industry standard [ANS92]. However, as shown in [BBG
�

95], these definitions are ambiguous and

at least one interpretation can permit histories that lead to inconsistencies. The authors in [BBG
�

95]

suggest another interpretation called the preventative interpretation that is essentially a disguised

form of locking. Our analysis showed that this interpretation is overly restrictive since it disallows

histories that can occur in realistic implementations, especially systems that use optimistic or multi-

version mechanisms. The preventative interpretation only permits implementations that prevent

conflicting operations from running concurrently. On the other hand, optimistic schemes allow such

operations to execute simultaneously and then abort the relevant transactions.
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Chapter 3

Proposed Specifications for Existing
Isolation Levels

This chapter presents new specifications for the existing ANSI isolation levels. Our definitions

allow optimistic and multi-version implementations; we also specify a variety of guarantees for

predicate-based operations at weak consistency levels in an implementation-independent manner.

Our specifications address the issues of multi-object constraints directly by using complete read and

write sets of transactions. We specify different isolation levels using a combination of constraints

on object histories and graphs; we proscribe different types of cycles in a serialization graph at each

isolation level. Apart from using graphs to define isolation levels for committed and transactions,

we also use them to specify interactions among various isolation levels.

Our graphs are similar to those that have been used before for specifying serializability [BHG87,

KSS97, GR93], semantics-based correctness criteria [AAS93], and for defining extended transaction

models [CR94]. Our approach is the first that applies these techniques to defining ANSI and

commercial isolation levels.

The rest of this chapter is organized as follows. Section 3.1 presents the system model and

terminology that we use for our specifications. Section 3.2 presents our specifications of the existing

isolation levels for committed transactions. In Section 3.3, we discuss how various levels interact

with each other. In Section 3.4, we prove that our specifications allow more histories and are strictly

less restrictive than the preventative interpretation. In Section 3.5, we discuss how our specifications

can be extended to provide consistency guarantees to transactions as they execute.

3.1 System Model and Terminology

We now present the system model and terminology that will be used for specifying our isolation con-

ditions. We use a multi-version model similar to what has been presented in the literature [BHG87].

However, unlike earlier work, our model incorporates predicates and handles them in a correct and

flexible manner at all isolation levels.
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3.1.1 Database Model

The database consists of objects that can be read or written by transactions. Each transaction reads

and writes objects and indicates a total order in which these operations occur; thus, our transactions

are sequential in nature. An object has one or more versions. Transactions interact with the database

only in terms of objects; the system maps each operation on an object to a specific version of that

object. A transaction may read versions created by committed, uncommitted, or even aborted

transactions; constraints imposed by some isolation levels will prevent certain types of reads, e.g.,

reading versions created by aborted transactions.

When a transaction writes an object x, it creates a new version of x. A transaction T � can modify

an object multiple times; its first update of object x is denoted by x � � 1, the second by x � � 2, and so on.

Version x � denotes the final modification of x performed by T � before it commits or aborts. That is,

x � � x � � � where n = max
�
j | x � � � exists �

The last operation of a transaction is a commit or abort operation to indicate whether the transaction’s

execution was successful or not; there is at most one commit or abort operation for a transaction.

An event is added to a transaction’s sequence of events after it has been registered by the

database, e.g., for a read event of version x � , it could mean that the database has added x � to the

transaction’s read set and returned the relevant value. Similarly, in an optimistic system, a commit

may be requested for transaction T � but T � may abort; in this case, we register an abort event for T �

and not a commit event.

The database state refers to the versions of objects that have been created by committed and

uncommitted transactions. The committed state of the database reflects only the modifications of

committed transactions. When transaction T � commits, each version x � created by T � becomes a

part of the committed state and we say that T � installs x � . If T � aborts, x � does not become part of

the committed state. Thus, the system needs to prevent modifications made by uncommitted and

aborted transactions from affecting the committed database state.

Conceptually, the committed state comes into existence as a result of running a special initial-

ization transaction, T � � ��� . Transaction T � � ��� creates all objects that will ever exist in the database; at

this point, each object x has an initial version, x � � ��� , called the unborn version. When an application

transaction inserts an object x (e.g., inserts a tuple in a relation), we model it as the creation of a

visible version for x. When a transaction T � deletes an object x (e.g., by deleting a tuple from some

relation), we model it as the creation of a special dead version, i.e., in this case, x � (also called

x �	��
�� ) is a dead version. Thus, object versions can be of three kinds — unborn, visible, and dead;

the ordering relationship between these versions is discussed in Section 3.1.2.

All objects in the database have a unique identity that is not based on field values. Suppose

transaction T � deletes x (i.e., x � is a dead version) and a later transaction T � checks if this tuple

exists and inserts a new tuple. Transaction T � ’s insert operation overwrites the unborn version of an

object y that has not been used before and creates a visible version of y, i.e., the deleted and inserted
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objects are different.

When a transaction T � performs an insert operation, the system selects a unique object x that has

never been selected for insertion before and T � creates a visible version of x if T � commits. If two

transactions try to insert a tuple with the same field values, the system selects two distinct objects

for insertion. The decision whether both tuples can be inserted is left to the application and the

database system, i.e., our model does not require that the database contains unique tuples.

We assume object versions exist forever in the committed state to simplify handling of inserts and

deletes. An implementation only needs to maintain visible versions of objects, and a single-version

implementation can maintain just one visible version at a time. Furthermore, application transactions

in a real system access only visible versions. Well-formed systems enforce this constraint in different

ways. For example, in an object-oriented database system, an application might be unable to access

deleted objects since the system provides garbage collection. In a relational database with explicit

deletion, a transaction might look up an object using its primary key after that object has been

deleted. The system can inform the transaction that no such object exists, or, if keys are reused, it

could return a different object. As discussed above, in our model, these objects will be considered

to be distinct.

3.1.2 Transaction Histories

We capture what happens in an execution of a database system by a history. A history H over a set

of transactions consists of two parts — a partial order of events E that reflects the operations (e.g.,

read, write, abort, commit) of those transactions, and a version order,
�

, that is a total order on

committed object versions.

Each event in a history corresponds to an event of some transaction, i.e., read, write, commit

or abort. A write operation on object x by transaction T � is denoted by w � (x � ) (w � (x � � � ) for the
�

���
modification to x); if the value v is written into x � , we use the notation, w � (x � , v). When a

transaction T� reads a data item x, it reads some version of x that was written by a transaction T � (T �

could be the same as T� ); we denote this as r� (x � ) (or r� (x � � � ) if T� reads an intermediate version).

To indicate that T� has read x � ’s value to be v, we use the notation r� (x � , v). Note that version x � is

not necessarily the most recently installed version in the committed state. (The subscript of “w” in

the write operation is always the same as the version of the modified object; this redundancy exists

so that the notation for writes is similar to that for reads.)

The partial order of events E in a history obeys the following constraints:

� It preserves the order of all events within a transaction including the commit and abort events.

� If an event r� (x � � � ) exists in E, it is preceded by w � (x � � � ) in E, i.e., a transaction T � cannot

read version x � of object x before it has been produced by T � .

� If an event w � (x � � � ) is followed by r � (x� ) without an intervening event w � (x � � � ) in E, x� must
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be x � � � . This condition ensures that if a transaction modifies object x and later reads x, it will

observe its last update to x.

The partial order in [BHG87] places more constraints than the ones given above since their

theory has been developed for defining serializability. In our case, we add those extra conditions

as they are needed at each lower isolation level; our specification of serializability captures all

conditions presented in [BHG87].

For convenience, we will present history events in our examples as a total order (from left to

right) that is consistent with the partial order. Furthermore, wherever possible in our examples, we

make this total order be consistent with the real-time ordering of events in a database system; a

similar approach was adopted in [GR93].

The second part of a history H is the version order,
�

, that specifies a total order on object

versions created by committed transactions in H; there is no constraint on versions due to uncommit-

ted or aborted transactions. We refer to versions due to committed transactions in H as committed

versions and impose two constraints on H’s version order for different kinds of committed versions:
� the version order of each object x contains exactly one initial version, x � � ��� , and at most one

dead version, x ��� 
 � .

� x � � � � is x’s first version in its version order and x �	��
�� is its last version (if it exists); all visible

versions are placed between x � � � � and x �	��
�� .

We additionally constrain the system to allow reads only of visible versions:
� if r� (x � ) occurs in a history, then x � is a visible version.

For convenience, we will typically only show the version order for visible versions in our example

histories; in cases where unborn or dead versions help in illustrating an issue, we will show some

of these versions as well.

The version order in a history H can be different from the order of write or commit events in H.

This flexibility is needed to allow certain optimistic and multi-version implementations where it is

possible that a version x � is placed before version x� in the version order (x � �
x� ) even though x �

is installed in the committed state after x � is installed. For example, consider history H ��� � � ����� � �	� � :
�
��� � � ����� � �	� � : w1(x1) w2(x2) w2(y2) c1 c2 r3(x1) w3(x3) w4(y4) a4 [x2

�
x1]

In this history, the database system chooses the version order x2
�

x1 even though T1 commits

before T2. The fact that the write of x1 occurs before x2 in the history does not determine the

version order either; the system chooses the version order for each object. Furthermore, there

are no constraints on x3 (yet) or y4 since these versions correspond to uncommitted and aborted

transactions, respectively.

In our examples, the subscripts used for labeling transactions are used purely as identifiers and

are not supposed to imply any ordering between transactions; all orderings are specified by the

history and the version order. Thus, in a history, events of T1 may or may not precede events of T2.
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3.1.3 Predicates

We now discuss how we handle predicates in our model. In databases, queries and updates may

be performed on a set of objects if a certain condition called the predicate [GR93] is satisfied.

For example, a transaction can execute an SQL statement that updates the phone numbers of all

employees whose place of residence is Cambridge; in this case, the predicate is the condition “place

of stay = Cambridge” over the relevant relations.

In our model, we assume that predicates are used with relations in a relational database system.

There are two modification operations possible on the structure of relations: insertion or deletion

of tuples (of course, tuples can be read or updated as discussed earlier; our notation for reading via

predicates is discussed below).

We extend our database model in the following way. We divide the database into relations and

each object (with all its versions) exists in some relation. As before, unborn and dead versions

exist for an object before the object’s insertion and after its deletion. A point to note here is that

an object’s relation is known in our model when the database is initialized by T � � � � , i.e., before

the object is inserted by an application transaction. Of course, this assumption is needed only at

a conceptual level. In an implementation, the system knows the relation of an object x when x is

inserted in a relation.

A predicate P identifies a boolean condition and the relations on which the condition has to be

applied; one or more relations can be specified in P. All objects that match this condition are read

or modified depending on whether a predicate-based read or write is being considered. We do not

make any assumptions about the language used for specifying predicates.

Definition 1 : Version set of a predicate-based operation. When a transaction executes a read

or write based on a predicate P, the system selects a version for each object in P’s relations. The

set of selected versions is called the Version set of this predicate-based operation and is denoted by

Vset(P).

The version set defines the state that is observed to evaluate a predicate P. Since we select a

version for all possible objects in P’s relations, this set will be very large since it includes unborn

and possibly dead versions of some objects. For convenience, we will only show visible versions

in a version set; to better explain some examples, we will sometimes also show some unborn and

dead versions.

We use the following scenario for explaining various issues regarding predicates. We consider a

database in which an Employee relation contains visible versions of objects, x and y. In many of our

examples, x is a tuple for an employee in the Sales department and y corresponds to an employee

in the Legal department; in some cases, we will also consider object z for which only an unborn

version exists (there will be many other such objects in the relation but we will not need them in

our examples).
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Predicate-based Reads

If a transaction T � performs reads based on a predicate P (e.g., in a SQL statement), we represent

the event in a history as r � (P: Vset(P)). To execute such a read, the system (conceptually) reads all

versions in Vset(P). Then, the system determines which objects match predicate P by evaluating

P’s boolean condition on the versions in Vset(P); objects whose unborn and dead versions were

selected in the previous step do not match.

Here is an example that illustrates reads based on predicates using the above scenario. Suppose

that transaction T � executes a query to determine the tuples in the Employee relation for which the

predicate “Dept = Sales” is true. This query (conceptually) reads a version of all objects in the

Employee relation, e.g., x1 and y2, and the unborn/dead versions (such as z � � ��� ) of other objects

in this relation. This predicate-based read could be shown in a history as r � (Dept=Sales: x1; y2);

in this case we do not show any unborn or dead versions in the version set. Version x1 matches

the predicate and y2 does not match; recall that z � � � � cannot match the predicate. After this query,

T � can execute operations on the matched object, e.g., it could read x1’s value. These reads will

show up as separate events in the history. If T � does not read x1, we do not add a read event to the

history, e.g., T � could simply use the fact that one object matched the predicate. Thus, the history

only shows reads of versions that were actually observed by transaction T � .

Predicate-based Modifications

For writes based on a predicate P, we use the following approach. As for predicate-based reads, the

system selects versions for all objects specified in P’s relations and then determines which object

versions match P; as in the case of reads, unborn and dead versions cannot match P. Then, all objects

that match the predicate are modified by the transaction, i.e., in the case of the delete operation,

dead versions are installed for the deleted objects. We model this behavior as a sequence of events:

w � (P: Vset(P)) w � (x � ) w � (y � ) � � � , where x, y, � � � are the objects that matched predicate P.

When a transaction modifies objects based on a predicate, it indicates the modification to be

performed. This information is used by the database system to generate appropriate write events.

Since a history captures what happened in a system, we show the write-events after the system has

interpreted the predicate-based operation.

Here are some examples to illustrate writes based on predicates. Suppose that transaction T �

executes the following statement for the employee database discussed above: “increment by $10

salaries of all employees where Dept=Sales”. Suppose that the system selects versions, x1, y2, and

z � � ��� , for this operation. If x1 matches the predicate but y2 and z � � ��� do not, the following events are

added to the history: w � (Dept=Sales: x1; y2; z � � � � ) w � (x � ).

Similarly, if a transaction T � deletes all employees from the Sales department in the above

scenario, the following events are added to the history: w � (Dept=Sales: x1; y2; z � � ��� ) w � (x � ). Note
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that similar events are added to the history in the case of deletion as well. However, there is a

difference: in the deletion example, x � is a dead version and cannot be modified further whereas in

the update case, x � can be overwritten later.

Note that a predicate-based modification can also be modeled as a predicate-based read followed

by a set of writes on the matched objects. Thus, in the example given above, the operations added

to the history are: r � (Dept=Sales: x1; y2; z � � � � ) w � (x � ). This technique provides weaker guarantees

(than the approach given above) to predicate-based modifications at lower isolation levels and is

supported by some commercial databases. It is possible to change our definitions to allow such

semantics; we have chosen a different approach since we wanted to provide stronger guarantees for

predicate-based modifications at lower isolation levels.

We only treat updates and deletes as writes based on predicates; we do not provide special

“insert predicates”. Insert operations are modeled as discussed in Section 3.1.1, i.e., if T � inserts a

tuple, the system selects a unique object x (which has never been selected for insertion before) and

creates a visible version of x � when T � commits.

An insert statement in a database language such as SQL specifies the tuples to be added to a

relation; these tuples could be specified explicitly or could be evaluated from a query. If a query is

used for generating the values, our model treats such an insert operation as a predicate-based read

followed by a sequence of write events that correspond to the tuples being added. This approach

corresponds to the semantics of some commercial databases such as IBM’s DB2 [IBM99]. For

example, consider the following statement that copies employees whose commission exceeds 25%

of their salary into the BONUS table (this statement is executed by transaction T1):

T1: INSERT INTO Bonus SELECT name, sal, comm FROM Emp

WHERE comm � 0.25 * sal

As stated in the DB2 manual [IBM99], the lock-protocol for the Emp relation is governed by the

“rules for read-only processing”; for the Bonus relation, the lock-protocol for “change processing”

is used. Thus, if the transaction executes at degree 2, read-locks on the Emp relation are released

after the insert statement. This allows later transactions to modify the Emp relation while T1 is still

uncommitted.

As stated above, our approach handles T1’s insert in a similar manner. Here is a possible history

for T1’s execution in our model:
����� � ��� � � ��� � � � : r1(comm > 0.25 * sal: x0) r1(x0) w1(y1) c1

In this history, since x0 matches the predicate-based query, it is read by T1 to generate a tuple

that is inserted into the Bonus table. We do not consider the insertion of y1 as a predicate-based

write since the predicate is used to determine what tuples will be inserted in the Bonus relation

and not for determining which matched objects need to modified. Modeling an insert operation as

a predicate-based read followed by a set of write events allows flexibility and ensures that some

commercial systems are not ruled out.
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Discussion

Our approach of observing some version of each object in one of the selected relations allows us

to handle the phantom problem [GR93] in a simple way (as we will see later). However, this does

not constrain implementations to perform these observations, e.g., an implementation could use an

index.

To model reads and writes based on predicates, we introduced the notion of relations in a

database. A read operation based on predicate P only observes object versions in relations that are

specified by P (similarly for writes). We chose this approach rather than having a predicate-based

read observe versions of all objects in the database because an object x in a relation that is not

specified by P does not matter. The only way that x can match P is if its relation is changed to be

one of P’s relations. Since objects do not change relations in our model, we can ignore object x for

an operation based on predicate P since x’s relation is not specified by P. Alternatively, we could

say that the system chooses unborn versions of all objects in such relations. This is equivalent to

our approach of dividing the database into relations. Our approach has an additional advantage that

it models how predicates are used in application code, i.e., a predicate indicates the relations on

which it operates.

3.1.4 Conflicts and Serialization Graphs

We first define the different types of read/write conflicts that can occur in a database system and

then use them to specify serialization graphs. Our notion of conflicts and graphs is similar to the

ones given in [BHG87] but they are not exactly same; we capture conflict-serializability with our

definitions whereas the conditions given in [BHG87] define view-serializability. We define three

kinds of direct conflicts that capture conflicts of two different committed transactions on the same

object or intersecting predicates — read-dependency, anti-dependency, and write-dependency. The

first type, read dependency, specifies write-read conflicts; a transaction T � depends on T � if it reads

T � ’s updates. Anti-dependencies capture read-write conflicts; T � anti-depends on T � if it overwrites

an object that T � has read. Write-dependencies capture write-write conflicts; T � write-depends on

T � if it overwrites an object that T � has also modified. We now discuss these conflicts in detail. For

convenience, we have separated the definitions of predicate-based conflicts and regular conflicts.

Definition 2 : Directly Read-Depends. We say that T � directly read-depends on transaction T � if

it directly item-read-depends or directly predicate-read-depends on T � (denoted by
� �

� ����� �
� ).

Directly item-read-depends: We say that T� directly item-read-depends on T � if T � installs some

object version x � and T� reads x � .

Directly predicate-read-depends Transaction T� directly predicate-read-depends on T � if T� per-

forms an operation r� (P: Vset(P)) and x ��� Vset(P).
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Transaction T� directly predicate-read-depends on the initialization transaction T � � � � since T�

observes the unborn versions of objects that have yet not been inserted in P’s relations; if

T� observes a dead version of some object, it directly read-depends on the transaction that

deleted that object.

For predicate-read-dependencies, all objects in the version set of a predicate-based read are

considered to be read, including objects that do not match the predicate. The versions that are

actually accessed by transaction T � show up as normal read events. Other versions in the version

set are essentially ghost reads, i.e., their values are not observed by the predicate-based read but

read-dependencies are established for them as well.

We now define the notion of overwriting a predicate-based operation that is useful for defining

anti-dependencies and write-dependencies.

Definition 3 : Overwriting a predicate-based operation. We say that a transaction T � overwrites

an operation r � (P: Vset(P)) (or w � (P: Vset(P))) based on predicate P if T� installs x� such that

x � �
x� , x � � Vset(P) and x � matches P whereas x� does not match P or vice-versa. That is, T �

makes a modification that changes the set of objects matched by T � ’s predicate-based operation.

The notion of a write operation overwriting a predicate-based operation can be defined similarly.

Definition 4 : Directly Anti-Depends. A transaction T � directly anti-depends on transaction T � if

it directly item-anti-depends or directly predicate-anti-depends on T � (denoted by
� �

� ����� �
� ).

Directly item-anti-depends: We say that T� directly item-anti-depends on transaction T � if T � reads

some object version x � and T� installs x’s next version (after x � ) in the version order. Note

that the transaction that wrote the later version directly item-anti-depends on the transaction

that read the earlier version.

Directly predicate-anti-depends: We say that T � directly predicate-anti-depends on T � if T� over-

writes an operation r � (P: Vset(P)). That is, if T� installs a later version of some object that

changes the matches of a predicate-based read performed by T � .

This definition handles inserts and deletes. For example, suppose that transaction T � inserts a

tuple x in an Employee relation that corresponds to a person who works in the Sales department.

Another transaction T � searches for all employees in the Sales department but does not find

this record, i.e., T � reads x’s unborn version. Transaction T � directly predicate-anti-depends

on T � since T� changes the objects matched by T � ’s read.

Note that read-dependencies are treated differently from anti-dependencies for predicates. A

transaction T� directly predicate-read-depends on all transactions that produced the versions in

Vset(P) However, if transaction T � performs an operation r � (P: Vset(P)), T� predicate-anti-depends

41



on T � only if T� ’s modifications change the set of objects that matched P; simply overwriting a

version in Vset(P) does not cause a predicate-anti-dependency. We avoid extra anti-dependency

edges originating from T � since they can unnecessarily disallow legal histories.

In a two-phase locking implementation (for providing serializability), if a transaction T1 per-

forms a read based on predicate P and T2 tries to insert an object x covered by P, T2 is delayed

till T1 finishes. In our model, T1 reads x
� � � � � � and T2 creates a later version x1. If T2 changes

the matches by T1’s read, T2 predicate-anti-depends on T1. Note that T1’s predicate read-locks

delay T2 even if T2 does not change the objects matched by P. Our definitions are more flexible and

permit implementations that allow T2 to proceed in such cases, e.g., precision locks and granular

locks [GR93].

Here is an example to illustrate anti-dependencies with respect to predicates. Consider the

employee database scenario described in Section 3.1.3 that contains visible versions of two objects

x and y. Suppose T � executes a query that selects all Employees in the Sales department and

examines versions x1 and y2 along with unborn/dead versions of other objects; it determines that x

is in Sales and y is not. If T � commits, it will read-depend on T1 and T2, T � � � � , and transactions that

created dead versions observed by T � . A later transaction T� will directly predicate-anti-depend on

T � if T� adds a new employee to the Sales department, moves y to Sales, removes x from Sales, or

deletes x from the database.

Definition 5 : Directly Write-Depends. A transaction T � directly write-depends on T � if it directly

item-write-depends or directly predicate-write-depends on T � This situation is denoted by
� �

� � � � �
� .

Directly item-write-depends: We say that T� directly item-write-depends on transaction T � if T �

installs a version x � and T� installs x’s next version (after x � ) in the version order.

Directly predicate-write-depends: We say that T � directly predicate-write-depends on T � if either

1. T� overwrites an operation w � (P: Vset(P)), or

2. T� executes an operation w� (Q: Vset(Q)) and x ��� Vset(Q).

In other words, T� predicate-write-depends on T � if T� installs a later version of some object

that changes the matches of a predicate-based write performed by T � or if the system selects

a version x � in T� ’s predicate-based write.

The definition of predicate-write-dependencies is similar to the definitions of predicate-read-

dependencies and predicate-anti-dependencies given above. Part (1) of this definition matches

read-dependencies, i.e., all objects in the version set of a predicate-based write are effectively

considered to be modified, including objects that do not match the predicate. We refer to such

writes of unmatched objects as ghost writes since no new versions are created for them. For objects

that match the predicate, separate write events are generated.
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Part (2) of predicate-write-depends is similar to predicate-anti-depends: in both cases, a trans-

action overwrites a predicate-based read or write of another transaction. As in the case of anti-

dependencies, we do not consider a transaction T � to predicate-write-depend on T � if T� simply

overwrites a version in Vset(P) (of an operation w � (P: Vset(P))); instead T� must change the objects

matched by P. Predicate-write-dependencies are chosen in this manner to prevent legal histories

from being unnecessarily disallowed.

Note that if predicate-based modifications are modeled as predicate-based reads followed by

normal writes, the notion of predicate-write-depends is not needed.

The definition for predicate-write-depends handles inserts and deletes also. For example,

suppose T � updates the salaries of all employees in an Employee relation for which “Dept=Sales”

is true. Suppose that a later transaction T � inserts a tuple (z� ) for a new employee in the Sales

department. Transaction T� directly predicate-write-depends on T � since T� installs an object

version that changes the matches of T � ’s predicate-based write (when T � performs its update,

w � (P: Vset(P)), its version set Vset(P) contains z � � � � which does not match P).

Let us consider an example that involves deletes. Suppose that transaction T � deletes a record x

that matches a predicate “social security number = SN” and a later transaction T � inserts a record y

with the same social security number in the database. In our model, these two objects are distinct: T �

creates the dead version of x and T� creates the first visible version of y. T� predicate-write-depends

on T � since it changes the objects matched by T � ’s predicate and installs a later version of y (T � ’s

object set contains version y � � � � that does not match whereas y� matches the predicate).

The following subsidiary definitions will also be useful:

Definition 6 : Directly depends. We say T� directly depends on T � if T� directly write-depends or

directly read-depends on T � .

Definition 7 : Directly conflict-depends. We say that T � directly conflict-depends on T � if it

directly depends or directly anti-depends on T � .

Now we can define the Direct Serialization Graph or DSG. This graph is called “direct” since

it is based on the direct conflicts discussed above.

Definition 8 : Direct Serialization Graph. We define the direct serialization graph arising from

a history H, denoted DSG(H), as follows. Each node in DSG(H) corresponds to a committed

transaction in H and directed edges correspond to different types of direct conflicts. There is a

read/write/anti-dependency edge from transaction T � to transaction T� if T� directly read/write/anti-

depends on T � .

There can be at most one edge of a particular kind from node T � to T� since the edges do not

record the objects that gave rise to the conflict; our conditions have been defined such that we only

need to know whether a particular type of edge exists between two nodes.
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A DSG does not capture all information in a history and hence it does not replace the history,

e.g., a DSG only records information about committed transactions. The history is still available if

needed, and in fact, we use the history instead of the DSG for some conditions.

Figure 3-1 reviews the definitions for direct conflicts between transactions and shows the notation

used in DSGs. As an example, consider the following history:

�
� � � � 
 � ��� 
 � � � : w1(z1) w1(x1) w1(y1) w3(x3) c1 r2(x1) w2(y2) c2 r3(y2) w3(z3) c3

[x1
�

x3, y1
�

y2, z1
�

z3]

Figure 3-2 shows the corresponding direct serialization graph for this history. As we can see, these

transactions are serializable in the order T1; T2; T3.

Definition 9 : Transitive Conflicts. We also define some transitive conflicts in which the relation-

ship among transactions holds indirectly.

Depends: We say that T� depends on T � in H if there is a path from T � to T� in DSG(H) consisting

of one or more dependency edges.

Conflict-depends: We say that T� conflict-depends on T � in H if there is a path from T � to T� in

DSG(H). That is, conflict-depends is the transitive closure of directly conflict-depends.

Anti-depends: We say that a transaction T� anti-depends on T � if it conflict-depends on T � but does

not depend on T � , i.e., the path from T � to T� contains at least one anti-dependency edge.

3.2 Isolation Levels for Committed Transactions

We now present our specifications for the existing ANSI isolation levels. We developed our

conditions by studying the motivation of the original definitions [GLPT76] and the problems that

Conflicts Name Description (T � conflicts on T � ) Notation in DSG

Directly write-depends T � installs x � and T � installs x’s next version (or T � per-
forms a predicate-based write whose version set includes
x � ) or T � performs a predicate-based write and T � over-
writes this write

����
� �

�
�

Directly read-depends T � installs x � , T � reads x � or T � performs a predicate-
based read whose version set contains x �

��	�
� �

�
�

Directly anti-depends T � reads x 
 and T � installs x’s next version or T � performs
a predicate-based read and T � overwrites this read

	���
�
�������

�
�

Figure 3-1: Definitions of direct conflicts between transactions.
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Figure 3-2: Direct serialization graph for history H � � � � 
 � ��� 
 � � �
were addressed by the phenomena in [BBG

�

95]; this enabled us to develop implementation-

independent specifications that capture the essence of the ANSI definitions, i.e., we disallow

undesirable situations while allowing histories that are permitted by a variety of implementations.

The conditions in [GLPT76] and [BBG
�

95] were inspired by locking and actually reflect the use of

short and long read/write-locks. Therefore, we determined which abstract properties really matter,

and which ones are just artifacts of a particular concurrency control technique.

Like the existing approach, we will define each isolation level in terms of phenomena that must

be avoided at each level. Our phenomena are prefixed by “G” to denote the fact that they are general

enough to allow locking and optimistic implementations; these phenomena are named G0, G1, and

so on (by analogy with P0, P1, etc of [ANS92]). We will refer to the new levels as PL levels (where

PL stands for “portable level”) to avoid the possible confusion with existing names used in the

ANSI-SQL definitions.

3.2.1 Isolation Level PL-1

Disallowing phenomenon P0 ensures that writes performed by T1 are not overwritten by T2 while

T1 is still uncommitted. There seem to be two reasons why this proscription might be desirable in

a database system:

1. It simplifies recovery from aborts. In the absence of this proscription, a system that allowed

writes to happen in-place could not recover the pre-states of aborted transactions using a

simple undo log approach.

2. It serializes transactions based on their writes alone. That is, if T2 writes some data item x

after T1 writes x, there should not be some other data item y in which the reverse occurs, i.e.,

all writes of T2 must be ordered before or after all writes of T1.

The first reason does not seem relevant to all systems. Instead, it is based on a particular

implementation of recovery. A database system needs a way to prevent aborted transactions from

modifying the committed state. Traditionally, this goal has been achieved by performing writes

in-place and maintaining an undo log [GR93]; if the transaction aborts or the transaction manager

crashes, the database is restored using the before-images stored in the undo log. For example,

history H � � � ����� ��� has been presented earlier in the literature [BBG
�

95, SWY93] and researchers

have argued that it must be disallowed because it does not lead to correct recovery for such systems:
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�
� � � ����� ��� : w0(x0) c0 w1(x1) w2(x2) a1

In the above history, transactions T1 and T2 modify object x and then T1 aborts (the version order is

not specified since T1 and T2 are not committed). At this point, restoring x to x0 (T1’s before-image)

would be incorrect since T2’s update will be lost. Similarly, if T2 also aborts now, restoring x to

T2’s before-image (i.e., x1) would also be wrong. History H � � � ����� ��� is disallowed by P0 since two

uncommitted transactions T1 and T2 are concurrently modifying object x.

However, we believe that H � � � ����� ��� is a valid history and our consistency condition for no-dirty-

writes (presented below) allows it. Implementations can handle the aborts of T1 and T2 in a variety

of ways. For example, when T1 aborts, the system can let x2 be the version that is stored in the

database. If T2 also aborts, the system reverts the value of x to x0. Furthermore, some client-server

systems such as Thor [LAC
�

96] do not install modifications into the committed state until the

commit point of transactions. In such systems, we do not even have to revert the value of x when

either transaction aborts.

Note that history H � � � ����� ��� involves blind writes (i.e., a transaction updates an object before

reading it) which may be uncommon for a large class of applications. Thus, it may seem that disal-

lowing such histories is not overly restrictive. However, recall that P0 rules out efficient optimistic

and multi-version mechanisms by disallowing concurrent writes that conflict. Thus, to allow a range

of concurrency control mechanisms, assumptions about a particular recovery implementation must

not be made in the consistency specifications and different recovery mechanisms must be permitted.

The second reason for no-dirty-writes seems relevant to all systems and it ensures that conflicting

updates are not interleaved, i.e.. transactions are serialized based on writes. This property is captured

by phenomenon G0 and we define PL-1 as the level in which G0 is disallowed:

G0: Write Cycles. A history H exhibits phenomenon G0 if DSG(H) contains a directed

cycle consisting entirely of write-dependency edges.

Our PL-1 specification is more permissive than degree 1 of [BBG
�

95] since G0 allows concur-

rent transactions to modify the same object whereas P0 does not. Thus, non-serializable interleaving

of write operations is possible among uncommitted transactions as long as such interleavings are

disallowed among committed transactions (e.g., by aborting some transactions).

The lock-based implementation of PL-1 (long write-locks) disallows G0 since two concurrent

transactions, T � and T� , cannot modify the same object; therefore, all writes of T � either precede or

follow all writes of T � .

One might wonder whether there is any point in running a system that only supports the no-

write-cycles property. As noted in [GR93], this property may be useful for applications where the

modifications reflect information obtained by browsing the database to get an approximate idea of

what it contains. In a department store where all customer purchases are logged online, a manager

could use level PL-1 to obtain an approximation of the total value of the orders in the purchase log
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(assuming that uncommitted transactions change the total by a small value). PL-1 is also useful

for transactions that do not want their updates to be interleaved with updates by other transactions.

However, in general, it seems unwise to run read/write transactions at this level and most database

systems do not allow such transactions to be executed with the no-dirty-writes guarantee only.

Discussion

We now consider some examples that show the kind of guarantees that are provided at level PL-1.

Consider history H � � � � � � :
�
��� � � ��� � � � � � : w1(x1, 20) w2(x2, 50) w2(y2, 50) c2 w1(y1, 80) c1 [x1

�
x2, y2

�
y1]

In this history, any serial execution results in � � � � 100, but the result of H � � ��� ��� � � � � � is x2 + y1

= 130. This history is disallowed by PL-1 because the updates on x and y occur in opposite orders;

Figure 3-3 shows the DSG for this history.

T T1

ww

2

ww

Figure 3-3: Direct serialization graph for history H � � � � ��� � � � � �
Here are some examples that illustrate the guarantees provided by PL-1 with respect to inserts.

Suppose that transaction T2 increments the salaries of all employees for which “Department = Sales”

and another transaction T1 adds two employees, x and y, to the Sales department. Suppose the

following situation occurs:
�

� � � � � � � �	
 � � : w1(x1) w1(y1) w2(Dept=Sales: x1; y � � � � ) w2(x2) c1 c2

[x � � � � �
x1

�
x2, y � � � � �

y1]

The updates of transactions T1 and T2 are interleaved in the above history (x’s salary is updated

but y’s salary is not). There is a write-dependency edge from T1 to T2 since x1 precedes x2 in the

version order. Furthermore, there is a (predicate) write-dependency edge from T2 to T1 because T1

changes the matches due to T2’s predicate (T1 creates y1 which matches the predicate whereas y � � � �
does not). Since the DSG contains a write-dependency cycle involving T1 and T2, this history is

disallowed by our PL-1 definitions.

3.2.2 Isolation Level PL-2

If a system disallows only G0, it places no constraints on reads: a transaction is allowed to

read modifications made by committed, uncommitted, or even aborted transactions. Proscribing

phenomenon P1 in [ANS92] was meant to ensure that T1’s updates could not be read by T2 while

T1 was still uncommitted. There seem to be three reasons why disallowing P1 (in addition to P0)

might be useful:
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1. It prevents a transaction T2 from committing if T2 has read the updates of a transaction that

might later abort.

2. It prevents transactions from reading intermediate modifications of other transactions.

3. It serializes committed transactions based on their read/write-dependencies (but not their

anti-dependencies). That is, if T2 depends on T1, T1 cannot depend on T2.

This property ensures that there is unidirectional flow of information; if T2 is affected by T1,

T1 cannot be affected by T2.

Disallowing P1 (together with P0) captures all three of these issues, but does so by preventing

uncommitted transactions from reading or writing objects written by transactions that are still

uncommitted. We address the three guarantees due to P1 by the following three phenomena, G1a,

G1b, and G1c.

G1a: Aborted Reads. A history H exhibits phenomenon G1a if it contains an aborted

transaction T � and a committed transaction T� such that T� has read some object

(maybe via a predicate) modified by T � . Phenomenon G1a can be represented using

the following history fragments:

w � (x � � � ) � � � r� (x � � � ) � � � (a � and c� in any order)

w � (x � � � ) � � � r� (P: x � � � , ...) � � � (a � and c� in any order)

Proscribing G1a ensures that if T� reads from T � and T � aborts, T� must also abort; these aborts are

also called cascaded aborts [BHG87]. In a real implementation, the condition also implies that if

T� reads from an uncommitted transaction T � , T� ’s commit must be delayed until T � ’s commit has

succeeded [BHG87, GR93].

Condition G1a is needed for recoverability purposes: if the system recovers after a crash and

reruns all committed transactions in the same order as they ran earlier, the same committed state

should be reached as it existed before the crash. However, if a committed transaction depends on

an aborted transaction, this would not be possible. The problem of recoverability due to reads from

aborted transactions has been discussed in the literature [BHG87, Dat90, RKS93, YBS91]; some of

the suggested solutions are similar to G1a and others are the same as condition P1.

G1b: Intermediate Reads. A history H exhibits phenomenon G1b if it contains a

committed transaction T� that has read a version of object x (maybe via a predicate)

written by transaction T � that was not T � ’s final modification of x. The following history

fragments represent this phenomenon:

w � (x � � � ) � � � r� (x � � � ) � � � w � (x � � � ) � � � c�

w � (x � � � ) � � � r� (P: x � � � , ...) � � � w � (x � � � ) � � � c�
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Like our other conditions, G1b does not constrain the behavior of uncommitted transactions. It

allows an uncommitted transaction T � to observe the effects of other uncommitted transactions

as long as T� reads values that are finally installed into the database; if any of these values are

intermediate, disallowing G1b ensures that T � is aborted. Note that proscribing G1a and G1b

ensures that a committed transaction only reads object values that existed (or will exist) at some

point in the committed state.

Disallowing intermediate and aborted reads can be crucial for many applications. For example,

consider a company’s web site on the internet where customers fill out online forms for their

purchases. A processing agent processes these orders and informs appropriate departments. If the

processing agent were allowed to see an order form while it was still being modified by a customer

transaction, it might incorrectly process an incomplete order. In this case, it is important to disallow

G1a as well; otherwise, the agent may process an order that never existed (i.e., if a customer aborts

his/her purchase).

G1c: Circular Information Flow. A history H exhibits phenomenon G1c if DSG(H)

contains a directed cycle consisting entirely of dependency edges.

Intuitively, disallowing G1c says that if a transaction T � is affected by transaction T � , it does not

affect T � , i.e., there is a unidirectional flow of information from T � to T� . Note that G1c includes

G0. We could have defined a weaker version of G1c that only concerned cycles having at least one

read-dependency edge, but it seems simpler not to do this.

Unidirectional flow of information can be important in many situations. For example, consider

an online firm that is selling tickets for a sports event. Each sales agent is structured such that it

“backs-off” if it observes a claim request by another agent. Suppose two sales agents A and B make

a simultaneous attempt to obtain a batch of 100 tickets. It is possible that agent A observes B’s

request and vice-versa. As a result, both of them back-off and neither agent obtains the tickets. If

unidirectional flow of information was guaranteed, at least one of them would have succeeded in

obtaining the tickets; if G1c is disallowed, one agent will observe that there are no other pending

requests.

Our condition that captures the essence of no-dirty-reads is G1, which is comprised of G1a,

G1b, and G1c. We define isolation level PL-2 as one in which phenomenon G1 is disallowed. (As

mentioned, disallowing G1 also disallows G0.)

Proscribing G1 is clearly weaker than proscribing P1 since G1 allows transactions to read

from uncommitted transactions. The lock-based implementation of PL-2 disallows G1 because the

combination of long write-locks and short read-locks ensures that if
� � reads a version produced by

�
� ,
�

� must have committed already and therefore it cannot read a version produced by
� � .

Along with disallowing dependency cycles in the DSG, our specifications also include conditions

G1a and G1b that are simply based on object histories. We could have expressed these phenomena
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in terms of graph properties by including aborted transactions in the graph and defining phenomenon

G1a as one in which there is a read-dependency edge from an aborted transaction to a committed

transaction (G1c would be defined over committed nodes only). Similarly, consider a graph in

which edges are labeled by the objects causing the conflict; phenomenon G1b occurs if there exists

a cycle consisting of exactly one read-dependency and one anti-dependency edge such that both

edges are labeled by the same object. However, these extra nodes, edges, and labels complicate

the graph unnecessarily. Thus, for simplicity reasons, conditions G1a and G1b are presented as

constraints on object histories rather than being expressed as graph properties.

Consistency Guarantees for Predicate-based Reads at PL-2

The PL-2 definition given in this section treats predicate-based reads like normal reads and provides

no extra guarantees for them. However, there are alternative approaches possible. Here are some

consistency guarantees that could be provided to such reads at PL-2 (from weakest to strongest).

Each predicate-based read is:

1. provided the same guarantees as a normal read.

2. indivisible with respect to any predicate-based write.

3. indivisible with respect to all writes of a transaction.

Our definition of PL-2 assumes the first option and disallows only G1a, G1b, and G1c (along

with G0) for PL-2 transactions. For example, the following history is allowed by level PL-2:

�
� � � � � � � �

� 
 � : w1(Dept=Sales: x0; y0) w1(x1) w1(y1) r2(Dept=Sales: x1; y0) r2(x1) c1 c2

[x0
�

x1, y0
�

y1]

In this history, T1 updates the salaries of all employees in the Sales department and T2 reads the

salaries of all these employees; T2 observes only partial effects of T1’s write.

The second guarantee disallows this history and ensures that we can treat all operations

(normal/predicate-based reads and writes) as primitive operations. This guarantee essentially says

that the versions in the version set of a predicate-based operation must not reflect the partial effects

of a predicate-based write, i.e., predicate-based operations are not interleaved with respect to each

other. This property can be supported by disallowing phenomenon G1-predA and PL-2’ can be

defined as a level that disallows G1a, G1b, G1c, and G1-predA:

G1-predA: Non-atomic Predicate-based Reads. A history H exhibits phenomenon

G1-predA if H contains distinct committed transactions T � and T� , and operations

w � (P: Vset(P)), w � (x � ) � � � w � (y � ) and r� (Q: Vset(Q)) such that w � (x � ) and w� (x� )

are events generated due to w � (P: Vset(P)), x � � Vset(Q), and w � (y � ) overwrites

r� (Q: Vset(Q)).
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Disallowing G1-predA guarantees that if T � ’s predicate-based read observes an update by T � ’s

predicate-based write, it does not see any version older than the ones installed by T � ’s write. Thus,

disallowing G1-predA ensures that all read/write operations are indivisible with respect to each

other. However, level PL-2’ still allows a predicate-based read to be interleaved with distinct writes

of the same transaction. For example, the following history is allowed by level PL-2’:

� 
 � � � � � � � ��
�� � : w1(Dept=Sales: x0; y0; z0) w1(x1) w1(y1) w1(z1)

r2(Dept=Sales or Dept=Legal: x1; y1; z0) r2(x1) r2(y1) c1 c2

[x0
�

x1, y0
�

y1, z0
�

z1]

This scenario is similar to the one shown for H� � ��� � � � �
� 
 � except that T1 also updates the record of

an employee in the legal department (as a normal write) and T2 reads an old version of this record

as part of its predicate-based read. All operations in this history are indivisible with respect to each

other but the predicate-based read is not indivisible with respect to all operations of the transaction.

The third guarantee disallows history H 
 � � � � � � � ��
�� � and ensures that a predicate-based read

does not observe the partial effects of a transaction, i.e., the values observed by a predicate-based

reads are not interleaved with all modifications by another transaction. Phenomenon G1-predB

handles partial predicate-based reads:

G1-predB: Non-atomic Predicate-based Reads with respect to Transactions. A

history H exhibits phenomenon G1-predB if H contains distinct committed transactions

T � and T� such that T � overwrites an operation r� (P: Vset(P)) and there exists a version

x � in Vset(P).

We define level PL-2” to be one that disallows G1a, G1b, G1c, and G1-predB. If predicate-based

reads are treated in this manner, each predicate-based operation becomes indivisible with respect to

all operations of a transaction (G0 provides this property for predicate-based writes). This level can

be useful in many situations such as the one shown in history H 
 � � � � � � � ��
�� � .
Even stronger guarantees are provided by a lock-based implementation for predicate-based

reads. These guarantees are discussed in Section 4.2.2. Furthermore, many commercial systems

execute each SQL statement atomically and hence ensure that each predicate-based read observes a

database state achieved by the complete execution of some set of transactions; the issue of atomic

SQL statements at lower isolation levels is discussed in Section 3.3.2.

3.2.3 Isolation Level PL-3

In a system that proscribes only G1, it is possible for a transaction to read inconsistent data and

therefore make inconsistent updates. For example, consider history H � � � � � � � �	
 � � :
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� �
� � � � � � �	
 � � : r1(x0, 10) r2(x0, 10) w2(x2, 15) c2 w1(x1, 14) c1 [x0

�
x2

�
x1]

This history illustrates the “lost update” problem [GR93], in which T1 and T2 attempt to add 4 and

5, respectively, to x but T2’s update is “lost” and x is incremented by 4 instead of 9. Although

phenomenon P2 prevents such histories, it also prevents legal histories such as H2
� (presented

in Section 2.4.1) and hence, disallows many concurrency control schemes, including optimistic

and multi-version concurrency schemes. What we need is to prevent transactions that perform

inconsistent reads or writes from committing. This is accomplished by the following condition:

G2: Anti-dependency Cycles. A history H exhibits phenomenon G2 if DSG(H)

contains a directed cycle having one or more anti-dependency edges.

We define PL-3 as an isolation level that proscribes G1 and G2. Thus, all cycles are precluded at

this level; since the DSG for history H � � � � � � � �	
 � � contains a cycle (see Figure 3-4), it is disallowed

by PL-3. Of course, the lock-based implementation of PL-3 (long read/write-locks) disallows

phenomenon G2 also since two-phase locking is known to provide complete serializability.

T0 T1T2

rw 

ww

wr

wr,  ww

Figure 3-4: Direct serialization graph for history H � � � � � � � ��
 � �
Proscribing G2 is weaker than proscribing P2, since we allow a transaction T � to modify object

x even after another uncommitted transaction T � has read x. Our PL-3 definition allows histories

such as H1
� and H2

� (presented in Section 2.4.1) that were disallowed by the preventative definitions.

The conditions given in [BHG87] provides view-serializability whereas our specification for

PL-3 provides conflict-serializability (this can shown using theorems presented in [GR93, BHG87]).

All realistic implementations provide conflict-serializability; thus, our PL-3 conditions essentially

provide what is normally considered as serializability.

3.2.4 Isolation Level PL-2.99

The level called REPEATABLE READ or degree 2.99 in [ANS92] provides less than full serializability

when predicates are in use. In particular, it uses long locks for all operations except predicate-based

reads for which it uses short locks, i.e., it ensures serializability with respect to regular reads and

provides guarantees similar to degree 2 for predicate-based reads. Thus, anti-dependency cycles

due to predicates can occur at this level. We use the following condition to allow these cycles:

G2-item: Item Anti-dependency Cycles. A history H exhibits phenomenon G2-item

if DSG(H) contains a directed cycle having one or more item-anti-dependency edges.
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TT1

wr

2

predicate-rw
T0

wr

wr

Figure 3-5: Direct serialization graph for history H� � 
 � � � �

Level PL-2.99 is defined as one that proscribes G1 and G2-item. For example, consider the

following history:

�
� � 
 � � � � : r1(Dept=Sales: x0, 10; y0, 10) r2(Sum0, 20) w2(z2=10 in Dept=Sales)

w2(Sum2, 30) c2 r1(Sum2, 30) c1 [Sum0
�

Sum2, z � � � � �
z2]

When T1 performs its query there are exactly two employees, x and y, both in Sales (we show only

visible versions in the history). T1 sums up the salaries of these employees and compares it with

the sum-of-salaries maintained for this department. However, before it performs the final check,

T2 inserts a new employee in the Sales department, updates the sum-of-salaries, and commits.

Thus, when T1 reads the new sum-of-salaries value, it finds an inconsistency. This situation is an

example of the read phantom problem [GR93] where transactions observe an inconsistent state due

to predicate-based reads.

The DSG for H� � 
 � � � � is shown in Figure 3-5. This history is ruled out by PL-3 but permitted by

PL-2.99 because the DSG contains a cycle only if predicate anti-dependency edges are considered.

Even though a transaction can observe inconsistencies due to predicate-based reads at level

PL-2.99, we can still provide strong consistency guarantees to each predicate-based read or even

each SQL statement; such guarantees are discussed in Sections 3.2.2, 3.3.2, and 4.2.2.

3.2.5 Summary of Isolation Levels

We summarize the isolation levels discussed in this section in Figure 3-6.

Like the existing definitions for isolation levels [GLPT76, BBG
�

95], each of our consistency

conditions captures a different type of conflict. However, instead of preventing those conflicts from

Level Phenomena
disallowed

Informal Description (T � can commit only if:)

PL-1 G0 T � ’s writes are completely isolated from the writes of other transactions
PL-2 G1 T � has only read the updates of transactions that have committed by the

time T � commits (along with PL-1 guarantees)
PL-2.99 G1, G2-item T � is completely isolated from other transactions with respect to data

items and has PL-2 guarantees for predicate-based reads
PL-3 G1, G2 T � is completely isolated from other transactions, i.e., all operations of

T � are before or after all operations of any other transaction

Figure 3-6: Summary of portable ANSI isolation levels
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occurring at transaction execution time, our definitions place constraints on the transactions that

are allowed to commit; in Section 3.5, we discuss how isolation guarantees can be specified for

executing transactions as well. Each isolation level disallows cycles in the DSG corresponding to

the conflicts being handled at that consistency level. PL-1 manages write-write conflicts, PL-2 also

handles write-read conflicts, and PL-3 (or serializability) takes care of all types of conflicts.

Conditions G1 and G2 provide the well-known definition of serializability, i.e., we can perform

a topological sort on the acyclic direct serialization graph and obtain a total order on the com-

mitted transactions. If these transactions are executed in this order, the result will be the same as

when the transactions executed concurrently. Furthermore, condition G1a also handles recoverabil-

ity [BHG87, KSS97]. Thus, our definition of serializability is the same as what has been generally

accepted in the literature.

Using graphs for capturing multi-object constraints is a well-known technique for serializability

purposes [BHG87, GR93, KSS97]; we have extended their use to lower degrees of isolation. Our

definitions G0, G1c, and G2 (i.e., the cycle invariants) are similar to the conditions defined towards

the end of [GLPT76]. However, since the authors wanted to give an alternate definition of locking

behavior using constraints on cycles, their graph contains committed and executing transactions.

As a result, their conditions disallow certain histories that are permitted by us; these situations

may actually occur when optimistic concurrency control is used. Furthermore, their cycle-based

conditions do not handle predicates and do not include properties G1a and G1b.

3.3 Mixing of Isolation Levels

So far, we have only discussed systems in which all transactions are provided the same guarantees.

However, in general, applications may run transactions at different levels; Section 3.3.1 discusses

how such “mixed” systems are modeled and discusses how these transactions interact with each

other. Another form of mixing occurs in real database systems: each SQL statement in a transaction

T � is executed atomically even though T � has been specified to execute at a lower isolation level

than serializability. Issues related to modeling such systems are discussed in Section 3.3.2.

3.3.1 Guarantees to Transactions in Mixed Systems

In a mixed system, each transaction specifies its level when it starts; this information is maintained

as part of the history (in our examples, we do not use any notation and simply indicate the levels of

different transactions in the text) and used to construct a mixed serialization graph or MSG. Like a

DSG, the MSG contains nodes corresponding to committed transactions and edges corresponding

to conflicts; however, only conflicts relevant to a transaction’s level or obligatory conflicts show up

as edges in the graph. Transaction T � has an obligatory conflict with transaction T � if T� is running

at a higher level than T � , T � conflicts with T� , and the conflict is relevant at T� ’s level. For example,
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an anti-dependency edge from a PL-3 transaction to a PL-1 transaction is an obligatory edge since

overwriting of reads matters at level PL-3.

Edges are added as follows: since write-dependencies are relevant at all levels, we retain all

such edges. For a PL-2 or PL-3 node T � , since reads are important, read-dependencies coming into

T � are added. Similarly, we add all outgoing anti-dependency edges from PL-3 transactions to other

nodes.

Now we can define correctness for a mixed history:

Definition 10 : Mixing-Correct. A history H is mixing-correct if MSG(H) is acyclic and phenom-

ena G1a and G1b do not occur for PL-2 and PL-3 transactions.

It is possible to restate the above definition as an analog of the Isolation Theorem [GR93]:

Mixing Theorem: If a history is mixing-correct, each transaction is provided the

guarantees that pertain to its level.

The above theorem holds at the level of a history and is independent of how synchronization is

implemented. Note that the guarantees provided to each level are with respect to the MSG. The

reason is that an MSG considers the presence of transactions at other levels whereas a DSG is simply

constructed with all edges. As we discuss below, an MSG is useful for determining correctness if

PL-1 and PL-2 transactions “know” what they are doing whereas a DSG ensures correctness without

making any assumptions about the operations of lower level transactions.

A mixed system can be implemented using locking (with the standard combination of short

and long read/write-locks) and all histories generated by a lock-based system are mixing-correct.

Phenomena G1a and G1b cannot occur at PL-2 or PL-3 since such transactions only read the updates

of committed transactions. Furthermore, there are no cycles in the MSG because of the following

property: If an edge exists from T � to T� in the MSG, it implies that T� commits after T � in a lock-

based implementation. For write-dependency edges, long write-locks ensure that T � is delayed until

T � commits. A read-dependency edge from T � to T� is added for PL-2 and PL-3 transactions only.

Since (at least) short read-locks are acquired by such transactions, a read-dependency edge from

T � to T� implies that T� is delayed until T � commits. Similarly, anti-dependency edges are only

considered from PL-3 transactions; a PL-3 transaction T � acquires long read-locks thereby ensuring

that if a transaction T� overwrites T � ’s updates, it will commit after T � . Thus, if a cycle of the form�
T1, T2, � � � T � , T1 � exists in the MSG, it leads to a contradiction that T1 commits before T2, � � �

T � commits before T1. Thus, the MSG must be acyclic, i.e., any history allowed by the lock-based

implementation is mixing-correct.

Mixed systems can also be achieved using other concurrency control techniques. For example,

an optimistic implementation would attempt to fit each committing transaction into the serial order

based on its own requirements (for its level) and its obligations to transactions running at higher
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levels, and would abort the transaction if this is not possible. An optimistic implementation that is

mixing-correct is presented in Chapter 5.

Consistency of Database State

Even if a history H satisfies the mixing theorem, it does not imply that PL-3 transactions in H

observe a consistent database state since lower level transactions may have modified the committed

state inconsistently. This property is also true for the Isolation Theorem given in [GR93].

For example, suppose that a database contains three objects x, y, and z such that x0 is 25, y0 is

20, and z0’s value is 50. The following history is executed:

�
�

� � � � � : r1(x0, 25) r1(y0, 20) r1(z0, 50) r2(x0, 25) w1(x1, 40) w1(y1, 10) c1 r2(y1, 10)

w2(z2, 35) c2 r3(x1, 40) r3(y1, 10) r3(z2, 35) c3 [x0
�

x1, y0
�

y1, z0
�

z2]

wr, rw

rw

wr
T3T2T1

wr

DSG

wr, rw

wr
T3T2T1

wr

MSG

Figure 3-7: DSG and MSG for history H �
� � � � � .

In this history, T1 and T3 commit at PL-3 whereas T2 commits at PL-2. This history is possible

in a lock-based implementation in which T2 acquires short read-locks on x and y whereas long

read/write-locks are acquired for all other accesses by T1, T2 and T3. The DSG and MSG of history

H �
� � � � � is shown in Figure 3-7; for the sake of simplicity, we have not shown T0 in the graphs.

Suppose that an invariant � � ����� is being maintained by the transactions. Both T1 and T2 update

the database to preserve this invariant according to their reads. However, since T2 makes decisions

based on reading the partial effects of transaction T1, it updates the database inconsistently. Thus,

even though T3 is provided PL-3 isolation, it observes a broken invariant.

As stated in [GR93], to ensure that a PL-3 transaction observes a consistent state, lower

level transactions must “know” what they are doing, i.e., they must somehow update the database

consistently even if they observe an inconsistent state. Similarly, an acyclic MSG ensures that

transactions update and observe a consistent database state if each lower level transaction handles

inconsistencies correctly in its code. Thus, even though H �
� � � � � is mixing-correct, it does not

result in serializable state being observed by T3 since T2 commits at PL-2 and destroys the database

consistency. On the other hand, the DSG considers all edges and hence results in a cycle for history

H �
� � � � � (see Figure 3-7).
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3.3.2 Guarantees to SQL Statements

In most commercial database systems, a language such as SQL is used to access and modify database

objects. These systems ensure certain guarantees with respect to SQL statements executed by a

transaction. We now describe how such guarantees can be provided in our framework. Consider

the following SQL application code:

INSERT INTO Highcom
SELECT ename, salary, commission FROM Employee

WHERE commission > 0.25 * salary
UNION
SELECT ename, salary, commission FROM Manager

WHERE dept = Sales
� � � Rest of the transaction code � � �

The INSERT statement first selects employees from the Employee relation whose commission is

more than 25% of their salary and all managers in the Sales department; then these selected tuples are

inserted into the Highcom relation. There are two sub-queries executed by the INSERT statement;

in general, an arbitrary number of queries may be executed as part of a SQL statement.

Suppose that there exists a tuple x in the Employee relation with visible version, x0 such that

the commission for x0 is less than 25% of its salary. The Manager relation contains an object y

corresponding to a manager in the Marketing department. Both relations may contain other objects

(with unborn or visible versions) but they are not relevant for this example and we will not consider

them. Now suppose that a transaction T2 executes the SQL code shown above. A concurrent

transaction T1 increases x’s commission to be more than 25% of x’s salary; T1 also changes y such

that y1 is in the Sales department. Suppose that the following execution occurs:
�
�
� �
�

� ��� � � � : r2(commission > 0.25 * salary: x0) w1(x1) w1(y1)

r2(dept=Sales: y1) r2(y1) w2(z2) c1 c2 [x0
�

x1]

In this history, T2’s first predicate-based read misses T1’s updates (it reads x0) but the second query

observes T1’s updates (y1 is in the Sales department). Thus, y1 matches the predicate and the field

values read from y1 are inserted into the Highcom relation (version z2 is the new object that is added

by T2). This history is allowed by level PL-2 and even by level PL-2” (described in Section 3.2.2);

level PL-2” only ensures indivisibility of each predicate-based read (and not multiple reads) with

respect to other transactions. The MSG for this history is given in Figure 3-8(a); both transactions

in this history commit at PL-2.

However, most commercial database systems ensure that SQL statements execute atomically

even if the transaction executes at degree 2. For example, in a lock-based implementation, read-

locks are acquired (conceptually) on the Manager and Employee relation for the duration of the

insert operation. Thus, in such systems, either both queries observe T1’s updates or both miss its

effects, i.e., these systems will disallow history H �
� �
�

� ��� � � � .
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Figure 3-8: MSG and MSSG for history H �
� �
�

� � � � � � and the INSERT statement.

Atomic execution of SQL statements can be modeled by considering a transaction to be com-

posed of a number of “sub-transactions” that execute at PL-3, i.e., this is a type of mixed system in

which different parts of a transaction execute at different isolation levels. If the transaction executes

with PL-3 guarantees, no additional constraints are needed to provide the indivisibility property of

SQL statements. However, more conditions are needed for lower level transactions to provide such

atomicity guarantees. For this purpose, we use a graph called Mixed Statement Serialization Graph

or MSSG. For a history H and for each SQL statement S in a lower level transaction T � , we define

MSSG(H, S) that is similar to MSG(H): this graph contains all nodes (except T � ) and edges (except

those incident on T � ) in the MSG. Then we add a node corresponding to S along with its edges in

the graph while treating S as a PL-3 transaction. To ensure that all SQL statements are atomic, the

following phenomenon must be disallowed for each SQL statement executed in the system (G1a

and G1b must not be permitted as well):

G-SQL-atomic: Non-atomic SQL statements. A history H and SQL statement S in

history H exhibit phenomenon G-SQL-atomic if MSSG(H, S) contains a cycle.

This phenomena occurs for history H �
� �
�

� ��� � � � and its insert statement; thus, database systems that

provide atomicity guarantees to SQL statements will disallow this history (Figure 3-8(b) shows the

MSSG).

3.4 Correctness and Flexibility of the New Specifications

Our conditions for PL-3 provide the well-known notion of conflict-serializability [BHG87, GR93].

That is, DSG(H) is acyclic, and G1a, and G1b are satisfied for a history H iff H is conflict-serializable.

We can prove the equivalence of our PL-3 conditions with conflict-serializability using the proof

given in [GR93]; our DSGs are similar to their graphs. This equivalence can also be proved along

the lines of the proof given in [BHG87] for view-serializability.

Proving correctness for lower isolation levels is more difficult since precise guarantees for these

levels have not been defined before. Thus, for PL-1 and PL-2, we analyzed behaviors that have been

considered undesirable in the literature and ensured that our conditions do allow such histories.
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Since our PL-3 conditions are equivalent to conflict-serializability, we know that all conflict-

serializable histories are allowed at PL-3. Again, it is more difficult to prove completeness with

respect to lower isolation levels. However, we can show that our specifications are strictly less

restrictive than the preventative interpretation. We show this result by proving the following

theorem (we say that a set of consistency definitions C1 is more restrictive than another set C2 if

C1 permits fewer histories than C2):

Flexibility Theorem: The preventative interpretation of [BBG
�

95] is more restrictive than our

specifications for the ANSI/SQL isolation levels.

Proof:

There are two parts of the proof. We first show that there exist histories that are allowed by our

definitions but are disallowed by the preventative interpretation. We use histories H1
� and H2

�

that were presented in Section 2.4.1. We repeat those histories below for completeness (with the

versions):
�

1
� : r1(x0, 50) w1(x1, 10) r1(y0, 50) w1(y1, 90) r2(x1, 10) r2(y1, 90) c1 c2

[x0
�

x1, y0
�

y1]
�

2
� : r2(x0, 50) r1(x0, 50) w1(x1, 10) r1(y0, 50) r2(y0, 50) w1(y1, 90) c2 c1

[x0
�

x1, y0
�

y1]

As discussed in that section, H1
� is disallowed by condition P1 and history H2

� is disallowed

by condition P2. Our definitions allow H1
� and H2

� since there are no cycles formed in the direct

serialization graph and conditions G1a, and G1b are not violated.

The second part of the proof requires us to show that all histories allowed by the preventative

interpretation are allowed by our definitions as well. This is simple to prove for PL-3 since our PL-3

conditions allow all conflict-serializable histories whereas a lock-based implementation (recall that

the preventative interpretation is essentially a disguised form of locking) only allows a subset of

these histories.

For PL-1 and PL-2, we show that there exist no histories that are allowed by the preventative

interpretation and disallowed by our definitions. We prove this result using contradiction for each

isolation level L, i.e., we assume that there exists a history H �
� � � ��� � � � � that is disallowed by our

definitions but is allowed by the preventative interpretation at level L. We then show that this

assumption leads to a contradiction.

PL-1

Consider a write-dependency edge from T1 to T2 in DSG(H �
� � � � � � � � � ). Such an edge implies that

there exists some version x1 that was installed by T1 and then overwritten by T2 (i.e., x1
�

x2).

Thus, this history contains a segment of the form “w1(x1) � � � w2(x2)”. Since the history does not

exhibit phenomenon P0, T1 must commit before w2(x2) occurs, i.e., T1 commits before T2 commits.
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Since H �
� � � ��� � � � � is disallowed at PL-1, it exhibits phenomenon G0, i.e., a cycle consisting only

of write-dependency edges occurs in DSG(H �
� � � ��� � � � � ). Suppose that this cycle is of the form

�
T1,

T2, T3, � � � T � , T1 � . Since P0 allows H �
� � � � � � � � � , we know (from above) that T1 must commit before

T2 does, T2 must commit before T3 commits, � � � , T � must commit before T1 commits. This leads

to a contradiction.

PL-2

As in the PL-1 case, we can show that if there exists a read-dependency edge from T1 to T2 in

DSG(H �
� � � ��� � � � � ), T1’s commit must precede T2’s commit. Using an argument similar to the one

given for PL-1, we can show that there exists no history that is disallowed by G1c at level PL-2 and

is accepted by P1.

Furthermore, it is not possible that P1 is disallowed but G1a or G1b occurs in a history. The

reason is that if a transaction T� observes the updates of a committed transaction T � , it observes the

final state of objects (i.e., G1b is disallowed) and T � cannot abort later (i.e., G1a is disallowed).
�

Thus, we have shown that there exists no history that is allowed by the preventative interpretation

and is disallowed by our definitions. Furthermore, since there exist histories that are allowed by our

specifications but not by the preventative interpretation, our definitions are strictly less restrictive

than the latter definitions.

3.5 Consistency Guarantees for Executing Transactions

All definitions presented in this chapter till now provide guarantees to committed transactions only.

However, an application may require certain constraints to be valid as its transactions execute; this

may be necessary to ensure that the application does not behave in an unexpected manner. In this

section, we discuss how the isolation levels presented in this chapter can be extended to provide

guarantees to executing transactions. To ensure that there is no confusion regarding isolation levels

for committed and executing transactions, we prefix all levels for executing transactions by “E”.

In Section 3.5.1, we motivate the need for providing different isolation guarantees to executing

transactions. Section 3.5.2 discusses the requirements on running transactions that need EPL-1 or

EPL-2 and Section 3.5.3 presents the specifications for EPL-3.

3.5.1 Motivation

Suppose that a programmer writes code under the assumption that certain integrity constraints

will hold. If these constraints are violated, the transaction will be aborted when it tries to commit.

However, before the transaction reaches its commit point, the program may behave in an unexpected

manner, e.g., it may crash, go into an infinite loop, or output unexpected results on a user’s display.

Debugging also becomes more difficult for an application programmer; if the transaction observes
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a broken invariant, it may be difficult for the programmer to determine whether the invariant was

violated due to a code bug or due to weak consistency guarantees provided to executing transactions

by the system. Furthermore, interactive applications become more complicated since end users may

get confused on reading inconsistent data on the screen. Thus, if strong guarantees are not provided

to executing transactions, a programmer must take temporary inconsistencies into account in the

application code.

Here is an example in which the program goes into an infinite loop since it observes an

inconsistent database state. Suppose that there are two circular lists p and q stored at servers P and

Q respectively. Each node in the list has a key and a data field. The code maintains the invariant that

the keys in both lists are exactly same (they may be ordered differently). Transaction T1 adds a new

key to the beginning of each list and successfully commits. Suppose that transaction T2 executes

the following piece of code:

% Invariant: Keys in p and q are the same
% Search circular list q for key = p.key (the first key in circular list p)
ptr := q
while (p.key

�� ptr.key) do
ptr := ptr.next
end

The programmer has written T2’s code assuming that T2 will observe a serializable state while

executing; since the invariant states that the key must exist in q, the code need not check for its

presence. Suppose that T2 reads the new value of p (i.e., � 1) and the old value of q (i.e., � 0). Since

T2 observes an inconsistent state (p1 but not q1), it will be aborted at the end. However, since the

code does not find the new key in q, T2’s execution will never finish. The basic problem here is that

T2 has observed the partial effects of T1; if T2 was guaranteed to observe a consistent database state

as it was executing, it would have avoided the infinite loop.
�

Thus, to allow programmers to rely on code invariants, it is important that certain consistency

guarantees are provided to transactions as they run. If a transaction T � requires execution-time

isolation guarantee L, the system must ensure that T � does not detect that it is running below level

L at any given instant. Transaction T � can detect that it is running below level L if it reads objects

in a manner that is not allowed by that level. If the system cannot provide degree L guarantees to

T � at some point (e.g., because the needed version has been overwritten), T � must be aborted, e.g.,

if a transaction requests for serializability guarantees during execution, it must be aborted before it

observes a non-serializable database state. (The work on orphan detection [LSWW87] in the Argus

distributed system [LCJS87] also ensured that a running transaction is aborted before it observes a

non-serializable state.)

Since a transaction can determine whether it is executing below a certain degree only by observ-

ing the state of the database, our conditions will provide guarantees only for reads of uncommitted
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transactions and not for their writes.

For the purpose of providing consistency guarantees to an executing transaction T � , we consider

T � ’s predicate-based writes as predicate-based reads. This approach is taken so that appropriate

guarantees can be provided for version sets of predicate-based writes performed by T � (ghost writes

performed by T � are essentially reads).

Our isolation levels for executing transactions are analogous to the levels presented for commit-

ting transactions: whatever property was formerly provided at commit time is now ensured as the

transaction executes.

We assume that a transaction T � requests two isolation levels — a level
�
� for committing and

level L � while it is executing. We assume that level
�
� is at least as strong as level

� � , e.g., a

transaction can request EPL-2 while executing and serializability (but not PL-1) for committing.

This is a reasonable assumption since providing strong guarantees to running transactions if the

database is being updated at a lower isolation level does not make sense. It is possible to consider

systems in which execution-time guarantees are stronger than commit-time guarantees. Of course,

in such systems, transactions executing at higher isolation levels observe a consistent database state

only if lower isolation level transactions update the database in a consistent manner. Consistency

conditions for these systems can be developed in a manner similar to the approach used for committed

transactions in mixed systems (Section 3.3). For simplicity, we only consider systems where the

commit-time guarantees are at least as strong the execution-time guarantees.

3.5.2 Isolation Levels EPL-1 and EPL-2

Isolation level PL-1 provides guarantees with respect to writes. Since our execution time guarantees

are provided only for reads, level EPL-1 does not place any constraints on executing transactions.

Isolation level PL-2 guarantees that a transaction is allowed to commit if it observes values that

existed in the committed state and there is unidirectional flow of information. To ensure that a

transaction T� (while executing) reads from a transaction T � that does not later abort or modify the

objects read by T� , we disallow reads from uncommitted transactions; furthermore, no dirty reads

also ensure unidirectional information flow.

We define EPL-2 as a level that disallows phenomenon P1. EPL-2 guarantees can be useful for a

transaction T� since an application can display objects on a screen as T � reads them; the programmer

can be sure that the data is based on committed information. As another example, suppose that T �

modifies some object x by making a number of incremental changes to it. A transaction running at

level EPL-2 is certain to see T � ’s complete set of changes, rather than an intermediate state.

3.5.3 Isolation Level EPL-3

If only EPL-2 guarantees are provided, transactions can observe an inconsistent database state:
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� � � � � � � � � � � � : w0(x0) w0(y0) c0 w1(x1) w1(y1) c1 r2(x0) r2(y1) [x0
�

x1, y0
�

y1]

In this history, T0 and T1 are serializable but T2 is provided EPL-2 guarantees; T2 observes an

inconsistent view since it observes the partial effects of T1.

To understand what is needed for the EPL-3 conditions,consider the graph for history H � � � � � � � � � � �
shown in Figure 3-9; note that this graph contains a node for T2 even though it is not committed. We

can see that the graph contains a cycle with a dependency edge and an anti-dependency edge. Our

definition for EPL-3 will prevent such cycles and ensure that T2 observes a serializable database

state as it executes.

wr

rw

T1
T2 (executing)(committed)

Figure 3-9: Graph for history H � � � � � � � � � � � that includes a running transaction T2 (T0 is not shown).

To specify EPL-3 for a history H and an executing transaction T � , we use a new graph called

the Direct Transaction Graph that is denoted by DTG(H, T � ); recall that a DSG was defined for

a history only. The DTG is exactly the same as DSG with one addition: it also contains a node

for executing transaction T � and we add all edges corresponding to the reads of T � . Recall that we

treat all predicate-based writes of T � as predicate-based reads so that consistency guarantees can

be provided for version sets of predicate-based writes. Thus, we get some extra read-dependency

and anti-dependency edges due to such “reads”, e.g., if executing transaction T � performs w � (P:

Vset(P)) and Vset(P) contains x� , we add a read-dependency edge from T � to T � in the DTG.

EPL-3 is defined as an isolation level that disallows phenomena P1 and E2:

E2: Anti-dependency Cycles at Runtime. A history H and an executing transaction

T � exhibit phenomenon E2 if DTG(H, T � ) contains a directed cycle involving T � that

consists of dependency edges and 1 or more anti-dependency edges.

Phenomenon E2 is similar to the phenomenon G2 presented earlier for committed transactions;

an execution time phenomenon similar to G2-item and a level EPL-2.99 can also be defined that

does not provide serializability guarantees with respect to predicate-based reads. Note that we are

ignoring anti-dependency edges due to writes by uncommitted transactions. This is in accordance

with our goal of providing execution time guarantees for reads only. However, it also turns out that

such writes must be ignored so that optimistic schemes can be allowed. We now show why this is

the case.

To provide EPL-3, one might be tempted to say that all cycles are disallowed in the direct

transaction graph. However, this condition is overly restrictive as shown by the following history:
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� 
 � � � �	� � � � � � � � : r1(x0) w2(x2) r2(y0) c2 w1(y1) [x0
�

x2, y0
�

y1]

In this example, T1 and T2 overwrite an object that the other transaction has read. The DTG for

history H 
 � � � �	� � � � � � � � is shown in Figure 3-10 if T2’s writes are also considered; we have also

extended the version order to include y1. Transaction T1 is doomed to abort since a cycle with

two anti-dependency edges has been formed. However, since it does not observe a non-serializable

database state, there is no harm in executing it. Furthermore, this situation can occur with an

optimistic scheme in a client-server distributed system where T1 may read x0 and write y1 in its

client’s cache before information about T2’s commit arrives at T1’s client.

rw

rw

T1
T2 (executing)

(committed)
T0

(committed)
ww, wr

ww, wr

Figure 3-10: DTG for history H 
 � � � �	� � � � � � � � and transaction T2 if T2’s writes are also considered.

A consistency condition that considers writes and disallows situations such as the one in history

H 
 � � � �	� � � � � � � � would be unnecessarily restrictive; hence, our phenomenon E2 does not consider

writes by an uncommitted transaction. Note that phenomenon P2 is overly restrictive because it

does consider such writes and disallows a transaction from modifying an object if an uncommitted

transaction is reading it.

3.6 Summary

In this chapter, we described our new definitions for the existing ANSI-ISO SQL-92 isolation levels.

We have separated out the notion of providing guarantees for committed and running transactions

so that a wide range of concurrency control implementations can be permitted. We presented

correctness conditions for both types of transactions. Unlike previous work, our conditions provide

a variety of guarantees for predicate-based operations in an implementation-independent manner.

To capture multi-object constraints, our consistency conditions are specified using invariants

based on all objects accessed by a transaction. We used a graph-based approach to define different

isolation levels in a simple and intuitive manner. Different types of cycles are disallowed at various

isolation levels. We also use graphs for defining correctness conditions in mixed systems in which

different transactions may commit at different isolation levels. Our conditions for serializability

define the well-known notion of conflict-serializability. We showed that our definitions are strictly

less restrictive than the preventative interpretation of the existing ANSI specifications because our

specifications allow more histories. Our definitions are strong enough to rule out bad histories but
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are sufficiently flexible to allow a variety of concurrency control mechanisms including locking,

optimistic and multi-version schemes.
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Chapter 4

Specifications for Intermediate Isolation
Levels

There is a wide gap between PL-2, which provides neither consistent reads nor consistent writes,

and PL-3, which provides both (this is analogous to the gap between degrees 2 and 3). This chapter

presents specifications for isolation levels that lie in this gap; we call these levels intermediate

degrees of isolation. Researchers in the past have discussed the gap between degrees 2 and 3 and

suggested consistency levels, such as Cursor Stability [Dat90], Read Consistency [Ora95], and

Snapshot Isolation [BBG
�

95], in this region.

We have developed two new intermediate degrees. Our first level, PL-2+, is the weakest level

that provides consistent reads; it ensures that applications do not commit transactions that have

observed an inconsistent state of the database. It is similar to Snapshot Isolation [BBG
�

95, Ora95]

and proscribes all phenomena that Snapshot Isolation was intended to disallow. Since PL-2+ is

weaker than Snapshot Isolation, it has the potential of being implemented more efficiently than

Snapshot Isolation, especially in a distributed client-server system. Our second new level, PL-2L,

captures a useful monotonicity property of a lock-based implementation of PL-2; PL-2L is similar

to Oracle’s Read Consistency [Ora95]. This level is beneficial for legacy applications that rely on

these characteristics; such applications can continue to run correctly when the system is changed to

using a different concurrency control mechanism.

Along with the specifications for these two new levels, we also present implementation-

independent specifications of some existing intermediate levels that have been described in the

database literature or are being used in commercial databases, e.g., Snapshot Isolation, Read Con-

sistency [Ora95], Update Serializability [GW82, HP86] and Cursor Stability [Dat90]. Our specifi-

cations are of interest since they are supported in commercial systems, and previous specifications

are either given in English (e.g., Snapshot Isolation) or presented in terms of locking (e.g., Cursor

Stability). We define these levels based on variations of the direct serialization graph: we add new

kinds of nodes and edges as necessary and disallow certain types of cycles for each isolation level.

Figure 4-1 shows the relationships between various levels presented in this chapter and the
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PL-1

PL-2

Cursor Stability (PL-CS) Monotonic View (PL-2L)

Monotonic Snapshot
Reads (PL-MSR)

Consistent View (PL-2+)

Forward Consistent View (PL-FCV)

Snapshot Isolation (PL-SI) Update Serializability (PL-3U)

Full Serializability (PL-3)

Strict Serializability (PL-SS)

Repeatable Read (PL-2.99)

Figure 4-1: A partial order to relate various isolation levels.

previous chapter. Various levels can be ranked according to their “strength”: one level is stronger

than another if it allows fewer histories. In the figure, if level Y is stronger than level X, there is a

directed path from X to Y; if there is no path between two levels, they are unrelated to each other.

For all intermediate levels, we have also developed corresponding guarantees that can be

provided to transactions as they execute. As in the previous chapter, the levels defined for running

transactions are similar to the corresponding levels for committed transactions.

The rest of this chapter is organized as follows. In Section 4.1, we present our specifications for

PL-2+. In Section 4.2, we present definitions for PL-2L. In Section 4.3, we describe specifications

of Snapshot Isolation. We discuss a new isolation level called Forward Consistent View in 4.4 that

has been inspired by Snapshot Isolation. We describe a level that captures the essence of Oracle’s

Read Consistency in Section 4.5 and compare it with level PL-2L. Cursor Stability is presented in

Section 4.6. Section 4.7 describes update serializability, a consistency guarantee that is useful for

read-only transactions, and compares it with PL-2+ and serializability. Finally, in Section 4.8, we

extend our definitions for intermediate levels to provide guarantees for executing transactions.

4.1 Isolation Level PL-2+

Isolation level PL-2+ is motivated by the fact that certain applications only need to observe a

consistent state of the database and serializability may not be required, e.g., a read-only transaction

in an inventory application may simply want to observe a consistent state of the current orders

and in-stock items. It is the weakest level that ensures that integrity constraints are not observed

as violated as long as update transactions modify the database consistently and are serializable.
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Furthermore, the level can be implemented efficiently; an implementation that provides PL-2+ in a

distributed client-server system is discussed in Section 5.3.

Consider the following history H � � � � � � where transaction T1 observes an inconsistent state of

the database:

�
� � � � � � : r1(x0, -50) r2(x0, -50) r2(y0, 100) w2(x2, 100) w2(y2, -50) c2 r1(y2, -50) c1

[x0
�

x2, y0
�

y2]

The consistency constraint, ��� �
�

0, is preserved by T2. However, transaction T1 observes

a state reflecting both before and after results of T2 and erroneously concludes that the constraint

is broken. Figure 4-2(a) shows that history H � � � � � � is allowed by PL-2 because the only cycle in

DSG(H � � � � � � ) involves an anti-dependency edge (for simplicity, T0 is not shown); however, it is

disallowed by PL-3. Note that P0 and P1 also allow H � � � � � � .

T T1

wr

2

rw
T1

wr
T2

rw
T3

wr

(a) (b)

Figure 4-2: Direct serialization graph for histories H � � � � � � and H � � � � � � � � .
The basic problem in H � � � � � � is that T2 has observed a modification of T1 but has also missed

one of T1’s modifications. However, in general the missed modification might not be made by T1

but instead by some earlier transaction that T1 depends on. (Recall that the depends relation given

in Definition 9 is the transitive closure of the directly-depends relation). For example, consider

history H � � � � � � � � , in which the transactions maintain the invariant, �
� � :

� � � � � � � � � : r1(x0, 50) r2(x0, 50) w2(x2, 100) c2 r3(x2, 100) w3(y3, 75) c3 r1(y3, 75) c1

[x0
�

x2]

Both T2 and T3 maintain the invariant, but T1 observes the invariant to be broken because it sees

T3’s effect but misses the effect of T2, which T3 (and hence T1) depends on; the DSG for this history

is shown in Figure 4-2(b) (for simplicity, T0 is not shown).

4.1.1 Specification

Before we define conditions that avoid the problems of histories H � � � � � � and H � � � � � � � � , we first

present a few assumptions and definitions.

We assume that the committed database state is consistent if the integrity constraints as defined

by an application are valid. Furthermore, if an update transaction T � observes valid integrity

constraints and runs alone to completion, we assume that it transforms the committed database state

such that the integrity constraints continue to hold after T � commits.
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Definition 11 : Basic-Consistency. A transaction T � is provided basic-consistency if the values

read by T� are the result of a serial execution of some subset of committed update transactions and

each update transaction in the serial execution executes the same steps as it did in the concurrent

execution.

The above definition was given by Weihl [Wei87]. As discussed in [Wei87], basic-consistency

ensures that T� observes a consistent state of the database because the result of a serial execution of

update transactions always results in a consistent state, by our assumption.

In basic-consistency, each update transaction T � behaves the same (and hence results in the

same write operations) in the serial and concurrent execution if it observes the same state in both

executions. Thus, T � cannot read from an arbitrary set of transactions. For example, if T � observes

the updates of T� , it must not “miss the effects” of a transaction T � whose updates were observed by

T� , i.e., basic-consistency requires that if the subset of transactions chosen for T � ’s observed view

includes T� , it must include T � as well. Missing the effects of a transaction can be formalized as

follows:

Definition 12 : Missing Transaction Updates. A transaction T � misses the effects of a transaction

T � if T � installs x � and an event r� (x � ) exists such that x � �
x � , i.e., T� reads a version of x that is

older than the version that was installed by T � .

According to the above definition, a transaction T � will not miss the effects of T � if T� reads x � or

a later version of x (i.e.,
� ��� or x � �

x � ) or T � and T� do not conflict. Inconsistencies observed

by transaction T1 in histories H � � � � � � and H � � � � � � � � can be avoided if the following condition is

satisfied:

Definition 13 : No-Depend-Misses. If T � depends on T � , it does not miss the effects of T � .

This property (along with P1) has been shown by Chan and Gray [CG85] to ensure that transaction

T� does not observe violated integrity constraints if update transactions are serializable (i.e., commit

at PL-3). We give a synopsis of this proof in Section 4.1.2. In order to ensure that transactions

observe a consistent database state, we use the following condition:

G-single: Single Anti-dependency Cycles. A history H exhibits phenomenon G-

single if DSG(H) contains a directed cycle with exactly one anti-dependency edge.

Level PL-2+ proscribes G1 and G-single. Intuitively, PL-2+ provides consistency because cycles

with one anti-dependency edge occur exactly when some transaction both observes and misses

modifications of another transaction.

We now prove that disallowing G-single is equivalent to no-depend-misses. As we show in

Section 4.1.2, this implies that a transaction running at level PL-2+ is certain to see a consistent

state, if update transactions are serializable and modify the database consistently.
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Theorem 2+: History H does not exhibit phenomena G-single iff it satisfies the no-depend-misses

property.

Proof:

Part A: Disallowing G-single implies no-depend-misses.

Suppose that a history H does not exhibit G-single but the no-depend-misses property is violated.

Then there exist transactions T � and T� such that T� depends on T � , yet it misses some effect of

T � ; recall that missing T � ’s effects implies that history H contains events r � (x � ) and w � (x � ) such

that x � �
x � . This situation is shown in Figure 4-3 where T

�
overwrites x � and hence there is

an anti-dependency edge from T� to T
�
; a “*” denotes 0 or more edges and a “+” denotes 1 or

more edges. In this figure, T � could be the same as T
�
, i.e., T � could have overwritten the version

that T� read. Thus, the DSG has a cycle with one anti-dependency edge, which is a contradiction.

Therefore, if history H does not exhibit phenomenon G-single, it satisfies the no-depend-misses

property.

Tj

Tk Tu Ti
*wwww

rwwr
ww or wr+

Figure 4-3: A direct serialization graph with a cycle containing one anti-dependency edge.

Part B: No-depend-misses implies that phenomenon G-single cannot occur.

Suppose that a history H satisfies no-depend-misses but exhibits phenomenon G-single. The

existence of a cycle with one anti-dependency edge implies that there must be transactions T � and

T� such that T � depends on T� and also T� directly anti-depends on T � . Because of the direct

anti-dependency, there must be some object x such that T � overwrote the version of x that T � read,

i.e., T � missed T� ’s effects even though it depends on T� . But this contradicts the no-depend-misses

property. Therefore, if H satisfies the no-depend-misses property, phenomenon G-single cannot

occur in H.
�

4.1.2 Relationship between PL-2+ and Basic-Consistency

We now show that PL-2+ is the weakest level that ensures basic-consistency provided update

transactions modify the database consistently and are serializable. A proof similar to the one given

below can be used to show that EPL-2+, the analog of PL-2+ for running transactions (defined in

Section 4.8), ensures that application code never sees an inconsistent database state. Since basic-

consistency guarantees that no violated integrity constraints are observed, PL-2+ is a useful level

for committing transactions, especially read-only transactions.

Theorem: In a history that contains a set of transactions Φ, such that all update transactions in
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Φ are serializable, each transaction is provided basic-consistency iff it is committed with at least

PL-2+ guarantees.

Proof:

We will prove this theorem with respect to the reads of a transaction Q in Φ; Q’s writes are not

considered since basic-consistency is only concerned with what a transaction observes. Of course,

if Q is an update transaction, it must be serializable (by assumption).

(a) PL-2+ is Sufficient: Given that all update transactions in Φ are serializable and Q is committed

at level PL-2+ (at least), Q must be provided basic-consistency.

Suppose that transaction Q depends on a sequence of transactions T �
1 , T �

2 , � � � T �
� in Φ (these

transactions are serialized from left to right); we call these transactions Q’s depend-set. Transaction

Q misses the effects of the rest of the transactions in Φ; these transactions are called Q’s missed-set;

Q may anti-depend on some of the transactions in its missed-set.

Consider any transaction T �
� in Q’s depend-set; T �

� ’s depend-set is a subset of Q’s depend-set

because depends is a transitive relationship. Since T �
� does not depend on any transaction T ��� in

Q’s missed-set, T ��� has no impact on T �
� ’s behavior, i.e., T �

� ’s modifications (which are based on its

reads) are unaffected by the presence or absence of any transaction in Q’s missed-set. If we consider

a history consisting only of T �
1 , T �

2 , � � � T �
� , and Q (in this order), there will be no change in the

database state observed by Q or by any transaction in its depend-set. Since Q commits with at least

PL-2+ guarantees, none of the transactions in its depend-set could have aborted (property G1a);

furthermore, G1b cannot occur for Q as well. This implies that Q is provided basic-consistency

since the view observed by Q can be obtained by the serial execution of committed transactions

T �
1 , T �

2 , � � � T �
� (in the given order) and these transactions execute the same steps in the concurrent

and serial executions.
�

(b) PL-2+ is Necessary: Given that all update transactions in Φ are serializable (i.e., commit at

PL-3), Q is provided basic-consistency only if it is committed with at least PL-2+ guarantees.

We have to prove that Q will not be provided basic-consistency if it is committed below PL-2+.

For this purpose, we will show that if any phenomenon of PL-2+ is allowed, it results in violation

of basic-consistency.

Phenomena G1a and G1b: The definition of basic-consistency requires a transaction to read from

a set of committed transactions. Thus, G1a and G1b must be disallowed for providing basic-

consistency.

Phenomenon G1c:

Phenomenon G1c can occur only when update transactions form a cycle consisting of depen-

dency edges. However, since we are given that all update transactions in Φ are serializable and we

are only concerned with Q’s reads, phenomenon G1c cannot occur in the history.
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Phenomenon G-single:

Suppose that an isolation level L allows phenomenon G-single, i.e., a cycle exists in the DSG

with one anti-dependency edge and n-1 dependency edges (n � 1). We will now present a counter-

example which shows that basic-consistency can be violated at level L. Consider a history containing

n update transactions and transaction Q. Suppose that each update transaction T � doubles the values

of two objects x and y. The initial values of x and y are 5 and 7, respectively; an invariant maintained

by the update transactions is � � � . Suppose that Q reads versions y0 and x � :
� � � � � � � � : r1(x0, 5) r2(y0, 7) w1(x1, 10) w1(y1, 14) � � � w � (x � , 5 * 2 � )

w � (y � , 7 * 2 � ) r � (y0, 7) r � (x � , 5 * 2 � ) [x0
�
� � � x � , y0

�
� � � y � ]

Each transaction T � maintains the invariant � � � but Q observes it as broken; this history exhibits

phenomenon G-single. As we can see, there exists no serial ordering of transactions that allows

Q to observe the same state as in the concurrent execution. Thus, G-single must be disallowed to

ensure that basic-consistency is not violated.
�

4.1.3 Discussion

From a programmer’s perspective, PL-2+ provides a useful guarantee since it allows an application

to rely on invariants without full serializability. For example, consider histories H1 and H2 presented

in Section 2.2 (we specify these histories along with the version numbers on objects):
�

1: r1(x0, 50) w1(x1, 10) r2(x1, 10) r2(y0, 50) c2 r1(y0, 50) w1(y1, 90) c1

[x0
�

x1, y0
�

y1]
�

2: r2(x0, 50) r1(x0, 50) w1(x1, 10) r1(y0, 50) w1(y1, 90) c1 r2(y2, 90) c2

[x0
�

x1, y0
�

y1]

In both histories, T2 observes the invariant � � � � 100 as violated. If these transactions are

executed at PL-2+, both histories will be disallowed and T2 will be aborted because it has observed

the partial effects of T1.

T1 T2
wr

rw

Figure 4-4: DSG for H1, H2, and H� � 
 � � � � where T2 observes an inconsistent database state (for
simplicity, T0 is not shown).

Anomalous situations in both histories cause a cycle with exactly one anti-dependency edge in

the DSG (see Figure 4-4). For these histories, PL-2+ is sufficient and PL-3 is not needed to ensure

consistent reads. Of course, like other levels below serializability, a transaction committing at level

PL-2+ may update the database inconsistently. For example, it allows histories such as H � � � � � :
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�
� � � � � : r1(x0, 1) r1(y0, 5) r2(x0, 1) r2(y0, 5) w1(x1, 4) c1 w2(y2, 8) c2 [x0

�
x1, y0

�
y2]

In this history, transactions break the constraint � � � � 10 because their operations are interleaved

in a non-serializable manner; Figure 4-5 shows that the only cycle in the DSG contains two anti-

dependency edges. Nevertheless, PL-2+ is useful for read-only transactions and update transactions

where the application programmer knows that the writes will not destroy the consistency of the

database, e.g., if the updates are performed to a private part of the database.

T0

rw
T1ww, wr

T2

ww, wr

rw

Figure 4-5: DSG for history H � � � � � that is allowed by PL-2+.

Level PL-2+ also rules out inconsistencies due to phantom reads, since these also give rise to

cycles containing one anti-dependency edge. For example, it disallows history H � � 
 � � � � presented

in Section 3.2.4 (the DSG for this history is shown in Figure 4-4):

�
� � 
 � � � � : r1(Dept=Sales: x0, 10; y0, 10) r2(Sum0, 20) w2(z2=10 in Dept=Sales)

w2(Sum2, 30) c2 r1(Sum2, 30) c1 [Sum0
�

Sum2, z � � � � �
z2]

Another advantage of PL-2+ over PL-2 is that it avoids the lost updates problem. The following

history (presented in Section 3.2.3 and repeated here) is disallowed by PL-2+ because the DSG

contains a cycle with one anti-dependency and one write-dependency edge.

� �
� � � � � � �	
 � � : r1(x0, 10) r2(x0, 10) w2(x2, 15) c2 w1(x1, 14) c1 [x0

�
x2

�
x1]

PL-2+ provides a notion of “causal consistency” since it ensures that a transaction is placed after all

transactions that causally affect it. Causality [Lam78] or causal consistency has been used earlier

in many non-transactional systems. For example, causal memory [ANK
�

95] provides a processor

memory model for reads and writes that is similar to PL-2+; it ensures that a read/write operation

A is ordered after the operations on which A causally depends. Similarly, notions of causality have

been used in non-transactional settings for replication [LLSG92], atomic broadcast [BSS91] and

mobile systems [KS91, TTP
�

95].

4.2 Isolation Level PL-2L

A lock-based implementation of degree 2 (i.e., long write-locks and short read-locks) provides

stronger guarantees than what is specified by degree 2 (READ COMMITTED), and transaction code

in legacy applications may rely on these guarantees. Of course, applications should not make

assumptions beyond the specifications of the programming interface. However, if the underlying

database is changed to use a different concurrency control scheme (such as optimism), we would
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still like to ensure that such applications continue to work correctly. Our new isolation level, PL-2L,

characterizes one such guarantee, the lock-monotonicity property. If a legacy application relies

on just the lock-monotonicity property, it will continue to run correctly when moved to a new

concurrency control implementation if transactions are executed at PL-2L. The application might

be run this way initially; it can be examined later and changed to use PL-2, PL-2+ or PL-3. An

efficient optimistic implementation of PL-2L in a distributed client-server system is presented in

Appendix B.

4.2.1 Specification

A lock-based implementation of degree 2 provides the following lock-monotonicity property:

Lock-monotonicity. Suppose that an event r � (x� ) exists in a history. After this point,

T � will not miss the effects of T� and all transactions that T� depends on.

This property says that a transaction observes a monotonically increasing prefix of the database

history as it executes (in accordance with write/read-dependencies). For example, if T � modifies

objects x and y, and T� reads x � and then y, this property ensures that T� observes y � or a later version

of y after reading x � . However, if T� reads y before it reads x � , it could have read a version of y that is

older than y � . Thus, the lock-monotonicity property is weaker than the no-depends-misses property

and does not guarantee that T� observes a consistent database state; recall that the no-depend-misses

property ensures that T� does not miss T � ’s effects irrespective of when T� reads x � .

The lock-monotonicity property is satisfied by a lock-based implementation of degree 2 (i.e.,

long write-locks and short read-locks) for the following reason. When transaction T � acquires a

short read-lock on object x that was last modified by transaction T � , T � must have committed by

that time since write-locks are held until commit. Furthermore, any transaction T � that T � depends

on must also have committed. Suppose that T � reads an object y that was also modified by T � (or

T � ). At this point, the database must contain a version of y no earlier than y � (or y � ). Thus, when

T� acquires a read lock on y, it will either read y � (or y � ), or a later version of y. But in any case, it

will not read a version of y produced before T � (or T � ) committed.

We now define the lock-monotonicity property for a transaction T � in terms of graph-based

conditions. We use a graph called the Unfolded Serialization Graph or USG that is a variation of

the DSG. The USG is specified for the transaction of interest, T � , and a history, H, and is denoted

by USG(H, T � ); recall that a DSG is specified over a history. For the USG, we retain all nodes and

edges of the DSG except for T � and the edges incident on it. Instead, we split the node for T � into

multiple nodes — one node for every read/write event in T � . The edges are now incident on the

relevant event of T � . Here are the details on how USG(H, T � ) is obtained by transforming DSG(H).

For each node p (�
�� � � ) in DSG(H), we add a node to USG(H, T � ). For each edge from node

p to node q in DSG(H), where p and q are different from T � , we draw a corresponding edge in
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Figure 4-6: USG and DSG for history H � � � � 2
� that is disallowed by level PL-2L.

USG(H, T � ). Now we add a node corresponding to every read and write performed by T � ; these

nodes are called read nodes and write nodes respectively. Any edge that was incident on T � in the

DSG is now incident on the relevant event of T � in the USG, e.g., if r � (x� ) (or r � (P: x� , � � � )) exists

in H, a read-dependency edge is added from T� to r � (x� ) (or r � (P: x� , � � � )) in the USG. Finally,

consecutive events in T � are connected by order edges, e.g., if an action (e.g., SQL statement) reads

object � � and immediately follows a write on object � in transaction T � , we add an order-edge

from w � (x � ) to r � (y� ). These edges are needed to maintain the order of events in a transaction;

we denote such order edges between events � and � as
� � �	� �

� � � � . Here is a sample history and

USG(H � � � � 2
� , T3) is shown in Figure 4-6:

H � � � � 2
� : w1(x1) w1(y1) c1 w2(y2) w2(x2) w2(z2) r3(x2) w3(z3) r3(y1) c2 c3

[x1
�

x2, y1
�

y2, z2
�

z3]

Since the lock-monotonicity property is defined from the perspective of a particular transaction T �

as it executes, we define PL-2L with respect to T � . Isolation Level PL-2L for transaction T � is

defined such that phenomena G1 and G-monotonic are disallowed:

G-monotonic: Monotonic Reads. A history H exhibits phenomenon G-monotonic

for transaction T � if there exists a cycle in USG(H, T � ) containing exactly one anti-

dependency edge from a read node r � (x� ) (or r � (P: x� , � � � )) to some transaction node T �

(and any number of order or dependency edges).

Disallowing phenomenon G-monotonic is identical to the lock-monotonicity property given above

and their equivalence can be proved in a way similar to Theorem 2+ where we showed that the

no-depend-misses condition and disallowing G-single are identical. Here is a brief argument for one

direction: if G-monotonic is disallowed, the lock-monotonicity property must be satisfied. Suppose

that the lock-monotonicity property is violated such that after a transaction T � reads x � , it misses

the effects of T � or some transaction T � that T � depends on, i.e., there is a history subsequence of the

form “r� (x � ) � � � r� (y � )” and y � �
y � (or y � �

y � ). This situation implies that an anti-dependency

edge exists from r� (y � ) to T � (or T � ). Since a path containing dependency and order edges from T �

to r� (y � ) also exists, this history exhibits phenomenon G-monotonic, i.e., a contradiction.
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4.2.2 Consistency Guarantees for Predicate-based Reads at PL-2L

In Section 3.2.2, we discussed possible guarantees for predicate-based reads at level PL-2. The

following consistency guarantees can also be provided to such reads:

� If a predicate-based read observes the effects of transaction T � , it observes the complete effects

of T � and all transactions that T � depends on.

� Each predicate-based read executes as a PL-3 transaction.

The first guarantee is provided by level PL-2L because of the following reason. When a

transaction T � performs a read based on a predicate P, we represent this read event, r � (P: Vset(P)),

in USG(H, T � ) by a single read node; this node captures conflicts with respect to all object versions

accessed by r � (P: Vset(P)). Since G-monotonic ensures that there is no single anti-dependency

cycle originating from r � (P: Vset(P)), PL-2L ensures that this event does not miss the effects of

some transaction T� that it depends on, i.e., r � (P: Vset(P)) observes a consistent view of the database

(assuming that transactions modify the database consistently). In the extreme case, when transaction

T � contains only one action, the whole transaction observes a consistent database state, i.e., we get

isolation level PL-2+. Isolation level PL-2+ provides stronger guarantees for normal and predicate-

based reads; it ensures that if a read by transaction T � observes T � ’s effects, all reads by T� observe

the complete effects of T � and all transactions that T � depends on.

The second guarantee is stronger than the first guarantee and is provided by a lock-based

implementation since reads based on a predicate are performed after the predicate read-lock has

been acquired. This guarantee can be provided by considering each predicate-based read as a

sub-transaction that requires PL-3. A correctness condition similar to the one discussed in 3.3.2 for

SQL statements can be used for providing atomicity guarantees to predicate-based reads.

We can also provide guarantees to predicate-based writes such that the version set of such

operations is consistent. For this purpose, we can treat predicate-based writes as predicate-based

reads and add the corresponding edges in the USG for these operations, e.g., if transaction T �

performs w � (P: Vset(P)) and Vset(P) contains x� , we can treat w � (P: Vset(P)) as a predicate-based

read, r � (P: Vset(P)), and add a read-dependency edge from T � to r � (P: Vset(P)) in the USG.

4.2.3 Discussion

History H � � � � 2
� given in Section 4.2.1 is not allowed by PL-2L since there is a cycle with one

anti-dependency edge from r3(y1) to T2; T3 reads x2 but misses T2’s effects after this point (see

Figure 4-6). If T3 had read y2, PL-2L would have allowed H � � � � 2
� .

Let us consider history H � � � � � � � � � that is allowed by PL-2L but not by PL-2+:

H � � � � � � � � � : w1(x1) c1 w2(y2) w2(x2) r3(x1) r3(y2) c2 c3 [x1
�

x2]

76



Figure 4-7 shows that phenomenon G-monotonic does not occur but G-single does occur (since

there is a cycle in the DSG with one anti-dependency edge). Level PL-2L permits this history since

T3 does not miss the effects of T2 after it reads y2 (although it has already missed reading x2); level

PL-2+ does not allow T3 to miss T2’s effects irrespective of when T3 becomes dependent on T2.

In Figure 4-1, we have shown that level PL-2L is incomparable with level PL-2.99. The reason

is that PL-2L ensures consistent views to each predicate-based read whereas PL-2.99 does not.

If required, such guarantees can be provided at level PL-2.99 as well, e.g., we may want each

predicate-based read to be treated as a PL-3 transaction at level PL-2.99.

Direct Serialization Graph Unfolded Serialization Graph

wr
ww

wr

rw

wr

wr

rw order
wr

T3T2T1

r   (y  )3      2

r   (x  )3      1

T1
T2

Figure 4-7: DSG and USG for history H � � � � � � � � � that is accepted at PL-2L but rejected at PL-2+.

PL-2L is useful for more than just legacy code: it allows code to rely on invariants after

observing a particular value of an object. For example, consider a stock exchange system where

a record is maintained for each stock. There is also a record that stores the status of the market,

i.e., open or closed. Suppose that the stock exchange commission runs a transaction that stores

the final information about each stock in the stock records and closes the stock market. Now a

brokerage firm runs a transaction T � that observes that the market is closed. Transaction T � then

obtains information about certain stocks, reads some customer records, and generates summary

information for the customers. If T � asks for PL-2L guarantees, the system will ensure that T � can

commit only if it observes today’s final stock information; the monotonicity property ensures that

T � does not miss the final stock value after observing that the market is closed. PL-2 is insufficient

here since it does not provide this guarantee; strong guarantees of PL-2+ may not be needed since

the customer records are unrelated to the stock information.

A lock-based implementation of degree 2 (i.e., short read-locks and long write-locks) actually

provides stronger guarantees than monotonicity. For example, it ensures that when a transaction

reads an object x, it observes the latest version of x in the committed state. We chose not to

specify an isolation level that also provides this guarantee since the latest-version property seems

less interesting than monotonicity and we believe that most applications executing at degree 2

do not rely on it. At degree 2, reading the current version does not prevent the object from being

modified before the transaction commits; therefore, application code cannot really tell the difference

between the current version or a slightly earlier one. Furthermore, more efficient implementations
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are possible for the lock-monotonicity property than for the latest-version property. There are other

guarantees that are provided by the lock-based implementation of degree 2. However, we chose

not to specify them since they are complicated and seem less useful than the lock-monotonicity

property. Furthermore, we believe that application writers should be discouraged from relying on

complicated assumptions about the implementation of the underlying system.

4.3 Snapshot Isolation

Snapshot Isolation was first defined in [BBG
�

95] and is provided by Oracle [Ora95]. The defi-

nition in [BBG
�

95] is both informal and operational: it comes very close to describing how an

implementation would work. It is defined as follows:

Definition 14 : Snapshot Isolation. A transaction T1 executing with Snapshot Isolation always

reads data from a snapshot of committed data valid as of the (logical) time T1 started, called the

start-timestamp. (The snapshot could be at the time when T1 started or some point in logical time

before it.) Updates of other transactions active after T1 started are not visible to T1. When T1 is

ready to commit, it is assigned a commit-timestamp and allowed to commit if no other concurrent

transaction T2 (i.e., one whose active period [start-timestamp, commit-timestamp] overlaps with

that of T1) has already written data that T1 intends to write; this is called the First-committer-wins

rule to prevent lost updates.

4.3.1 Specification

To specify Snapshot Isolation, we need to add a component to the history, a time-precedes order, to

capture the notion of how the start of a transaction relates to commits of other transactions. When a

transaction T � starts (e.g., at its first event), the system selects a start point, s � , for it and determines

the ordering between this start point and the commits of all other transactions. Transaction T � ’s start

point need not be chosen after the most recent commit when T � started, but can be selected to be

some (convenient) earlier point. For example, the system might keep track of all transactions whose

updates must not be observed by T � ; in this case, T � ’s start point is chosen before the commits of

any transaction in this set. The system’s decision about choosing the start point is captured in the

time-precedes order:

Definition 15 : Time-Precedes Order. The time-precedes order, � � , is a partial order specified for

history H such that:

1. � � � ��� � , i.e., the start point of a transaction precedes its commit point.

2. for all i and j, if the scheduler chooses T � ’s start point after T � ’s commit point, we have
� � � � � � ; otherwise, we have � �

� ��� � .
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Definition 16 : Concurrent Transactions. Two transactions T � and T� are concurrent if � � � � � �

and � �
� � � � . Thus, concurrent transactions overlap; neither starts after the other one commits.

To capture the system’s choice of ordering start and commit events of different transactions, we

include the time-precedes order in a history (along with the version order and the partial order of

events). For convenience, in our examples we will only show time-precedes constraints of the type
� � � � � � ; no relationship is shown for a pair of concurrent transactions T 
 and T � , i.e., � 
 � � � �

and � �
� � � 
 holds for these cases. Here is an example history to illustrate the above definitions:

�
� �
� � � 
 � � � � : w1(x1) c1 w3(z3) c3 r2(x1) r2(z0) c2 [z0

�
z3; c1

� � s2]

In this history, the time-precedes order shows that T3 is concurrent with T1 and T2 (as stated above,

we do not specify such orderings) whereas T2 follows T1. History H � �
� � � 
 � � � � demonstrates an

important point: the order of events in the history does not specify the relationship between commit

and start points of transactions. For example, T3’s commit occurs in the history before T2’s first

event but s2 is not chosen to be after c3 in the time-precedes order.

Now we can restate the definition of Snapshot Isolation (Definition 14 above) in terms of two

properties, Snapshot Read and Snapshot Write, that completely define it. These properties will be

used later to prove that our specification is correct.

Definition 17 : Snapshot Read. All reads performed by a transaction T � occur at its start point.

That is, if r � (x� ) occurs in history H, then:

1. � �
� � � � , and

2. if w � (x � ) also occurs in H (j
�� k), then either

(a) � � � � � � , or

(b) � � � � � � and x � �
x�

Definition 18 : Snapshot Write. If T � and T� are concurrent, they cannot both modify the same

object. That is, if w � (x � ) and w� (x� ) both occur in history H, then either � � � � � � or � �
� � � � . This

is the first-committer-wins property.

We now define the notion of start-dependency and a Start-ordered Serialization Graph or SSG.

Definition 19 : Start-Depends. T� start-depends on T � if � � � � � � , i.e., if it starts after T � commits.

Definition 20 : Start-ordered Serialization Graph or SSG. For a history H, SSG(H) contains the

same nodes and edges as DSG(H) along with start-dependency edges.

We will represent start-dependency edges in an SSG as solid arrows labeled with “s”. Here is an

example history that is allowed by Snapshot Isolation; its SSG is given in Figure 4-8:
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T1 T2 T3

wr, s

ww, s rw

Figure 4-8: Start-ordered serialization graph for history H ���

�
��� : w1(x1) w1(y1) c1 w2(x2) r3(x1) w2(y2) r3(y1) c2 c3

[x1
�

x2, y1
�

y2; c1
� � s2, c1

� � s3]

Since the start point for T3 is before the commit of T2, Snapshot Isolation ensures that T3 does not

observe T2’s modifications.

Now we define phenomenon G-SI that has two parts. The first part ensures that concurrent

transactions do not observe one another’s effects and do not modify the same objects:

G-SIa: Interference. A history H exhibits phenomenon G-SIa if SSG(H) contains a

read/write-dependency edge from T � to T� without there also being a start-dependency

edge from T � to T� .

This property constrains only concurrent transactions, since start-dependency edges always exist

between non-concurrent transactions.

The second property ensures that a transaction T � observes the complete effects of transactions

that committed before it started (i.e., those transactions whose commit point is chosen before T � ’s

start point):

G-SIb: Missed Effects. A history H exhibits phenomenon G-SIb if SSG(H) contains

a directed cycle with exactly one anti-dependency edge.

This property captures the rest of the Snapshot Read requirement since if a transaction T � does not

observe the updates of a transaction that committed before T � started, it will cause a cycle in the

SSG with a single anti-dependency edge and a start-dependency edge. G-SIb is similar to condition

G-single but provides stronger guarantees because of the extra start-dependency edges in the SSG.

Like the no-depend-misses and lock-monotonicity properties, G-SIb can be expressed in more

“operational” terms, i.e., if a transaction T � depends on T � , T� must not miss the effects of T � and

all transactions that committed before T � started. The equivalence of this operational definition and

G-SIb can be shown in a manner similar to Theorem 2+.

Property G-SI consists of G-SIa and G-SIb, and level PL-SI proscribes G1 and G-SI. Since

G-SIb is strictly stronger than G-single, PL-SI is strictly stronger than PL-2+. Like our earlier

definitions, PL-SI is also specified only for committed transactions (see Appendix A for execution

time guarantees); furthermore, reads from uncommitted transactions are allowed by this specification

also (as long as G1 is satisfied). We now show that our specification for level PL-SI is correct.
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Theorem 2: A history H consisting of committed transactions executes under Snapshot Isolation

iff G1 and G-SI are disallowed.

Proof:

Part A: If a history H executes under Snapshot Isolation, G1 and G-SI are disallowed.

Suppose G-SIa is allowed, i.e., there is a read/write-dependency from some T � to T� without a

corresponding start-dependency. If there is no start-dependency, T � and T� must be concurrent and

neither a read-dependency (by Snapshot Read property) nor a write-dependency (by Snapshot Write

property) can exist between T � and T� . So we have a contradiction and G-SIa must be disallowed.

Now suppose that G1 or G-SIb is allowed and SSG(H) contains a cycle with 0 or 1 anti-

dependency edges. Let this cycle have the form
�

T1, T2, T3, � � � T � , T1 � . We know the following

facts about a SSG generated under PL-SI:

1. If there is a (start/read/write) dependency edge from T � to T� , � � � � � � .

2. If there is an anti-dependency edge from T � to T� , � � � � � � . This is because an anti-dependency

edge implies that T � did not see T� ’s update. Therefore, we cannot have � �
� � � � ; by property

(2) of Definition 15, we must have � � � � � � .

If there is a dependency edge (i.e., start/read/write-dependency) from T � to T � �
1, we must have

� � � � � � �
1
� � � � �

1 and hence � � � � � � �
1. Thus, if there are no anti-dependency edges in the

cycle, we get � 1
� � �

2 � � �
� � �

1, which is impossible, and therefore G1 is disallowed. So, there

must be at least one anti-dependency edge in the cycle. Without loss of generality, suppose this edge

is from T1 to T2 and the rest are dependency edges. Then we have: � 1
� � �

2
� � �

3 � � �
� � � � � 1,

i.e., � 1
� � � 1, which again is impossible, and therefore G-SIb is disallowed.

Therefore, if history H executes under Snapshot Isolation, G1 and G-SI will be disallowed.

Part B: If G1 and G-SI are disallowed for history H, H must have executed under Snapshot Isolation.

We will now show that G1 and G-SI ensure that the Snapshot Read and Snapshot Write properties

are satisfied. Suppose Snapshot Write is not satisfied. Then H contains two concurrent transactions

T � and T� such that one of them, say T � , overwrites T� ’s modification of some object x. This implies

that a write-dependency edge exists from T � to T � , but no start-dependency edge, which violates

G-SIa. Therefore, the Snapshot Write property is satisfied.

Now suppose that the Snapshot Read property is violated. Property G-SIa guarantees that a

transaction can only observe modifications of transactions that committed before it started (using

the same argument as was given above for Snapshot Write); this handles properties (1) and (2a)

of Snapshot Read. Now we consider the other part of Snapshot Read concerning missed updates

(Snapshot Read 2b). Suppose transaction T � reads x but does not observe the updates to x made

by transactions that committed before T � started; assume T � made the first of these updates. This

means that there exists an anti-dependency edge from T � to T � . Furthermore, since � � � � � � , there
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exists a start-dependency edge from T � to T � . Therefore, phenomenon G-SIb exists in the history,

which is a contradiction.

Therefore, level PL-SI provides Snapshot Isolation.
�

4.3.2 Discussion

PL-2+ disallows all phenomena that Snapshot Isolation was intended to disallow [BBG
�

95],

i.e., consistent reads, including no read phantoms (H� � 
 � � � � on page 73), and no lost updates

(H � � � � � � � ��
 � � on page 73).

It is possible that what is really desired from Snapshot Isolation is exactly what PL-2+ provides.

Since PL-2+ is weaker than Snapshot Isolation (the latter requires a snapshot to be observed

whereas PL-2+ just requires transactions to observe causally consistent views), it has the potential

of being implemented more efficiently than Snapshot Isolation, especially in distributed client-server

systems, e.g., extra communication may be required to ensure that a client observes the database

state as it existed at the same logical time value at different servers. Thus, it may be desirable to

use PL-2+ instead of Snapshot Isolation. (An efficient optimistic implementation of PL-2+ in a

distributed client-server system is described in Section 5.3.)

Snapshot Isolation is incomparable with PL-3. It both accepts some non-serializable histories,

and rejects certain serializable histories. Some serializable histories are rejected because of the

Snapshot Write property. This property was introduced to rule out lost updates; however, it also

prevents blind writes by concurrent transactions. (Recall that a blind write occurs when a transaction

modifies an object without first reading it.) For example, the following history is not permitted by

Snapshot Isolation (phenomenon G-SIa occurs) but is allowed by PL-3:
�

� � � � � � � � � ��� : r1(x0) r2(x0) w1(z1) w2(z2) c1 c2 [z1
�

z2; c0
� � s1, c0

� � s2]

Since blind writes are rare, history
�

� � � � � � � � � � � is unlikely to occur (but it shows that PL-SI and

PL-3 are incomparable). Note that blind writes by non-concurrent transactions are allowed by

Snapshot Isolation.

The Snapshot Read property also rules out certain serializable histories. It prohibits a transaction

T� from reading a modification made by a transaction T � that committed after the start point chosen

for T� or from missing updates of transactions that committed before T � ’s start point. For example:
�
� � � � 
 � � � � � � � : w1(x1) c1 r2(x0) c2 [x0

�
x1; c0

� � s1, c1
� � s2]

This history is serializable in the order T0; T2; T1 but Snapshot Isolation disallows it since T2 misses

T1’s updates even though c1
� � s2. Note that the system could have chosen a different time-precedes

order (e.g., in consonance with the serial order) and allowed the above history. This is similar to

the case with version orders where the database system could choose a version order that allows a

history to be serializable. However, our conditions simply check for PL-3 or PL-SI based on the

version and time-precedes orders chosen by the system and hence disallow H � � � � 
 � � � � � � � under

Snapshot Isolation.
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Real Time Guarantees

The definition of Snapshot Isolation has a notion of logical time that we have captured with the

time-precedes order. If this ordering is consistent with real-time, an application can be provided

useful guarantees that are not provided by PL-2+ or even PL-3. For example, if a client runs a query

that requests a snapshot of stock values and the system returns the values as of 4:00 pm, Snapshot

Isolation would guarantee that the client observes the final values of all stocks at that time. Consider

the following history:

�
� � � � �

�
� � : w1(x1, $100) c1 w2(y2, $50) c2 r3(x1, $100) r3(y2, $50) c3

[x0
�

x1; c0
� � s3, c1

� � s3, c2
� � s3]

In this case, T1 updates the database at 3:58 pm, T2 at 3:59 pm, the stock market closes at 4:00 pm

and T3’s start point is 4:00 pm. Transaction T3 reads the final values of x and y. The SSG for

H � � � � �
�
� � is in Figure 4-9(a); it shows that this history will be allowed by Snapshot Isolation. Thus,

a Snapshot Isolation implementation based on real-time will disallow the following history in which

T3 observes an old value of x and a new value of y:

�
� � � � �

� � � � � � : w1(x1, $100) c1 w2(y2, $50) c2 r3(x0, $99) r3(y2, $50) c3

[x0
�

x1; c0
� � s3, c1

� � s3, c2
� � s3]

It is interesting to note that Snapshot Isolation disallows H � � � � �
� � � � ��� even though it is serializable in

the order T2; T3; T1. This history is disallowed because the time-precedes order is chosen according

to the occurrence of events in real-time but T3 does not read the effects of all transactions that

committed before T3’s start point in real-time. Figure 4-9(b) shows that the only cycle in the SSG

for history H � � � � �
� � � � � � involves a start-dependency edge. In this example, if the implementation

had chosen a different time-precedes order (i.e., not added the constraint c1
� � s3), the resulting

history would been allowed by Snapshot Isolation.

T1 T2T3
wr, s

T0wr, s

wr, s
T1 T2T3

wr, s

T0wr, s

s

rw

(a) (b)

Figure 4-9: The SSGs for histories H � � � � �
�
��� and H � � � � �

� � � � ��� .
Some applications may work correctly with database snapshots in logical time whereas others

may require stronger real-time guarantees (as in the example given above). Thus, it would be useful

for application programmers if a Snapshot Isolation implementation indicates whether it uses real-

time for ordering transactions or not. Of course, like the informal definition given in [BBG
�

95],

our specification of Snapshot Isolation does not include this real-time constraint to provide more

flexibility for implementations.
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4.4 Forward Consistent View

The stronger requirements of Snapshot Isolation lead to the question of whether everything in the

description in [BBG
�

95] is required. That description is operational and it could easily be the case

that some details of what that implementation provides do not matter.

We now discuss how some constraints of Snapshot Isolation can be removed to obtain a weaker

isolation level that is still useful. Snapshot Read requires that all reads occur at some point in logical

time before a transaction started. Not missing the effects of transactions that committed before a

transaction’s start point can be a useful property for some applications. We define an isolation level

called Forward Consistent View or PL-FCV that provides this property by precluding G1 and G-SIb.

Since G-SIa is not precluded, a transaction T � is allowed to observe the updates of transactions that

commit after it started, i.e., read “forward” beyond the start point. However, these reads are only

permitted as long as T � observes a consistent database state. PL-FCV is strictly stronger than PL-2+

because G-SIb is strictly stronger than G-single (G-SIb is defined on an SSG).

Since PL-FCV is weaker than PL-SI, it can allow more concurrency than PL-SI, which can

improve performance. For example, consider:

�
����� : w1(x1) r2(x1) r2(y0) w3(y3) c3 r4(y3) r4(x0) c1 c2 c4 [x0

�
x1, y0

�
y3; c3

� � s4]

This history is not allowed under PL-SI since T2 observes updates of transaction T1 that is concurrent

with T2 (phenomenon G-SIa occurs). However, this history is permitted under Forward Consistent

View because G1 and G-SIb do not occur. The SSG for H ����� is shown in Figure 4-10 (for

simplicity, T0 is not shown).

wr

rw

wr, s
T3

T2T1

T4

rw

Figure 4-10: The SSG for history H ����� shows that G-SIb is not violated.

4.5 Monotonic Snapshot Reads

We now present implementation-independent specifications of a level called Monotonic Snapshot

Reads or PL-MSR that captures the essence of Oracle’s Read Consistency; however, we do not claim

that PL-MSR captures all aspects of Read Consistency necessarily.

Oracle’s Read Consistency [Ora95] is stronger than degree 2: along with committed reads, this

level ensures that each action (e.g., SQL statement) in a transaction T � observes a snapshot of the

database state as it existed before the action started (in logical time). Furthermore, a later action
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of T � observes a snapshot that is at least as recent as the snapshot observed by an earlier action of

T � . Read Consistency can provide a different snapshot to every action, whereas Snapshot Isolation

provides the same snapshot to all actions in a transaction.

The lock-monotonicity property of PL-2L is similar to the guarantees provided by Read Con-

sistency. We use those ideas for our specifications of Monotonic Snapshot Reads. For a history H

and transaction T � , we construct a graph, SUSG(H, T � ) or the Start-ordered Unfolded Serialization

Graph, that is essentially a combination of the SSG and the USG. In SUSG(H, T � ), there exists a

node corresponding to each transaction (except T � ). We also add a read/write node corresponding to

every read and write in T � . We add order-edges between T � ’s read/write nodes (see Section 4.2) and

start-dependency edges from transaction nodes to other transaction nodes; start-dependency edges

from a transaction T� to T � in the SSG are now added from T� to the read/write nodes of T � in the

SUSG. Since we need to know which transactions committed before a read operation of transaction

T � was executed, we specify the time-precedes order for all reads of T � ; the time-precedes order for

reads of other transactions is not specified because we are only concerned about guarantees with

respect to transaction T � .

Monotonic reads of snapshots for queries in Read Consistency are specified by a combination

of two conditions — G-MSRa and G-MSRb. Both conditions are specified with respect to the reads

of a particular transaction T � ; as stated in Section 4.2, we can provide guarantees for version sets of

predicate-based writes by treating these operations as predicate-based reads.

G-MSRa: Action Interference. A history H exhibits phenomenon G-MSRa if SUSG(H, T � )

contains a read-dependency edge from a transaction T � to a read node r � (x� ) (or r � (P: x� , � � � ))

without there also being a start-dependency edge from T � to the same read node.

Disallowing G-MSRa ensures that a read event observes the updates of transactions that have com-

mitted before its start point; unlike Snapshot Isolation, this level allows blind writes by concurrent

transactions and hence we do not need a constraint with respect to write-dependency edges. The

next condition ensures that a read does not miss the effects of all transactions that have committed

before the read started:

G-MSRb: Action Missed Effects. A history H exhibits phenomenon G-MSRb if

SUSG(H, T � ) contains a directed cycle with exactly one anti-dependency edge such

that this edge starts from a read node r � (x� ) (or r � (P: x� , � � � )) to a transaction node.

Phenomenon G-MSR is composed of G-MSRa and G-MSRb, and isolation level PL-MSR pro-

scribes G1 and G-MSR. This level is stronger than PL-2 and PL-2L. For example, the following

history provides PL-2L guarantees but fails to meet G-MSRb:
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� � � � � � ��� : w1(x1) w2(y2) c1 c2 r3(P: x0; y2) c3

[x0
�

x1; c0
� � r3(P: x0; y2), c1

� � r3(P: x0; y2), c2
� � r3(P: x0; y2)]

The USG and SUSG for this history is shown in Figure 4-11. In this case, action � 3 reads the updates

of T2 and T0 but misses the update of T1 that committed before � 3 had started; objects x0 and y2

do not match predicate P. Transaction T1 changes x such that x1 matches P; this causes T1 to anti-

depend on T2. Since there is no dependency constraint between T1 and T2, PL-2L allows history

H � � � � � ��� . However, the additional constraint of requiring queries to read database snapshots

results in a single anti-dependency cycle in the SUSG; hence, history H � � � � � ��� is disallowed by

PL-MSR.

Unfolded Serialization Graph
Start-Ordered Unfolded
    Serialization Graph

wr rw
T2 T1r  (P :  x  ; y  )3             0      2

s

wr, s rw
T2 T1r  (P :  x  ; y  )3             0      2

Figure 4-11: History H � � � � � ��� is accepted by isolation level PL-2L but not by PL-MSR.

Isolation level PL-MSR is similar to PL-2L since both levels require that each read in a transaction

observes a monotonically increasing view of the database. In Section 4.2.2, we showed that level

PL-2L provides each predicate-based read with a consistent view of the database assuming that

update transactions maintain consistency (PL-2L places constraints on such reads with respect to

dependency conflicts). Level PL-MSR provides stronger guarantees to each predicate-based read:

it ensures that a read observe a database snapshot as it existed at some point in logical time. Recall

that Snapshot Isolation and PL-2+ also differ from each other in a similar way, i.e., the former

provides a database snapshot whereas PL-2+ simply ensures a consistent view based on read and

write-dependencies.

Levels PL-MSR and PL-2+ are incomparable even though PL-2+ provides a consistent database

to the whole transaction and PL-MSR only guarantees this property for each read. The reason is

that PL-2+ does not ensure that each read observes a snapshot of the database whereas PL-MSR

does provide this guarantee.

Oracle’s Read Consistency provides stronger guarantees to a transaction than provided by

our definition of PL-MSR since the Oracle database system executes SQL statements atomically;

conditions for providing such guarantees were discussed in Section 3.3.2. To ensure monotonicity

of reads with respect to SQL statements (i.e., each SQL statement observes a database state that is at

least as recent as the previous one), we can change the SUSG for a transaction T � to contain action

nodes corresponding to T � ’s SQL statements rather than its individual reads and writes; we can

also define a variant of PL-2L that provides guarantees based on SQL statements rather individual

operations.
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It seems that the main purpose of Read Consistency is to provide consistent views to each

action [Ora95]. PL-2L can achieve the same effect without requiring that each action observe

a database snapshot. Thus, PL-2L allows more concurrency than PL-MSR and hence may be

preferable to PL-MSR.

4.6 Cursor Stability

Cursor Stability [Dat90] is a well-known consistency guarantee that is supported by many commer-

cial databases. Like some of the other isolation levels, Cursor Stability is also defined in terms of

locking in [BBG
�

95]. We now describe how Cursor Stability can be defined to allow optimistic

mechanisms as well; as before, our specifications are presented for committed transactions.

Cursor Stability uses the notion of a cursor that refers to a particular (say current) object being

accessed by a transaction; there can be multiple cursors in a transaction. When a transaction T �

access an object x using a cursor, instead of releasing a read-lock immediately after reading x (as

in degree 2), T � retains the lock until the cursor is removed from x or T � commits; if T � updates the

object, the lock is upgraded to a write-lock. This approach prevents the lost update problem, i.e.,

histories such as H � � � � � � � �	
 � � that was presented in Section 3.2.3:
� �

� � � � � � �	
 � � : r1(x0, 10) r2(x0, 10) w2(x2, 15) c2 w1(x1, 14) c1 [x0
�

x2
�

x1]

In history H � � � � � � � �	
 � � , both T1 and T2 increment x based on x’s old value and hence T2’s increment

is “lost”. Cursor Stability prevents this scenario by ensuring that T2 is not allowed to modify x

while T1 is uncommitted (if T1 accesses x using a cursor and does not remove the cursor from x till

it has modified x).

Since Cursor Stability is defined in terms of particular objects, we need to annotate the edges

in a DSG with object names; this graph is called a Labeled Direct Serialization Graph or LDSG.

Phenomenon G-cursor(x) is defined as:

G-cursor(x): Labeled Single Anti-dependency Cycles: A history H exhibits phe-

nomenon G-cursor(x) if LDSG(H) contains a cycle with an anti-dependency and one

or more write-dependency edges such that all edges are labeled x.

Cursor Stability or PL-CS is defined to be the level that disallows G1 and G-cursor. PL-CS allows

two or more transactions in optimistic schemes to overwrite the same object based on old values

as long as only one of the transactions commits, e.g., history H � � � � � � � ��
 � � exhibits phenomenon

G-cursor(x) and is disallowed (Figure 4-12 shows the LDSG for this history.)

4.7 Update Serializability

Read-only transactions are common in transaction-processing workloads and improving their perfor-

mance can significantly improve overall system performance. It may be relatively more expensive

87



T0 T1T2

rw (x)

ww (x)

wr (x)

wr (x), ww(x)

Figure 4-12: Labeled Direct Serialization Graph for history H � � � � � � � �	
 � �

to provide serializability than to provide lower isolation guarantees for read-only transactions.

Furthermore, read-only transactions may not need strong guarantees such as serializability. For

example, if a read-only transaction just needs to observe a consistent state of the database, PL-2+

will be sufficient. In this section, we present an isolation level, PL-3U, for read-only transactions

that is stronger than PL-2+ but weaker than serializability. This consistency guarantee has been

presented earlier in the literature [GW82, HP86]; we present it using our terminology and describe

an optimistic scheme in Section 5.4 that provides this isolation level.

Isolation level PL-3U ensures that a transaction is serializable with all the committed update

transactions. The following condition is sufficient to ensure PL-3U for a transaction T � (T � could

be a read-only transaction):

No-update-conflict-misses: If T � depends on T� , it must not miss the effects of T � and

all update transactions that T � depends or anti-depends on.

Note that the no-update-conflict-misses condition imposes stronger constraints than the no-depend-

misses condition since it takes anti-dependencies into account as well. We express the no-update-

conflict-misses condition using a DSG that contains all update transactions and transaction T � (the

transaction of interest):

G-update: Single Anti-Dependency Cycles with Update Transactions. A history

H and transaction T � show phenomenon G-update if a DSG containing all update

transactions of H and transaction T � contains a cycle with 1 or more anti-dependency

edges.

A transaction T � is provided PL-3U if phenomena G1 and G-update are disallowed; we can prove

the equivalence of G-update and the no-update-conflict-misses using an argument similar to the

one presented for Theorem 2+. This isolation level is also called update serializability (the work

in [HP86] defines this condition based on view serializability). Isolation level PL-3U is weaker

than PL-3 since read-only transactions are not considered in phenomenon G-update. In PL-3U, two

transactions T � and T� may observe a serializable database state but unlike PL-3, the serial ordering

observed by both transactions could be different; an example that differentiates PL-3U from PL-3 is

presented in Section 4.7.2. As we will see in Chapter 7, providing PL-3U to read-only transactions

can be less expensive than providing PL-3 in a distributed client-server system.

88



4.7.1 Differentiating Between Levels PL-2+ and PL-3U

PL-2+ ensures that a transaction observes a consistent state of the database and PL-3U states that

the transaction observes a serializable state of the database. It may seem that PL-3U does not add

much value over PL-2+ for read-only transactions. Here is an example that shows the difference

between the two consistency guarantees and motivates the need for PL-3U.

Consider a stock reporting system. We know that stock prices will not change after the stock

market has closed. We assume that there is an object called Market-status that indicates whether

the market is open or not. Suppose there are companies X and Y whose stock prices are always the

same and suppose transactions T1, T2, T3, and T
�

are executed in the following way:
� � � � � 3

� : r1(M0, Open) w1(X1, 50) w1(Y1, 50) c1 r2(M0, Open) w2(X2, 55) w2(Y2, 55) c2

w3(M3, Close) c3 r
�
(M3, Close) r

�
(X1, 50) r

�
(Y1, 50) c

�

[M0
�

M3, X1
�

X2, Y1
�

Y2]

Transactions T1 and T2 check that the market is open and update the stock prices to be $50 and $55

respectively and transaction T3 closes the market.

T1

ww

T3

T2 rw

wrrw

rw

wr

Tq

Figure 4-13: DSG of a history that executes at PL-2+ but not at PL-3U (T0 is not shown).

Suppose that a read-only transaction T
�

reads the stock market status and the stock prices of X

and Y. PL-2+ guarantees that T
�

will see the same prices for X and Y, e.g., the two observed values

will be $50 or both will be $55. However, with PL-2+, it is possible that T
�

observes the stock

market to be closed and reads the stock prices to be $50, i.e., it observes T3’s updates but misses

the effects of transaction T2 that T3 anti-depends on; this is what happens in history H � � � � 3
� . In

general, if the observed order of conflicting transactions is important, PL-2+ may not be sufficient

and PL-3U may be needed. With PL-3U, if T
�

finds out the market is closed, it is guaranteed to

observe the stock price to be $55. Figure 4-13 gives the DSG of H � � � � 3
� . Level PL-2+ allows this

history since the only cycle in the graph (among T2, T3 and T
�
) involves at least two anti-dependency

edges.

4.7.2 Differentiating Between Levels PL-3U and PL-3

The reader might wonder how the introduction of another read-only transaction in the direct serial-

ization graph results in a cycle. Here is a variation on the above stock-market example that shows
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a history that executes at PL-3U but not at PL-3. We assume that transaction T1 has executed;

transactions T2 and T3 are not included in this example. Suppose that the following transactions are

executed (we are no longer maintaining the invariant that the stock prices of X and Y are the same):

�
3

� : r4(M0, Open) w4(X4, 70) c4 r5(M0, Open) w5(Y5, 75) c5

r 
 (X4, 70) r 
 (Y1, 50) c 
 r � (X1, 50) r � (Y5, 75) c � [X1
�

X4, Y1
�

Y5]

Transactions T4 and T5 check that the market is open and update the stock prices of X and Y to be

$70 and $75 respectively (they do not conflict with each other). Transaction T 
 observes the updates

of T1 and T4 but misses T5’s effects. Transaction T � reads the updates of T1 and T5 but misses

T4’s effects. Thus, each read-only transaction “forces” transactions T4 and T5 to be serialized in

the opposite order to what the other transaction requires: transaction T 
 forces the serialization

order
�

T1, T4, T 
 , T5 � whereas T � forces an order where T5 must be serialized before T4, e.g.,�
T1, T5, T � , T4 � . The DSG of history H3

� is shown in Figure 4-14 (for simplicity, we do not show

T1 in the graph or the history).

T4

Ta

T5

wr

rwwr

Tb
rw

Figure 4-14: DSG of history H3
� that executes at PL-3U but not at PL-3.

The DSG contains a cycle but if we remove either T 
 or T � from the graph, the cycle no longer

exists. Thus, each read-only transaction is at level PL-3U but the whole system is not serializable.

If clients/entities that execute T 
 and T � communicate with each other, they may be confused

about the relative order in which the stock prices went up. Thus, this departure from serializability

matters only when clients of read-only transactions communicate with each other directly [GW82];

otherwise, PL-3U is as good as serializability.

4.8 Intermediate Degrees for Running Transactions

All isolation levels presented in this chapter can be extended to specify consistency guarantees

for running transactions. For each isolation level, we modify the relevant graph to include the

executing transaction, T � , under consideration. Then we define phenomena on the new graph that

are analogous to the ones disallowed at the corresponding level for committed transactions.

For EPL-2+, we use the Direct Transaction Graph or DTG presented in the last chapter to define

a phenomenon that is analogous to G-single. Level EPL-2+ disallows P1 and E-single:
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E-single: Single Anti-dependency Cycles at Runtime. A history H and an executing

transaction T � exhibit phenomenon E-single if DTG(H, T � ) contains a directed cycle

involving T � with exactly one anti-dependency edge.

To define EPL-2L, we use a modified form of the USG called the Unfolded Transaction Graph or

UTG for a history H and an executing transaction T � . The graph UTG is the same as USG except that

the UTG only contains read nodes (and no write nodes) due to T � ; since T � ’s predicate-based writes

are considered as predicate-based reads, nodes and edges corresponding to such “reads” are also

added. A phenomenon, E-monotonic, that is analogous to G-monotonic is defined and transaction

T � is provided level EPL-2L guarantees if phenomena P1 and E-monotonic do not occur:

E-monotonic: Monotonic Reads at Runtime. A history H and an executing transac-

tion T � exhibit phenomenon E-monotonic if there is a cycle in USG(H, T � ) containing

exactly one anti-dependency edge from a read node r � (x� ) (or r � (P: x� , � � � )) to some

transaction node T � (and any number of order or dependency edges).

In a similar manner, other levels such EPL-SI, EPL-FCV, EPL-CS, EPL-MSR and EPL-3U can be

defined by extending the relevant graph and phenomena conditions. The definitions for these levels

are given in the Appendix A.

4.9 Summary

In this chapter, we presented specifications for a variety of isolation levels that lie between PL-2

and PL-3; we presented our specifications for committed transactions and then extended them for

running transactions.

We used the framework presented in the previous chapter to specify two new isolation levels,

PL-2+ and PL-2L. Isolation level PL-2+ ensures that a transaction commits successfully only if

it has observed a consistent state of the database. We showed that it is the weakest level that

ensures consistent reads. Level PL-2+ is especially useful for read-only transactions in certain

applications where observing a consistent database state is sufficient, e.g., if a transaction reads

the savings and checking account values of a bank customer and commits, PL-2+ will ensure that

the transaction observes consistent balances in the two accounts. PL-2+ disallows all phenomena

presented in [BBG
�

95] that Snapshot Isolation was designed to prevent, i.e., inconsistent reads, read

phantoms, and lost updates. Since PL-2+ is weaker than Snapshot Isolation, it has the potential of

being implemented more efficiently, especially in a distributed system with multiple servers. Thus,

we believe that PL-2+ is an isolation level that database vendors may be interested in providing.

Our second new level, PL-2L, was inspired by a lock-based implementation of degree 2 and

allows a transaction to commit only if it has observed a monotonically increasing prefix of the

database as it executed. PL-2L has been designed to support legacy applications when the underlying
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Level Name Phenomena disallowed

PL-CS Cursor Stability G1, G-cursor
PL-2L Monotonic View G1, G-monotonic
PL-MSR Monotonic Snapshot Reads G1, G-MSR
PL-2+ Consistent View G1, G-single
PL-FCV Forward Consistent View G1, G-SIb
PL-SI Snapshot Isolation G1, G-SI
PL-2.99 Repeatable Reads G1, G2-item
PL-3U Update Serializability G1, G-update
PL-3 Full Serializability G1, G2

Figure 4-15: Isolation levels stronger than PL-2

concurrency control mechanism is changed to (say) optimism. However, it is a useful level in its

own right, e.g., many browsing applications may find its guarantees more desirable than just PL-2.

In fact, Oracle provides a level called Read Consistency that is similar to PL-2L.

This chapter has also shown that a graph-based technique can be used for defining a variety

of isolation levels. We have redefined existing commercial levels such Snapshot Isolation, Read

Consistency, and Cursor Stability in an implementation-independent using variations of direct

serialization graphs. For example, to specify Snapshot Isolation, we add new edges in the graph that

capture the notion of logical time, for Cursor Stability, we labeled the edges with objects names,

and to capture the essence of Read Consistency, we added nodes corresponding to individual events

in a transaction.

Various levels can be ranked according to their “strength”: one level is stronger than another if

it allows fewer histories. Figure 4-16 shows how various levels are related to each other: if level Y

is stronger than level X, there is a directed path from X to Y; if there is no path between two levels,

they are unrelated to each other. This figure is the same as Figure 4-1; we have simply repeated it

here for convenience.

Read Consistency and Snapshot Isolation are unrelated to some of the levels on the right side

of the figure because of their snapshot read requirement for queries and transactions respectively;

this is also the reason why PL-2+ and PL-2.99 are not strictly stronger than Read Consistency.

Snapshot Isolation is weaker than strict serializability. Strict serializability [Pap79] ensures that

all transactions can be serialized in an order that also respects the real-time ordering of non-

overlapping transactions. A lock-based system (i.e., long read-locks and write-locks) provides strict

serializability guarantees to transactions but a multi-version timestamp scheme may not.

We can easily define strict serializability in our framework. Consider a graph called the Real-

time Serialization Graph or RSG which is the same as the DSG except that there are some extra

edges to capture the order of non-overlapping transactions: If a transaction T � commits before T�

92



PL-1

PL-2

Cursor Stability (PL-CS) Monotonic View (PL-2L)

Monotonic Snapshot
Reads (PL-MSR)

Consistent View (PL-2+)

Forward Consistent View (PL-FCV)

Snapshot Isolation (PL-SI) Update Serializability (PL-3U)

Full Serializability (PL-3)

Strict Serializability (PL-SS)

Repeatable Read (PL-2.99)

Figure 4-16: A partial order to relate various isolation levels for committed transactions.

executes its first event in real-time, we add a real-order edge from T � to T� ; these extra edges force

non-overlapping transactions to be serialized in the order in which they executed in real-time. Strict

serializability or PL-SS is defined as the level that disallows G1 and G2 when these phenomena are

defined on the RSG instead of the DSG.
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Chapter 5

Optimistic Implementations for
Client-Server Systems

This chapter presents optimistic mechanisms that provide different degrees of isolation to running

and committed (update and read-only) transactions in a distributed client-server system. Since the

consistency guarantees provided at a particular level for running and committed transactions are

similar, the implementation for both cases is also similar. Our schemes have been designed for a

system where database objects may be distributed over multiple servers and clients may cache some

of the objects on their machines for better performance. In our implementations, a transaction can

either read its own modifications or the updates of other committed transactions (dirty reads are not

allowed).

To provide serializability for committed transactions in these systems, we use an optimistic

scheme called CLOCC [Ady94, AGLM95, Gru97]. This scheme has been shown to outperform the

best-known locking implementation, ACBL [CFZ94, ZCF97], in a client-server system [Gru97]

on many workloads. Our optimistic mechanism for providing PL-2 is based on CLOCC and shares

many of its advantages; we call this scheme Weak-CLOCC.

For levels such as PL-2+, PL-2L, PL-3U, and their corresponding execution-time levels, we have

designed a mechanism that captures conflict relationships efficiently using multipart timestamps or

multistamps. Multistamps contain timestamp entries for every server or client-server pair in the

system. However, in earlier systems [BSS91, PST
�

97], multistamps have not scaled well with

a large number of clients and servers. We have designed a simple and novel technique called

multistamp truncation that keeps multistamps small. The truncation technique takes advantage

of the fact that our multistamps contain real time values and makes time-based judgements to

approximate old timestamp entries.

Our mechanisms for lower isolation levels offer a number of performance advantages over

CLOCC. These schemes (except PL-3U) do not require clients to send information about the objects

read by their transactions to the servers; this results in lower network bandwidth requirements.

They also provide additional benefits for read-only transactions compared to CLOCC. First, read-
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only transactions do not interfere with update transactions, i.e., they do not cause update transactions

to abort. Second, transaction latency is decreased: when a read-only transaction finishes, it can

be committed without communicating with the servers (CLOCC requires such communication);

although a small message may be sometimes required for PL-2+ and PL-3U, our results in Chapter 7

show that such messages are rare. Finally, the system is more scalable since these mechanisms

reduce the utilization of resources such as the network (fewer and smaller messages) and the server

CPU (most of the work for committing read-only transactions is offloaded to clients and the server

validates only update transactions with other update transactions). As in CLOCC, we do not require

a transaction to declare whether it is read-only or not when it starts; we detect this property when a

transaction ends.

The rest of this chapter is organized as follows. Section 5.1 describes CLOCC and gives a brief

overview of the Thor distributed database system since our work has been done in the context of

Thor. Section 5.2 presents our modifications to CLOCC for providing PL-1 and PL-2. Section 5.3

presents our multistamp-based technique for guaranteeing PL-2+ to committed transactions; we also

show how this scheme can be modified to provide EPL-2+ for running transactions. In Section 5.4,

we show how the multistamp-based scheme can be extended for committing read-only transactions

efficiently at level PL-3U; our technique ensures that the read-only participant optimization [GR93]

for two-phase commit is not sacrificed. Finally, Section 5.5 discusses related work. Implementations

for PL-2L and EPL-2L along with a technique for efficiently committing read-only transactions at

PL-3 are discussed in Appendix B; this appendix also presents techniques for providing different

levels of causality to clients.

5.1 Database Environment and CLOCC

Our work has been done in the context of the Thor database system; detailed information about

Thor can be found in [Ghe95, LAC
�

96, CALM97]. We assume that application computations

occur within transactions so that persistent objects can be maintained consistently despite concurrent

accesses from multiple applications and possible failures. Each application session runs a single

transaction at a time. It specifies when to commit the current transaction: the transaction includes

all objects accessed by the application since the last commit point.

Persistent database objects are stored at servers on server disks; each object resides in a single

page and objects are typically much smaller than pages. There may be many servers; the server

where an object resides is called its owner. The owner can be ascertained from the object identifier

(oid) of an object. Servers are replicated for high availability in Thor.

To improve performance, the application code is executed on the client machine using locally

cached copies of objects. Each client has an object cache that is maintained using techniques

presented in [CALM97]. There could be multiple clients on a single machine; each client would
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have its own cache of objects. Transactions run entirely at clients; clients communicate with servers

only when there is a miss in the cache, and to commit transactions. Clients and servers use an

ordered delivery protocol such as TCP for communication.

The server maintains information about data being cached by each client. For each client C,

it maintains a cached set that keeps track of objects being cached at C (as discussed later, these

sets are maintained at a coarse-granularity to reduce space overheads). Cached sets are used for

performing validation checks in CLOCC. For recovery purposes, a server keeps track of the clients

that are connected to it on stable storage; if the server crashes and recovers, it contacts the clients to

determine the pages cached by those clients.

The code that manages the cache on the client machine is a part of Thor and will be referred

to as the client. Each server has a cache of objects in main memory, which it uses to satisfy fetch

requests from clients. The organization of the system is shown in Figure 5-1.

Thor

Application
   Session

Client

 Stable
Storage

Server Server

Application
   Session

Client

 Stable
Storage

Figure 5-1: The client-server model of Thor.

5.1.1 Serializability for Committed Transactions: CLOCC

We now present CLOCC or Clock-based Lazy Optimistic Concurrency Control scheme; for details

on CLOCC, see [Ady94, AGLM95, Gru97] (CLOCC was earlier referred to as AOCC). CLOCC has

been designed to perform well for cacheable transactions, i.e., for workloads in which a client can

cache all objects read/written by a transaction during its execution. Gruber [Gru97] has shown

that CLOCC outperforms the best known locking scheme, ACBL [CFZ94, ZCF97], for client-server

systems, across a wide range of workloads. Low communication requirements, fewer delays, and

low cost of aborts are some of the reasons why CLOCC has a higher throughput and scales better

than ACBL. CLOCC has been designed to work well for environments where all operations are

executed by clients. In environments where servers may perform part of the work, another scheme

called AACC (Asynchronous Avoidance-based Cache Consistency) has been shown to outperform

CLOCC [OVU98]. Both CLOCC and ACBL are not expected to perform well in workloads where

there are hotspots, i.e., high contention on a single or very few objects. For such cases, mechanisms
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such as field calls [Reu82] and escrow reads [O’N86] are known to offer superior performance.

In a distributed system, transactions that have accessed objects at multiple servers must be

serialized in the same order at all servers. In CLOCC, transactions are serialized in timestamp order

where timestamps are taken from real clocks. When a client wants to commit transaction T � , it

assigns a timestamp T � .ts that contains the client’s local clock value augmented with the client’s

identity to make it globally unique. We assume that clocks are loosely synchronized, i.e., clocks at

different nodes in the network may differ by at most a small skew (say, a few tens of milliseconds).

The presence of such clocks is a reasonable assumption for current systems; protocols such as the

Network Time Protocol [Mil92, Mil96] provide such a facility. Mills [Mil96] has shown that NTP

provides synchronization within a few milliseconds even across wide area networks. We assume

that server clocks never run backwards, and advance rapidly enough that each transaction can be

assigned a distinct timestamp; these assumptions are easy to guarantee (see [Lis93]). These clocks

simplify our algorithm and, since their values are close to real time, they allow us to make time-

dependent design decisions, and to reason about the performance of our scheme. In CLOCC, loose

synchronization is needed only for performance reasons and not for correctness.

Commit and Coherence Protocol

To enable serializability checks at the end of a transaction, the client keeps track of objects read

and written by its current transaction T � . At commit time, along with T � ’s timestamp (T � .ts), the

client sends the identity of all objects read and written by T � (i.e., T � .ReadSet and T � .WriteSet) to

the servers that own these objects; it also sends copies of objects modified by T � .

If objects from only one server are used by the committing transaction, this server can commit

the transaction unilaterally if the serializability checks succeed. Otherwise, the client chooses one

of the servers as the coordinator of a commit protocol with the other owners, called the participants.

We use a standard 2-phase protocol [GR93]. We describe the protocol briefly here to provide the

context for our scheme.

In phase 1, the client sends information about the objects accessed by its transaction to all

the participants. Each participant (the coordinator is also a participant) validates the committing

transaction T � ; we describe how validation works later in this section. If validation succeeds,

the participant logs the installation information on stable storage and sends a positive response

to the coordinator; otherwise, it rejects the transaction. If all participants respond positively, the

coordinator commits transaction T � by logging a commit record on stable storage; otherwise, the

transaction is aborted. In any case, the coordinator notifies the client of its decision. Phase 1

includes two log updates to stable storage, but the optimizations suggested by Stamos [Sta89] can

reduce this to a single log update.

In phase 2, the coordinator sends commit messages to the participants. On receiving a commit
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message, a participant installs new versions of the objects that were modified by T � (so that future

fetches see the updates), logs a commit record on stable storage, and sends an acknowledgement

to the coordinator. When the coordinator receives acknowledgements from all participants, the

protocol is complete. This phase is not executed for transactions involving a single server; objects

are installed by this server after the transaction succeeds validation. Furthermore, the delay observed

by the client before it can start the next transaction is due to phase 1 only; phase 2 happens in the

background.

If T � has not modified any object at some participant, that server is called a read-only participant

(other participants are called read-write participants); no installation information needs to be logged

at this participant. Furthermore, a read-only participant does not need a commit message from

the coordinator during phase 2; this optimization is also referred to as the read-only participant

optimization for two-phase commit [GR93].

Some concurrency control schemes (e.g., callback locking [ZCF97] and the multi-version

scheme in [ABGS87]) guarantee that all read-only transactions are serializable; thus, commit-

ting such transactions does not require any communication with the servers. However, our scheme

requires validation to be performed for read-only transactions; therefore, phase 1 messages must be

sent to all participants for such transactions also. But, in our case, the coordinator of a read-only

transaction does not need to be reliable, and does not need to use stable storage. Therefore, the

client can act as the coordinator: it sends the prepare messages to the participants and collects their

responses; for details on this mechanism, see [AGLM95]. This saves a message roundtrip and re-

duces the latency for committing read-only transactions to a single message roundtrip; furthermore,

there are no updates to stable storage. (In Appendix B, we discuss a technique that avoids this

roundtrip as well.)

After a client C’s modification transaction T � has committed at a server, the server examines

the cached set to determine clients other than C that may be caching objects modified by T � . The

server maintains an invalid set for each client D and adds the list of obsolete objects (because of T � ’s

modifications) to D’s invalid set. It informs clients about these old objects by sending invalidation

messages to them. Note that client C is not waiting while invalidation messages are being sent since

a server sends them after phase 2 has started. When a client D receives an invalidation message

that contains object x, it removes x from its cache. If D’s current transaction has accessed object

x, the transaction is aborted. When a transaction aborts at the client, any objects updated by the

transaction are also removed from the cache. To avoid refetching these modified objects after an

abort, the client maintains an undo log; before any object is updated, the client makes a copy of the

object. Thus, when the transaction aborts, the updated objects are simply reverted to their original

state unless they have been invalidated; this simple optimization is very important in enhancing

CLOCC’s performance.

The two-phase commit protocol for Thor is shown in Figure 5-2. Numbers indicate the order
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of messages, i.e., message i precedes message i+1; messages with the same numbers can be sent

in parallel. A log force to stable storage that is shown as i/j indicates that it is done after receiving

message i but before sending message j.

Commit / Abort Decision3

Commit / Abort Decision
3

Prepare Request 1

Acknowledgement
4

Yes / No response
2

Decision
2/3 Decision

3/4

Prepare Record
1/2

Work done in  the background.

Work done in the foreground (Application is waiting)

Coordinator Participant

Invalidation
Messages

4

 Stable
Storage

Invalidation
Messages

4

 Stable
Storage

Prepare Request

1

Client

Figure 5-2: The two-phase commit protocol in Thor.

Clients send acknowledgements after processing invalidation messages; when the server receives

the acknowledgement, it removes the information about the invalidated objects from that client’s

invalid set. Invalid sets, and hence invalidation messages, are small (just a few entries) because of

these acknowledgements (see [AGLM95, Gru97] for experimental results).

Both invalidation messages and acknowledgements are piggy-backed on other messages being

exchanged between the client and server; the term “lazy” in CLOCC comes from the fact that this

scheme avoids sending synchronous messages as much as possible. There is always a certain amount

of such traffic: in addition to fetch and commit requests and replies, clients and servers exchange

“I’m alive” messages for failure detection purposes; these messages are sent if there has been no

communication between a server and a client for a certain timeout period, e.g., half a second in a

LAN environment. Therefore, our scheme does not cause extra message traffic, although messages

may be bigger; however, as shown in [AGLM95], the increase in messages size due to invalidations

is small.

Invalidation messages are not required for correctness but they have the following desirable

effects:
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1. If a client receives an invalidation message for an object x that has not been read or written by

the current transaction, it simply evicts x, thus avoiding a potential abort that would otherwise

result from reading x later.

2. If the current transaction has already read or written x, the client aborts the transaction

immediately, thus limiting wasted work (since the transaction would abort later anyway).

3. Invalidation messages also help in ensuring that the effective client cache is not lowered

because of obsolete objects. If these messages were not sent, a large number of objects in

the client cache can become stale, resulting in low utilization of the cache since old objects

are effectively useless (and even harmful because a transaction that reads obsolete objects is

forced to abort later).

4. Some of the checks that would have been performed at the server are now performed at the

client, i.e., work is offloaded from servers to clients making the scheme more scalable. A

client checks its read set against the list of old objects received in the invalidation messages;

without these messages, the server would performed these checks at commit time.

Although cached sets are maintained for each client, their space overhead is not large because

the server stores them at the page level: a cached set for client C contains the identifiers of the

pages containing objects cached at C rather than individual object identifiers. The client cache may

not contain all objects in a page and therefore some unnecessary invalidation messages may be sent

(piggy-backed on other messages). However, these messages do not result in spurious aborts at

the client since an invalidation message causes an abort only if the corresponding object is being

used at the client. At the cost of larger invalidation messages, the size of these cached sets can be

substantially reduced by further approximating this information using Bloom filters [FCAB98].

Validation

The purpose of validation is to prevent the commit of any transaction that violates PL-3 requirements.

Our scheme uses backward validation [Hae84] to provide serializability: a validating transaction T �

is checked against all transactions that have already validated successfully. Our validation algorithm

is embedded in the commit protocol described above. The presentation assumes that servers do

not fail; for a discussion on how we deal with failures, see [AGLM95]. We define the following

relationship for conflicts: two transactions conflict if one has modified an object that the other has

read or modified.

When a participant receives the validation information of a committing transaction T � (T � .ts,

T � .ReadSet and T � .WriteSet), it checks T � ’s read set and write set against the information of

earlier committed and prepared transactions. Validation information of all successfully validated

transactions is maintained in a data structure called the validation queue, or VQ; thus, the VQ holds
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the read and write sets of transactions that have prepared or committed previously at the server. If T �

cannot be serialized in timestamp order due to some transaction T � in the VQ, the participant aborts

T � by sending a negative acknowledgement to the coordinator. (Even if T � is only prepared, the

server cannot abort T� since the 2-phase commit protocol disallows a participant from unilaterally

aborting a prepared transaction.)

To simplify our algorithm, we arrange the read set to always contain the write set (no blind

writes), i.e., if a transaction modifies an object but does not read it, the client enters the object in the

read set anyway. This implies that some transactions might exhibit spurious read-write conflicts,

but aborts due to such spurious conflicts are rare because it is unlikely that a transaction writes an

object without reading it.

The rules for validation differ according to the timestamp order between an already validated

transaction T� and the incoming transaction T � . We now discuss these checks.

Suppose T� has a timestamp later than T � . Since T� is prepared/committed, it could not have

observed T � ’s updates (there are no dirty reads in CLOCC). Since T � is later in the schedule than T � ,

T � should not modify any object that T� has read. If T � has read an object that T� has modified, T �

can still be serialized. However, as discussed in [AGLM95], we abort T � in this case also to provide

external consistency (so that transaction commit order as observed by clients is the same as the real

time order). Thus, the validation check against a later transaction T � is the following: if T � conflicts

with T� , T � is aborted.

Now we consider the checks performed by each participant to validate T � against a pre-

pared/committed transaction T� that has an earlier timestamp than T � . If T� has read an object

x and T � has modified x, T � can be serialized after T� . However, if T � has read x and T� is in prepared

state and has modified x, T � must be aborted because T � could not have read that version (dirty reads

are not allowed). If T� is a committed transaction, we must ensure that T � has read the latest version

of x; this is called the version check.

The version check can be performed by associating a version number (such as the timestamp of

the installing transaction) with each object. The version number of an object read by T � can then be

checked against that installed by T� . However, storing a version number per object consumes disk

storage as well as space in the server cache. More importantly, if the objects are not in the server

memory at validation time, the server may have to perform read the pages from disk to obtain the

version numbers.

Instead, we perform the version check without using version numbers. Recall that the server

maintains an invalid set for each client; this set keeps track of those objects in the cached set that

have been invalidated but whose invalidations have not been acknowledged by the client. To check

whether a validating transaction T � has read the latest version of an object, the participant checks

the invalid set of T � ’s client and rejects T � if it has used an object in that invalid set.

The memory requirements for validation are low enough that the server can keep the needed
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information in primary memory. The data structures used for validation are cached sets, invalid sets,

and the VQ. We have already argued that the cached sets and invalid sets are small. The VQ is also

kept small by removing old validation records in a timely manner. We take advantage of loosely

synchronized clocks to determine which entries are old and remove them; the removed entries are

summarized using a watermark timestamp, which is greater than or equal to all the timestamps of the

removed entries. Since a server no longer has fine-grained information about transactions below the

watermark, it must be conservative and abort an incoming transaction T � if T � ’s timestamp is earlier

than the watermark (or ask T � ’s coordinator to retry after assigning a higher value to T � ’s timestamp);

this check is called the watermark check. Our notion of approximating a transaction’s information

is similar to the Commit LSN technique [Moh90] that uses a watermark called Commit LSN to

determine whether a piece of data is committed or not. Their technique approximates information

about objects on a page using the Commit LSN whereas we use a watermark to remove validation

information and summarize the removed entries.

Setting the watermark to a high value (i.e., later timestamp) has the advantage that the VQ

contains few entries but has the disadvantage that transactions may be rejected unnecessarily;

setting it far back in time reduces the probability of unnecessary aborts but increases the size of the

VQ.

We set the watermark by taking network delays into account. When a transaction T � commits,

the client uses its local clock and assigns a timestamp T � .ts to the transaction. The client’s prepare

request reaches each participant when the latter’s clock time is T � .ts +
�

+ � where
�

is the network

delay and � is the approximate clock skew. Thus, to ensure that T � is not rejected due to the

watermark check, a participant must not have not removed any VQ entry with a timestamp less

than T � .ts, i.e., a server keeps the watermark at least
�

+ � below its current time. Details about the

watermark mechanism are discussed in [AGLM95].

We have now described all of the validation checks performed at each participant to validate a

given transaction T � ; Figure 5-3 summarizes these checks.

5.2 Mechanisms for Isolation Levels PL-1 and PL-2

We now modify CLOCC to provide PL-1 guarantees for committed transactions; in this scheme,

servers perform checks to ensure that G0 is disallowed. Since dirty reads are not permitted in our

environment, this scheme also ensures that G1 cannot occur. Hence, our PL-2 scheme is identical

to our PL-1 implementation.

The checks for the PL-2 scheme are similar to the ones in CLOCC except that we do not have to

validate the reads of a committing transaction; we compare the write set of a PL-2 transaction with

the write sets of other transactions (the checks are changed to only consider write sets). Invalidation

messages are handled as in CLOCC except that a client aborts its current transaction T � only if T � has
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Watermark Check

If T � .ts < Watermark then send abort reply to coordinator

Checks Against Earlier Transactions
For each uncommitted transaction T � in VQ such that T� .ts < T � .ts
% Committed transactions are handled by the version check

If (T� .WriteSet
�

T � .ReadSet
���� ) then send abort reply to coordinator

Version Check

% T � ran at client C
For each object x in T � .ReadSet

If x � C’s invalid set then send abort reply to coordinator

Checks Against Later Transactions

For each transaction T� in VQ such that T � .ts < T� .ts
If (T � .ReadSet

�
T� .WriteSet

���� ) or (T � .WriteSet
�

T� .ReadSet
���� ) then

Send abort reply to coordinator

Figure 5-3: Validation checks in CLOCC for transaction T �

modified an object x specified in the invalidation message; if T � has just read x, the client discards

x from its cache (T � is not aborted since simply reading from committed transactions ensures G1).

We do not store the read set of a PL-2 transaction in the VQ since its reads need not be validated

against writes of transactions that commit later.

In a mixed system, some of the transactions may commit at PL-3. To ensure that all histories

generated in our system are mixing-correct, we need to ensure that PL-2 transactions handle

obligatory conflicts correctly. As discussed in Section 3.3, obligatory conflicts for PL-2 transactions

correspond to anti-dependency edges originating from PL-3 nodes, i.e., overwriting of reads by PL-

3 transactions needs to considered. Thus, we ensure that if a committing PL-2 transaction T �

overwrites an object that was read by a PL-3 transaction T � , T � ’s timestamp is greater than T� ’s

timestamp. We call this check as obligatory check and our PL-2 scheme is called Weak-CLOCC.

The validation checks in Weak-CLOCC are actually identical to the ones given in Figure 5-3 if

we simply consider a PL-2 transaction’s read set to be null for these checks. A similar change is

needed to use CLOCC in a mixed system where both PL-2 and PL-3 transactions can commit: when

a PL-3 transaction is validated against a PL-2 transaction T � , the server assumes that T� .ReadSet

is null; this is acceptable in a mixed system since anti-dependencies for PL-2 transactions are not

considered.

Weak-CLOCC and CLOCC ensure that all histories generated in the system are mixing-correct

(see Section 3.3.1 for definition of mixing-correct). Since we do not allow dirty reads, phenomena

G1a and G1b cannot occur for any transaction/ We can prove that the MSG is acyclic by using the
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following property: if there is an edge from T � to T� in the MSG, T � ’s timestamp must be less then

T� ’s timestamp. Both CLOCC and Weak-CLOCC ensure that this property is valid for transactions that

commit at PL-3 and PL-2 levels respectively. Furthermore, the obligatory checks in Weak-CLOCC

ensure that this property is valid for anti-dependency edges originating from PL-3 transactions.

Weak-CLOCC has a number of advantages over CLOCC. First, it has lower network bandwidth

requirements since clients do not send information about their read sets to servers. Second, servers

perform much less validation work since they only check write sets of transactions and not the

read sets; write sets are expected to be much smaller than the read sets. Third, when a read-

only transaction finishes, it can commit immediately without communicating with the servers.

Thus, read-only transactions do not interfere with update transactions and the server does not

need to validate them. Finally, read-only transactions are never aborted by Weak-CLOCC since an

invalidation message can result in an abort only if the client’s current transaction has modified that

object; also, update transactions abort less frequently because they never conflict with read-only

transactions. Of course, these performance benefits over CLOCC come at a cost: Weak-CLOCC offers

much weaker guarantees than serializability.

Weak consistency schemes based on locking for providing PL-1 and PL-2 in a client-server

system have been presented in [BK96]. However, like locking schemes for serializability, these

mechanisms require extra message roundtrips for acquiring write locks; our optimistic schemes

have lower communication requirements.

5.3 Multistamp-Based Mechanism for PL-2+ and EPL-2+

We now present our multistamp-based consistency mechanisms provide PL-2+ to committed trans-

actions and EPL-2+ to running transactions. These techniques form the basis for other schemes

discussed in later sections. Multistamps lie at the heart of these schemes and are used to place

constraints on the reads performed by transactions.

Section 5.3.1 gives an overview of our multistamp-based schemes for PL-2+ and EPL-2+.

Sections 5.3.2 and 5.3.3 describe the processing at the server and the client, ignoring size issues:

multistamps are allowed to grow without bound and so are local tables at the server. Section 5.3.4

describes how validation is performed for PL-2+ and also gives an informal argument to show that

the scheme is correct. Section 5.3.5 shows how the mechanism can be modified for providing EPL-

2+ to running transactions. Section 5.3.6 describes how we solve the size problems for multistamps

and other data structures maintained at the server; it also discusses how the truncation technique can

be applied in other systems. Section 5.3.7 presents an optimization to offload work from servers to

clients.
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5.3.1 Overview of the PL-2+ and EPL-2+ Implementations

Before describing the details, we give a brief overview of our PL-2+ and EPL-2+ implementations.

We first present a scenario in which a transaction observes an inconsistent state of the database;

this scenario is allowed by CLOCC for running transactions and by Weak-CLOCC for committed

transactions. We then describe how our mechanism prevents this situation.

a: 4 b: 4a: 3

Commit T i

a: 3 a: 4 b: 4b: 3 b: 4b: 3a: 3 a: 4

Fetch b
Fetch reply

b: 4

a: 3

Server X Server XServer Y Server Y

Client C Client D Client C

Figure 5-4: Inconsistent database state viewed by client C due to observation of T � ’s partial effects.

Suppose that two servers X and Y store objects a and b respectively and an application maintains

the invariant that a is equal to b. A transaction T � from client D updates the values of the objects

from 3 to 4 and commits (see Figure 5-4). Another client C’s transaction T � reads the old value of

a and tries to read b. Since b is missing from its cache, it fetches b from server Y and observes

an inconsistent state of the database. The Weak-CLOCC scheme allows T � to commit because PL-2

does not guarantee consistent reads. On the other hand, any implementation of level PL-2+ would

abort T� . Note that CLOCC allows T� to observe inconsistent values of a and b but does not permit

T� to successfully commit. However, observing an inconsistent state of the database may cause T �

to behave in an unexpected manner, e.g., the application could crash. To prevent T � from observing

an inconsistent view, it must be provided level EPL-2+ during its execution.

Let us see how EPL-2+ can be provided to client C as it executes. The protocol is shown in

Figure 5-5; the numbers indicate the order of messages sent in the system. When transaction T �

commits at servers X and Y, the servers store extra consistency information with objects a and b.

The extra information stored at server Y is a requirement on transactions that read object b: if

transaction T� reads the new value of b, it must have communicated with object a’s server X in the

recent past so that T� does not see an old value of a. A similar requirement is placed at server X

along with object a. When client C fetches object b, server Y piggybacks these requirements on

the fetch reply. In this scenario, since client C is not sufficiently recent with respect to server X, it

sends a message to X requesting for recent consistency information. When it receives a reply, it is

also informed that it has read an old value of object a. As a result, transaction T � is aborted before it
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views an inconsistent state, i.e., T � executes at level EPL-2+. To provide PL-2+ instead of EPL-2+,

client C checks the requirements sent by server Y only at commit time and not immediately after a

fetch reply.

Fetch b

Fetch reply

b: 4

a: 3

a: 4
Seen recent enough
  changes from Y ? b: 4

Seen recent enough
  changes from X ?

Seen . . .   X ?

1

2Consistency 
Information
   Request

Consistency 
Information
      Reply

3

4

Client C

Server X Server Y

Figure 5-5: With EPL-2+, client C is prevented from viewing an inconsistent state due to extra
consistency information stored with b.

The above example describes the essential ingredients of our algorithm: the consistency re-

quirements are generated by servers during the two-phase commit protocol and piggybacked on

fetch replies to clients; clients ensure that they are sufficiently recent with respect to the relevant

servers.

The requirements on clients can be captured by maintaining lists of transaction ids and prop-

agating them among clients and servers. However, due to the transitive nature of the dependency

relationship, these lists can become very large resulting in significant memory, processing and net-

work overheads. Instead, consistency requirements contain information about invalidations in the

form of multistamps.

Recall from Chapter 4 that a client C’s transaction T
�

is provided PL-2+ or EPL-2+ if it does

not miss the effects of any transaction that T
�

depends on. One of the key insights regarding

invalidations in our system is that they can easily used to capture the notion of “not missing a

transaction’s effects”. Suppose a client C receives the invalidations generated by a transaction T � ,

After this point, if C tries to access an object x that was modified by T � , it will be forced to go to the

server and receive the latest version of x, i.e., it cannot miss T � ’s effects. Thus, to provide PL-2+,

we need to ensure that a client C must receive the invalidations of T � and all transactions that T �

depends on before C observes T � ’s updates.

Information about invalidations is maintained in the form of multistamps. Each committed
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transaction T � is associated with a multistamp, T � .mstamp, that indicates its invalidations and those

of all transactions it depends on. A multistamp is a set of tuples
�
client, server, timestamp � ; each

tuple
�
C, X, ts � says that an invalidation was generated for client C by the prepare of some transaction

at server X when the value of X’s clock was ts. When client C receives a multistamp with a tuple�
C, X, ts � in its fetch reply, it can continue execution (for EPL-2+) or commit (for PL-2+) only after

it has received all invalidations that were generated by server X before X’s clock reached time ts.

We assume the obvious merge operation on multistamps: if the two input multistamps contain

a tuple for the same client/server pair, the merge retains the larger timestamp value for that pair.

We now describe the details of how multistamps are generated and used in our implementation.

5.3.2 Processing at the Server

Servers have two responsibilities: they must compute multistamps and they must send them in fetch

responses so that clients can act accordingly. When a server replies to a fetch, it sends the requested

page P along with P’s multistamp; the multistamp of a page P is the merge of the multistamps of all

transactions that have ever modified P.

The server maintains the following data structures. The PSTAMP table maps pages to their

multistamps. The invalid set or ILIST maps clients to invalidation information. Each element,

ILIST[C], contains a timestamp ts and a list of object ids, indicating that these objects were

invalidated for client C at time ts. The VQ stores multistamps of committed transactions along with

other information needed for validation.

Commit Processing. In the prepare phase, the server validates a preparing transaction T � to

ensure that it has not missed any updates, and that its updates do not conflict with updates of other

transactions. The latter check is done using the Weak-CLOCC algorithm discussed in Section 5.2

(i.e., assuming that T � ’s read set is empty). The former check requires tracking of transaction

dependencies and is done using multistamps; we describe how this test is performed in Section 5.3.4.

If the validation of transaction T � succeeds, participant X computes multistamp T � .mstamp as

follows:

1. X initializes T � .mstamp to be empty.

2. If T � ’s commit would cause invalidations to be generated for any client, X sets ts to be the

current time of its clock. For each potentially invalidated client C:

(a) X adds tuple � C, X, ts � to T � .mstamp.

(b) X adds � ts, olist � to the ILIST for C, where olist contains ids of all objects modified

by T � that are located on pages listed in X’s directory for C.
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3. For each transaction T� that T � depends on, X merges VQ[T� ].mstamp with T � .mstamp. The

dependencies are determined using X’s VQ (we do not merge the multistamps of transactions

that T � anti-depends on since PL-2+ does not capture anti-dependencies).

T  ’s validation info
   (from client C)

ReadSet:   { a }
WriteSet: { b }

Mstamp:

Validation Queue

.   .   .

Transaction T

Pages: P, Q, . . .

  Client D’s
Cached Set

  Server X
(Current time = 3:02:17 pm)

Page P’s multistamp

Page P’s new
  multistamp

ReadSet:   { a, b }
WriteSet: { b }

3:01:52 pmD Y

3:02:11 pmE X

3:02:21 pmD Y

3:02:11 pmE X

3:02:21 pmD Y

3:02:11 pmE X

3:02:17 pmD X

3:01:52 pmD Y

3:02:11 pmE X

3:02:17 pmD X

i

T  ’s multistampi

j

Figure 5-6: Generation of multistamp for a committing transaction T � and page P.

Then X sends T � .mstamp in the vote message to the coordinator. If the coordinator decides

to commit T � , it merges multistamps received from participants to obtain T � ’s final multistamp.

This multistamp is sent to participants in the commit messages. The participants store T � ’s final

multistamp in VQ[T � ].mstamp. Furthermore, for each page P modified by T � , the participant merges

this multistamp into PSTAMP[P]. Overheads of this scheme are determined by the processing

overheads associated with multistamps. In Section 5.3.6, we present our truncation technique that

keeps the size of multistamps small.

If the transaction is aborted, the participant receives the abort decision and removes information

about T � from the ILIST.

Figure 5-6 shows the multistamp of a transaction T � and a page P being computed at server X

when T � commits; T � is a single-server transaction that has modified object
�

(on page P) and read

object � . Since page P is being cached by client D, an invalidation entry is generated for it and

added to T � ’s multistamp; T� .mstamp is also merged into T � .mstamp since T � depends on T� . We

obtain P’s multistamp by merging T � ’s multistamp into its current value.

Unlike CLOCC, the VQ simply contains a transaction T � ’s write set. The read set is needed just
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to compute T � ’s multistamp at prepare time; it is not required to calculate the multistamps of later

transactions or for validation purposes. In Section 5.3.7, we present a technique that allows clients

not to send read sets to servers.

Fetch Processing. When a server receives a fetch message for object x on page P and a prepared

transaction T� has modified x, it waits for T� to complete. Then it sends the fetch reply, which

contains P and also PSTAMP[P]. (In CLOCC and Weak-CLOCC, the system never delays a fetch

reply. However, the likelihood of a delay is low since the prepare window is very small.)

Invalidations.

To produce an invalidation message, the server goes through the ILIST in timestamp order from

smallest to largest, stopping when it has processed the entire list, or it reaches an entry for a prepared

(but not yet committed) transaction. The ids of all objects in the processed entries are sent in the

message along with the largest timestamp contained in the processed entries. When a server sends

an invalidation message to a client C and C’s ILIST is empty, it sends its current clock value as the

timestamp.

As mentioned earlier, invalidation messages are piggybacked on every message sent to a client

and clients acknowledge invalidations. The acknowledgement contains the timestamp ts of the

associated invalidation message. The server then removes all entries whose timestamps are less

than or equal to ts from the ILIST.

A client may also send an invalidation-request message to the server containing a timestamp

ts; this request indicates that the client wants all invalidations that were generated for it before

time ts. The server responds by sending back an invalidation message as above except that the

timestamp in the message must be greater than or equal to ts. It is possible that some entry in the

table with a timestamp less than or equal to ts exists for a transaction that has not yet committed

(it is still prepared); in this case, the server simply sends the invalidations due to that transaction

optimistically assuming that it will commit. Furthermore, if ts is greater than the timestamp of all

entries in the ILIST, the server responds with its current time; it waits for its clock to advance past

ts if necessary, but a delay is extremely unlikely since clocks are loosely synchronized.

5.3.3 Processing at the Client

A client C is responsible for maintaining sufficient information about dependencies so that it can

validate the transaction’s reads at commit time. Client C maintains two tables that store information

about servers it is connected to. LATEST[X] stores the timestamp of the latest invalidation message

it has received from server X; REQ[X] is the largest timestamp for X that C is required to hear about

if C accesses X and tries to commits its transaction; if REQ[X] � LATEST[X], this means server X

has invalidations for C that C has not yet heard about.
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The client also maintains a set CURR that identifies all servers used by its currently running

transaction. When the client receives an invalidation message from server X, it stores the timestamp

in the message in LATEST[X].

Client C does the following when a transaction first uses object x:

1. Adds x’s server X to CURR.

2. Fetches x if it is not already present in the client cache. When the fetch reply arrives it updates

the information in REQ to reflect the multistamp in the fetch response: for each multistamp

entry � ���������
�
� such that ts is larger than REQ[Y], it stores ts in REQ[Y].

Invalidations are handled as in CLOCC, i.e., if the client’s current transaction has accessed an object

specified in the invalidation message, the transaction is aborted.

5.3.4 Validation

A transaction T � ’s reads are validated by its client and its writes are checked by the servers using

Weak-CLOCC. To validate T � ’s reads, its client C ensures that C has recent-enough information

about invalidations for all servers used by T � , i.e., for each server X in CURR, the client checks that

LATEST[X]
�

REQ[X]. This check is called the read-dependency check. If this condition does

not hold for some servers, a consistency stall occurs and the client sends an invalidation-request

messages to each server X where the information was not sufficiently recent; in this message, the

client requests server X to send all invalidations that were generated at X before time REQ[X].

When the client receives the replies, it processes them as in CLOCC, i.e., it aborts T � if the reply

indicates T � has read an obsolete object; otherwise, T � passes the read-dependency check.

If transaction T � is read-only, there is no more work to be done and the transaction commits

locally at the client. Otherwise, the client sends the read and write sets to the servers so that

the Weak-CLOCC checks can be performed, and so that T � ’s multistamp can be computed. In

Section 5.3.7, we will show an optimization in which the client computes the read-dependency part

of the multistamp and sends it to the servers; this allows it to avoid sending the read sets in the

commit request.

Figure 5-7 shows an example where the REQ and LATEST arrays change after a message. In

client C’s current transaction, servers X and Y are being accessed. When C fetches page P from

X, it updates LATEST[X] with the time sent in X’s fetch reply. It also updates REQ[Y] using P’s

multistamp. With this update, LATEST[Y] is now less than REQ[Y]. Thus, if C tries to commit

its transaction now, there will be a consistency stall due to Y. No invalidation-request message

will be sent to server Z since it is not being accessed in the current transaction (even though the

read-dependency condition is violated for server Z).

In CLOCC, the validation information in the VQ is logged on stable storage as part of the prepare

record by the participants. In the PL-2+ scheme, the final multistamp of a transaction T � is logged
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Figure 5-7: Handling of a fetch reply by client C (changed entries are shown in a darker background)

along with the coordinator’s commit decision and can be recovered after a crash; similarly, the

PSTAMP table can also be reconstructed from the prepare and commit records.

An advantage of the PL-2+ scheme over CLOCC is for read-only transactions. In CLOCC, all

read-only transactions must communicate with the servers for validation purposes. In our PL-2+

scheme, a multi-server transaction T � can be committed locally if the read-dependency check is

satisfied for T � at commit time. Our results in Chapter 7 show that most multi-server read-only

transactions do not require communication with the servers at commit point. Furthermore, single-

server read-only transactions can be committed locally without any communication. The reason

is that when client C receives invalidations from server X due to a transaction T � , it also receives

invalidations of all transactions that have committed earlier at server X; this includes all transactions

that T� depends on at server X. Thus, when a read-only transaction T � reads T� ’s updates from

server X, the no-depends-misses condition property must be satisfied with respect to server X for

transaction T � .

Correctness

The checks in Weak-CLOCC ensure that phenomenon G0 does not occur and disallowing dirty reads

guarantees that G1 is disallowed. We now argue why the no-depend-misses condition (Section 4.1)

is satisfied, i.e., G-single is disallowed.

The no-depend-misses condition requires that if T � depends on T � , it must not miss the effects
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of T � . The notion of not missing the effects of a transaction is captured using invalidations and,

ultimately, multistamps. Suppose that a transaction T � modifies objects x and y. When T � observes

the x’s new value, the server can inform T � ’s client that there might be an object modified by T �

which T� must not miss (from other servers). This is essentially the information that is stored in

invalidation entries of multistamps. Thus, for the purposes of PL-2+, T � ’s update information is

completely captured using invalidations/multistamps as a requirement on later transactions.

Given that multistamps represent dependency information, the correctness of our scheme relies

on two properties: (i) multistamps reflect dependencies properly; (ii) multistamp information flows

and is acted upon correctly.

Step 2(a) of the commit processing at the server ensures that the multistamp for a transaction

T � at server X contains tuples for all invalidations caused by it at X. Furthermore, step (3) ensures

that T � ’s multistamp contains all tuples in multistamps of transactions that T � depends on at X. In

the PL-2+ scheme, T � ’s final multistamp is obtained by merging its initial multistamp generated

during the prepare phase. By induction on the dependency relation, we can show that T � ’s final

multistamp contains tuples reflecting all invalidations of T � and any transaction that T � depends

upon across all servers. Note that a transaction T � ’s final multistamp is sent by the coordinator only

to the read-write participants. This is acceptable since later transactions can become dependent on

T � only by reading objects from these servers.

Multistamp information is propagated and used appropriately in our scheme. The only way

a transaction T� becomes dependent on another transaction T � is by reading a modification of T � .

This can occur only if T� ’s client C fetches a page modified by T � . But when such a fetch occurs,

T � ’s multistamp is sent to C in the multistamp of the returned page; the fact that we delay client

C that fetches an object modified by T � while T � is prepared ensures that C is given T � ’s final

multistamp and not an intermediate value. Since client C merges the multistamp information in

REQ, this data structure correctly captures the dependency constraints on T � ’s reads. Thus, when

the read-dependency check is performed at commit time, the client ensures that T � has not missed

the effects of any transactions it depended on, i.e., the no-depend-misses condition is satisfied.

5.3.5 EPL-2+ for Running Transactions

It is easy to modify the above scheme to provide EPL-2+; we simply perform read-dependency

checks while the transaction is executing.

A client C that wants to provide EPL-2+ guarantees to its running transaction T � ensures that

the cache is kept EPL-2+-consistent with respect to the currently accessed servers (CURR). The

multistamp-based scheme is modified so that the read-dependency condition (LATEST[X]
�

REQ[X])

is true for each server in CURR during T � ’s execution, i.e., client C guarantees that it has received all

invalidations specified in a page P’s multistamp before T � reads P. The read-dependency condition

can be violated in two ways: when C fetches a page from a server and, when a server is accessed for
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the first time in a transaction and added to CURR (since the cache may not be consistent according

to EPL-2+ specifications with respect to a server not present in CURR). As in the PL-2+ case, if

the read-dependency condition fails for a server X, a consistency stall occurs and the client sends

an invalidation-request message to X asking for all invalidations that were generated before time

REQ[X] and waits for a reply. Thus, the cost of providing EPL-2+ shows up in the form of consis-

tency stalls as the transaction executes. In [AL97], we have described our multistamp-based scheme

for providing EPL-2+ to running transactions when CLOCC is used for committed transactions.

5.3.6 Truncation

Due to the transitive nature of the dependency relationship, the size of the multistamp can become

prohibitively high in a distributed system with a large number of servers and clients. Large

multistamps can lead to larger messages, high memory storage costs at servers and increased server

CPU overheads for manipulating them. We now present a mechanism called multistamp truncation

that keeps multistamps small and addresses all these problems. We also show how to keep the VQ

and PSTAMP tables small.

How Truncation is Performed

All our optimizations for truncating information rely on the fact that our multistamps contain real

time values. We use these clock values to determine which tuples are old and then remove them

from multistamps. To account for the removed tuples, each multistamp m also contains a timestamp

m.threshold; m.threshold is greater than or equal to timestamps of all tuples that have been removed

from m. The threshold allows us to compute an effective multistamp EFF(m) containing a tuple� � � � � �
� � for every client/server pair, where ts is the timestamp in the tuple for client C and

server X in m if one exists and otherwise, ts is m.threshold. Suppose that m is truncated to obtain a

new multistamp m’. We know that this truncation preserves dependencies because, the timestamp

for any client/server pair in EFF(m’) is greater than or equal to the timestamp for the pair in EFF(m),

i.e., the truncated multistamp is a more conservative/restrictive version of the original multistamp.

Figure 5-8 shows an example of truncation where the entries below 3:02:11 pm are removed and

replaced by a threshold timestamp.

3:02:21 pmC X

Thresh = 3:02:11 pm
3:01:17 pmC Y

3:02:11 pmD X

3:02:21 pmC X

Figure 5-8: Multistamp truncation.

When a client receives a truncated multistamp m from a server X, it computes EFF(m) and updates

REQ[X] using this value; it then proceeds as described in Section 5.3.3. Thus, the correctness of
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our scheme not sacrificed since a truncated multistamp simply increases the client’s requirements;

truncation does not cause a client C to miss any invalidations that C was required to receive with

the original multistamp.

The result of the truncation process is a loss of precision in multistamps. For example, in

truncating a multistamp, the server may have removed an entry � D, X, ts � concerning some client

D different from C. When that multistamp arrives at C, C may increase REQ[X] unnecessarily.

During the read-dependency check at client C, C may request invalidations from X even though X

has no invalidations for it. Thus, there is a tradeoff involved with the size of the multistamp and the

number of consistency stalls. Chapter 7 examines this tradeoff and shows that small multistamps

(less than 100 bytes) are sufficient to ensure that consistency stalls have a minimal impact on

performance.

Using Real Time to Remove Old Entries

We now describe when servers decide to truncate multistamps. As mentioned in Section 5.1.1, clients

receive invalidation information from servers within a timeout period of when it was generated. This

communication implies that if a server has a tuple containing a timestamp ts that is older than the

server’s current time by more than this period, this tuple is not useful since invalidations specified

in it will almost certainly have been propagated to the relevant clients by this time. Therefore, such

old entries are aged, i.e., automatically removed from multistamps.

Simple aging of tuples may not be enough to keep multistamps small, so we also prune the

multistamp by removing tuples that are not old. The system bounds the size of multistamps:

whenever a multistamp m exceeding this size is generated, it is immediately pruned by removing

some tuples. Pruning occurs in two steps: First, if there is more than some number of tuples

concerning a particular server, these tuples are removed and replaced by a server stamp. Then, if

the multistamp is still too large, the oldest entries are removed and the threshold is updated. A

server stamp is a pair � server, timestamp � ; EFF(m) expands a server stamp into a tuple for each

client for that server and timestamp.

The VQ and PSTAMP are also truncated. Retaining information in the VQ about transactions

that committed earlier than the timeout period is also not useful. Whenever the multistamp of a

transaction contains no tuples (i.e., it consists only of a threshold), it is dropped from the VQ.

The VQ has an associated multistamp VQ.threshold that is greater than or equal to the (effective)

multistamps of all transactions dropped from VQ. When a server generates a transaction T � ’s

multistamp (T � .mstamp), it initializes T � .mstamp to be VQ.threshold. Recall that CLOCC also

removes entries from the VQ using a similar strategy. Thus, to take both these schemes into

account, we remove an entry from the VQ when it is not needed by both algorithms.

Information is dropped from PSTAMP in the same way, with information about multistamps of
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dropped entries merged into PSTAMP.threshold; if a fetch request for page P arrives and PSTAMP

contains no entry for P, the fetch response contains PSTAMP.threshold.

For both the VQ and PSTAMP, the server can remove entries earlier at any point in time; it just

needs to ensure that the associated threshold multistamps are updated accordingly. Thus, a server

maintains entries only for recently committed transactions in the VQ and information only about

recently modified pages in PSTAMP.

The above decisions for truncating multistamps are based on the fact that clocks are loosely

synchronized in the system. The use of loosely synchronized clocks to truncate old information is

a well-known technique; CLOCC also uses this idea to truncate the VQ. The reader can see [Lis93]

for other practical uses of loosely synchronized clocks.

Using Multipart Timestamp Truncation in Other Systems

Multistamps have been proposed and used in many distributed systems [BSS91, LLSG92, TTP
�

95,

ACD
�

96] for capturing causality constraints. Our truncation technique can be used for keeping

multistamps small in some (but not all) parts of these systems. We enumerate guidelines that can be

used to determine if our truncation technique is applicable to an implementation. These guidelines

cover a large class of schemes in the literature but are not supposed to be sufficient or necessary

conditions for using our truncation mechanism because multistamps are used in a variety of ways

to capture causality constraints:

1. Each multistamp entry contains a logical clock value so that it can be replaced by a real clock

value.

2. A multistamp represents a requirement on some entity (e.g., clients in our case) and a stronger

requirement must not affect the correctness of the scheme; this also implies that a truncated

multistamp must represent a stronger constraint than the original multistamp.

3. Exact values are not required for the correct functioning of the scheme.

Our implementation satisfies all the conditions stated above. We now consider the lazy repli-

cation system [LLSG92], and discuss where our truncation technique can be applied and where it

cannot be; the arguments are similar for other systems.

In lazy replication, a database is replicated at several server replicas. Each server X maintains a

server multistamp that contains an entry for every other server Y in the system. Each entry contains a

time ts indicating that X has received all updates from Y generated before ts (Y’s clock time). Clients

also maintain multistamps; when a client sends a request to a server X, the operation is delayed

until X’s multistamp dominates the client’s multistamp (a multistamp A dominates multistamp B if

all entries in A are greater than or equal to the corresponding entries in B).
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Server multistamps cannot be truncated since an exact value is required in each entry; thus,

the third guideline given above is violated. Approximating some entries by a threshold timestamp

will incorrectly indicate that messages have been received from all servers up to the threshold.

To reduce the network overheads of server multistamps, techniques such as sending multistamp

differences [BSS91] will have to be used.

Our truncation technique is applicable to client multistamps since they act as requirements on

servers; servers cannot process client requests until they are sufficiently recent. Truncation simply

makes the requirements more conservative: if some entries in a client C’s multistamp are replaced

by a threshold timestamp, C can access server X only if X has received messages that are marked

higher than the threshold timestamp from all servers in the system.

In general, for many schemes, when multistamps are used for represent the state of the system,

it may not be possible to truncate them. Thus, the server multistamps cannot be truncated, whereas

client multistamps can be truncated since they represent causality constraints/requirements.

We now discuss some general performance considerations for truncating a multistamp. When

truncation is performed on a multistamp, we lose some fine-grained information about individual

entries. This loss of information usually shows up in the form of an inefficiency in some other part of

the system, e.g., as extra messages or blocking of operations. In our PL-2+ scheme, it results in extra

invalidation-request messages being sent to the servers. To reduce the impact of this performance

penalty, it is desirable that periodic communication occurs among the relevant processes in the

system. In our system, “I’m alive” messages exchanged between a client and servers ensure that

the client is kept reasonably recent with respect to all its connected servers. Similarly, “gossip”

message are sent in lazy replication [LLSG92] to ensure that servers are reasonably up-to-date with

respect to other servers; these messages reduce the likelihood that a client operation is delayed at a

server.

In lazy replication, the threshold timestamp in a client-request to server X will require that X

delay the operation until X has received messages higher than the threshold from all servers in

the system; this can result in significant delays for the client’s operation. Thus, the notion of “all

servers” denoted by the threshold needs to be localized so that the threshold constraint does not

cause a significant performance penalty; this can be done by exploiting the system structure or the

semantics of the application. For example, in our PL-2+ scheme, by taking advantage of the system

structure, the threshold constraint on a client is reduced to a requirement with respect to servers

accessed in the client’s current transaction; this localization reduces a large number of unnecessary

consistency stalls.

5.3.7 Offloading Multistamp Generation to Clients

We now discuss an optimization that allows clients (instead of servers) to generate multistamps,

making the scheme more scalable. When a client C receives a page P’s multistamp, it retains
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the multistamp in a table, CLIENTPMAP; this table maps page ids to their multistamps for all

pages in C’s cache. The CLIENTPMAP table is maintained in a manner similar to the PSTAMP

table, i.e., only multistamps of recently fetched pages are kept; other multistamps are summarized

using a threshold multistamp. When a transaction T � reaches its end, the client computes T � ’s initial

multistamp by merging the multistamps of pages accessed by T � and sends it to the coordinator. Each

participant simply sends tuples generated due to T � ’s invalidations in its vote to the coordinator,

who merges these tuples to obtain T � ’s final multistamp. Thus, the servers do not perform any

intersections to compute T � ’s multistamp. We refer to this scheme as the client-merger scheme.

Our original approach for generating multistamps used exact write sets from the VQ and T � ’s

read set. However, in the client-merger scheme, T � ’s initial multistamp is computed at a client

based on coarse-grained information, i.e., pages accessed by T � (since the CLIENTMAP table is

maintained at a page granularity). The loss of precision can result in larger multistamps, and hence,

more truncation, leading to a higher number of consistency stalls. To alleviate this problem of

false dependencies, the server maintains an object bitmap for each entry in the PSTAMP table; this

bitmap keeps track of the objects modified by recently committed transactions on each page. (As

mentioned earlier, objects do not span pages in our system.) When a transaction T � modifies page

P and enters P’s multistamp into PSTAMP, the server sets the bits in the bitmap corresponding to

the objects modified by T� ; the bitmap is removed when P’s multistamp is removed from PSTAMP

(at this point, P’s multistamp is merged into PSTAMP.threshold). When a client fetches page P, this

bitmap is also sent in the fetch reply along with PSTAMP.threshold. The client keeps the bitmap

in the CLIENTPMAP table and also maintains the last known PSTAMP.threshold for each server.

When a client generates T � ’s initial multistamp and T � has read x on page P, it merges P’s multistamp

from CLIENTPMAP only if x is marked in P’s bitmap; otherwise, it merges PSTAMP.threshold of

the server that owns P.

The client-merger scheme has advantages over our original mechanism. First, server CPU

overheads are reduced since the server does not have to perform any intersections for generating

a transaction’s multistamp; with this optimization, servers are responsible only for performing the

checks in Weak-CLOCC, generating invalidations, and obtaining the final multistamp of a committing

transaction. Second, a transaction’s read set does not have to be sent to the servers. Furthermore, if

a server X is a read-only participant, it is not sent any message by the client because no invalidations

will be generated at X.

5.4 PL-3U Mechanism for Read-only Transactions

We now extend our multistamp-based scheme for providing PL-3U to read-only transactions. We

also show how the PL-3U scheme can be modified to provide EPL-3U and EPL-3 for running

transactions. For update transactions, we continue to use CLOCC. The advantage of our PL-3U
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scheme over CLOCC is that the client rarely needs to communicate with the servers for committing

read-only transactions. Thus, this scheme is strictly better than CLOCC in terms of message

requirements and delays (and it provides strong guarantees that are close to serializability).

Our implementation for committing a read-only transaction T
�

at PL-3U ensures that the no-

update-conflict-misses condition is satisfied, i.e., if the client running T
�

observes a modification

of transaction T � , it can commit T
�

locally only if it has received all the invalidations of T � and

any update transactions that T � depends or anti-depends on. Thus, multistamps need to capture

dependencies and anti-dependencies.

We make the following change to the multistamp-based scheme for PL-2+. When a transaction

T � prepares at a server X, the server computes the multistamp by merging the multistamps of all

transactions that T � depends and anti-depends on. In the client-merger scheme for PL-2+, the

PSTAMP table maintains the multistamps of all transactions that have modified a page P at the

server. For PL-3U, we also need to maintain anti-dependency information for pages; for this

purpose, we use a new table, RPSTAMP, which maps a page P to the (merged) multistamp of all

update transactions that have read P. For each page P modified by T � , it merges RSTAMP[P] into

T � ’s multistamp.

If a read-only transaction T
�

requests level PL-3U and accesses objects from only a server

X, it can be committed locally regardless of the values of LATEST[X] and REQ[X] (recall that

single-server transactions can be committed locally at level PL-2+ as well). In this scenario, if T
�

observes the effects of a transaction T � from X, it will not miss the effects of any committed update

transaction that T � depends or anti-depends on. The reason is that after T � prepares at X, CLOCC

prevents any transaction that conflicts with T � to prepare with a timestamp earlier than T � . Thus, T
�

can be serialized after all update transactions (such as T � ) that T
�

depends or anti-depends on.

The PL-3U scheme has higher overheads compared to the PL-2+ scheme. First, in the PL-3U

implementation if a preparing transaction T � anti-depends on a prepared transaction T � , T � ’s prepare

is delayed till T� commits or aborts (we expect these delays to be short since a coordinator sends

the commit decisions promptly). This delay is needed to ensure that the server merges T � ’s final

multistamp into T � ’s multistamp; such a delay does not occur in the PL-2+ implementation since

anti-dependencies are not captured at PL-2+. Second, since transaction read sets are needed for

computing anti-dependencies, the client needs to send them to servers in the PL-3U implementation;

this increases the network bandwidth consumption and the server CPU utilization for receiving the

read sets. Third, the server CPU is further utilized in the PL-3U scheme since the server has

to perform the intersections in the RPSTAMP table; this computation must be performed at the

server since page P may have been read by another client after a transaction T � ’s client fetches P,

i.e., at T � ’s commit point, T � ’s client may not know about the multistamps of all transactions that

have read P. Fourth, the likelihood of a read-only transaction requiring communication with the

servers at commit time is higher in PL-3U as compared to PL-2+ since multistamps contain stronger
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requirements for clients. Finally, as we show below, this scheme requires an additional mechanism

to ensure that the read-only participant optimization for two-phase commit is allowed.

5.4.1 Read-only Participant Optimization for PL-3U Implementation

The PL-3U scheme presented above assumes that all participants receive the commit decision since

a preparing transaction T � must merge the final multistamp of all transactions that T � depends or

anti-depends on. If T � anti-depends on a prepared transaction T� at server X, X delays T � ’s prepare

until T� ’s commit decision is received. However, with the read-only participant optimization, the

commit decision is not sent to read-only participants [GR93]. This implies that if X is a read-only

participant for T� , X will not receive T� ’s final multistamp and T � would be stalled indefinitely.

We could abandon the read-only participant optimization, but this seems unwise since we expect

read-only participants to be common. Therefore, we use the following technique: we place the

onus of obtaining T� ’s final multistamp on the update transaction’s (i.e., T � ) commit protocol. In the

above scenario, when T � prepares at X, anti-depends on T� , and T� ’s final multistamp is not known,

X sends a multistamp-request message to T � ’s coordinator; this extra communication occurs during

T � ’s prepare phase, causing a prepare block. T� ’s coordinator sends T� ’s final multistamp to X; this

reply is delayed if T� is still prepared. Note that X can also send the multistamp-request message

to T� ’s client but we do not use this approach since clients can crash and cease to exist whereas

servers are highly available in Thor.

However, this protocol has a problem. If read-only participants are common (as is expected),

this approach can cause a substantial number of prepare blocks for update transactions; a prepare

block will occur whenever an update transaction T � anti-depends on some earlier transaction T � at

server X and T� is read-only at X. We can avoid such blocks by piggybacking some information to

servers and taking advantage of the fact that clients communicate with servers at least once every

timeout period (see Section 5.1.1). Each client C keeps track of the transaction id or tid of its last

committed update transaction called CURRTID along with a multistamp called CURRUSTAMP (a

transaction id is a tuple that contains the client’s id and its current clock value). This multistamp is

obtained by merging the multistamps of all update transactions committed by C; it acts as an upper

bound on the multistamp of each transaction that was earlier committed by C. In each message to

a server, client C sends its CURRTID and its CURRUSTAMP. The server maintains a table called

KNOWNSTAMP that maps clients to the most recent values of CURRTID and CURRUSTAMP

received from that client.

Thus, in the above scenario, when update transaction T � prepares at server X, X stores T� ’s tid

and coordinator in its VQ entry, and marks it as incomplete. When T � prepares at X, X determines

all incomplete transactions that T � depends or anti-depends on. For each such transaction T � , if T� ’s

tid is less than or equal to the CURRTID specified in KNOWNSTAMP for T � ’s client, X merges that

client’s CURRUSTAMP into T � ’s multistamp; otherwise, it sends a multistamp-request message
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to T � ’s coordinator. Thus, multistamp-request messages are sent to other servers only when T �

commits at server X, anti-depends on T � , X is a read-only participant for T � , and X has not received

a message from T� ’s client after T� ’s commit. The probability of this situation is low since T � ’s

client sends a message to X at least once every timeout period and anti-dependencies on recently

committed transactions are unlikely in common workloads.

Since CURRUSTAMP is an upper bound and not an exact value, some false dependencies

and anti-dependencies may be captured resulting in extra transaction stalls. However, as shown in

Chapter 7, the performance impact of stalls (which includes such stalls) is low even for stressful

workloads.
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Figure 5-9: Transaction T � ’s prepare is blocked since it anti-depends on a transaction whose
multistamp is not known at server X.

Figure 5-9 shows an example of a transaction T � that anti-depends on two transactions that were

read-only at server X. Their multistamp entries are marked as incomplete. Server X checks the

KNOWNSTAMP table for the multistamp values of these transactions and determines that an upper

bound is available for the transaction with tid 15 but information for the transaction with tid 25

(committed by client E) is not present. Thus, server X sends a multistamp-request message to the

transaction’s coordinator, server Z, and waits for the reply.

Certain optimizations can improve the performance of the above scheme. First, the probability

of sending a multistamp-request message can be reduced further if it is sent only when the update

transaction (i.e., T � in the above case) is a multi-server transaction; otherwise, we simply add T � ’s

information to T � ’s VQ entry and mark T � as incomplete. Now X needs to send a multistamp-

request message to T� ’s coordinator only when a multi-server transaction arrives at X and depends

or anti-depends on T � or T� ; we expect the scenario of a multi-server transaction depending on
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another recently committed multi-server transaction to be rare. We call this the single-server delay

optimization.

Second, we could be lazier: rather than having T � find out T� ’s final multistamp, we could

let this work be done by a transaction that occurs later than T � in the chain of dependencies and

anti-dependencies. For example, if transaction T � reads T � ’s updates and we place this onus on T � ,

it is more likely that X knows T� ’s final multistamp at T � ’s prepare than at T � ’s prepare. This scheme

might reduce prepare blocks further but it is considerably more complicated and our performance

results in Chapter 7 show that prepare blocks are rare. Thus, we believe that this optimization is not

needed.

Like the PL-2+ scheme, the server can log the PSTAMP and RPSTAMP information along

with the commit decision. For read-only participants, we can avoid logging the RPSTAMP to

stable storage by using a technique similar to one presented in [AGLM95]. The basic idea is that a

server maintains a stable threshold timestamp that is an upper bound on all the timestamp entries

in RPSTAMP. When a server crashes and recovers, the stable threshold timestamp is used to

initialize the threshold multistamp of RPSTAMP. To avoid frequent updates of the stable threshold

timestamp, we update this value in jumps (e.g., a few seconds). To avoid delaying a client at a

read-only participant, this threshold can be increased in the background, e.g., by piggybacking its

modifications on log updates by other transactions; more details about this mechanism can be found

in [AGLM95].

The CURRTID and the CURRUSTAMP values of different clients can be flushed lazily to stable

storage. If a crash occurs, the server can lose this information; when the servers recovers, it will

initialize this data about clients with older values. This loss of latest information can result in some

extra messages but does not affect correctness; this is not a problem since crashes are expected to

be rare.

5.4.2 Providing EPL-3U and EPL-3 to Running Transactions

Running transactions can be provided EPL-3U guarantees by combining the technique presented in

this section with the EPL-2+ scheme presented earlier. That is, a client computes the multistamps

as presented above and checks for stalls when it fetches a page from as server and when it uses a

server for the first time in a transaction. The likelihood of stalls is higher in EPL-3U scheme since

multistamps contain stronger constraints than in the EPL-2+ case.

To provide EPL-3, we require that all transactions (including read-only transactions) are com-

mitted at the servers using CLOCC. To generate a transaction T � ’s multistamp, the server also merges

the multistamps of read-only transactions that T � anti-depends on; recall that only multistamps of

update transactions are merged in for PL-3U and EPL-3U. In the client-merger scheme, the RP-

STAMP table also needs to maintain multistamps of read-only transactions as well. The rest of the

EPL-3 implementation is the same as the EPL-3U implementation.
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5.4.3 Requirements on Concurrency Control Implementations

The PL-2+ and PL-3U schemes can be used for efficiently committing read-only transactions while

CLOCC can be used for committing update transactions. Even though we presented these mechanisms

in conjunction with CLOCC, they can be used in hybrid systems [CG85] where update transactions

are executed using a concurrency control scheme such as locking (e.g., ACBL [ZCF97]) and read-

only transactions are executed optimistically (using these implementations). Our mechanisms will

be beneficial in such hybrid systems because read-only transactions need not hold locks. As a result,

there may be fewer delays in the system. For example, with ACBL, fewer callbacks may be sent

by a server; also, the callback replies need not be delayed at a client if a read-only transaction is

accessing the object.

To commit read-only transactions using our PL-2+ scheme, the concurrency control mechanism

must provide serializability for update transactions and use a protocol like two-phase commit for

atomicity; this result has been shown in [CG85]. To commit read-only transactions at PL-3U using

our scheme, an additional property must be satisfied:

No transaction slipping in the past: After an update transaction T � prepares at a

server X, X will not serialize another transaction T � before T � (in the equivalent serial

order) if T� conflicts with T � .

This property ensures that T � ’s final multistamp does not miss the information of any transaction

that T � depends or anti-depends on. A locking scheme like ACBL guarantees this property since

a transaction T� that conflicts with T � and arrives after T � , will be serialized after T � (T� acquires

locks after T � releases them). CLOCC also satisfies this property; as disussed in Section 5.1.1, its

aborts a preparing transaction T � if it tries to serialize before T � and conflicts with T� .

5.5 Related work

In this section, we discuss earlier work in the literature related to our optimistic schemes. Since the

literature for concurrency control schemes is vast, we only discuss work that is closely related to

our mechanisms.

5.5.1 Optimistic Schemes

Eswaran et al. [EGLT76], and later Kung and Robinson [KR81], suggested the idea of using

optimism for concurrency control. Since then a number of optimistic schemes have been discussed

in the literature.

Other distributed schemes achieve a global serialization order using atomic multicast [RT90]

or logical clocks [ABGS87, Gru89]. Atomic multicast adds additional per-message overhead,

while logical clocks must be explicitly managed as part of the two-phase commit, complicating the
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algorithm. Our use of loosely synchronized clocks avoids all these problems; more importantly,

it also allows us to make time-dependent decisions and optimize our algorithm, e.g., to determine

what transactions can be removed from the validation queue.

Apart from CLOCC, other backward validation algorithms have been proposed in the litera-

ture [ABGS87, BOS91, CO82, KR81, RT90]; forward validation schemes such as O2PL [FCL97]

have also been suggested. In a client-server system, forward validation requires a validating trans-

action to contact all clients that are caching updated objects, to obtain latches on the cached copies.

If a latch cannot be obtained, the transaction aborts; otherwise, it commits and releases the latches

(updating or invalidating the client caches). This approach adds an additional communication phase

to all commits, even when only a single server is involved; moreover, the delay incurred is observed

by the committing client. In contrast, backward validation just uses the standard 1 or 2 phases

required for a single-site or distributed commit (as described for our scheme), and therefore is a

better choice for a client-server system.

Previous optimistic schemes have largely ignored implementation issues regarding time and

space overheads. Some schemes [ABGS87, CO82, KR81, LW84] validate a transaction against all

transactions serialized between its start and end times; a large amount of validation information must

be stored to validate a long transaction. In our scheme, the invalid set summarizes most information

required for validation in a compact way, while our VQ, PSTAMP, and other data structures for

the weak consistency schemes are truncated according to a bound on expected message delay; the

information we maintain is not proportional to transaction length, but still allows us to correctly

validate long transactions.

Most optimistic schemes store some concurrency control information per object (e.g., the scheme

in [ABGS87] maintains two timestamp values with each version). Space overhead for version

numbers can be significant for small objects; e.g., most objects in the OO7 benchmark [CDN93]

are smaller than 100 bytes; an 8-byte version number would add 8% overhead. Another potential

problem with version numbers is that they are usually cached and uncached with the rest of their

object state; missing version numbers would then require disk reads during validation. In contrast,

all of our validation information can be kept in main memory.

Multi-version schemes [ABGS87, BOS91, LW84] keep multiple versions of objects to provide

a consistent view of the database to all active transactions, making validation unnecessary for read-

only transactions. However, this approach has very high space overheads: multiple versions need to

maintained in different parts of the system, including the server cache and the disk. As a result, the

effective server cache size and the effective disk bandwidth available to the server may be reduced.

Furthermore, there is the additional complexity of maintaining and discarding multiple versions.

Maintaining multiple versions also requires storing version numbers in objects — a cost that we

wanted to avoid.
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5.5.2 PL-2+ Mechanisms and Causality

Chan and Gray [CG85] have proposed PL-2+ as a correctness criterion for read-only transactions

and described a mechanism to commit these transactions in a distributed system such that they do

not interfere with update transactions. Although their scheme also uses multistamps, their multi-

stamps are different from ours and suffer from a variety of inefficiencies, making their mechanism

impractical. In their scheme, multistamps capture the dependency information using transaction

ids; hence, it is difficult to truncate this information. Also, multistamps in their scheme capture

dependencies in a very conservative manner: a server X assumes that a preparing transaction is

dependent on all transactions that have already committed at X. In our multistamp-based schemes,

this assumption can lead to a large number of unnecessary consistency stalls.

Multipart timestamps have been used widely in distributed systems for capturing causal re-

lationships [BSS91, LLSG92, TTP
�

95, KCZ92, ANK
�

95]. However, multipart timestamps can

become quite large if there are tens of thousands of processes involved. This can result in large

messages, higher server memory usage, and higher server CPU consumption to manipulate these

multistamps. To reduce network overheads imposed by multistamps, researchers [BSS91] have

suggested a “difference” mechanism in which a process P only sends those multistamp entries

to another process Q that P knows Q does not have; this optimization is useful in cases where

changes to multistamps are small compared to the size of the multistamps so that the differences

result in smaller network messages. However, this solution does not solve all the problems due

to large multistamps, especially server storage and server CPU overhead problems: performing a

difference between large multistamps can be CPU and memory intensive. Our solution uses loosely

synchronized clocks and gets rid of entries in multistamps; as we show in Chapter 7, the cost of

approximating the multistamp information is low for our environment.

Snapshot Isolation has been implemented in the Oracle server [Ora95] but we do not have

information about distributed client-server implementations of this isolation level. We believe that

an implementation for Snapshot Isolation in such environments will have higher communication

and space overheads than our PL-2+ implementation because Snapshot Isolation has stronger

requirements than PL-2+; extra messages or more versions may need to be maintained just to ensure

that a client has a snapshot of the database as of some point in the past. On the other hand, PL-2+

has weaker requirements and our multistamp-based implementation for PL-2+ is lazy: it simply

requires that object versions be present in a client’s cache according to dependency constraints and

sends messages only when there is a potential violation of consistency.

5.5.3 Orphan Detection Mechanisms

Our EPL-2+ scheme for running transactions has been primarily designed to ensure that the ap-

plication code does not view consistent data and behave in an unpredictable manner. This was
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also one of the main reasons that motivated the work on orphan detection [LSWW87, MH86]. An

orphan is a transaction that is doomed to abort. Such a transaction can waste resources and view

inconsistent data. Orphan detection and elimination was implemented in the Argus distributed sys-

tem [LSWW87, Ngu88] to solve these problems. The Argus model consists of multiple processes in

the system that communicate with each other via remote procedure call. Orphan detection schemes,

like our mechanisms, use the idea of (transitive) propagation of information. However, these orphan

detection schemes have much higher space overheads and higher complexity. For example, the

consistency information in the Argus schemes contains a list of transaction ids and process ids that

is more difficult to compress than our multistamps. Mechanisms to garbage collect old information

in these schemes can also result in high overheads. As shown in [Ngu88], some of the orphan

detection protocols can impose significant performance penalties.

5.5.4 Read-only Transactions

Researchers in the past have suggested a variety of schemes to optimize read-only transac-

tions [Wei87, GW82, ABGS87]. The main purpose of these mechanisms is to ensure that read-only

transactions do not interfere with update transactions. Hence, these schemes use multiple object

versions allowing read-only transactions to read old versions while update transactions modify

the current version. Our schemes for read-only transactions can also be extended to use multiple

versions. However, as discussed earlier, we decided against such schemes because of the costs

involved.

The protocols suggested by Weihl [Wei87] for read-only transactions suffer from excessivespace

overheads or require extra messages in the system compared to our schemes. One of the schemes

assigns timestamps to a read-only transaction T � when it begins; T � reads object versions according

to its assigned time. The problem with this approach is that it requires an initiation phase for a read-

only transaction, i.e., before T � starts, it must communicate its timestamp to all sites that it is going

to access. This scheme also requires predicting the objects or sites that the transaction is going to

access; such predictions are not needed in our schemes. Furthermore, any timestamp-based scheme

where a read-only transaction reads object versions according to its timestamp requires access times

to be stored with an object, thereby converting every read into a write. This information is needed so

that later update transactions can be assigned a higher timestamp. The scheme suggested in [Ree78]

also has a similar requirement.

In another scheme suggested by Weihl, each transaction T � maintains dependency and anti-

dependency information and stores it with the versions that T � creates. A read-only transaction

T � uses this information to determine which object versions to read. However, this approach is

impractical since the dependency/anti-dependency information consumes a large amount of space

and garbage collecting this information is difficult. Like the previous scheme, this protocol also

suffers from the problem that it converts every read into a write; when a read-only transaction T �
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accesses an object x, it must update x’s dependency/anti-dependency information.

5.6 Summary

This chapter presented a variety of optimistic schemes for distributed client-server systems that

provide different isolation degrees to running and committed transactions. In all our schemes,

we have taken advantage of the system structure and also utilized characteristics of real systems

to optimize our mechanisms, e.g., we use loosely synchronized clocks to truncate some of our

data structures. We have also taken care to avoid adding a significant number of messages to the

system; wherever possible, we try to piggyback the relevant information on existing messages. This

chapter described efficient implementations for providing PL-2+ and PL-3U and the corresponding

isolation guarantees for running transactions, EPL-2+ and EPL-3U. An important advantage of

weaker isolation level implementations over CLOCC is for read-only transactions. In CLOCC,

such transactions require communication with the servers at commit time whereas most read-only

transactions can commit locally at the client machine using our PL-2+ and PL-3U implementations.

Our mechanisms are based on multi-part timestamps or multistamps and we presented a simple

technique called multistamp truncation that allows multistamps to be kept small in large distributed

client-server systems.
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Chapter 6

Experimental Framework

This chapter describes the experimental setup for evaluating the consistency mechanisms that were

discussed in the previous chapter. The experiments were performed with the help of an event-driven

simulator. We used a simulation technique rather than implementing the schemes in a client-server

system such as Thor [LAC
�

96] because we wanted to evaluate the performance of our techniques

in the presence of a large number of servers and clients. Apart from scalability considerations, we

also wanted to evaluate our schemes with a range of system parameters such as different network

speeds, different CPU speeds, etc.

We constructed the workloads starting from earlier concurrency control studies [Gru97, CFZ94].

These studies were performed for a single-server, multi-client system; we extended them to a dis-

tributed database with multiple servers. Some parameters such as the disk and network models,

database model at each server, and the access patterns in two of our workloads have been derived

from Gruber’s work [Gru97]; the simulator scheduling model and some parameters for CPU pro-

cessing overheads have also been borrowed from his study. Parameters for disks and networks were

taken from products that are currently being used in the market and in office environments. Fi-

nally, CPU overheads for some operations such as multistamp processing were derived by profiling

our simulator: some parts of the simulator code have been derived from the Thor implementa-

tion [CALM97, LAC
�

96]; other parts have been structured such that they can be easily migrated to

a real implementation.

In our experiments, we make assumptions similar to the ones that have been made by con-

currency control studies in the past [Gru97, ZCF97, CFZ94]. First, we assume that the client

cache is large enough to keep all objects touched by a single transaction. This assumption holds

for many applications and systems; current memory trends and recent work on efficient cache

management [CALM97] suggest that this assumption will continue to hold in the future for many

applications. We call these transactions cacheable transactions. Second, transactions are restartable,

i.e., if a transaction aborts, the code of the aborted transaction can be re-executed; of course, a re-

run may access a different set of objects. Thus, the application code must be written to handle
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aborts; this is a reasonable assumption since applications need to prepared for aborts due to resource

problems, deadlocks (in a locking implementation), etc. Third, transactions are medium-sized,

i.e., each transaction accesses a few hundred objects and lasts for a relatively short time, i.e., a

few seconds. Long-running transactions are usually handled using application-specific concurrency

semantics [BK91]. These implementations typically use serializability-based mechanisms as basic

primitives for manipulating groups of objects in the database. For example, a check-in/check-out

approach for cooperative design work may use atomic operations to retrieve data from the database

and release the acquired locks after the retrieval.

Our simulation setup models a system with a large number of servers and clients. We have

scaled down some of the system parameters to make the simulation more tractable. However, the

scaling has been performed so that we still maintain the important aspects of system components

that can affect the relative performance of different isolation mechanisms. For example, even though

the total size of the data stored at each server in our simulations is 3.4 MBytes, this does not imply

that we are modeling a system in which the database size is so small. This size (also called the

server working set size) actually reflects the amount of data that is accessed by the clients during

the simulation. Furthermore, since our aim is to compare different isolation mechanisms, a more

important parameter is the amount of contention in the workload rather than the size of the server

working set. For this purpose, we model different workloads with varying levels of contention.

In fact, our evaluation is somewhat pessimistic since most of the sensitivity analysis is performed

using stressful workloads with high contention. In a database system, where clients access a much

larger data set size, contention is expected to be lower than our stressful workloads. For realistic

low-contention workloads, the results in the next chapter show that our optimistic mechanisms for

strong isolation levels such as PL-2+ and serializability have negligible overheads over the PL-2

implementation; they have relatively low costs in the case of high contention workloads as well.

Another property of our simulation setup allows our results to hold for realistic systems: the

relative sizes of different components are chosen according to the relative ratios observed in a

realistic system. For example, the absolute size of the client cache in the simulation is not very

important. The size of the client cache relative to the accessed data is more important because it has

a significant impact on the number of fetches performed during a transaction, e.g., choosing a very

small client cache relative to the accessed data can bias the results since a high number of capacity

misses may dwarf the cost of the concurrency control mechanisms. Our decisions regarding sizes

of various system components are further discussed in Section 6.1.

This chapter is organized as follows. Section 6.1 describes how we model various components

of a distributed client-server database system and how these components are connected together.

Section 6.2 describes the different types of workloads that we use for our simulation study and how

accesses for a transaction are generated.
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6.1 System Model

To simulate a distributed database system accurately, it is necessary to model all components that

can impact performance in a significant manner. In this section, we describe various components

of the system — servers, clients, network, disks, database, and the connectivity of clients with the

servers. The default parameters and the range of values used for our sensitivity analysis experiments

for these system components are shown in Figures 6-1 and 6-2.

Database Parameters
Parameter Default Value Sensitivity analysis range
Object size 100 bytes —
Page size 4 KB —
Objects per page 40 —
Server working set 875 pages 875-1750 pages

Connectivity Parameters
Parameter Default Value Sensitivity analysis range
Servers in cluster 2 —
Client in cluster 30 10 – 80
Total clusters in system 8 8 – 30
Client connections with servers 4 4 – 10
Preferred servers for each client 2 —
Non-preferred servers for each client 2 2 – 8

Client/Server Parameters
Parameter Default Value Sensitivity analysis range
Client CPU speed (for DB processing) 600 MIPS —
Server CPU speed (for DB processing) 1200 MIPS —
Client cache size 612 pages 150 – 3500 pages
Server cache size 437 pages —

Network Parameters
LAN network bandwidth per cluster 120 Mbps 10 – 1024 Mbps
LAN extra delay 0 msec 0 – 20 msec
WAN network bandwidth per cluster 15 Mbps 10 – 60 Mbps
WAN extra delay 75 msec (avg) 40 – 300 msec

Figure 6-1: Summary of System Parameter Settings — I

6.1.1 Database

The database objects are spread over a number of servers. Each server contains 875 pages; we call

these pages the server working set of the simulator run. The server working set does not represent

the complete database stored at each server. Instead, it represents the fraction of the objects at a

server that is accessed by the clients during the simulation. As discussed earlier, the actual size of

various system parts is less important than the fact that the relative sizes of different components

mirror their counterparts in real systems. Similarly, since we are comparing different isolation

mechanisms, contention on the server working set has more importance than the absolute size of
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Disk Parameters
Rotational latency 3.0 msec
Average Seek 5.2 msec
Transfer Bandwidth 20 MB/s
Disks per server 4

Multistamp Parameters
Server name size 4 bytes
Client name size 8 bytes
Threshold timestamp size 8 bytes
Timestamp increment size 4 bytes
Maximum invalidations per server in a multistamp 50% of total entries
LAN timeout period 1 sec
WAN timeout period 30 sec

CPU Processing Overheads
Client/Server cache lookup 300 instr
Reading an object in client cache 5000 instr
(sensitivity analysis: up to 4 million instr)
Writing an object in client cache 10000 instr
(sensitivity analysis: up to 8 million instr)
Invalid set lookup for each object 10 instr
Multistamp operation cost 300 instr/entry
Fixed transaction restart cost 5000 instr
Transaction restart cost per modified object 400 instr
Disk setup cost 5000 instr
Fixed network cost 36000 instr
Variable network cost 43000 instr/KB

Figure 6-2: Summary of System Parameter Settings — II

the server working set.

We assume that objects are small and that they do not cross page boundaries. These are

reasonable assumptions for object-oriented databases, e.g., the average size of objects accessed by

most traversals of the OO7 benchmark [CDN93] in Thor [CALM97] is approximately 30 bytes.

The size of each page is 4 KBytes and a page contains 40 objects of 100 bytes each.

6.1.2 Client-Server Connections

We chose to connect clients and servers in a manner that reflects how real systems are configured.

Typically, data is distributed across servers to reduce bottlenecks in the system, for load balancing,

to enable accessing data at nearby sites, etc. Thus, database users mostly access the servers that

are located near them; this results in reducing the latency observed by clients and in localizing the

network traffic. To capture this notion of locality, we partition clients and servers into different

clusters: a server is more likely to be accessed by clients in the same cluster than by those in a

different cluster. For example, employees of a department may access a set of database servers in

their cluster (e.g., on their LAN) frequently and access other departments’ servers occasionally.
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In the simulation experiments, each cluster contains 2 servers and 30 clients. Each client is

connected to 4 servers in the system of which two are preferred and the other two are non-preferred.

A client’s preferred servers are in its cluster whereas its non-preferred servers are chosen randomly

from other clusters. Most of our experiments use a system with 8 clusters, i.e., 240 clients and 16

servers. This system size does not represent the complete distributed system; it simply represents

a part of the real system that is under observation during the simulator run. As we show in the

next chapter, our results also hold for a system with more clusters; we chose a 8-cluster system to

keep the simulation tractable. To understand scalability effects, we varied the number of clients per

cluster from 10 to 80; we also varied the number of clusters from 8 to 30.

In our default system, each server is connected to 30 clients that prefer it and 30 (on average)

non-preferred clients. In the experiments for the default system, each server receives about 1

transaction from a non-preferred client for every 5 transactions received from preferred clients,

i.e., non-preferred clients are not very idle from a server’s point of view. Our workloads simulate

a scenario with reasonably active clients and servers; we use such an environment to stress the

performance of our mechanisms.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 8

Client C Client D

Preferred connection
Non-preferred
connection

Figure 6-3: Client connections in a simulator run.

Many of our parameters have been chosen to affect the performance of our multistamp-based

schemes negatively. We chose 2 preferred servers for a client instead of one (which is what is

expected in real systems). As a client switches between the two preferred servers, the likelihood of

stalls increases since the client can create inter-transaction dependencies/anti-dependencies across

servers. Furthermore, the connectivity in our simulated environment is high; each client has

two random connections to non-preferred servers in other clusters. Thus, a client can “spread”

the multistamp from its cluster to other clusters via non-preferred servers. Increase in multistamp

propagation can lead to aggressive truncation and unnecessary stalls. To study the effect of spreading

information through preferred servers as well, we changed the topology such that each client has

one preferred server in a cluster other than its own with varying probabilities. Similarly, we

also increased the number of non-preferred servers from 2 to 8 to understand the impact on the

multistamp-based schemes.

We modeled a default system size in which multistamps can become fairly large if aging or
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pruning is not used: they can reach a maximum size of 960 tuples (since there are 960 client-server

connections). Thus, to ensure that network and server storage costs are low, multistamps must be

truncated in our default system.

Figure 6-3 shows a typical setup of the system where client C is connected to two of its preferred

servers in its cluster and its non-preferred servers are chosen from two other clusters (in general that

is not necessary). In the figure, clients C and D share one server.

6.1.3 Client and Server

We model each client and server as a simple processor where events are scheduled using a nanosec-

ond granularity clock. Various events are charged in terms of CPU instructions and then they are

converted into time using a client’s and server’s speeds specified in MIPS, or million instructions

per second. Events on a processor are executed using an event queue after the specified delay; if

the server is heavily utilized, an event may be scheduled later than its specified time.

The client speed is chosen to be 600 MIPS and the server speed is 1200 MIPS. These speeds

correspond to the amount of processing power that can be devoted by a client or server for database-

related activities; in general, we expect client machines to be used for other applications while the

transactions are executing.

The server working set in our system is half the size used in [Gru97, CFZ94]. Since the client

mostly accesses objects from two preferred servers, the effective working set for a client is similar

to the values chosen in the earlier studies; this ensures that contention is essentially the same as in

earlier studies. In the next chapter, we show results for a system in which we double the server

working set size; our basic performance results do not change significantly with a larger working

set.

The client cache size is 612 pages; cache management is done using LRU. Although an object

cache provides better performance than a page cache [CALM97], we have used a page cache in our

simulator for simplicity; an object cache will help in increasing the effectiveness of the client cache

but will not change our basic results (our results are essentially the same with bigger client caches).

We chose the client cache size relative to the size of the accessed data so that the concurrency

control costs are not dwarfed by a high number of capacity misses; as stated earlier, the relative cache

size is more important than the absolute cache size. The relative cache size is approximately 25% of

the data accessed by a client in the simulation (this ratio is explained below). This percentage value

was also chosen by other concurrency control studies [Gru97, CFZ94]. Furthermore, in the medium

database experiments of the OO7 benchmark [CDN93], the client cache size is approximately 25%

to 35% of the accessed pages (the percentage depends on how much space is used by a database

implementation to store the benchmark objects on disk).

A client can potentially access 3500 pages from the database (875 from each server). So it

might seem that our relative client cache size (612 pages) is smaller than what was used by earlier
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single-server concurrency control studies. However, in our multi-server system, approximately 85-

90% of accesses go to objects stored at preferred servers, i.e., to 1750 pages. These pages mostly

make up the client’s working set and relatively few accesses go to the remaining 1750 pages at the

non-preferred servers. Thus, our choice of client cache size between 437 and 875 pages (between

25% of 1750 and 25% of 3500), with a slight bias towards 437, is in line with earlier work.

Each server has a cache whose size was chosen so that the disk costs were not the dominant

costs. The server cache size corresponds to 50% of the server’s working set, i.e, 437 pages for a

875 page server working set; a similar ratio was chosen in earlier single-server concurrency control

studies [Gru97, ZCF97]. Even though the client’s cache size is larger than a single server’s cache

size, it is smaller than the combined cache size of two preferred servers (a client accesses two

preferred servers instead of one in our setup). The issue of the server cache size is discussed more

in Section 6.2.2.

6.1.4 Disk

The database objects are stored on multiple disks on the server and each database page is statically

assigned to a disk independent of the workload. The disk is modeled as a shared FIFO queue on

which operations are scheduled in the order they are initiated. Time spent in disk operations are

charged to the queue; more contention on the disk can result in delays due to queuing effects. Disk

delays are composed of a seek followed by rotational latency. We use an average seek of 5.2 msec

and latency of 3.0 msec; the disk bandwidth is 20 MB/s. These performance values correspond to

the Cheetah model of Seagate [Sea99] which is one of the faster disks available in the market. We

use 4 disks per server to reduce contention on the disk. We also model installation of objects by

approximating the MOB architecture presented in [Ghe95].

6.1.5 Network

Instead of modeling a particular type of network like Ethernet, ATM or FDDI, we have modeled a

network in a more abstract manner. Each network message has a latency that is divided into four

components: processor cost for sending the message, wire time, router delay, and processor cost

for receiving the message. Processor costs at each end consist of a fixed number of instructions

and a variable number of instructions according to the size of the message. We assume that each

cluster of clients and servers is connected by a network that is modeled using a FIFO queue; the

network bandwidth for each cluster multiplied by the message size is used to determine the time

charged to the network queue, i.e., the network queue is utilized for this duration by a message.

When a message is sent to a server, the network of that server’s cluster is chosen for transmitting

the message. When a message is sent to a client by a server, the latter’s cluster network is used.

The network parameters for each cluster network are shown in Figure 6-2; these values have

been obtained from a user-level messaging system called the U-Net [vEBBV95] running over a 155
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Mbps ATM. We use a network bandwidth of 120 Mbps since this was the bandwidth achieved in

the U-Net system for TCP. For our sensitivity analysis, we varied the network bandwidth for LAN

environments from 10 Mbps to 1024 Mbps.

We have chosen a network bandwidth of 120 Mbps even though faster networks are available

in the market. The reason is that current office environments use networks in the 100 to 200 Mbps

range (or even lower bandwidth, e.g., 100 Mbps Ethernet). On the other hand, we have used one

of the fastest disks available in the market for our disk parameters; the reason is that users upgrade

disks much faster than networks since disks are more autonomous than networks.

We also performed experiments for a WAN environment whose parameters are shown along

with the LAN parameters in Figure 6-2. We add a router delay of 75 msecs in the WAN case (a

randomly chosen number between 50 and 100 msec); this delay is not added for the LAN case in

our default system. The router delay is not charged to the network queue, i.e., it does not increase

network utilization. We chose a bandwidth of 15 Mbps for each cluster in WANs. For our sensitivity

analysis experiments, we varied the network bandwidth per cluster from 10 to 60 Mbps. We also

varied the average router delays from 40 to 300 msecs for WANs and 0 to 20 msecs for LANs.

6.1.6 Multistamps and Other Parameters

Our multistamps contain server names of size 4 bytes and client names of size 8 bytes; these

numbers have been derived from the Thor system [LAC
�

96]. Each threshold timestamp entry

in a multistamp uses 8 bytes and a timestamp entry uses 4 bytes; instead of maintaining the full

timestamp for each client-server pair, we store it as an increment over the threshold. To ensure that

most of the entries in a multistamp do not belong to one server, we allow at most 50% of the entries

in a multistamp belong to the same server; if this limit is exceeded, we remove these entries and

approximate the deleted entries with a server-stamp (as explained in Section 5.3.6).

We assume that the timeout period for “I’m alive” messages is 1 second in a LAN environment

and 30 seconds in the WAN environment. Clock skews are not modeled since they are insignificant

compared to the network delays and the timeout period; the Network Time Protocol [Mil92] can

maintain clock skews of a few microseconds in LAN environments and a few milliseconds in WAN

environments [Mil96].

6.1.7 CPU Processing Overheads

We now describe the CPU processing overheads that are charged at the server and the client for

various operations. As stated earlier, our CPU processing overheads have been either derived from

Gruber’s work or obtained by profiling our simulator (since our simulator code is similar to the code

in Thor).

We charge 300 instructions to perform a cache lookup at the server, to generate an invalidation

for a client by checking the cached set, and to set up an object for commit at the client [Gru97]; these
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costs correspond approximately to a few second level processor cache misses on modern machines.

We charge 10 instructions for looking up each object in a client’s invalid set. The cost of each

multistamp operation is 300 instructions per multistamp entry; we obtained this result by profiling

our simulator.

The costs for reading and writing an object at a client are 5000 and 10000 instructions respectively

(i.e., 8 � sec and 16 � sec for our client machines). These times are based on the observation that a

transaction operates on an object for a short period when it accesses the object; these times have

been obtained from [Gru97]. As in the case of the server, the cost of looking up an object in the

client cache is 300 instructions. When a transaction restarts, the client is charged 5000 instructions

for resetting some data structures. The client is also charged 400 instructions per modified object

(to revert the object to its original version); this corresponds to the memory copying costs on current

machines. There is no think time spent at a client between transactions; as a result, transaction

latency can be calculated using our throughput results.

The server is charged a fixed cost of 5000 instructions for setting up a disk operation, i.e., the

read is initiated after 5000 instructions have executed on the server CPU; this is the same charge used

in [Gru97, CFZ94]. For sending and receiving network messages, we charge a fixed message cost of

36000 instructions and a variable cost of 43000 instructions per KB. The time for sending/receiving

messages on our client machines with these instruction costs is similar to the time taken in the

U-Net system for slower processors; we did not scale these costs for faster machines since a large

fraction of the work performed during a message send or receive does not scale with the processor

speed [Ous90, ALBL91].

6.2 Workloads

In this section, we present different workloads used in our experimental study. We also describe

how accesses for a transaction are generated. Two of our workloads, HOTREG and HICON,

have been derived from Gruber’s study. These workloads have moderate to high contention

since they were designed to compare the performance of different concurrency control mecha-

nisms. These workloads stress our multistamp-based mechanism since contention leads to more

dependencies/anti-dependencies, bigger multistamps, more truncation and hence the possibility of

lower performance due to more consistency stalls. Furthermore, higher contention enhances the

difference between weak and strong isolation mechanisms; we were interested in understanding

how high these differences can become.

We also designed a low contention workload called LOWCON to evaluate the performance of our

schemes in a realistic environment where most clients access their private regions and occasionally

access a shared region. We did not design a workload with access patterns similar to the TPC-C

benchmark (used for online transaction processing [TPC92]) since TPC-C models lower contention
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compared to our moderate and high-contention workloads (and higher contention tend to stress our

strong consistency mechanisms).

Common Workload Parameters
Parameter Default Value Sensitivity analysis range
Single server transactions 80% 0% – 90%
Preferred server probability (for less than 3 servers) 90% —
Read-only transactions 50% 0% – 90%
Read-only participants 50% —
Minimum object accesses per transaction 180 90 – 450
Maximum object accesses per transaction 220 110 – 550
Object accesses per page 5 to 15 —
Probability of modifying a page 50% —
Probability of modifying an object on a modifiable page 40% —
Net object write probability 20% —
(except for hot-shared in HOTREG)
Restart change probability 20% 0% – 100%

Figure 6-4: Summary of Workload Parameter Settings

In our simulation study, we only focus on access patterns of an application and do not consider

the fact that inconsistencies may be introduced in the database due to execution of update transactions

at weak isolation levels; we assume that a programmer has determined that it is correct to execute

the transactions at a particular level.

We first describe the workload model for generating transaction accesses and the parameters

related to it. Then we describe the workloads used in our study. Figure 6-4 shows the parameter

settings that are common across workloads.

6.2.1 Transaction Generation

Each client runs a single transaction at a time that consists of a sequence of reads and writes. These

accesses are generated by a module called the workload generator. This generator can generate

different shared access patterns with different levels of contention. Depending on the workload, the

server working set consists of different regions and each region is accessed with a certain probability,

e.g., in LOWCON, each server has a private region for each client and a shared region. Before

we discuss particular workloads, we describe our strategy for generating a transaction’s accesses;

Figure 6-5 gives an overview of our strategy.

Step (1) involves determining the number of servers that will be accessed in the transaction.

We first decide whether the transaction involves more than one server and then choose the number

of servers. In all workloads, 80% of the transactions use a single server and 20% involve multiple

servers. We chose a high percentage of multi-server transactions to stress our multistamp-based

schemes (to spread invalidation information more quickly to different servers resulting in larger
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Access Generation Steps

(1) Select the number of servers in the transaction.

(2) Determine how many servers are preferred and non-preferred, and select
servers according to these constraints.

(3) Determine if transaction is read-only. If not, determine whether
each server is a read-only participant or not.

(4) For each server, generate required number of clustered accesses:
(a) Pick a region according to region access probabilities.
(b) Pick a page in that region and select a few object accesses on that page.

(5) Repeat step (5) until all accesses have been generated for all servers.

Figure 6-5: Generation of accesses for a transaction

multistamps and more truncation). Benchmarks such as TPC-A and TPC-C [TPC92] have fewer than

10-15% multi-server transactions. In each multi-server transaction, we bias the selection towards a

smaller number of servers since transactions involving a large number of servers (accompanied by

a high modification rate of 20% that we chose for our experiments) are expected to be uncommon;

in most of our experiments, 11.5% of our transactions use two servers and 8.5% use more than

two servers. This is in line with what has been reported in the literature. For example, in TPC-C,

multi-server transactions involve only two servers; other researchers have also reported two-server

transactions to be common for distributed transactions [SBCM95]. In our sensitivity analysis

experiments, we varied the percentage of multi-server transactions from 10% to 100%.

In step (2), we choose a preferred server with probability 90% for transactions with one or two

servers. For a higher number of servers, we choose both preferred servers and then choose randomly

from the remaining non-preferred servers. For experiments with our default system, this choice

resulted in 18% of the chosen servers to be non-preferred.

Although real systems are dominated by read-only transactions [GW82, SBCM95], we only

allow 50% of our transactions to be read-only; this selection is done in step (3). As before, the

purpose of this choice is to stress our schemes. More modifications lead to more conflicts and tend to

increase the performance degradation due to higher isolation level implementations. Furthermore,

more contention also increases the stall rate in the multistamp-based schemes. For our sensitivity

analysis experiments, we varied the percentage of read-only transactions from 0% to 90%. If the

transaction is not read-only, each server can be a read-only participant with 50% probability, except

that at least one server is chosen to be a read-write participant.
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In step (4), we generate the accesses for each server. Each transaction accesses between 180

and 220 objects, i.e., 200 objects on average. For our sensitivity analysis experiments, we varied the

number of object accesses from 100 to 500. In a multi-server transaction, the number of accesses is

divided according to the probability of accessing that type of server, e.g., if one non-preferred and

two preferred servers are chosen, 10% of the accesses go to the non-preferred server. This selection

is done so that preferred servers have an overall access rate of 90%.

At each server, a region is selected according to the workload’s characteristics and a page that

has not been accessed in this transaction is randomly selected in the chosen region. We select

between 5 and 15 objects on this page, i.e., on an average, 10 objects are chosen on a page resulting

in approximately 20 pages being accessed in a transaction. More than one object is chosen on each

page to model the notion of clustering. Clustering enhances database performance since related

objects are read from the disk and sent on the network as a single group; researchers have described

techniques for reorganizing placement of data periodically such that objects which are likely to

accessed together are stored close to each other [CS89, GKM96, MK94, TN92].

Objects are also updated in a clustered manner in the following way. First, when a page is

selected, we determine whether the page can be modified; this probability is chosen to be 50%. In

the second step, each selected object on that page is updated with a 40% probability. Thus, the

net probability of modifying an object is 20%; these probability values were also used in [Gru97].

We chose a high probability of object writes since it affects the performance of the higher isolation

schemes negatively due to increased contention; it also results in larger multistamps (due to more

invalidations) and hence more truncation.

For each experiment, we measure the performance of the system after 48000 transactions have

been executed in the default system; for larger systems, we add 200 transactions per client to this

total. To eliminate end-effects, we start our measurements after warming the system.

If a transaction aborts, it is restarted with the same set of accesses. However, when a restarted

transaction accesses a newer object version (compared to its previous execution), its remaining

accesses may change with a probability of 20%; this probability is called the restart change

probability (in our simulation runs, we observed that approximately 30-35% of aborted transactions

access different objects in a rerun after observing a new version of an object). This strategy models

the notion that application may take a different path in the code after reading a different value

of an object. In our setup, if accesses are changed, all further accesses are chosen independently

of the previous run. In reality, new accesses are expected to have a significant overlap with the

previous run. This strategy impacts the performance of higher isolation implementations since it

increases the cost of aborts: when new accesses are chosen, it is likely that one or more objects

in the new run are not cached and fetches need to be performed for them. In the next chapter,

we show that the restart change probability is an important factor that increases the performance

difference between isolation mechanisms. For our sensitivity analysis experiments, we varied the
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restart change probability from 0% to 100%.

6.2.2 Workload Descriptions

We now discuss the different workloads that are used in our experimental study. These workloads

range from low contention to high contention. The low contention workload models behavior that

is expected to be common whereas the moderate to high contention workloads are intended to stress

the isolation mechanisms in a variety of ways. Figure 6-6 shows the parameter settings for different

workloads.

Parameter LOWCON HOTREG HICON
Private region size at preferred server 25 pages 25 pages –
per client (750 total) (750 total)
Cold-shared region size per server 850 pages 100 pages 750 pages
Server working set (from a client’s perspective) 875 pages 875 pages 875 pages
Hot-shared region size per server – 25 pages 125 pages
Hot-shared region access probability – 10% 80%
Private region access probability 80% 80% –
Cold-shared region access probability 20% – 20%
Rest of database access probability – 10% –

Figure 6-6: Characteristics of different workloads

LOWCON

This workload models a realistic system with low contention (like those observed in [KS91, SS96]).

Each client has a private region of 25 pages at each preferred server, i.e., each server stores 750

private pages. Each server has a cold-shared region of 850 pages. 80% of a client’s accesses go

to its private region; the rest go to the cold-shared regions at its connected servers. Thus, in this

workload, a client can access 875 pages at a preferred server and 850 pages at a non-preferred server.

Note that each server has 1600 pages but at most 875 pages are relevant from a client’s perspective

because private regions of other clients are not accessed by a client. Since most of the accesses of

a client go to its private region (80%), there are few conflicts in this workload; most of the conflicts

occur at the cold-shared region of the preferred servers (non-preferred servers are accessed with a

low probability).

With a server cache size of 437 pages, we observed that the disk costs in LOWCON were the

main reason for limiting the system throughput. We observed that various isolation mechanisms

had a very similar performance (within 1%) for LOWCON with this choice of the server cache

size. To enhance the difference between the isolation schemes, we chose an unrealistic cache size

of 800 pages for our LOWCON experiments. Since the private region is not shared by clients, the

server cache was able to cache most of the cold shared region resulting in very high server cache
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hit ratios of more than 90%. Another reason for changing the server cache size for LOWCON was

that we wanted to evaluate the performance of our mechanisms in for a workload with few fetches

per transaction in an environment where a resource other than the disk is a bottleneck; the next

workload, HOTREG, has a similar client cache hit ratio as LOWCON, and the disk is the bottleneck

resource for HOTREG.

HOTREG

As in LOWCON, each client has a private region of 25 pages at each preferred server; together these

regions consume 750 pages. Each server also has a cold-shared region containing 100 pages and a

small region of 25 pages (called the hot-shared region). Thus, the working set size at each server is

875 pages. 80% of a client’s accesses go to its private region and 10% go to the hot-shared region;

the remaining 10% of the accesses go to the rest of the database (or RDB) region consisting of all

other pages at its connected servers, including private regions of other clients and the cold-shared

region. Private regions exist at the preferred servers only and all reads/writes at non-preferred

servers go to the hot-shared and or RDB region.

The hot-shared region might be the top of a naming hierarchy that is accessed often by clients.

To capture the fact that such a directory is not modified often, only one in every ten transactions

modifies the hot-shared region. But when a transaction does modify this region, half of the objects

are updated in the selected pages, i.e., the probability of modifying a hot-shared object is 5%.

Note that even at this probability value, the rate of conflicts due to the hot-shared region is high.

Since 30 clients share two preferred servers and most accesses are to preferred servers, there are

approximately 15 clients accessing objects from a server at any instant of time (there are more

than 15 clients since 20% of the transactions are multi-server). At any given time, at least one

transaction is modifying objects in the hot-shared region; these updates result in invalidations being

generated for a large number of clients since the hot-shared region is almost completely cached

at each preferred client. Thus, moderate to high contention on the hot-shared region causes large

multistamps to be generated and stresses the performance of our multistamp-based schemes.

The HOTREG workload is used for evaluating the performance of the system when clients have

skewed sharing patterns; it models the scenario when a client has higher affinity for its own objects

than the rest of the database. The HOTREG workload has higher contention than LOWCON.

In HOTREG, contention occurs over the small shared-region, and when an RDB access (20%

probability over 825 pages) on a page conflicts with the access of the client that owns that page

(80% probability over 25 pages). In LOWCON, a conflict occurs only when both clients access the

cold-shared region of 850 pages at a server with 20% probability.

The HOTREG workload has the richest access patterns. It includes both uniform sharing

(all clients access the hot-shared region uniformly) and skewed sharing (one client accesses its
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private region more frequently than other clients). These type of accesses can be expected in an

object-oriented database system [Gru97].

HICON

HICON is a very unrealistic workload used in concurrency control studies to model high contention.

There are two regions at each server — a hot-shared region with 125 pages that is accessed 80%

of the time and a 750-page cold-shared region that is accessed 20% of the time. Both regions are

shared uniformly among clients. High contention in this workload is primarily due to the hot-shared

region. HICON is a workload that is intended to enhance the difference between weak and strong

isolation implementations. It degrades the performance of strong isolation level implementations

relatively more since these levels capture more conflicts and hence experience a higher number of

aborts. HICON also stresses the multistamp-based schemes: since the preferred clients can cache

a significant fraction of the hot-shared region, a large number of invalidations are generated by an

update transaction. Thus, the HICON workload can result in large multistamps leading to aggressive

truncation and a high consistency stall rate. Along with HOTREG, we also use HICON for our

sensitivity analysis experiments.
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Chapter 7

Performance Results

In this chapter, we present the results of a simulation study that evaluates the performance of

our optimistic mechanisms in a distributed client-server system for cacheable transactions that

access a few hundred objects during their execution. We use CLOCC for providing serializability,

Weak-CLOCC for PL-2, and the multistamp-based schemes for intermediate isolation levels in our

experiments. The reader should note that these schemes are efficient. Recall that CLOCC has been

shown to be the best concurrency control mechanism for cacheable transactions in a client-server

system [Gru97]; it outperforms the best locking mechanism [CFZ94] for a range of workloads and

system parameters. Weak-CLOCC and the multistamp-based schemes share many advantages of

CLOCC’s basic cache coherency mechanism, e.g., piggybacked invalidation messages.

Our results show that the cost of strong consistency levels such as serializability is negligible

for low-contention workloads. Even for moderate to high contention workloads, the performance

degradation due to higher isolation levels is low. The low performance difference between serializ-

ability and lower isolation levels is primarily due to the fact that CLOCC prevents excessive wastage

of work by aborting a transaction early during its execution and CLOCC has low restart costs for

aborted transactions. Our results also show that multistamps impose a low performance penalty:

multistamps with a size less than 100 bytes are sufficient to ensure that there are few consistency

stalls. Thus, strong consistency guarantees such as PL-2+ can be provided to read-only and running

transactions at very low costs.

Our results apply only to data-shipping client-server systems in which transactions run at clients.

The CLOCC implementation takes advantage of this system architecture and offloads most of the

work to clients. Thus, the extra work due to aborts occurs at clients, rather than at the servers, which

are the scarce resource. If transactions ran at servers (i.e., pure function-shipping systems), the extra

work due to aborts would slow down all clients rather than just the client whose transaction aborted,

so that the cost of serializability may be higher in these systems. In fact, in such architectures,

optimism may not be the best approach. However, our results may be applicable to hybrid systems

in which the client performs most of the transaction’s work and short queries are executed at a
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server, or to three-tier systems in which servers store persistent objects, clients run applications, and

transactions are executed at shared “proxies”.

Section 7.1 introduces a notation for describing systems that provide different isolation guar-

antees to update, read-only, and executing transactions. Section 7.2 presents a simple analytical

model for comparing the performance of different isolation level implementations. In Section 7.3,

we examine the relative cost of providing serializability for committed transactions over PL-2. We

evaluate these costs by comparing CLOCC and the multistamp-based for PL-2+ with the Weak-CLOCC

scheme. In this section, we also present our sensitivity analysis for a variety of parameters such

as longer transactions, different mixes of read-only and update transactions, lower contention, etc.

Section 7.4 presents the overheads of providing intermediate isolation guarantees such as PL-2+,

PL-3U, EPL-2+ and EPL-3U for read-only and executing transactions using our multistamp-based

schemes. Section 7.5 presents a detailed analysis of the cost imposed by our multistamp-based

schemes. The cost of providing different levels of causality is presented in Appendix B

7.1 Interaction of Isolation Schemes for Different Types of Transactions

We use the notation W/R/E to indicate that the database is updated at level W and no inconsistencies

below level W are introduced in the database state, no read-only transaction is committed if it has

observed an inconsistency below level R, and no transaction observes an inconsistency below level E

while it is executing. In a W/R/E system, the update transactions are committed using the optimistic

technique presented in Chapter 5 for level W, read-only transactions are committed using the level

R scheme, and transactions are executed using the scheme presented for level E. For example,

3/3/2 denotes a system where all committed (read-only and update) transactions are serializable and

executing transactions do not observe dirty reads; thus, 3/3/2 denotes CLOCC.

In our simulator runs, all transactions of a particular type (update/read-only/executing) are

provided the same isolation guarantees. For example, in the 3/2/2 system, all update transactions

commit using the level PL-3 scheme. In a system where all update transactions commit at level

W, it is guaranteed that inconsistencies disallowed by level W are not introduced in the committed

database state. For example, in the 3/2/2 system, update transactions are serializable with respect

to each other and a DSG constructed using only update transactions contains no cycles, i.e., the

committed database state can be achieved by the serial execution of all update transactions.

For our simulation experiments, we implemented levels PL-2, PL-2L, PL-2+, PL-3U, PL-3 and

their equivalent levels for executing transactions. However, as discussed in Chapter 3, we ensure

that transactions are committed at an isolation level that is at least as strong as the level at which

they execute. Similarly, we also ensure that update transactions are committed at a level that is at

least as strong as the level chosen for committing read-only transactions; we make this assumption

since it is not useful to provide read-only transactions with stronger guarantees when the database
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is being updated at a lower level. Thus, for a given combination W/R/E, level W is at least strong as

R, and level R is at least as strong as level E. These requirements rule out certain combinations of

isolation levels, e.g., PL-2 for update transactions, PL-2+ for read-only transactions, and EPL-2 for

executing transactions (the 2/2+/2 system) is disallowed.

Apart from disallowing the combinations that violate the strength order discussed above, we

also rule out certain combinations because of implementation considerations. In particular, level

PL-3U is not provided along with levels EPL-2L or EPL-2+ since the multistamps for the latter

levels only capture dependencies whereas the multistamps for PL-3U capture anti-dependencies

also. Providing PL-3U in conjunction with EPL-2+ requires an additional overhead of maintaining

and propagating two sets of multistamps in all parts of the system. Thus, systems such as 3/3U/2+

and 3/3U/2L are disallowed in our simulator implementation.

7.2 A Simple Model for Comparing Isolation Implementations

We use a simple analytical model to explain the performance difference between various isolation

implementations. In our optimistic implementations, a transaction may abort a few times before it

commits successfully. The final execution in which the transaction succeeds is called the successful

run and all previous executions are called aborted runs; the combined runs for a transaction that

commits successfully are called the transaction’s complete execution.

A transaction’s complete execution time,
�

is broken down into three components — time

spent for fetching objects, time spent for performing reads and writes on locally cached copies of

objects, and time spent in committing the transaction; these components are denoted by � ,
�

, and
�

, respectively.

Some of the work performed during a transaction’s aborted run may be wasted whereas part of

it may help the successful run of this transaction or some future transaction executed by the same

client. For example, if a transaction T fetches a page P and aborts, the fetch is useful if T’s client

C uses some object in P during the successful run of T or some future transaction at client C. To

model this notion of wasted and useful work, we divide a transaction’s complete execution time (
�

)

into two parts — useful running time,
� �

, and wasted running time,
�
� . We also divide the time

taken by for fetching, executing local operations, and committing transactions into their respective

useful and wasted components, e.g., � is divided into � �
and � � . Each useful part contributes to

� �
and the wasted part contributes to

�
� . We can write simple equations for these parameters:

� � � � � � � � � � � �
� � 7 � 1 �

� � � � � � �
� � � � � � �

�
� � � � � � �

� � 7 � 2 �
� � � � � � � � � � � � �

�
� � �

� �
�
� �

� � 7 � 3 �
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Thus, there are six basic components of a transaction’s complete execution time: � �
, � � ,

� �
,
�
� ,

� �
, and

�
� . With the help of these parameters, we will explain how different isolation

implementations differ from each other. Let us see what each parameter means exactly and how it

is computed in a simulation run.

Local Times,
� �

and
�
� : All local accesses performed during aborted runs are wasted and time

spent for this purpose adds up to give
�
� . The time,

� �
, is computed by adding up all local

accesses performed during a transaction’s successful run.

Commit Times,
� �

and
�
� : Time spent to validate and commit a transaction’s successful run is

classified under
� �

. The latency observed by a client for commits that fail validation is added

up to give
�
� .

Fetch Times, � � and � � : Classifying fetches as wasted or useful based on whether they were

performed during an aborted or a successful run is not correct due to inter-transaction client

caching; some fetches performed during a transaction’s aborted run may be useful for the same

or some later transaction’s successful run. Let us understand how a fetch can be classified

as useful or wasted. Fetches whose status (useful or wasted) is not known yet are called

unclassified fetches.

Consider a fetch F by client D of a page P. We define F’s delta set to be the set of objects that

are retrieved by F but are not present in D’s copy of P. We also define F’s delta-union set to

be the union of the delta sets of P’s unclassified fetches (including F’s delta set) that occurred

before F at client D. Fetch F is classified as a useful fetch if some object in its delta-union set

is used in the successful run of a transaction T � and T � commits:

1. Before P is removed from the cache, and

2. Before all objects in F’s delta set are invalidated, and

3. Before another fetch of P occurs.

When a fetch by client D to page P is classified as useful, all other unclassified fetches to P

by client D (at that instant of time) are classified as wasted.

Cases (a) and (b) declare fetch F to be wasted if all objects that were brought in by it are

discarded before being used in a transaction’s successful run. Case (c) says that fetch F is

wasted if a later fetch brings in the same page, i.e., all objects that had been retrieved by F

are refetched and the latter fetch supersedes the F’s work. Thus, if there exists a sequence of

unclassified fetches of page P and an object on P is used from one of the delta sets of these

fetches in a successful transaction, only the last fetch is classified as useful.

In our simulator, a client obtains a complete page in every fetch reply. We could have

used an approach in which a client just fetches objects on a page that are missing from the
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cache due to invalidations [CALM97, ACL
�

97]; in that case, some fetches that are being

classified as wasted will become useful. However, it would greatly complicate the analysis;

our page-based approach simplifies the analysis.

Using the above basic parameters, we will show which components increase or decrease the

performance difference among various isolation level implementations. Since a weak isolation

level scheme imposes fewer constraints than a stronger isolation level, a transaction that has weaker

isolation requirements may abort fewer times and hence perform less wasted work.

To keep our analysis simple, we classify time spent during stalls as wasted fetch time ( � � ) for

systems where stalls may occur during the execution of a transaction, e.g., in the 3/2+/2+ system.

In systems where read-only transactions stall at commit time, we classify the stall time as wasted

commit time (
�
� ). As we will see later, the component due to stalls is small since there are few

stalls in the system; hence, this approximate classification does not affect our analysis significantly.

In many of our experiments, we observed that two systems providing different isolation guaran-

tees performed the same amount of useful work (with other simulation parameters kept the same).

Thus, the performance difference between the systems was largely determined by the extra wasted

work done by the stronger isolation level implementation, e.g., for HOTREG and HICON in the

2/2/2 and 3/2/2 systems. Let us understand why the useful work done was the same for two systems

providing different isolation level implementations by considering HICON and HOTREG in the

3/2/2 and 2/2/2 systems. First, the wasted work did not increase the utilization of some resource by

a significant amount to affect the useful work done. For the HICON workload, the network is the

bottleneck resource (it is saturated) in the 2/2/2 system. Additional fetches per transaction in the

3/2/2 system do not increase the network time since network saturation provides a negative feedback

to the system, i.e., clients submit fetches at the same rate in the 3/2/2 system and the 2/2/2 system.

A similar phenomenon occurs in the HOTREG workload where the disk is heavily utilized (around

80%); additional fetches did not increase the disk utilization significantly. Similarly, utilizations of

other resources did not change for these workloads. Second, our algorithms for different isolation

levels do not alter the client caching behavior; as a result, the same number of useful capacity

misses and conflict misses occur in both systems. These two factors ensure that F
�

is similar for

the two systems. Third, both systems commit read-only transactions at the client and all update

transactions are validated at the server; furthermore, since the server CPU is not a bottleneck and

the server is reasonably fast, the additional validation work in the 3/2/2 system is negligible. Thus,

the useful commit work,
� �

, is similar for the two systems. Finally, the work done for performing

local accesses (
� �

) remains the same since the same number of objects is accessed in the successful

run in both implementations.

In some cases, a stronger isolation level implementation may perform more useful work to

provide its consistency guarantees. For example, CLOCC (the 3/3/2 system) requires a commit
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message be sent to servers even for read-only transactions whereas the 3/2/2 system does not; thus,

CLOCC will have a higher
� �

component than the 3/2/2 system.

In our simulator runs, we measured the number of useful and wasted fetches, the number of

aborted and successful commits, and the number of useful and wasted accesses. We also measured

the average time taken to perform a fetch, a commit, and a local read or write. We used these

times and numbers in equations 7.1 and 7.2 to compute the total time taken to execute a transaction.

We compared this time with the measured latency of a transaction complete execution time. In

all experiments, we observed that the computed sum was within 1% of the measured transaction

execution time. This shows that the model and the simulator are self-consistent with each other and

increases our confidence about the simulator’s fidelity in modeling a real system.

7.3 Cost of Serializability

To understand the performance gains achieved by committing transactions at PL-2 instead of

serializability, we use the 2/2/2, 3/2/2 and 3/3/2 systems. Performance is evaluated in terms of

transaction throughput, which is defined as the number of successfully committed transactions per

second in the database system. We also define a term called the abort rate, which denotes the

number of aborts that occur in the system for every successful transaction commit; the abort rate is

expressed as a percentage. We now give an overview of our results before presenting them in detail.

For a low contention workload such as LOWCON, the relative performance degradation of the

3/2/2 system compared to the 2/2/2 system was very low (less then 3%) across a wide variation of

system parameters; the reason is that CLOCC has been designed to impose very low overheads when

there are few conflicts in the system. For HOTREG and HICON, workloads with moderate to high

contention, we observed that the performance difference varied from 7% to 10%. The performance

degradation of the 3/2/2 system is due to the extra wasted fetches performed relative to the 2/2/2

system.

When read-only transactions are also serialized (i.e., we use CLOCC for all transactions), the

performance degradation is higher for two reasons. First, since read-only transactions are also

validated in the 3/3/2 system, they may abort (they never aborted in the 2/2/2 or the 3/2/2 systems)

resulting in more wasted work. Second, an extra roundtrip message delay is added to commit

read-only transactions; this factor has a larger impact in WANs since message latencies are high

in those environments. For LOWCON, the performance degradation for the 3/3/2 system is 6% in

LANs and 14% in WANs relative to the 3/2/2 system. For HOTREG and HICON, the penalty of

the 3/3/2 system varies between 9% to 15% relative to the 3/2/2 system.

A sensitivity analysis on different parameters shows that serializability penalizes performance

relative to PL-2 when the following two conditions are satisfied:

� Contention is high, and
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� The cost of restarting a transaction is high

Parameters that increase contention along with restart costs result in increasing the performance dif-

ference, e.g., increasing the transaction length, increasing the restart change probability, increasing

the amount of work done per object access, decreasing the percentage of read-only transactions, etc.

For some of our experiments, we observed that contention was high but the relative performance

difference between the PL-3 and PL-2 mechanisms was low. The reason is that CLOCC has been

designed such that the restart costs are low for cacheable transactions.

It is important to understand that our workloads (HICON and HOTREG) and our system

parameters have been setup to stress the higher consistency mechanisms. These workloads have been

derived from concurrency control studies in the past and need not correspond to real applications; in

fact, we expect real applications to have less contention resulting in smaller performance differences

between the 2/2/2 and 3/2/2 systems.

The performance win for the 2/2/2 system compared to the 3/2/2 system comes with the cost

that there is a higher likelihood of corrupting the database system, i.e., a transaction is not aborted

when the 3/2/2 system would have aborted it. Hence, it is desirable that update transaction are not

committed below PL-3. For the experiments in this chapter beyond (and including) Section 7.4, we

provide PL-3 for update transactions using CLOCC.

The rest of the section is organized as follows. In Section 7.3.1, we present the results for our

default system. In Section 7.3.2, we compare the performance of the 2/2/2 and 3/2/2 system across

a wide range of system parameters. In Section 7.3.3, we compare the performance of the 2+/2/2

system to that of the 2/2/2 and 3/2/2 systems.

7.3.1 Basic Results

Before presenting the results, let us understand some of the important performance characteristics

of our three workloads. For the default system parameters, we observed that the disk is the main

bottleneck for the HOTREG workload in LAN environments with a utilization of more than 80%; in

LOWCON and HICON, the network is saturated (as discussed in the previous chapter, LOWCON

would have been disk-bound if the server cache size was smaller). In WAN environments, the

extra delay of 50-100 msec results in increasing transaction latency substantially. In LOWCON

and HOTREG, each transaction performs 3.7 to 4.4 fetches per transaction whereas there are 19

to 23 fetches per transaction for HICON. In general, if the workload has a high abort rate, we

expect the number of fetches to be high due to conflict misses (objects invalidated by other clients);

in HICON, more than two-thirds of the fetches are due to conflict misses. For all workloads in

these experiments, the time spent in performing page fetches ( � ) forms a significant fraction of a

transaction’s execution latency.

Figure 7-1 shows the transaction throughput for different workloads and systems; it also shows
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System LAN environment WAN environment
LOWCON HOTREG HICON LOWCON HOTREG HICON

2/2/2 7443 4017 1490 357.2 350.9 79.1
3/2/2 7344 (1%) 3647 (9%) 1355 (9%) 352.9 (1%) 325.1 (7%) 71.4 (10%)
3/3/2 7020 (6%) 3304 (18%) 1227 (18%) 307.6 (14%) 276.7 (21%) 62.9 (20%)

Figure 7-1: Throughput (transactions per sec) variation with and without serializability guarantees

the throughput degradation of each workload/system combination relative to the throughput of the

corresponding 2/2/2 system.

LOWCON workload

Figure 7-1 shows that the cost of providing serializability to update transactions in the LOWCON

workload is negligible in LAN and WAN environments. The reason is that LOWCON has a low

abort rate (see Figure 7-2) and CLOCC has been designed to be inexpensive when there are few

conflicts in the system; the cache coherence and validation mechanisms in CLOCC are efficient and

have low communication, CPU, and disk costs. With a low abort rate, there is very little wasted

work done in LOWCON (see Figure 7-3). The breakdown of a transaction’s execution time shown

in Figure 7-4 demonstrates that the extra wasted work component for the 3/2/2 system compared to

the 2/2/2 system is very small for LOWCON.

When serializability is provided to read-only transactions (the 3/3/2 system), the performance

degradation increases to 6% (in LANs) due to the extra roundtrip message for committing these

transactions (an increase in the
� �

component). Since the network is saturated in LOWCON, these

extra messages do have an impact on increasing the transaction latency. However, these commit

messages have another interesting effect. If we consider a time interval t in both systems, the 3/3/2

system sends more commit messages in time t than the 3/2/2 system. Since the 3/3/2 system sends

fewer fetch messages in time t, it has lower network bandwidth requirements than the 3/2/2 system

resulting in lower network queuing delays. As a result, there is a minor decrease in useful fetch time

( � � ) in LOWCON for the 3/3/2 system in LANs (see Figure 7-4). If message latency had remained

System LAN environment WAN environment
LOWCON HOTREG HICON LOWCON HOTREG HICON

2/2/2 0.7% 4.6% 25.6% 0.7% 4.2% 26.3%
3/2/2 2.9% 19.7% 105.1% 2.9% 21.1% 111.1%
3/3/2 5.3% 33.1% 182.4% 5.5% 34.4% 191.3%

Figure 7-2: Abort rate with and without serializability guarantees
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System LAN environment WAN environment
LOWCON HOTREG HICON LOWCON HOTREG HICON

2/2/2 1.0% 6.4% 6.9% 1.1% 4.4% 7.0%
3/2/2 2.1% 15.3% 17.5% 2.2% 11.9% 17.6%
3/3/2 3.3% 24.5% 28.6% 3.3% 17.8% 28.6%

Figure 7-3: Ratio of wasted work to useful work (
�
�

� � �
) for different systems

the same in the 3/3/2 system, the impact of the extra roundtrip message would have been higher. In

fact, this effect is seen in WAN environments where message latencies remain the same; the extra

message results in a larger performance degradation compared to LANs. As we will see later, a

programmer may want to use levels such as PL-2+ or PL-3U for read-only transactions since their

implementations avoid the commit roundtrip message and have a lower performance degradation

than serializability.

These results show that strong consistency guarantees such as serializability can be provided for

low-contention cacheable transactions in a client-server system without any significant costs. This

is an important result since many applications exhibit low-contention and such workloads are one of

the main scenarios recommended for using weaker isolation levels; this recommendation is based on

the assumption that a higher isolation level mechanism imposes unnecessary performance penalties

for such an application. However, since CLOCC (which is used for update transactions in the 3/2/2

system) has low overheads, the performance degradation in LOWCON due to serializability is not

high in our experiments for the 3/2/2 and 3/3/2 systems.

HOTREG and HICON workloads

For HOTREG and HICON, the performance degradation of the 3/2/2 and 3/3/2 systems is more

than in LOWCON because the abort rates are much higher for these workloads (see Figure 7-2).

However, a large increase in the abort rate does not result in a corresponding increase in performance

penalty. The main reasons are that CLOCC has low restart costs and invalidation messages prevent

excessive wastage of work by aborting a transaction early during its execution. In HOTREG, more

than 80% of the aborts occur at client machines and, for HICON, client-aborts account for 90% of

the total in LAN environments; a majority of aborts occur at client machines in WAN environments

as well. In our client-server system, the cost of re-executing a transaction at a client is not very

expensive relative to the transaction execution time since the client processor is relatively fast and

is not heavily utilized; in centralized systems where a server executes most of the transaction code,

these aborts can be much more expensive.

Apart from invalidation messages, other mechanisms in CLOCC also help in reducing the restart

costs. For example, maintaining an undo log for modified objects at the client reduces the number of
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Figure 7-4: Breakdown of a transaction’s execution time (L is negligible in these experiments)

fetch messages that need to be performed after a transaction aborts; earlier optimistic mechanisms

did not incorporate such techniques and hence incurred excessive abort costs. In HOTREG, if this

log were not maintained, there could have been 2 or 3 unnecessary fetches per abort; these extra

fetches can have a significant impact on the throughput compared to the 2/2/2 system (recall that

there are approximately 4 fetches per transaction for HOTREG).

Another reason why aborts do not hurt performance significantly is that not all work done in an

aborted run is wasted, especially due to fetches (see Section 7.2). Figure 7-3 shows that the ratio of

wasted to useful work does not increase substantially even for very high abort rates, e.g., for LAN

environments, the abort rate for HICON is more than 5 times that for HOTREG in the 3/2/2 system

but the fraction of wasted work performed in both workloads is similar and hence there is a similar

performance degradation.

The increase in transaction execution time for the 3/2/2 system compared to the 2/2/2 is largely

explained by the increase in the time spent in performing wasted fetches, � � (see Figure 7-4). There

are two factors that cause � � to increase:

� Refetching invalidated objects: In the 2/2/2 system, if a client receives an invalidation message

for an object that has been read (not modified) by its current transaction T, T is allowed to

continue running; however, in the 3/2/2 system, T is aborted. When the client restarts and

accesses the same object, it must refetch the object from the relevant server.

� Fetches due to changed accesses after abort: Due to a 20% restart change probability for each

new version read in a rerun, approximately 30-35% of aborted transactions access different
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objects in their new run; this causes some fetches performed during aborted runs to be useless.

For the 3/3/2 system, the transaction execution time is higher than the 3/2/2 system due to a

further increase in � � caused by extra aborts of read-only transactions and due to an increase in
� �

caused by the extra commit roundtrip message sent for read-only transactions (see Figure 7-4). The

impact of this roundtrip is more prominent in WANs where message delays are more significant.

For example, in HOTREG, the
� �

component relative to the total execution time (
� �

) is 12%

in the 3/2/2 system and 20% for the 3/3/2 system (for HICON, these numbers are 2.5% and 4.5

respectively).

7.3.2 Sensitivity Analysis

We now present a sensitivity analysis to understand how different system parameters affect the

throughput difference due to serializability guarantees. We focus on the performance difference

between the 3/2/2 and 2/2/2 systems because the 3/2/2 system is the cheapest reasonable system

which ensures that updates do not corrupt the database state. We report only the results for HOTREG

and HICON workloads since they stress the system more than LOWCON.

Before we present a detailed sensitivity analysis, here is a brief synopsis of the results:

� Increasing the restart change probability causes more fetches when a transaction aborts and

hence increases the cost of re-executing a transaction. Thus, the performance penalty of

serializability is higher for a high restart change probability; most of the wasted work is due

to wasted fetches.

� Increasing the percentage of read-only transactions in the workload reduces contention and

hence reduces the throughput difference between the 3/2/2 and 2/2/2 systems.

� If more objects are accessed per transaction, contention is increased along with the cost of

re-executing a transaction. Thus, the performance penalty of serializability increases with

transaction length.

� If the time spent per object is increased, the performance difference increases because the

cost of restarting a transaction is higher (more time has to be spent to access the same number

of objects in the rerun). In such cases, most of the wasted work is due to the
�
� component,

i.e., wasted local time at clients.

� Varying the cache sizes does not change the performance difference significantly because the

reduction/increase in the number of fetches due to different client cache sizes is similar in the

2/2/2 and 3/2/2 systems.
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� Increasing the number of clients increases contention for HICON resulting in a higher perfor-

mance difference. For HOTREG, the contention remains same and the performance difference

between the 3/2/2 and the 2/2/2 systems does not change.

� Variations in network delays, network bandwidth, and processor speeds have a low impact on

the throughput difference between the 2/2/2 and 3/2/2 systems.

Restart Change Probability

CLOCC has been designed such that transaction re-execution is cheap: when a transaction reruns

after an abort, most of the objects accessed in the previous run are cached at the client (except the

objects that were invalidated). However, since we have chosen a restart change probability of 20%,

it is possible that an aborted transaction accesses a different set of objects than its previous run after

reading a newer version of an object. Since it is not necessary that the objects selected in the new

run are cached, the client may perform extra fetches that would not have occurred if the transaction

had not aborted.
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Figure 7-5: Variation of the restart change probability

To understand the impact of the restart change probability, we varied it from 0% to 100%. The

results in Figure 7-5 show that the performance difference between the 2/2/2 and 3/2/2 systems

increases as this probability is increased. With a high probability value, the number of wasted

fetches increases because a transaction is more likely to change its accesses when it is restarted; in

Figure 7-6, we can see that wasted fetches account for most of the increase in transaction latency.

The useful fetch time for HOTREG in the 3/2/2 system with a 100% restart change probability

(LANs) increases because there are more disk reads than the 2/2/2 system. Since the disk is a

bottleneck resource for this workload and environment, increasing its use results in more queuing

delays and the time per fetch increases slightly.

We also observed that as the restart change probability is increased, the abort rate increases for

both systems, e.g., for HICON, it increased from 95% to 120%. The reason is that wasted fetches
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Figure 7-6: Transaction breakdown for 0% and 100% restart change probability in LANs

increase the duration of an aborted transaction T � relative to successful transactions making T � more

vulnerable to be aborted again. The abort rate increase due to a high restart change probability is

higher for the 3/2/2 system since it has more wasted fetches than the 2/2/2 system. This increase

in abort rate feeds back into the system and results in raising the number of wasted fetches even

more. The process of higher abort rates raising the number of wasted fetches and vice versa does not

continue forever since the contribution by both factors keeps diminishing in each feedback cycle. In

general, a transaction T � aborts another transaction only after T � commits. If this process continued

forever, no client transaction would be able to commit. At this point, some transaction would be

able commit and then progress could be made, i.e., there is a negative feedback due to aborting of

transactions. (Two multi-server transactions may abort each other during the two-phase commit

protocol due to different ordering at servers. However, the window of vulnerability is very small for

such cases. Furthermore, it is very likely that these transactions do not rerun and prepare again in

a lock-step manner, e.g., a slight difference in network delays for the two transactions during their

reruns will allow one of them to be ordered before the other transaction and commit successfully.)

As discussed earlier, the performance difference between systems that commit transactions at

different levels increases whenever the cost of aborts is high and the abort rate is significant. A

higher restart change probability value raises the abort costs and hence increases the performance

difference between the 2/2/2 and 3/2/2 systems for the HOTREG and HICON workloads.

Percentage of Read-only Transactions

Our workloads contain a mix of 50% read-only transactions. In many applications and environments,

a larger percentage of transactions may be read-only. In Figure 7-7, we show how the throughput

varies with the percentage of read-only transactions. Since read-only transactions are committed

at PL-2 in both systems and these transactions result in lower amount of contention (due to fewer

modifications), the throughput difference reduces as the percentage of these transactions is increased,

e.g., for the HICON workload, the performance difference between the two systems reduces from

20% to 3% when the percentage of read-only transactions is increased from 0% to 75%; a similar
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difference is observed in the HOTREG workload as well.
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Figure 7-7: Transaction throughput (transaction per sec) as the percentage of read-only transactions
is varied

Transaction Length

We also ran an experiment in which the number of objects accessed by a transaction was varied

from 100 to 500 (the minimum and maximum accesses were 10% below and above these values

respectively, e.g., 450 to 550 accesses for the 500 access case). In order to run this experiment, we

doubled the size of each region by a factor of two, i.e., the private region at each server is 50 pages

instead of 25, the working set is 1750 pages, and so on. This change was needed because it was not

possible to run the HOTREG workload with more object accesses: the private region (25 pages)

at each preferred server in our default system was not large enough to allow 80% of accesses to

be private region accesses. The increased region size reduces data contention and the performance

difference between the 2/2/2 and 3/2/2 systems decreases to 3-5% instead of 7-10% in our original

system.

The results of this experiment for HOTREG and HICON are shown in Figure 7-8. Increasing

the number of objects accessed by a transaction results in higher contention [GR93] and hence more

aborts, e.g., the abort rate in HOTREG goes up from 3% to 60% in LAN environments for the 3/2/2

system. Furthermore, a longer transaction can abort at a later point during its execution and a client

has to read/write more objects to rerun the transaction to the same point in the new run. Thus, the

performance difference between the 2/2/2 and 3/2/2 systems increases from 2% with 100 object

accesses to 16% at 500 object accesses for HOTREG; like previous experiments, the increase in

transaction execution time is due to the extra time spent by a client performing wasted fetches. This

result is in line with our arguments given earlier, i.e., increased abort costs along with higher abort

rates result in a performance degradation of the 3/2/2 system.
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Figure 7-8: Variation in number of object accesses per transaction

Local Work at Clients

To better understand the effect of higher abort costs, we ran another experiment in which a client

spends more CPU cycles on each object accessed in a transaction (the time to modify an object is

twice the time for reading an object). When a transaction aborts, the amount of work that has to be

redone is higher, i.e., abort costs are increased.

Figure 7-9 shows the variation of throughput as the work performed per object is increased; it

also shows the breakdown of a transaction’s execution time in the HICON and HOTREG workloads

for the 0% and 100% cases (we do not show the commit times since they are negligible compared

to the other components). In LAN environments, as the work cycles are increased, the transaction’s

execution time is dominated by the local work component (L) and local wasted work (
�
� ) constitutes

a large fraction of the total wasted work. Thus, the performance difference between the 2/2/2 and

the 3/2/2 systems is essentially due to
�
� as the CPU work per object is increased (see Figure 7-9).

In HOTREG, the abort rate (11-20%) is not sufficiently high to increase the performance difference

between the 2/2/2 and the 3/2/2 systems by a large amount. In HICON, a higher abort rate has more

significant impact and the throughput difference between the two systems increases.

An interesting phenomenon occurs when the client processor becomes the bottleneck. After this

point, the local work component becomes so dominant that the performance difference between the

2/2/2 and the 3/2/2 systems decreases or remains the same. Furthermore, the abort rate increases

before the client CPU becomes heavily utilized and then decreases after this point. The abort rate is

determined by the relative rate at which objects are modified to the rate at which their invalidations

become known to other clients. After the client CPU bottleneck point, information is propagated

relatively faster to clients: clients modify objects at the same rate but invalidations come relatively

faster to clients since more “I’m alive messages” are sent by servers (more timeouts at the servers).

Another interesting observation about both workloads in LANs environments is that with more
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Figure 7-9: Variation in the amount of work done for every object access (LANs)

time spent on local work, the network and disk utilizations are reduced and the time to perform a

fetch decreases. As a result, the total useful fetch time spent by a transaction ( � �
) reduces, e.g., in

Figure 7-9, the useful fetch time for the 500K cycles case is approximately 60% lower than the 25K

cycles case.

For WAN environments, the performance difference is largely unaffected until the CPU process-

ing costs become comparable with the work done by a transaction due to fetches. The performance

variations are similar to the LAN case after this point, i.e., HICON’s performance degradation

increases whereas the throughput difference does not vary much for HOTREG.

Clients per Cluster

We varied the number of clients per cluster from 10 to 60; the results are shown in Figure 7-10. For

HICON, increasing the number of clients raised the contention level substantially since we did not

change the size of the working set at the servers. As a result, the abort rate increased from 30%

to 240% causing more wasted fetches and the performance difference increased from 4% to 18%.

In HOTREG, we added a private region for every client and the contention level did not change

substantially. The performance degradation of the 3/2/2 system relative to the 2/2/2 system varied

between 7% and 10%.

Client Caches

To understand the impact of client cache sizes, we varied the size of the client cache from 150 to

3500 pages. As the cache size increases, capacity misses decrease but most of these are replaced by

conflict misses in HICON and HOTREG. Thus, there is a small decrease in the number of fetches

as the cache size is increased and, more importantly, the reduction in fetches is similar for the 2/2/2

and 3/2/2 systems. As a result, the performance difference between these systems remains the same

across a range of client cache sizes.
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Figure 7-10: Throughput changes with variation in number of clients per cluster

Processor Speeds

We also varied the processor speeds and observed that the change in the performance difference

between the 3/2/2 and 2/2/2 systems was not significant for client speeds beyond 300 MIPS (recall

that our default system uses a client CPU speed of 600 MIPS). For a 200 MIPS server processor

(100 MIPS client processor), we observed that the performance difference was higher (13% instead

of 9%) in LAN environments for the HICON workload. The reason is that the server CPU becomes

heavily utilized (due to network message handling) and hence there is an increase in the time to

fetch a page or commit a transaction. Thus, apart from the increase in the wasted fetch time ( � � ),

the useful fetch time ( � � ) increases as well and results in a higher performance degradation.

Network Variations

We varied the network parameters in two ways. We changed the extra router delays from 0 to 20

msec in LANs and from 40 to 300 msec in WANs; we also varied the network bandwidth allocated

for each cluster. With extra router delays, a transaction spends more time in the network resulting in

a lower load on resources such as the disk in HOTREG and the network queue in HICON. However,

since these resources were utilized to a similar degree in the 2/2/2 and the 3/2/2 systems, reduced

utilization helped both systems in a similar manner. Thus, variations in network delays did not

change the performance difference significantly.

For similar reasons, variations in network bandwidth did not change the performance difference

between the two systems. The utilization of some resources (e.g., disk) may increase at higher

bandwidths due to faster communication but the increase is similar for both systems. Furthermore,

for workloads such as HICON in which the network is the bottleneck, a faster network helps both

systems. Hence, the relative performance remains the same with an increase or decrease in network

bandwidth.
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7.3.3 Cost of PL-2+ for Update Transactions

To evaluate the cost of PL-2+ for update transactions, we ran experiments with the 2+/2/2 system

and compared them with the 2/2/2 and 3/2/2 systems. We observed that the cost of the 2+/2/2 system

is similar to that of the 3/2/2 system. Since PL-2+ offers weaker guarantees than PL-3 (PL-2+ can

result in inconsistent updates to the database), it is not worthwhile to support PL-2+ for update

transactions; the 3/2/2 system should be used instead.

7.4 Cost of Intermediate Isolation Levels

In this section, we evaluate the cost of providing EPL-2+ and PL-2+ using our multistamp-based

mechanisms. To evaluate the cost of providing PL-2+ to read-only transactions, we compare the

performance of the 3/2/2 and 3/2+/2 systems. To determine the overheads of EPL-2+, we compare

the 3/2+/2 system with the 3/2+/2+ system. We also evaluate the cost of EPL-2+ by comparing the

performance of CLOCC (3/3/2) and the 3/3/2+ system; the 3/3/2+ system provides strong guarantees

(serializability) to all committed transactions and makes it easier for an application programmer to

reason about the code (since the transaction always observes a consistent database state).

The results show that cost of providing PL-2+ in the case of LOWCON are negligible; for

HICON and HOTSPOT, the 3/2+/2 system has less than 10% throughput degradation compared

to the 3/2/2 system. Our results also show that the cost of multistamps and consistency stalls is

low, i.e., it is not extensive to provide strong consistency guarantees such as EPL-2+ or EPL-3U to

executing transactions.

7.4.1 Overheads of PL-2+ and EPL-2+

Figure 7-11 shows the system throughput and performance loss of different systems compared to

the 3/2/2 system. Similar to the results shown in the last section for serializability, the performance

penalty of providing PL-2+ relative to PL-2 in LOWCON is negligible. The transaction breakdown

graph in Figure 7-4 shows that the extra work due to wasted fetches is negligible in the 3/2+/2 and

3/2+/2+ systems for LOWCON.

For HICON and HOTREG, providing PL-2+ to read-only transactions (3/2+/2 system) results

in a significant increase in the number of data conflicts. At PL-2, read-only transactions never abort

whereas they can be aborted at PL-2+. In LAN environments, the abort rate for HOTREG increases

from 20% to 32% whereas for HICON, it increases from 105% to 174%; the rise is primarily due to

the aborts of read-only transactions. These extra aborts and a 20% restart change probability cause

more fetches and hence result in a throughput drop from the 3/2/2 system to the 3/2+/2 system.

Figure 7-4 shows that wasted fetches account for the increase in transaction latency for the 3/2+/2

system.

Apart from extra aborts, providing PL-2+ has additional costs due to multistamp manipulation
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System LAN environment WAN environment
LOWCON HOTREG HICON LOWCON HOTREG HICON

3/2/2 7344 3647 1355 352.9 325.1 71.4
3/2+/2 7177 (2 %) 3308 (9 %) 1243 (8 %) 346.3 (2 %) 304.4 (6 %) 65.5 (8 %)
3/2+/2+ 7173 (2 %) 3335 (9 %) 1243 (8 %) 344.1 (2 %) 301.3 (7 %) 64.8 (9 %)

3/3/2 7020 (4 %) 3304 (9 %) 1227 (9 %) 307.6 (13%) 276.7 (15%) 62.9 (12%)
3/3/2+ 7072 (4 %) 3352 (8 %) 1231 (9 %) 310.8 (12%) 271.1 (16%) 62.2 (13%)

Figure 7-11: System throughput (transactions per sec) and performance penalty (relative to the
3/2/2 system) for PL-2+ and EPL-2+.

and consistency stalls when read-only transactions commit. Our multistamp truncation technique

ensures that the multistamp size is less than 100 bytes; hence, the cost of processing and propagating

them on the network is low. Furthermore, there are few consistency stalls since a client is usually up-

to-date with respect to all participants when a read-only transaction commits; during a transaction’s

execution, the client performs some fetches from different servers and this enables the client to

become reasonably up-to-date with respect to those servers, e.g., there are an approximately 4

fetches per transaction in HOTREG. Thus, we observed that fewer than 3% read-only transactions

require communication with servers at commit time.

The 3/2+/2 system has similar or better performance than the 3/3/2 system because the client

is able to avoid a commit message roundtrip for read-only transactions in these systems whereas

CLOCC requires this communication. Figure 7-4 shows that the extra overheads due to consistency

stalls for committing read-only transactions is negligible, i.e., the useful commit time (
� �

) is similar

in the 3/2/2 and 3/2+/2 systems.

Varying Percentage of Read-only Transactions

Since the extra cost in the 3/2+/2 system is imposed by aborts of read-only transactions, we evaluated

the sensitivity of the system throughput with respect to the percentage of read-only transactions in

the workload.

When there are no read-only transactions, both systems are identical because all update trans-

actions are provided the same guarantees. With a higher percentage of read-only transactions in

the workload mix, contention drops significantly; as a result, there are fewer conflict misses at the

clients and the system throughput increases. Furthermore, a lower abort rate results in fewer wasted

fetches (due to the 20% restart change probability). Thus, lower contention tends to reduce the

performance difference between the 3/2+/2 and 3/2/2 systems.

However, a second opposing factor causes an increase in the throughput difference. As the

percentage of read-only transactions is increased, a larger percentage of transactions that abort in
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Figure 7-12: Cost of PL-2+ for read-only transactions

the 3/2+/2 system are read-only. Since read-only transactions never abort in the 3/2/2 system, the

throughput difference between the two systems tends to increase due to this factor.

The throughput variation is shown in Figure 7-12. At 0% read-only transactions, there is no

throughput difference. As the percentage of read-only transactions is increased, the second factor

dominates and increases the performance difference between the systems. However, beyond a

certain percentage of read-only transactions (e.g., 50% for HICON), the contention is reduced

sufficiently and the throughput difference decreases, i.e., the first factor dominates.

Cost of EPL-2+

The difference between the 3/2+/2+ and 3/2+/2 systems in Figure 7-11 shows the cost of providing

EPL-2+ to transactions as they execute; the performance difference between the 3/3/2+ and 3/3/2

systems also evaluates the cost of EPL-2+. In both cases, we see that the performance difference is

negligible. As stated above, the multistamp processing overheads are low in our implementation.

Thus, the extra cost is only due to consistency stalls. The 3/2+/2+ system can have more stalls

than the 3/2+/2 system since the former system provides stronger guarantees to transactions as they

run; in the 3/2+/2 system, a read-only transaction can stall only at its commit point whereas in

the 3/2+/2+ system, any transaction can stall during its execution. We measured the overhead of

invalidation-request messages terms of the stall rate, i.e., the relative ratio of these messages to the

number of fetches in this system. We observed that the stall rate is low for the 3/2+/2+ system and

hence it has a negligible impact on performance, e.g., in the worst case, the stall rate was 2.5% (for

HOTREG in a WAN environment). In Section 7.5, we present an analysis on how the stall rate

changes with a variation of different system parameters.

A consistency stall penalizes performance in a LAN environment less than a WAN environment

since the message latency is much lower in LANs. In fact, in such environments, stalls can

sometimes be beneficial since they force a client to get invalidation information slightly early, i.e.,

consistency stalls can keep a client cache even more up-to-date and hence help the client to abort
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early or avoid some aborts. This benefit is lost in WAN environments where a message roundtrip

slows down a transaction substantially.

7.4.2 Overheads of PL-3U, EPL-3U and EPL-3

We now discuss the performance penalties of providing PL-3U and EPL-3U guarantees. Figure 7-13

shows the throughput of various systems that provide PL-3U and EPL-3U guarantees. As before,

we have shown the throughput values relative to the 3/2/2 system.

System LAN environment WAN environment
LOWCON HOTREG HICON LOWCON HOTREG HICON

3/2/2 7344 3647 1355 352.9 325.1 71.4
3/2+/2 7177 (2 %) 3308 (9 %) 1243 (8 %) 346.3 (2 %) 304.4 (6 %) 65.5 (8 %)
3/2+/2+ 7173 (2 %) 3335 (9 %) 1243 (8 %) 344.1 (2 %) 301.3 (7 %) 64.8 (9 %)

3/3/2 7020 (4 %) 3304 (9 %) 1227 (9 %) 307.6 (13%) 276.7 (15%) 62.9 (12%)
3/3/2+ 7072 (4 %) 3352 (8 %) 1231 (9 %) 310.8 (12%) 271.1 (16%) 62.2 (13%)

3/3U/2 7204 (2 %) 3288 (10 %) 1236 (9 %) 346.6 (2 %) 301.9 (7 %) 65.3 (9 %)
3/3U/3U 7146 (3 %) 3367 (8 %) 1243 (8 %) 342.4 (3 %) 296.0 (9 %) 64.3 (10 %)
3/3/3 7059 (4 %) 3336 (9 %) 1229 (9 %) 299.5 (15 %) 257.3 (21 %) 61.1 (14 %)

Figure 7-13: System throughput (transactions per sec) and performance penalty (relative to the
3/2/2 system) for different isolation guarantees.

The figure shows that the cost of providing PL-3U to read-only transactions is similar to the cost

of providing PL-2+ for these transactions (compare the 3/2+/2 and 3/3U/2 systems). Similarly, the

performance of the 3/3U/3U and 3/2+/2+ systems is similar showing that the extra cost of EPL-3U

over EPL-2+ is low.

Level PL-3U provides stronger guarantees than PL-2+ since PL-3U captures conflicts due to

anti-dependencies whereas PL-2+ does not. Capturing constraints due to anti-dependencies results

in larger multistamps and hence more truncation. Thus, more read-only transactions can stall at

commit time than with PL-2+. However, our results show that these extra stalls are few; in the

worst case (HOTREG in WANs), 4% read-only transactions stalled in the 3/3U/2 system instead of

2.3% in the 3/2+/2 system. Again, as for PL-2+, it is usually the case that a client is up-to-date with

respect to its participants when the commit point is reached.

The performance of the 3/3U/2 and the 3/3U/3U systems is comparable to CLOCC in LAN en-

vironments; in WAN environments, these systems perform better than CLOCC because they avoid a

commit roundtrip message for read-only transactions in most cases. Thus, an application program-

mer may choose PL-3U instead of PL-3 for read-only transactions to achieve better performance;

since PL-3U is very close to PL-3, the loss in ease of programming with PL-3U is small.

For executing transactions, we observed that the cost of providing EPL-3U is not high relative

162



to EPL-2+. Even though there are more consistency stalls in the 3/3U/3U system than the 3/2+/2+

case, the number of stalls are still low enough so that system throughput is not significantly affected.

In Section 7.5, we compare the stall rates of the 3/3U/3U and 3/2+/2+ systems.

In the PL-3U and EPL-3U implementations, a server may send extra multistamp-request mes-

sages at prepare time to other servers if it requires the final multistamp of a committed transaction

(see Section 5.4.1). In our simulation experiments, we observed that very few update transactions

required such messages in all workloads. In the worst case of HICON, 15% of update transactions

(i.e., less than 8% of the total number of transactions) required a message to be sent; for HOTREG,

less than 7% of update transaction needed this extra message. Compared to fetches and commits,

these messages represent a very small fraction of the total number of messages in the network.

Hence, the impact of the extra multistamp-request messages among servers is negligible.

For the sake of completeness, we have also shown the throughput of the 3/3/3 system in Figure 7-

13. In this system, all transactions are committed using CLOCC and a transaction’s multistamp s

computed by merging the multistamps of all transactions that it depends and anti-depends on; in

a PL-3U or EPL-3U system, only the multistamps of update transactions are merged. As a result,

multistamps are bigger, there is more truncation and hence more consistency stalls. However, these

stalls are still low enough to not adversely affect performance. In LAN environments, the extra

throughput degradation of this system is negligible compared to the 3/3U/3U system. In WANs, this

system has lower throughput than the 3/3U/3U system because an extra commit roundtrip message

for committing read-only transactions has a higher cost in these environments.

7.4.3 Comparing PL-2L with PL-2 and PL-2+

We used the HICON and HOTREG workloads to evaluate the costs of our PL-2L scheme. Recall

that this scheme also provides EPL-2L to running transactions, i.e., we ran the workloads with the

2L/2L/2L system. The performance of this system is similar to that of the 2/2/2 system. The only

extra cost of this system is the extra stalls that may occur during a transaction’s execution. As in the

EPL-2+ case, we observed that a client sends very few invalidation-request messages compared to

fetch requests and hence the performance degradation is low. Thus, PL-2L can be easily provided

to applications instead of PL-2 without a significant cost. Of course, a programmer has to be

careful about committing update transactions at a level below PL-3 since the database state can be

corrupted.

We also ran experiments using the 3/2L/2L system and observed that its performance is similar

to that of the 3/2/2 system. It performs about 10% better than the 3/2+/2 system because it never

aborts a read-only transaction whereas the latter system can.
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7.5 Stall Rate Analysis: Cost of Multistamps

For our multistamp-based implementations to be efficient, it is crucial that the consistency stall rate

be low. In this section, we explore the variation of the stall rate when different system parameters

such as multistamp size, percentage of multi-server transactions, etc., are changed. We use the

3/2+/2+ system since it stresses the system more than the 3/2+/2 system. We also analyze the

relative stall rates due to EPL-2+, EPL-3U and EPL-3 in this section.

A stall has a low performance impact on the system throughput compared to a fetch since

an invalidation-request message and its reply are small compared to fetch replies. However, it is

desirable to keep the stall rate as low as possible because extra messages increase client/server CPU

and network utilization. If any of these resources is already near saturation, a high stall rate can

impact performance in an adverse manner. Furthermore, other applications sharing the network

will be penalized if the number of consistency messages is high. Thus, even if the throughput

difference between two systems is negligible, it is still desirable to have relative few extra messages

due to consistency stalls. In this section, we use consistency stall rate as a performance measure for

comparing different workload/isolation combinations. Recall that the consistency stall rate is the

ratio of invalidation-request messages to the total number of fetches in the system.

In the client-merger scheme presented in Section 5.3.7, a client computes the read-dependency

part of a transaction’s multistamp before sending a commit message to the participant. We did

not use this scheme for computing a transaction’s multistamp in our simulator. Instead, we used

the following mechanism to generate multistamps at servers based on coarse-grained intersections.

When a transaction T � prepares, the server considers T � to depend on T� if T� has modified page P

and T � has read some object on P. Thus, our multistamps are more conservative than necessary and

hence give an upper bound on the number of stalls that can occur with the client-merger scheme.

We ran an experiment with fine-grained checks and observed stall rates that were 25% to 30%

lower. However, since the stall rate is already low for our stressful workloads, we used coarse-

grained checks for all our experiments. Note that validation of transactions is still performed using

fine-grained checks.

Here is a brief synopsis of our experimental results:

� Small multistamps of size less than 100 bytes are sufficient to maintain a low consistency

stall rates (less than 3-4%).

� The stall rate remains low for a large variety of system parameters. The impact of a stall is

very low in LAN environments; in WAN environments, this cost is higher. However, a low

stall rate in both environments results in a negligible impact on the overall performance.

� The number of stalls increases with contention but the stall rate does not necessarily increase.
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� EPL-3U and EPL-3 may increase the stall rate by a factor of 2 to 5 relative to EPL-2+ but the

stall rate value is still low (less than 7% in the worst case).

� Simple aging of multistamps is not sufficient for keeping them small; pruning is also needed.

� Increasing the percentage of multi-server transactions does not necessarily increase the stall

rate; a higher percentage of multi-server transactions helps in keeping a client more up-to-date

with respect to its connected servers, especially non-preferred servers.

� The stall rate does not change significantly when more clients are added to a cluster or when

more clusters are added to the system, i.e., the multistamp-based schemes scale well with the

size of the system.

We chose the HOTREG and HICON workloads since they stress the performance of the 3/2+/2+

system more than LOWCON. Our evaluation is pessimistic since we have chosen parameters that

are not favorable to the multistamp-based implementations. For example, we have chosen two

preferred servers instead of one (which is normally expected); as a result, a large number of client

stalls occur due to the fact that a client keeps “switching” between these two servers. Similarly, we

used a high percentage of multi-server transactions to increase the distribution of invalidations to

a large number of servers. Our workloads, especially HOTREG, have been designed to stress the

multistamp truncation mechanism. In HOTREG, 1 in 10 transactions modify the small hot-shared

region and there are 30 clients sharing 2 preferred servers; thus, at least one client is modifying

the hot region at any given time. Due to contention on this hot-shared region, a large number of

invalidations are generated resulting in larger multistamps and hence more truncation. In realistic

environments with less stressful conditions, we expect stall rates to be lower than the stall rates

shown for HICON and HOTREG.

7.5.1 Consistency Stalls and Contention

The number of stalls is directly related to contention in the workload. Let us consider the case

when a client C observes a high number of stalls. Suppose that C stalls with respect to a server

S. Since (piggybacked) invalidation messages keep client caches almost up-to-date, it must be the

case that C has fetched object x that was modified by a recently-committed transaction T � and T �

must have generated invalidations for client C at server S. If transactions reads the modifications of

recently-committed transactions close in time, the workload must have high contention (at least at

the page-level since servers maintain page-level cache directories).

The above argument holds in the other direction as well, i.e., more contention leads to more

stalls. Due to high contention, a client C can read an object x that was recently modified by another

transaction T� and stall if T� ’s commit generated an invalidation for C at some other server (C may

not be recent enough with respect to that server). Contention also leads to more stalls for another
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reason. As contention increases, each transaction depends/anti-depends on more transactions and

hence multistamps become bigger. This leads to more truncation, a higher multistamp threshold,

and hence a higher number of stalls.

It is important to understand that a large number of stalls does not necessarily imply a high stall

rate. A high contention workload also has a large number of fetches due to conflict misses. Thus, in

the HICON workload, we observed that the stall rate was low even though the number of stalls was

high. For other workloads, we observed that there are fewer stalls due to lower contention. Thus,

the stall rate is low across all workloads.

A client C stalls when it depends on a multi-server transaction and C is not up-to-date with

respect to one of the servers being accessed in C’s current transaction. A multi-server transaction

can stall at two points: when it accesses a server for the first time and when it performs a fetch; we

call these start stalls and running stalls, respectively. However, a single-server transaction can stall

only when it starts; it cannot stall after it performs a fetch since the multistamp constraints with

respect to other servers are irrelevant for this transaction.

7.5.2 EPL-2+ Stall Rate

Figure 7-14 shows the consistency stall rate of the 3/2+/2+ and 3/3/2+ systems for different work-

loads. The stall rate is similar for both systems since they have a similar caching behavior; hence,

we will just consider the 3/2+/2+ system for our discussion.

System LAN environment WAN environment
LOWCON HOTREG HICON LOWCON HOTREG HICON

3/2+/2+ 0.5% 1.9% 1.6% 0.5% 2.5% 1.8%
3/3/2+ 0.5% 1.9% 1.6% 0.5% 2.4% 1.8%

Figure 7-14: Consistency stall rate for EPL-2+

The figure shows that the stall rate is very low for all workloads in LAN and WAN environments.

For low contention workloads such as LOWCON, the stall rate is negligible because transactions

rarely depend on recently-committed transactions (due to low contention on the shared region).

For a high contention workload such as HICON, the number of stalls is much higher than

HOTREG (17500 stalls occur in our experimental setup for HICON as opposed to 3900 for

HOTREG). However, HICON also suffers from a large number of conflict misses; as a result,

the number of stalls relative to the number of fetches (approximately 23 per transaction) is low. In

the HOTREG workload, the small hot-shared region at a server results in a high conflict rate causing

dependencies on recently-committed transactions; most of the invalidations in this workload are

due to this region. Since the hot-shared region has higher contention than the shared region of

LOWCON and most of the hot-shared region can be cached at clients, the stall rate for HOTREG is
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Figure 7-15: Consistency stall rate for EPL-2+, EPL-3U or EPL-3.

higher than that for LOWCON. However, the conflict rate in HOTREG is not as high as the HICON

workload since only 10% of the accesses go to this region and it is modified by only 1 in every ten

transactions. Thus, a transaction has significantly fewer fetches (approximately 4) resulting in a

stall rate similar to HICON. Of course, the stall rate in HOTREG is still very low (below 3%).

7.5.3 Stall Rate Comparison for EPL-2+, EPL-3U and EPL-3

Figure 7-15 presents the stall rates for EPL-2+, EPL-3U and EPL-3; above the EPL-2+ stall

rate, we show the extra stalls for EPL-3U and EPL-3. We compared the 3/2+/2+, 3/3U/3U and

3/3/3 systems for our experiments; except for the extra commit message in the 3/3/3 system for

read-only transactions, these systems had a similar performance in terms of abort rate, fetches,

etc. As expected, EPL-3U has a higher rate than EPL-2+ since it captures anti-dependencies as

well as dependencies; the number of transactions whose multistamp is merged into a committing

transaction’s multistamp doubles for HOTREG and LOWCON. Thus, the multistamp size increases

and more truncation takes place, resulting in more stalls. In the case of EPL-3, a transaction T � ’s

multistamp also contains multistamps of read-only transactions that T � depends or anti-depends

on. For example, in HOTREF and LOWCON, the number of transactions whose multistamps are

marged into a committing transaction’s multistamp is more than three times than the corresponding

number for the EPL-2+ implementation; this results in EPL-3 having a higher stall rate compared

to EPL-2+ and EPL-3U.

7.5.4 Size of Multistamps

We varied the size of multistamps to understand the impact of aging and truncation on the stall

rate in the 3/2+/2+ system. Figure 7-16 shows the variation of the stall rate as the maximum size

for multistamps is increased from zero entries (just the threshold timestamp) to the size reached

when just aging is used. (A system that uses just the threshold timestamp is using Lamport

clocks [Lam78].) When multistamps are very small (e.g., 0 or 1 entries), most of the information
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Figure 7-16: Consistency stall rate as the size of multistamps is varied

is truncated resulting in a high stall rate. However, with a slight increase in multistamp size, the

information in the multistamps is sufficient to lower the stall rate significantly.

When multistamps are not truncated, they can grow to a size that equals the number of client-

server connections in the system, i.e., 960 entries. Figure 7-17 shows that aging reduces the size

of multistamps but still they are relatively big. Large multistamps increase network utilization and

server CPU overheads substantially resulting in a significant degradation of system performance.

For example, in the LOWCON workload for the LAN environment, where network is a bottleneck

resource, the throughput of the 3/2+/2+ system that uses only aging is 40% lower than the default

3/2+/2+ system (in which multistamps larger than 5 entries are truncated). These results demonstrate

that pruning is needed to ensure that the costs of multistamps is low. As shown in Figure 7-16,

pruning to a reasonable size does not increase stall rate significantly. Based on this observation, we

chose a multistamp of 5 entries for our default system; the size of 5-entry multistamps is less than

100 bytes.

Workload LAN environment WAN environment
LOWCON HOTREG HICON LOWCON HOTREG HICON

Entries 113 314 449 305 674 620
Size 970 bytes 2700 bytes 3800 bytes 2600 bytes 6100 bytes 5200 bytes

Figure 7-17: Size of multistamps when only aging is used

7.5.5 Increasing Multi-server Transactions

In another experiment, we varied the percentage of multi-server transactions in the system from

10% to 100% in the 3/2+/2+ system; note that our default setting of 20% already denotes a high

percentage of multi-server transactions. The stall rate variation is shown in Figure 7-18; we show

results for HICON and HOTREG since they are more stressful than LOWCON. There are two
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Figure 7-18: Stall rate for EPL-2+ as the percentage of multi-server transactions are increased.

effects that impact the stall rate. First, with a higher percentage of multi-server transactions, more

dependencies are generated across servers and more transactions become dependent on multi-server

transactions; this can result in bigger multistamps and more truncation. Furthermore, as discussed

earlier, a multi-server transaction can stall while it is executing (i.e., running stalls can occur)

whereas a single-server transaction can stall only at the beginning. Thus, a higher percentage of

multi-server transactions tends to increase the stall rate.

However, a second opposing effect tends to decrease the stall rate as multi-server transactions

are increased. A higher percentage of multi-server transactions results in more transactions that

involve non-preferred servers. Thus, clients communicate with these servers more often and become

more up-to-date with respect to them; as a result, they incur fewer start stalls due to these servers.

In our simulation setup, different variations in stall rate are observed in LAN and WAN environ-

ments for the HOTREG workload. In LANs, the relative ratio of the timeout period (1 second) to the

transaction execution time (approximately 100 msec) is lower than this ratio in WAN environments;

in WANs, the timeout period is 30 seconds and the transaction execution time is approximately 800

msec. Since a client can run more transactions involving non-preferred servers during its timeout

period in WANs than in LANs, the possibility of a start consistency stall at a non-preferred server is

higher in the WAN case. Thus, at a high percentage of multi-server transactions, the second factor

dominates (i.e., increased communication with non-preferred servers is relatively more helpful) and

decreases the stall rate for HOTREG in WAN environments.

For HICON, there are significantly more fetches per transaction than in HOTREG resulting in

a higher execution time; as a result, the relative ratio of the timeout period to transaction execution

time is lower. Hence, clients are mostly up-to-date with respect to non-preferred servers as well. In

this case, the first factor dominates and the stall rate increases with an increase in the percentage of

multi-server transactions.

IN LAN environments, the first factor dominates for both workloads and the stall rate increases
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as the percentage of multi-server transactions is increased.

This experiment shows that even with a high timeout period and a high percentage of multi-

server transactions, the stall rate is still low for stressful workloads such as HICON and HOTREG.

When the timeout period is high, the extra stalls are primarily due to non-preferred servers: if fewer

transactions at a client access non-preferred servers, there is a higher likelihood of a start stall with

respect to these servers. However, since only a small fraction of transactions access non-preferred

servers, the overall stall rate is still low. Thus, the timeout period need not be set very aggressively

for maintaining a low stall rate.

To further understand the impact of multi-server transactions, we ran an experiment where a

client had more than 2 non-preferred servers; we varied the number of non-preferred servers from 2

to 9, and allowed transactions to use all connected servers. In the worst case of HOTREG in WAN

environments, the stall rate increased from 2% to 11.8%. Additional experiments showed that this

effect was largely due to transactions that used large numbers of servers rather than the number

of connections per client. Of course, as discussed in Section 6.2.1, transactions that use 8 or 9

servers are highly unlikely in practice. Furthermore, even if transactions do access a large number

of servers, we do not expect a high update ratio of 20% as used in our experiments, i.e., we expect

the stall rate to be low even in such cases.

7.5.6 Scalability

To evaluate the scalability of our mechanisms, we varied the number of groups in the system

from 2 to 30, i.e., the largest system had 60 servers and 900 clients. The results for the 3/2+/2+

system are shown in Figure 7-19. In a larger system, multistamps can spread to more servers;

merging of entries at a higher number of servers can increase the multistamp size, and hence lead to

more truncation and more stalls. However, we observed that the stall rate decreases as more clusters

are added in the system. The reason is that dependencies across groups are propagated only via

non-preferred servers. With the increase in the number of groups, the likelihood of two clients in a
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Figure 7-19: Stall rate variation with the size of the system
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cluster sharing the same non-preferred servers decreases. Suppose that a client C’s transaction T �

modifies objects at servers X and Y. Suppose another client D reads T � ’s modifications at server X

and is informed about T � ’s multistamp. In a larger system, it is less likely in a larger system that C

and D also share server Y; as a result, T � ’s multistamp constraints will not result in D’s transaction

stalling due to server Y. Thus, this factor dominates over the truncation effect and the stall rate

decreases in a larger system.

To better understand the spread of dependency information across servers, we ran an experiment

in which one preferred server of each client was chosen in a different cluster than the client’s cluster

with varying probabilities; in this setup, dependency information is spread across clusters due to

preferred as well as non-preferred servers. As in the above experiment, there are two conflicting

factors that affect the stall rate as the probability of the second preferred server being in a different

cluster is increased. First, the stall rate can increase due to more spreading of information (larger

multistamps and more truncation). Second, the stall rate can decrease due to less sharing of the

same preferred servers by clients. In the default system, two clients in the same cluster share the

same preferred servers; with different topologies, the likelihood of two clients in any cluster sharing

the same preferred servers is lower. Depending on the workload and the network environment, we

observed that the stall rate remained the same or changed slightly. More importantly, the stall rate

remained below 3%.

We also varied the number of clients per cluster from 10 to 80; the results are shown in Figure 7-

20. With a larger number of clients, contention levels are higher and hence the stall rate is expected to

be higher. However, in LAN environments, the stall rate actually decreases. In LANs, the network

and the disk become more heavily utilized when more clients are added to a cluster resulting in an

increase in network delay due to congestion. Extra delays result in a higher transaction execution

time and the relative ratio of the timeout period (for “I’m alive” messages) to the transaction’s

execution time is reduced. Thus, more timeout messages are sent and clients become relatively
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Figure 7-20: Stall rate variation with number of clients per cluster
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more up-to-date with respect to servers; thus, the stall rate decreases with as more clients are added

to each cluster in the LAN case. In HICON, this effect does is not significant at 10 clients per

cluster since the network is not saturated. Thus, the stall rate increases initially in HICON; when

the network saturates, the stall rate decreases.

In WAN environments, the network delays do not change substantially as the more clients are

added to each cluster. Thus, the above effect is not observed in the WAN case except in HICON

when each cluster has 80 clients; in this case, the network is 96% utilized and the stall rate decreases

slightly due to extra timeout messages.

The above experiments show that our multistamp-based technique scales well as more clients

and servers are added to the system since larger multistamps are not needed to maintain a low stall

rate.
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Chapter 8

Conclusions

Data consistency is an important requirement in database systems since it allows application writers

and end users to make sense of the data in the presence of concurrency and failures. Although

strong consistency guarantees such as serializability provide a simple programming model in these

systems, they may result in increased resource consumption, communication delays or transaction

aborts. Furthermore, such overheads may be unnecessary for applications that do not need strong

consistency guarantees for correct operation. To address this problem, current databases allow

applications to trade off consistency for a potential gain in performance. Furthermore, an ANSI/ISO

standard has been established that defines different levels of consistency (called degrees of isolation);

this standard is supported by all commercial database systems. However, the current ANSI standard

is ambiguous and an approach suggested to fix this problem is overly restrictive since it disallows

efficient optimistic and multi-version mechanisms. Apart from the inadequacy of the existing

isolation definitions, there is also a need for high-performance weak consistency mechanisms in

distributed client-server systems.

This thesis has focused on the problem of providing data consistency efficiently to applications

in database systems. It addresses the limitations of the existing isolation definitions and also presents

efficient implementations of various weak consistency levels for client-server systems. It makes

contributions in three areas. First, it presents new specifications of the existing ANSI isolation

levels that allow a variety of concurrency control implementations. It also presents definitions

for other commercial levels using a uniform framework and proposes two new isolation levels

that provide useful consistency guarantees to applications. Second, it presents new and efficient

implementation techniques based on multipart timestamps for supporting different weak consistency

levels in distributed client-server systems. Finally, it presents the results of a simulation study that

evaluates the relative performance of different consistency implementations.
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8.1 Isolation Level Specifications

We have redefined the existing ANSI isolation levels to allow a wide range of concurrency control

implementations including optimism, locking and multi-version schemes in Chapter 3. Our isolation

levels are similar to the current ANSI levels and capture their essence thereby making it easy for

application writers to use them. Our isolation levels are named PL-1, PL-2, and PL-3, where PL

stands for portable level. Like the existing definitions, each isolation level in our specifications

captures different kinds of conflicts, e.g., PL-1 captures write-write conflicts, and serializability, or

PL-3, captures all types of conflicts. We have removed some of the constraints from the existing

definitions since they were applicable only to particular concurrency control schemes (locking) and

were overly restrictive for optimistic implementations.

An important property of our specifications is that they allow different guarantees to be pro-

vided to running and committed transactions. This flexibility is needed since efficient optimistic

implementations may provide strong guarantees such as serializability to committed transactions

but weak guarantees to transactions as they execute. The guarantees for committed transactions

ensure that the database integrity is not destroyed while guarantees for running transactions ensure

that database programmers can write application code with the assumption that the program will not

observe violated integrity constraints and behave in an unexpected manner, e.g., crash or display

erroneous data on a screen. Our specifications for both types of transactions are similar making it

easy for application programmers to use them.

Our specifications use a combination of conditions on serialization graphs and transaction

histories. Serialization graphs contain nodes for committed transactions and directed edges corre-

sponding to different types of read and write conflicts. They provide a simple way of capturing

multi-object constraints. Similar graphs have been used in the past for serializability semantics-

based correctness criteria and extended transaction models. Our approach is the first that applies

these techniques to defining ANSI and commercial isolation levels.

We have also specified a variety of guarantees that can be provided to predicate-based operations

at weak consistency levels in an implementation-independent manner; a database system can choose

the guarantees that it wants to support at each consistency level. Earlier definitions for these

operations were either incomplete, ambiguous, or specified in terms of an implementation such as

locking or in terms of a particular database language such as SQL.

In Chapter 4, we have presented implementation-independent definitions of various commercial

levels such as Cursor Stability, Snapshot Isolation, and Read Consistency; earlier definitions of

these levels were either informal or based on a locking implementation. Our specifications for these

levels are based on variations of the graphs used for defining the ANSI levels; different types of

nodes and edges are added to capture constraints relevant to each level.

We also presented the specifications of two new isolation levels, PL-2+ and PL-2L, that provide
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useful guarantees to application writers. Level PL-2+ is the weakest level that provides consistent

reads to transactions; it allows a transaction T � to commit only if T � has observed a causally-

consistent database state, i.e., if T � observes the updates of another transaction T � directly or

indirectly, it must not observe an older version of an object that was modified by T � . Level PL-2+

is also specified using our graph-based technique. An interesting feature of this level is that it

disallows all phenomena that Snapshot Isolation, an isolation level used in Oracle, was intended

to disallow. Furthermore, since PL-2+ is weaker than Snapshot Isolation, it has the potential of

being implemented more efficiently than Snapshot Isolation, especially in distributed client-server

systems. Thus, it may desirable to use PL-2+ over Snapshot Isolation.

Our second new level, PL-2L, captures useful properties of the PL-2 lock-based implementation

that uses short read-locks and long write-locks. Level PL-2L ensures that a transaction observes

a monotonically increasing prefix of the database history as it executes. This level can be used

for legacy applications that make monotonicity assumptions about the underlying lock-based con-

currency control implementation; when the concurrency control mechanism is changed to (say)

optimism, such applications can continue to work correctly using PL-2L. Level PL-2L has also been

defined using a variation on serialization graphs and is similar to Oracle’s Read Consistency.

8.2 Weak Consistency Mechanisms

In Chapter 5, we have presented optimistic schemes to support new and existing isolation levels in

distributed client-server systems. In these systems, servers store persistent objects and client cache

them on their machines for good performance. Our mechanisms are based on an optimistic scheme

called CLOCC, which has been shown to perform well in client-caching systems for a wide range of

workloads and system parameters.

We developed techniques based on multipart timestamps or multistamps for a variety of weak

isolation levels. These multistamps efficiently capture different types of conflicts that are relevant

to a particular isolation level and are used to warn clients about potential consistency violations.

Our protocols are designed to be lazy: a client C sends extra messages to a server only if C does

not have information as indicated by the multistamp. Being lazy helps in reducing extra messages

that are sent by clients since the relevant consistency information is likely to be present in the client

cache when it is needed. Furthermore, it allows servers to piggyback multistamp information on

existing messages thereby reducing the overheads of our protocols.

A negative aspect of multistamps is that they do not tend to scale with a large number of

clients and servers. We have developed a novel and simple technique called multistamp truncation

that keeps multistamps small by removing old consistency requirements and replacing them with

approximate information; there is little value in propagating old requirements since clients receive

consistency information piggybacked on other messages from servers that enables them to satisfy
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these requirements. An important aspect of our multistamps is that they contain real clock values

instead of logical clock values. This approach allows us to make time-based judgements and use

the time values to approximate information at various parts of the system, e.g., to determine which

tuples are old in a multistamp. For good performance (not correctness), we assume that clocks

are loosely synchronized within a few milliseconds or tens of milliseconds; this is a reasonable

assumption because protocols such as the Network Time Protocol are able to achieve such levels of

synchronization even across wide area networks.

The multistamp-based mechanisms are used for providing PL-2L, PL-2+ and PL-3U guarantees

to update and read-only transactions as they commit; they are also used for providing the strong

consistency guarantees such as EPL-2+ and EPL-3U to running transactions. Read-only transactions

form an important class of transactions and our PL-2+ (or PL-3U) implementation for committing

these transactions offers many important advantages over CLOCC while providing strong consistency

guarantees. First, the multistamp-based implementations reduce transaction latency since they

avoid sending a commit message to servers for committing read-only transactions whereas CLOCC

requires such communication for every read-only transaction. Second, the system becomes more

scalable since servers perform less work (they do not have to validate read-only transactions).

Update transactions have to be validated only against other update transactions thereby reducing the

server’s load even more. Finally, update transactions are not aborted due to read-only transactions.

Our mechanisms have been designed to impose low network, processor, and memory overheads.

Most of the consistency information is piggybacked on existing messages in the system; furthermore,

the increase in the size of network messages is low since multistamp truncation allows us to keep

small multistamps while adding only a few small messages to the network. Furthermore, the data

structures required to maintain multistamps impose low memory overheads at servers and clients.

8.3 Experimental Evaluation

This thesis also evaluates the relative performance of implementations of different isolation levels

in distributed client-server systems. Our results are applicable to a data-shipping architecture where

the transaction code is executed at client machines. To our knowledge, this is the first published

study that compares implementations of different isolation levels in such environments. We used a

simulator to compare various consistency schemes in LAN and WAN environments for a range of

system parameters using workloads with varying amounts of contention.

We were interested in answering three questions. First, what are the performance gains achieved

by executing update transactions at levels below serializability? This is an important issue because

committing update transactions at lower levels has a high productivity cost: a database programmer

must carefully analyze the application code and ensure that it does not corrupt the database state

when executed at a low isolation level. Second, how expensive is it to provide strong consistency
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guarantees to read-only transactions? Finally, what is the performance penalty of providing consis-

tent views to transactions while they are executing, i.e., what are the space and network overheads

imposed by multistamps and how effective is multistamp truncation?

We derived our multi-server workloads based on workloads used in earlier concurrency control

studies for single-server systems. Transactions in our studies access a few hundred objects and

clients can cache the accessed objects for the duration of a transaction. Our results show that

providing strong consistency guarantees to update, read-only, and running transactions are not

necessarily expensive. Our experiments revealed the following answers to the questions stated

above:

� The cost of providing stronger consistency guarantees including serializability to update

transactions is very low for low-contention workloads since the CPU and communication

overheads of CLOCC and the multistamp-based schemes are low for normal (i.e., successful)

transactions. This is an important result since many applications exhibit low-contention and

such workloads are one of the main environments recommended for using weaker isolation

levels.

Even for stressful workloads such as HOTREG and HICON, the cost of providing serializabil-

ity to update transactions is approximately 10%. As contention is increased, a large number

of transactions will abort in any optimistic scheme including CLOCC. However, in CLOCC, a

large increase in the abort rate does not result in a corresponding performance degradation

because CLOCC has low restart costs (e.g., undo logs at clients help in avoiding some fetches

when a transaction reruns) and invalidation messages prevent excessive wastage of work by

aborting a transaction early during its execution.

Our sensitivity analysis results show that the relative performance penalty of serializability is

higher compared to PL-2 for update transactions only if the workload has moderate to high

contention and the cost of restarting a transaction is high.

� The cost of providing serializability to read-only transactions compared to PL-2 is relatively

low (approximately 5%) for low-contention workloads in LAN environments. For medium to

high-contention workloads, more contention leads to higher performance degradation; how-

ever, the performance penalty is less than 10% relative to a system that provides serializability

only for update transactions.

In WAN environments, where message costs are higher, an extra message roundtrip for

committing read-only transactions in CLOCC has a higher performance penalty compared

to LANs. As a result, even for a workload such as LOWCON, CLOCC has a throughput

degradation of approximately 15% relative to a PL-2 system that commits transactions locally

at client machines; HOTREG and HICON have overheads of 10-15% in this case. To alleviate
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this problem, our multistamp-based techniques for PL-2+ and PL-3U can be used since they

avoid a commit message roundtrip for read-only transactions in most cases (more than 96%

of read-only transactions). Fewer commit message roundtrips for read-only transactions help

in improving the system throughput for all workloads. For example, the performance penalty

of providing PL-2+ or PL-3U to read-only transactions in LOWCON is approximately 2%

compared to a system that provides PL-2 to such transactions. Providing PL-2+ or PL-3U

instead of serializability to read-only transactions may be acceptable since these levels provide

strong consistency guarantees to such transactions; thus, it should still be relatively easy for

programmers to reason about the correctness of the application code.

� The cost of providing strong consistency guarantees such as EPL-2+ and EPL-3U to executing

transactions is low. Our experiments show that the multistamp-based implementations are

efficient and small multistamps (less than 100 bytes) result in very low stall rates for a wide

variation of system parameters. Since fewer than 3% of fetches result in a consistency stall

for a system that provides EPL-2+, the throughput impact of multistamps and consistency

stalls is negligible. Thus, with very low overheads, a database system can provide a strong

guarantee that an executing application code will never observe an inconsistent state of the

database.

8.4 Future Work

There are several directions in which this work can be extended. Our isolation conditions have been

specified in terms of reads and writes. Researchers have developed correctness criteria based on

semantics of operations [Lam76, GM83, Her90, WL85, SS84] rather than simple reads and writes.

Such conditions allow more concurrency and better performance while ensuring that an application

programmer has a formal model to reason about program correctness. Thus, it will be beneficial to

extend our isolation conditions for dealing with complex operations on abstract data types. It would

be important to ensure that the new semantic isolation levels be similar to our read/write-based

levels so that application programmers do not have to deal with a diverse set of definitions.

Another important issue is how the interactions of various isolation levels affect the database

state. Such an understanding of isolation level interactions is crucial for a program’s correctness.

Suppose that a transaction T � commits using PL-3 and T� commits using PL-2. To ensure that T �

observes a serializable state of the database, the application writer for T � must “know” that the

database is updated in a consistent manner. Thus, when a set of objects is read by a transaction, it is

difficult to determine the guarantees that are provided to these reads. This problem exists with the

current isolation definitions as well.

A possible approach to handle this problem is to label each object with an isolation level to

indicate that the object has never been directly or indirectly “affected” by a transaction below that
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level; the notion of affects is similar to the idea of dependencies and anti-dependencies. When a

transaction commits at (say) PL-2+, we can determine if it has read only those objects that have been

directly or indirectly affected by PL-2+ or higher update transactions. Such an approach was briefly

proposed in [GLPT76] but we are not aware of a full solution developed for that proposal. Labeling

of objects to control flow of information for privacy and secrecy reasons has been explored for many

years [DD77, Mye99]. It would be interesting to combine those ideas with our isolation definitions.

A problem with labeling objects with the minimum isolation level transaction that has ever modified

them is that objects may soon get labeled with very low isolation levels. To deal with this problem,

a mechanism needs to be provided that allows “lifting” of object isolation levels if applications have

extra knowledge about these objects and their read/update history. We can borrow ideas from the

information flow control domain since an analogous problem exists there when applications want

to release private data (i.e., declassify information) in a controlled manner. Techniques for safe

declassification have been proposed in the literature for addressing this problem [Mye99] and it

would be interesting to use similar ideas for lifting an object’s isolation level.

Our isolation definitions for committed transactions can be used in mobile systems as well.

However, they need to be extended to handle “tentatively committed” transactions in such systems.

In these systems, clients may be disconnected from the servers and may read/write data stored at its

machine or other clients’ machines. When a transaction is completes, it is tentatively committed at

its client’s machine [GKLS94, GBH
�

96]; when the client reconnects with a server, each tentatively

committed transaction is committed if it passes validation checks at the server. Treating these trans-

actions as running transactions can be unnecessarily restrictive. For example, EPL-2 specifications

for running transactions disallow reads from other running transactions. When a mobile client is

disconnected, it would like to observe its own updates and may even want to read the updates of

other nearby clients, i.e., running and tentatively committed transactions are allowed to read from

other tentatively committed transactions [TTP
�

95]. Thus, for mobile systems, we need to divide

the category of running transactions into two — transactions that have not reached the commit point

and transactions that are tentatively committed; our EPL definitions can be used for the former type

of transactions.

This thesis presents efficient and scalable optimistic mechanisms for data-shipping client-server

systems. It is unclear which techniques are the best for other system architectures. An important

direction of future research is to design and evaluate the performance of concurrency control

mechanisms for different types of environments. For example, in a pure function-shipping system,

our optimistic techniques may not be the most appropriate. Our schemes take advantage of the

client’s processing power and offload most of the work from servers to clients; for this reason, the

cost of aborts is not very high in our implementations. In pure function-shipping systems, the restart

costs can be much higher since an abort would slow down all clients rather than just the client whose

transaction aborted. However, optimism may be appropriate in systems that use a combination of
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data and function-shipping. For example, in a hybrid system where the client performs most of

the transaction’s work and short queries are executed at a server, our optimistic mechanisms may

perform well. Similarly, optimism may be a good approach for three-tier systems, in which servers

store persistent objects, clients run applications, and transactions are executed at shared “proxies”.

These are essentially hybrid systems in which proxies fetch data from the servers and functions are

shipped by the clients to the proxies. In such systems, optimism may be the appropriate concurrency

control mechanism for managing data among the proxies and the server. Locking may be the best

approach to manage the client cache relative to the proxies. In general, hybrid systems require more

investigation since a combination of concurrency control techniques may be appropriate for such

systems.

This thesis also shows how multistamps can be used capture different types of conflicts efficiently

in distributed client-server systems. It would be interesting to use the ideas presented in this thesis

for developing efficient consistency mechanisms for other environments such as replicated, mobile,

cooperative caching systems (where clients communicate directly with each other for servicing cache

misses), and even non-transactional systems. For example, in a replicated system, multistamps may

be used for maintaining weakly-consistent replicas at different consistency levels. Similarly, some

of the existing non-transactional systems that use multistamps for providing causality guarantees

can benefit from our idea of multistamp truncation.

This thesis has shown that the cost of providing serializability in data-shipping client-server

systems is not high. It is possible that serializability is inexpensive for some of the common

workloads in systems with a different architecture, e.g., pure function-shipping systems, hybrid

systems, and three-tier systems. We believe that more studies for evaluating isolation mechanisms

are needed since the productivity cost of programming at lower isolation levels can be significant.

Quantifying the overheads of serializability for different access patterns is valuable to programmers

since they can determine if any significant performance benefit can be achieved for their application

by running transactions at lower isolation levels. Such studies are crucial for system developers

as well: the performance results can provide insights into the overheads of strong consistency

mechanisms thereby allowing database implementors to optimize the system for better performance.
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Appendix A

Specifications of Intermediate Levels for
Executing Transactions

In Chapter 3, we discussed how different isolation levels for executing transactions can specified

similar to the approach used for committed transactions. For the sake of completeness, we now

give the specifications of intermediate levels for executing transactions. For all these levels, dirty

reads at runtime (phenomenon P1) are disallowed. We only provide guarantees to reads of an

executing transaction T � (recall from Section 3.5 that T � ’s predicate-based writes are treated as

predicate-based reads). As discussed in Chapter 3, if an executing transaction T � in history H is

provided level L during its execution, it must be provided a level at least as strong as L when it

commits. We also assume that committed transactions in history H are being provided with (at

least) level L guarantees. It is possible to consider systems in which execution-time guarantees are

stronger than commit-time guarantees. Consistency conditions for these systems can be developed

in a manner similar to the approach used for committed transactions in mixed systems (Section 3.3).

For simplicity, we only consider systems where the commit-time guarantees are at least as strong

the execution-time guarantees.

Isolation Level EPL-2+

Level EPL-2+ ensures that an executing transaction observes a consistent committed database state.

This level is specified using the Direct Transaction Graph or DTG presented in Section 3.5.3.

The DTG is specified for a history H and an executing transaction T � (for which isolation guarantees

are being provided) and is denoted by DTG(H, T � ). The DTG is exactly the same as DSG with

the following addition: it also contains a node for T � , and all edges corresponding to T � ’s reads.

EPL-2+ disallows P1 and E-single:

E-single: Single Anti-dependency Cycles at Runtime. A history H and an executing

transaction T � exhibit phenomenon E-single if DTG(H, T � ) contains a directed cycle

involving T � with exactly one anti-dependency edge.
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Disallowing phenomenon E-single is equivalent to the no-depend-misses property with respect to

transaction T � ’s reads, i.e., if T � depends on a transaction T� , T � does not miss the effects of T� .

This equivalence can be shown in manner similar to Theorem 2+ given in Section 4.1.1.

Isolation Level EPL-3U

Isolation level EPL-3U ensures that the reads of an executing transaction T � are serializable with all

update transactions that have committed.

This level disallows phenomena P1 and E-update (the function update-transactions(H) selects

only operations executed by update transactions in H):

E-update: Single Anti-Dependency Cycles with Update Transactions at Run-

time. A history H and an executing transaction T � exhibit phenomenon E-update if

DTG(update-transactions(H), T � ) contains a cycle involving T � that consists of depen-

dency edges and 1 or more anti-dependency edges.

Similar to the case for G-update, disallowing E-update is equivalent to the no-update-conflict-misses

property with respect to T � ’s reads. Recall that EPL-3 ensures that T � observes a serializable state

of the database. Isolation level EPL-3U provides lower guarantees than EPL-3 since it only ensures

that the observed state is serializable with respect to update transactions only, i.e., the addition of a

read-only transaction along with T � in the DTG may result in a cycle.

Isolation Level EPL-CS

Cursor Stability is an isolation level designed to disallow lost updates. Since this level provides

extra guarantees over PL-2 with respect to a transaction’s modifications and our execution-time

guarantees are provided for reads, we do not need to disallow any phenomenon other than P1 for

level EPL-CS.

Isolation Level EPL-2L

At level EPL-2L, a running transaction observes a monotonically increasing prefix of the committed

history. To define EPL-2L, we use a modified form of the USG called the Unfolded Transaction

Graph or UTG for a history H and an executing transaction T � . The graph UTG is the same as

USG except that the UTG only contains read nodes (and no write nodes) due to T � ; since T � ’s

predicate-based writes are considered as predicate-based reads, nodes and edges corresponding

to such “reads” are also added. We define a phenomenon, E-monotonic, that is analogous to

G-monotonic; T � executes at level EPL-2L if phenomena P1 and E-monotonic do not occur:
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E-monotonic: Monotonic Reads at Runtime. A history H and an executing transac-

tion T � exhibit phenomenon E-monotonic if there is a cycle in USG(H, T � ) containing

exactly one anti-dependency edge from a read node r � (x� ) (or r � (P: x� , � � � )) to some

transaction node T � (and any number of order or dependency edges).

Isolation Level EPL-SI

At level EPL-SI, an executing transaction observes a snapshot of the committed database state.

To define EPL-SI, we use a variation on the SSG called the Start-ordered Transaction Graph

or the STG. The STG is the same as the SSG with the following change: it also contains a node

for executing transaction T � , and all edges corresponding to T � ’s reads (and as in the DTG, we treat

predicate-based writes as predicate-based reads). Like level PL-SI, we define two phenomena that

are analogous to G-SIa and GSI-b:

E-SIa: Interference at Runtime. A history H and an executing transaction T � exhibit

interference E-SIa if STG(H,T � ) contains a read-dependency edge from T � to T � without

there also being a start-dependency edge from T � to T � .

E-SIb: Missed Effects at Runtime. A history H and transaction T � exhibits

phenomenon E-SIb if STG(H, T � ) contains a directed cycle involving T � with exactly

one anti-dependency edge.

Phenomenon E-SI consists of E-SIa and E-SIb; level EPL-SI disallows P1 and E-SI.

Isolation Level EPL-FCV

At level EPL-FCV, an executing transaction T � observes a consistent state of the database such that

all T � does not miss the effects of any transaction that committed before T � ’s start point. This level

disallows phenomena P1 and ESI-b.

Level Name Conditions

EPL-2 Committed Reads P1
EPL-CS Cursor Stability P1
EPL-2L Monotonic View P1, E-monotonic
EPL-MSR Monotonic Snapshot Reads P1, E-MSR
EPL-2+ Consistent View P1, E-single
EPL-FCV Forward Consistent View P1, E-SIb
EPL-SI Snapshot Isolation P1, E-SI
EPL-3U Update Serializability P1, E-update
EPL-3 Full Serializability P1, E2

Figure A-1: Intermediate isolation levels for running transactions
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Isolation Level EPL-MSR

At this level, an executing transaction T � ’s actions observe a monotonically increasing snapshot of

the committed state. We use a graph called the Start-ordered Unfolded Transaction Graph (SUTG)

that contains all committed transactions and read operations of transaction T � under consideration

(as in the UTG for EPL-2L, we add nodes for T � ’s predicate-based writes and treat them as predicate-

based reads). A phenomenon E-MSR that is similar to G-MSR can be defined on the SUTG and

level EPL-MSR as one that disallows P1 and E-MSR.

Figure A-1 summarizes the intermediate isolation levels for executing transactions.
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Appendix B

Optimistic Mechanisms for PL-2L,
Causality and PL-3

We now discuss some optimistic schemes that provide different consistency and causality guarantees

to executing and committed transactions in distributed client-server systems. In Section B.1, we

discuss how the PL-2+ scheme can modified to provide PL-2L and EPL-2L. Section B.2 shows

how different causality guarantees can be provided to clients; these schemes are also based on the

multistamp-constraint mechanism. We also present results that show the cost of providing different

levels of causality. Section B.3 presents a technique that allows clients to efficiently commit

read-only transactions with serializability guarantees.

B.1 Optimistic Schemes for Levels PL-2L and EPL-2L

The scheme for EPL-2L is exactly the same as the EPL-2+ technique, with consistency stalls as

described in Chapter 5, except that invalidations are handled as in PL-2, i.e., if the current transaction

T � receives an invalidation for an object x that it has modified, T � is aborted; if T � has simply read x,

it is not aborted. The reason is that EPL-2L simply requires that T � does not miss a transaction T � ’s

effects after it becomes dependent on T � ; it is acceptable for T � to have missed T� ’s effects earlier.

The above scheme validates T � ’s reads as it executes and provides EPL-2L. To provide PL-2L,

T � ’s writes need to be validate as well. For this purpose, servers perform the checks in Weak-CLOCC

at commit time.

In our PL-2L scheme, a read-only transaction T � can be committed immediately at the client

machine when it finishes execution. As in PL-2, such transactions are never aborted; invalidations

only abort a transaction if it has modified an obsolete object.

B.2 Causality Guarantees

Causality [Lam78] is a guarantee that clients may find useful. In this section, we discuss three levels

of causality — no causality, local causality and global causality, and present schemes that provide
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them to clients. These causality guarantees are independent of the consistency guarantees being

provided and can be supported during a transaction’s execution or at commit time.

Local causality guarantees are provided to a transaction T � executing at client C if the system

ensures that T � does not miss the effects of any transaction T � that ran at C before T � and all the

transactions that T� depends on. Local causality is useful for a transaction T � at client C since it

allows C to make decisions based on data observed in transactions that executed at C before T � . If

transaction T � misses the effects of T� or any transaction T� depends on, we say that no causality

guarantees are provided. Global causality is a property such that if a client C observes the effects of

transaction T� committed by some other client D, it also observes effects of all earlier transactions of

client D and the transactions they depended on. Global causality is the stronger than local causality.

Note that locking provides global causality to all uncommitted transactions running above (and

including) PL-2.

Although it may seem that not providing any causality guarantees is very weak, such guarantees

may not be needed for applications where a client’s “memory” is not important. For example,

if different users use a computer terminal in a public place to execute their queries, there is no

reason why a subsequent query needs to observe the effects of a transaction that was committed

earlier by the client. Of course, local causality can be useful in many cases. For example, suppose

an employee record E (whose manager is M) is added to an employee database and a manager

database. Suppose that a client reads E’s record and then runs another transaction asking for all

employees working for M; we would like to ensure that E is present in the returned result. Local

causality would be required to guarantee this result. Global causality is needed when a client wants

its transactions to be observed in the order it has committed them. For example, consider a stock

reporting system where a client C modifies the stock price of a company A and in its next transaction

closes the market. If another client D observes the market to be closed and reads the price of A’s

stock, we would like to ensure that D observes the final stock value; thus, global causality is needed

in this application.

We now discuss how different levels of causality can be supported while transactions are

executing; similar schemes can be used for committed transactions. We build on the scheme that

provides EPL-2+ to running transactions.

Local Causality

Local causality is already provided by our EPL-2L and higher isolation degree schemes for running

transactions since the REQ array at a client keeps track of the requirements imposed by all previously

committed transactions and the transactions they depended on. For isolation level EPL-2, here is a

modification to the scheme.

A client C maintains an array called PREVREQ array keeps track of the requirements imposed

by all transactions that have previously committed at C. As before, the REQ array keeps track
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of the requirements placed by all transactions including the current transaction. Instead of using

REQ, the PREVREQ array is used to perform the read-dependency checks (at commit time or while

running, depending on when the causality guarantees are needed). It is initialized using the REQ

array at the beginning of a transaction but not updated while the transaction is executing, whereas

the REQ is updated as before. The PREVREQ array ensures that a transaction executing at client

C does not miss the effects of any transaction T � that previously ran at C and the transactions that

T � depends on. However, since this array does not include the constraints introduced by the current

transaction, the client is not stalled because of the reads it makes in the current transaction (recall

that local causality simply requires the transaction to observe the effects of all transactions that have

previously committed at C and the transactions they depend on).

No Causality

Our mechanism for EPL-2 does not provide any causality guarantees. For schemes that provide

EPL-2L or a higher isolation level, the REQ array at a client keeps track of the multistamp constraints

imposed by all transactions that have executed at the client; we need to modify these mechanisms

so that REQ only contains constraints imposed by the current transaction’s reads and not the

reads/writes of previous transactions, i.e., the REQ array should be used just for providing the

consistency guarantees requested by client C.

The client maintains a table SSTAMP that maps servers to multistamps; every time the client

receives a fetch reply from server X, it merges the multistamp in the message into SSTAMP[X]. The

array REQ is empty when the transaction starts. The first time the transaction accesses an object

from server X, it uses SSTAMP[X] to update entries for other servers used by the transaction in

REQ and then sends invalidation requests to these other servers if necessary. After commit, REQ

is merged into SSTAMP[X] for all servers X accessed by the current transaction T � (to capture

T � ’s dependencies). In this scheme, at any given point, REQ just stores the requirement imposed

by the current transaction; it does not take into account the requirements imposed by a previously

committed transaction T� . Thus, T � can miss the effects of some transactions that T � depended on.

However, note that T � cannot miss T� ’s effects even in this scheme; if T � ’s client uncaches an object

x that was modified by T� and fetches it again from a server X, X will return the latest version of x

or block T � ’s fetch if T� is still prepared at X.

Global Causality

Global causality is supported by modifying the EPL-2+ scheme in the following way. A client

C keeps track of a multistamp, ALLSTAMP that is obtained by merging the multistamps of all

earlier transactions that have been committed by C. When a transaction T � from C commits, the

coordinator sends T � ’s final multistamp to C in the commit reply; C merges the multistamp into
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Figure B-1: Global causality can result in extra consistency stalls.

ALLSTAMP 1. At the end of its next transaction T � , client C sends ALLSTAMP to T� ’s coordinator

and the server merges it into T� ’s multistamp (i.e., ALLSTAMP is used to “seed” T � ’s multistamp);

if any transaction T � reads T� ’s effects, T � cannot miss the updates of any of the earlier transactions

committed by client C. As a result, global causality will be provided to T � .

Figure B-1 shows a case where client C commits a transaction T � that has modified object x

on page P. In the case of global causality, we merge C’s ALLSTAMP into P’s multistamp; for

local causality, this merge is not performed. Since P’s multistamp has more constraints for global

causality, when client D fetches page P from server X, REQ[Y] increases beyond LATEST[Y]

causing a consistency stall (assuming D is accessing server Y in the current transaction). In the

case of local causality, client D’s LATEST array already meets the requirements imposed by P’s

multistamp; hence, there is no consistency stall.

Performance Cost of Different Causality Guarantees

In this section, we evaluate the cost of providing different levels of causality to clients using the

3/2+/2+ system (the notation for naming systems has been presented in Section 7.1). We have

chosen the 3/2+/2+ system since it is the cheapest reasonable system that provides strong isolation

guarantees to all types of transactions. We compare the costs of providing different levels of

1Note that ALLSTAMP is different from CURRUSTAMP that was presented in Section 5.4.1 since the latter just
contains the multistamps of the update transactions that were committed by a client.
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Figure B-2: Breakdown of stall rate for local and global causality.

causality to running transactions for the 3/2+/2+ system; the costs are lower for providing these

guarantees at commit time. Note that CLOCC and the 3/3/2+ system provide stronger consistency

guarantees than local causality to committed transactions. However, they do not necessarily provide

causality guarantees to transactions as they run. We evaluated the cost of providing different

causality guarantees to running transactions in the 3/3/2+ system; the results are similar to those for

the 3/2+/2+ system.

We observed that the impact of throughput is negligible for providing different levels of causality.

Thus, we perform a stall rate analysis to understand the costs of local and global causality.

The stall rates for different levels of causality are given in Figure B-2. The stall rate goes up by

a factor of two to three when support for local causality is added to the 3/2+/2+ (or 3/3/2+) systems,

and it increases further when support for global causality is added (by less than a factor of two). We

now discuss why the stall rate increases in systems with local and global causality.

In a system without local or global causality guarantees, single-server transactions cannot stall,

and even in a multi-server transaction, a client’s requirements are due only to the servers used in

that transaction. Thus, the following situation must occur for a client to stall. Client C fetches page

P at server S in a multi-server transaction that involves another server R as well. Furthermore, page

P has been modified recently by a multi-server transaction that also involved server R and caused an

invalidation for C. The likelihood of a multi-server transaction depending on another “temporally

close” multi-server transaction is relatively low because there are 80% single-server transactions in

the workload (changes in the stall rate as the percentage of multi-server transactions is varied has

been described in Section 7.5.5).

When local causality is supported, there are more stalls since a transaction can stall due to

requirements generated in an earlier transaction. For example, without any causality guarantees,

single-server transactions never stall but now they can; we observed that with local causality about

half the total stalls in HICON and HOTREG were stalls in a single-server transaction. Furthermore,
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a client C’s requirements are no longer due to the servers being accessed in C’s current transaction

but are due to all servers that C has accessed in the past. Since the client’s invalidation requirements

are higher than in a system without local causality, the stall rate is higher.

The default implementations used in Chapter 7 provide local causality to running or committed

transactions. In systems where EPL-2+ or EPL-3U is being provided, the default implementation

provides local causality to running transactions; for systems in which PL-2+ or PL-3U is being

provided, it guarantees local causality for committed transactions.

Global causality further increases the stall rate because clients now act as “propagators” of

multistamps. Without global causality, multistamp information is propagated across servers only

through multi-server transactions. Now when a client “switches” servers, it propagates the multi-

stamps generated due to its previous commits to the new servers. Thus, faster propagation causes

bigger multistamps resulting in more pruning and hence, a higher number of stalls.

Of course, despite the increase in stalls, the stall rate is still very low and the performance

degradation due to local or global causality is minimal. Thus, even global causality can be supported

at a low performance cost.

B.3 Efficient Serializability for Read-only Transactions

We now discuss a simple extension to CLOCC that allows read-only transactions to be committed at

client machines with PL-3 guarantees. In a single-server system using CLOCC (i.e., all data is stored

on one server), a read-only transaction T
�

can always be committed by a client locally because

invalidation messages are generated in a transaction-consistent manner and the arrival order at the

server can be used as the serialization order (no timestamps are needed). The PL-3U scheme also

uses arrival order, but without coordinating this order across servers. As a result, it does not provide

serializability: two read-only transactions T
�

and T � that commit at client machines are not ordered

with respect to each other. CLOCC avoids this problem by ordering all transactions based on their

timestamp value. We now present a scheme for committing read-only transactions locally (at client

machines) that also provides serializability based on the timestamp order.

For a read-only transaction T � , suppose that T � .maxread is the highest timestamp of all the

transactions whose effects have been observed by T � . Transaction T � ’s client can commit T � locally

if it can determine that T � has observed the effects of all conflicting transactions that have (or

can have) a timestamp less than T � .maxread; T � can be serialized at a time slightly higher than

T � .maxread.

To provide serializability without communicating with the servers, we take advantage of the

fact that CLOCC maintains a watermark timestamp (see Section 5.1.1); any transaction that tries

to validate at a server below the watermark is aborted. To commit T � locally, its client ensures

two conditions. First, it checks that it has received the invalidations of all transactions that have
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committed at all servers accessed by T � with a timestamp less than T � .maxread. Second, it ensures

that T � .maxread is below the watermark of the accessed servers. These tests are called the read-only

checks. The first condition guarantees that T � has not missed the effects of any transaction that has

committed till now with a timestamp less than T � .maxread and the second condition ensures that

no transaction will commit in the future below T � .maxread at the relevant servers. Thus, T � can be

serialized at a time slightly higher than T � .maxread. If the read-only checks fail at T � client, it must

communicate with the servers to validate T � .

To implement the above strategy, a client maintains an array WMARK, where WMARK[X]

stores the last known watermark from server X. In each invalidation message, the server sends

its current watermark as well (if there is a prepared transaction below the watermark, the server

includes its invalidations as well). For each page P, a server maintains a time P.modts that is the

maximum timestamp of the transactions that have modified P; this value is also sent to the client in

a fetch reply. At the end of a read-only transaction T � , its client computes T � .maxread by taking

the maximum value of P.modts, for all pages P accessed by T � . Optimizations similar to the ones

designed for the PSTAMP table can be used such that P.modts is only maintained for recently

modified pages at the client and the server.

In this scheme, the likelihood that the read-only check fails for transaction T � is dependent on

the relative values of T � .maxread and the watermarks of different servers accessed by T � . A low

value of server watermarks and a high value of T � .maxread can cause the read-only check to fail.

As discussed in Section 5.1.1, the watermark is set at least
�

below a server’s current time, where
�

is the network delay. Thus, when
�

is high (e.g., in a WAN environment) and T � reads from a

recently committed transaction, the read-only check is likely to fail. In LAN environments, where

delays are low, the watermark can be kept reasonably close to the current time and the read-only

check will usually succeed at the client.

Note that reading from a recently committed transaction also implies a workload with moderate

to high-contention since two transactions are conflicting on the same object close to each other in

real time. Thus, for the common case of low-contention workloads and for LAN environments, the

above scheme may actually suffice. This scheme also has the virtue of being very simple with very

low overheads in terms of data structures and their manipulation.

The above scheme can be modified for providing EPL-3 to running transactions (a multistamp-

based scheme for EPL-3 was presented in Section 5.4.2. At any given point, the client must ensure

that a running transaction T � .maxread is always greater than the watermark values of the accessed

servers. Of course, since this condition has to be true while T � is executing, the communication

costs may be higher or T � may block at a server more often than in the committed transaction case.
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