Weak Consistency: A Generalized Theory and Optimistic
I mplementationsfor Distributed Transactions
by
Atul Adya

Submitted to the Department of Electrical Engineering and Computer Science
in partia fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTSINSTITUTE OF TECHNOLOGY
March 1999
(© Massachusetts Institute of Technology 1999. All rights reserved.

AULNOT . .
Department of Electrical Engineering and Computer Science
March 18, 1999

Certified DY
Barbara H. Liskov
Ford Professor of Engineering
Thesis Supervisor

ACCEIEO DY . .

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Weak Consistency: A Generalized Theory and Optimistic | mplementations for
Distributed Transactions
by
Atul Adya

Submitted to the Department of Electrical Engineering and Computer Science
on March 18, 1999, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Current commercial databases allow application programmers to trade off consistency for per-
formance. However, existing definitions of weak consistency levels are either imprecise or they
disallow efficient implementation techniques such as optimism. Ruling out these techniquesis es-
pecially unfortunate because commercial databases support optimistic mechanisms. Furthermore,
optimism is likely to be the implementation technique of choice in the geographically distributed
and mobile systems of the future.

Thisthesis presentsthe first implementation-independent specifications of existing ANSI isola-
tion levelsand anumber of levelsthat are widely used in commercial systems, e.g., Cursor Stability,
Snapshot Isolation. It also specifies a variety of guarantees for predicate-based operations in an
implementation-independent manner. Two new levels are defined that provide useful consistency
guarantees to application writers; one is the weakest level that ensures consistent reads, while the
other captures some useful consistency properties provided by pessimistic implementations. We
use a graph-based approach to define different isolation levelsin asimple and intuitive manner.

The thesis describes new implementation techniques for supporting different weak consistency
levelsin distributed client-server environments. The mechanisms are based on optimism and make
use of multipart timestamps. A new techniqueis presented that allows multipart timestampsto scale
well with the number of clients and serversin our system; the technique takes advantage of |oosely
synchronized clocks for removing old information in multipart timestamps.

This thesis also presents the results of a simulation study to evaluate the performance of our
optimistic schemesin data-shipping client-server systems The results show that the cost of providing
serializability relative to mechanisms that provide lower consistency guarantees is negligible for
low-contention workloads; furthermore, even for workloads with moderate to high-contention
workloads, the cost of serializability islow. The simulation study also shows that our mechanisms
based on multipart timestamps impose very low CPU, memory, and network costs while providing
strong consistency guaranteesto read-only and executing transactions.

Thesis Supervisor: BarbaraH. Liskov
Title: Ford Professor of Engineering

Acknowledgments

I would like to thank my research advisor, Barbara Liskov, for her constant support and counsel
during my stay as a graduate student. | have learned many principles on performing good re-
search from her, especialy about combining theoretical aspects of system design with practical
implementations.

My thesis committee members made several excellent suggestions for improving the content
and presentation of thiswork. John Guttag and John Chapin gave helpful suggestionsfor clarifying
different parts of this thesis. Jim Gray provided extremely useful feedback about current database
systems that helped me address a number of important issues for defining weak consistency levels.

A number of people contributed in making my graduate life at MIT an enjoyable experience.
If | am an improved computer scientist and a better person, it is because of the companionship and
advice of my friends and colleagues. They have had a positive influence on me and enriched my
life in many ways.

My colleagues at the Programming Methodology Group provided a stimulating environment
for technical discussions. | have learned many interesting aspects of computer systems from
my interactions with Andrew Myers and Miguel Castro. My discussions with Phillip Bogle,
Chandrasekar Boyapati, Mark Day, Robert Gruber, Sanjay Ghemawat, Umesh Maheshwari, and
Quinton Zondervan have also been beneficial for me. Dorothy Curtis and Paul Johnson have helped
me on numerous occasions with equipment and software. Kavita Bala, Radhika Nagpal, and every
group member was always willing to attend my practice talks and provide feedback for improving
my presentations.

I will always cherish my pleasant and light-hearted experiences with the PM Group members.
I have enjoyed planning movie-outings and solving puzzleswith Andrew Myers, talking about Star
Wars with Jason Hunter, exchanging good-natured jabs with Arvind Parthasarathi and Doug Wyatt,
and having numerous intellectual conversationswith Chandrasekar Boyapati, Umesh Maheshwari,
Quinton Zondervan, and othersin the group.

Phil Bogle and Sudhendu Rai have been a constant source of encouragement and inspiration for
me. Sudhendu’s advice on research and philosophy have played a significant role in improving my
outlook towards life. Ujjwal Sinha and Ananda Sen Gupta have always been present to help me
whenever | needed support. They werewonderful companionsand | have had fun watching movies,
talking, and going out for short trips with them. Aman Rustagi, Sreeram, and Sandeep Gupta are
valuable friends who have aways wished well and | have enjoyed the time that | spent with them.

Words cannot even come close to expressing my gratitude to my parents who deserve the credit
for whatever positive that | have achieved in my life. They have always supported me in all my
endeavors and have patiently waited for the completion of my doctorate. Last but not the least, my
wife, Vandana, has been very supportive and encouraging while | have been trying to finish up my
thesis.

Contents

Introduction
1.1 Why Weak Consistency LevelsareUseful
1.2 Why New Consistency DefinitionsareNeeded
1.3 Contributions: Specifying Degreesof Isolation
1.3.1 Déefinitions of Existing IsolationLevels
132 NewlsolationLevels
1.4 Contributions: New Implementation Techniques.
15 Contributions: Experimental Evaluation
16 ThesisOutline

Existing Definitions

21 Degreesof Isolation

2.2 ANSI/ISOSQL-92Definitions. e

2.3 Preventative PhenomenaApproach

2.4 Anaysisof Preventative Definitions oL ...
241 Redlricliveness e
242 Optimism e
24.3 Multi-versionschemeso

25 Summary ... e e e e

Proposed Specificationsfor Existing Isolation Levels

31 SystemMode and Terminology
311 DatabaseModel
3.1.2 TransactionHistories
313 Predicates
3.14 Conflictsand SeriadlizationGraphs

3.2 Isolation Levelsfor Committed Transactions.
321 lsolationLevel PL-1
322 lsolationLevel PL-2
323 lsolationLevel PL-3
324 lsolationLevel PL-299
325 Summary of IsolationLevels

3.3 Mixingof IsolationLevels
3.3.1 Guaranteesto TransactionsinMixedSystems
3.3.2 GuaranteestoSQL Statements.

3.4 Correctness and Flexibility of the New Specifications

3.5 Consistency Guaranteesfor Executing Transactions

35.1 Motivation e 60

35.2 IsolationLevelsEPL-1andEPL-2 62
353 lIsolationLevel EPL-3 62
3.6 SUMMAary . .o . e e e e e e e 64
Specificationsfor Intermediate | solation Levels 66
4.1 IsolationLevel PL-2+ 67
411 Specification 68
4.1.2 Relationship between PL-2+ and Basic-Consistency 70
413 DISCUSSION e e e e 72
42 lIsolationLevel PL-2L 73
4.2.1 Specification e 74
4.2.2 Consistency Guaranteesfor Predicate-based Readsat PL-2L 76
423 DISCUSSION L e e e 76
4.3 Snapshotlsolation L 78
4.3.1 Specification 78
432 DISCUSSION e 82
44 Forward Consistent Viewo 84
45 MonotonicSnapshotReadso 84
4.6 Cursor Stability 87
4.7 Update Seridizability 87
4.7.1 Differentiating Between LevelsPL-2+andPL-3U 89
4.7.2 Differentiating Between LevelsPL-3UandPL-3 89
4.8 Intermediate Degreesfor Running Transactions 0
4.9 SUMMAY . . . o o e e e e e e e e e e e e e e e 91
Optimistic Implementationsfor Client-Server Systems 94
51 Database Environmentand CLOCC Lo 95
5.1.1 Seriaizability for Committed Transactions: CLocC 96
5.2 Mechanismsfor Isolation LevelsPL-1andPL-2 102
5.3 Multistamp-Based Mechanismfor PL-2+andEPL-2+. 104
5.3.1 Overview of the PL-2+ and EPL-2+ Implementations 105
532 ProcessingattheServer 107
533 ProcessingattheClient, 109
534 vdidation 110
535 EPL-2+for Running Transactions 112
536 Truncation e e e e e 113
5.3.7 Offloading Multistamp Generationto Clients 116
54 PL-3U Mechanism for Read-only Transactions 117
5.4.1 Read-only Participant Optimization for PL-3U Implementation 119
5.4.2 Providing EPL-3U and EPL-3to Running Transactions 121
5.4.3 Reguirements on Concurrency Control Implementations 122
55 Relatedwork e e 122
551 OptimisticSchemes e 122
55.2 PL-2+ Mechanismsand Causality 124
5.5.3 OrphanDetectionMechanisms 124
554 Read-only Transactions 125
56 Summary e e e e e 126

6 Experimental Framework 127

6.1 SystemModel 129
6.1.1 Database e 129

6.1.2 Client-Server Connectionso 130

6.1.3 ClientandServer e 132

6.1.4 Disk e 133

6.15 Network 133

6.1.6 Multistampsand Other Parameters. 134

6.1.7 CPUProcessingOverheads 134

6.2 Workloads 135
6.2.1 Transaction Generationo 136

6.22 Workload Descriptions.o 139

7 Performance Results 142
7.1 Interaction of Isolation Schemesfor Different Types of Transactions 143
7.2 A Simple Model for Comparing Isolation Implementations 144
7.3 Costof Seridizability 147
731 BasicResults 148

732 Sensitivity Analysis e 152

7.3.3 Cost of PL-2+ for Update Transactions 159

74 Costof Intermediate IsolationLevelso oL 159
74.1 Overheadsof PL-2+andEPL-2+ 159

7.4.2 Overheadsof PL-3U,EPL-3UandEPL-3 162

743 Comparing PL-2L withPL-2andPL-2+. 163

75 Stal Rate Anaysis: Cost of Multistamps oL L. 164
751 Consistency Stallsand Contention 165

752 EPL-2+StdlRate 166

75.3 Stall Rate Comparison for EPL-2+, EPL-3Uand EPL-3 167

754 Sizeof Multistamps L. 167

755 Increasing Multi-server Transactions 168

756 Scaability 170

8 Conclusions 173
8.1 |Isolation Level Specificationso 174
8.2 Weak Consistency Mechanisms 175
8.3 Experimental Evaluation 176
84 FutureWork e 178

A Specifications of Intermediate L evelsfor Executing Transactions 181
B Optimistic Mechanismsfor PL-2L, Causality and PL-3 185
B.1 Optimistic Schemesfor LevelsPL-2L andEPL-2L 185
B.2 Causdlity Guarantees. e e 185
B.3 Efficient Serializability for Read-only Transactions 190

Chapter 1

| ntroduction

Thisthesisisconcerned with providing good performance along with strong semantic guaranteesfor
atomic transactions in a database system. Databases use transactions to ensure that computations
transform the system from one consistent state to another in spite of concurrency and failures.
To alow programmers to reason about their code in the presence of concurrency, the notion of
serializability is provided by many databases, i.e., even though transactions run simultaneoudly, it
seems as if they execute in some sequential order. However, over the years there has been a great
deal of interest in weak consistency levels that provide guarantees weaker than serializability to
applications. Many weak consistency levels have been proposed in the database literature and all
commercial databases allow transactions to run with weaker consistency guarantees; in fact, some
systems do not even support serializability.
This thesis makes a number of contributionsin the area of weak consistency:

o It presents the first implementation-independent definitions of weak consistency levels that
arewidely used in commercia database systems. Our definitions also handle predicate-based
operations correctly at all consistency levelsin an implementati on-independent manner. The
previous definitions are either incorrect and allow bad behaviors, or are not sufficiently
flexible and rule out correct behaviors that might be produced by real concurrency control
implementations such as optimism [AGLM95, BOS91, BBG 95, KR81, ABGS87, FCL97].
Our specifications overcome these difficulties and are flexible enough to alow a wide range
of concurrency control techniques.

e |t specifiestwo new levels that provide useful consistency guarantees to application writers.
One of the new levels, PL-2+, is the weakest level that ensures consistent reads; the other
level, PL-2L, captures a useful monotonicity property.

o It also presentsimplementation-independent specifications of a number of consistency levels
that are commonly used in commercial databases, e.g., Cursor Stability, Snapshot Isola-
tion [Ora95]. Earlier definitions were either informal or based on locking implementations.

11

e It presents new implementation techniques for supporting different weak consistency levels
in client-server distributed environments. Our protocols are based on optimism and take
advantage of the system structure to offload work from serversto clients thereby making the
system more scalable. Some of our schemes make use of multipart timestamps; we describe
anew techniquethat allows multipart timestamps to scale well with the number of clientsand
serversin our system.

o It alsoevaluatesthe performance of our consistency schemesviasimulation. Our results show
that implementations that provide strong consistency guarantees such as serializability need
not have high performance penalties compared to schemes that provide weak guarantees.

1.1 Why Weak Consistency Levelsare Useful

Weak consistency levels have been of interest over the years for two reasons: they are useful for
certain applications, and they can be implemented more efficiently than stronger levels thereby
allowing applications to achieve a higher throughpui.

Implementations of weak levels have been considered primarily in centralized systems using
pessimistic approaches such as locking. Weak consistency levels are desirable in such systems
because transactions either acquire fewer locks, or hold them for shorter periods of time. In
either case, the result is less delay, since fewer transactions attempt to access the same objects
in conflicting modes; additionally, the possibility of deadlock is reduced. We also expect these
performance benefitsto be important in the wide-area distributed systems and in mobile systems of
the future. In these environments, optimistic concurrency control mechanisms appear to be better
than pessimistic ones. However, irrespective of the type of concurrency control mechanism used,
weaker levelsare advantageousin many circumstances. Again, the advantage of weaker consistency
levels is that there are fewer conflicts; this can lead to reduced communication, fewer aborts (in
an optimistic system), or fewer delays (in a pessimistic system). Thus, it is desirable to allow
application programmers to take advantage of weaker levels (when this makes sense) and trade off
consistency for better performance.

Applicationsthat can be executed at lower degrees of consistency must bewritten taking program
semanticsinto account. There are two kinds of applicationsthat can run below serializability. Inthe
first kind, the program writer is aware that certain kinds of conflicts will not occur. Such programs
can be executed at a consistency level that need not provide guarantees with respect to these kinds
of conflicts. Thus, even though the transaction is executed at a level below serializability, it is still
serializable. Hereis an example.

Suppose that a brokerage firm provides advice to its preferred clients about whether the prices
of stocks of afew companies are expected to rise or fall. An analyzer transaction T reads the stock
data of these companies for the past few weeks, performs an analysis of the data, writes the results

12

to areport log, and sends email to the clients. In this case, the brokerage firm knows that the stock
datawill not be modified by any application and transaction T updates a private part of the database
(only T generates the report and has exclusive access to this region). Thus, T can be executed at
a consistency level below serializability; T will still be serializable because of its access patterns.
If the overheads of providing serializability are higher than the overheads of a weaker consistency
level implementation, the analyzer transaction can achieve better performance by executing at a
lower level.

In the second class of applicationsthat can be executed below serializability, the program writer
handles inconsistent reads and writes in the code itself. Here are a few examples of applications
that follow this style:

e Programs that read approximate or non-serializable information: In this class of
applications, reading an approximate (and inconsistent) state of the databaseis sufficient. For
example, amanager in agrocery store may browse the database to determine the approximate
earnings achieved since the morning.

e Programsbased on weak invariants: Some applications only need to observe a consistent
state of the database; they are programmed such that they require fewer constraints between
multiple objects. For example, suppose that a bank considers a customer to be in good
standing if the allowed credit is less than the customer’s current bank balance. Suppose
that a transaction T; increases a customer’s credit limit to the current bank balance. In a
later transaction T, the customer deposits money in his account, i.e., T; is ordered before
T,. If abank transaction T, observes the new balance and the old credit limit, the customer
will be considered in good standing. Since T, reads T;’s updates but does not observe T;’s
modifications, it must be ordered before T; and after T;, which is not possible. Thus, in this
scenario, transactions T;, T;, and T, cannot be serialized eventhough T, observesaconsistent
database state. Thus, the bank application could be written based on requirements weaker
than serializability and still function correctly.

e Programsthat check for violated invariants: Some programs observe broken invariants
but the application programmer writes the code to take these inconsistenciesinto account. For
example, in a producer-consumer scenario, suppose that a consumer transaction S removes
al elements from alist containing 10 elements. Transaction S reads the number of entries,
processes each entry and removes it. In the meanwhile, another consumer transaction T
removes 3 elements from the list. After iterating over 7 elements, transaction S receives an
exception that the list isempty. If S has been coded to terminate early, it can be executed at
alower consistency level. However, if it is written assuming that the list contains exactly 10
elements, serializability would be needed.

13

e Falseconflicts: False conflicts occur dueto grouping of information. Different transactions
may read/write different fields of an object and not conflict at all; such transactions are not
serializable when we consider concurrency control based on objects but are serializable if we
treat the fields as separate objects.

Such grouping of information may be done for a variety of reasons. First, keeping track
of individual fields may increase concurrency control overheads substantially. In alocking
scheme, more locks have to be acquired, released, and kept track of; in an optimistic scheme,
more information hasto be sent to servers, resulting in higher network and server CPU over-
heads. Second, grouping of attributes into one object may be done for space considerations.
For example, an age attribute may be an integer in a personal record of an employee; making
a separate object or tuple for age will increase space overheads. Finally, grouping of objects
may be done for better abstraction properties, e.g., keeping complete information about a
person’s medical information in one tuple/object is preferable compared to spreading the data
over many objects.

The above examples demonstrate that weak consistency levels are sufficient for a large class
of applications. Thus, if weaker levels can be supported more efficiently than higher levels, it
will be worthwhile to execute applications below serializability. However, an important drawback
of weak consistency guarantees is that it is much more difficult to reason about an application’s
correctness: the possibility of destroying database integrity can increase significantly compared to
serializability; an application writer has to be fully aware of conflicts of the program code with
other transactions. Thus, unless serializability costs are prohibitive, we believe that transactions
that modify the database should not be executed at low consistency levels.

1.2 Why New Consistency Definitions are Needed

Any set of definitions for weak consistency levels must satisfy two goals. First, they must be
sufficiently restrictive to disallow all behavior that is considered undesirable by application pro-
grammers and end-users, e.g., nhon-serializable histories should be disallowed by the consistency
level that provides seriaizability. Second, they must also be permissive enough to alow all good
behavior that is expected by applications, or at least all histories that can occur using some realistic
concurrency control technique. In particular, we would like to allow both pessimistic and optimistic
concurrency control approaches.

Pessimistic schemes such as 2-phase locking require appropriate permission (e.g., read or write)
to be obtained before an object can be accessed. On the other hand, optimistic concurrency control
schemes allow immediate accessto objects. At the end of atransaction, the database system checks
for conflicts and, the transaction is aborted if necessary.

14

Most systems in the past have used locking to provide concurrency control. However, it is
important to have definitions of consistency levelsthat allow other concurrency control implemen-
tations such as optimism and multi-version schemes because such techniques may perform better
in some environments. For example, optimism appears to be a good approach for wide-area dis-
tributed systems and systems with disconnected nodes[GK L S94, KS91, TTP*95]. Furthermore, it
isimperative that consistency definitions allow optimistic mechanisms since commercial databases
providedifferent consistency levelsusing such schemes. For example, Gemstone[BOS91] provides
serializability using a multi-version optimistic concurrency control scheme.

There have been three attempts in the past to specify weak consistency levels. We now discuss
why the goals of correctness and flexibility have not been met by them; they are discussed in more
detail in Chapter 2.

The notion of weak consistency levels in database systems was first introduced in [GLPT76].
Theselevels are also referred to as degrees of isolation in [GR93]. The degrees are numbered from
0 to 3, where degree 3 is the same as serializability. The levels proposed in [GLPT76] are based
on notions of locking rather than being independent of a concurrency control technique. Further
refinements to the original isolation levels along with new levels such as Cursor Stability were
introduced in [Dat90].

The second set of consistency specifications, the ANSI/ISO SQL-92 definitions [ANS92], had
the goal of coming up with anindustry standard that wasimplementation-independent. In particular,
the aim was to alow different concurrency control schemes such as locking and optimism. The
ANSI specifications are widely used in database products [IBM99, Ora95]. The ANSI definitions
were based onthework in [GLPT76] and [Dat90] and are stated as a set of phenomenathat different
isolation levels were intended to exclude.

A subsequent paper [BBGT95] showed that the ANSI-SQL definitions were ambiguous and
could be interpreted to allow histories that result in inconsistencies. They proposed a third set of
consistency definitions by proposing a different set of phenomena that was correct and precise.
However, the new definitions were simply equivalent to locking, as was shown in [BBGT95].
Therefore, the definitions in [BBG*95] failed to meet the goals of ANSI-SQL with respect to
implementation independence.

Thus, at present, there is areal need for new specifications of weak consistency levelsthat are
correct and yet flexible enough to allow avariety of concurrency control technigues.

1.3 Contributions. Specifying Degrees of |solation

Our first set of contributions isin the area of redefining and extending isolation levels to permit a
wide range of concurrency control implementations. We present new definitions that capture the
intent of the ANSI/SQL properties, yet allow a wide variety of concurrency control techniques

15

including optimistic and multi-version schemes. Our specifications have the following important
attributes:

I mplementation-Independence: They allow arange of concurrency control mechanismsincluding
locking, optimism and multi-version schemes. Our definitions are complete (they allow all
good histories); in particular, they provide conflict-serializability [BHG87]. It is difficult
to prove completeness for lower isolation levels, but we show that our definitions are more
permissive than those givenin [BBGT95].

Correctness: Our definitions for PL-3 rule out all non-serializable histories since they provide
conflict-serializability. It is difficult to prove correctness for lower levels since well-defined
requirementsof theselevel shave not been specifiedin the past. However, situations described
as undesirable in the literature are disallowed by our conditions.

Intuitive and Backwar ds Compatible: Our specifications capture the essence of the ANSI spec-
ifications and are similar to the existing definitions making it easy for programmers to
understand them.

Commercial Applicability: Our specifications characterize alarge number of isolation levels that
arein common use by commercial DBMS products, e.g., Cursor Stability, Snapshot |solation
used in the Oracle server.

Flexibility for Predicate-based Operations: We specify a variety of guarantees that can be pro-
vided to predicate-based operationsat weak consistency level sin animplementati on-independent
manner; a database system can choose the guarantees that it wants to support at each con-
sistency level. Earlier definitions for these operations were either incomplete, ambiguous, or
specified in terms of an implementation such as locking or in terms of a particular database
language such as SQL.

Our definitions are based on the observation that any set of consistency specifications must
not allow transactions to observe violations of multi-object constraints; these are invariants of the
type z +y = 10 that involve multiple objects. The approach suggested in [BBG195] captures
multi-object constraints by disallowing conflicting operations to run concurrently on individual
objects, i.e., the conditions are specified in terms of single-object histories. However, optimistic
schemes allow conflicting operations to execute simultaneously and still correctly preserve multi-
object constraints; the reason is that the consistency checks take all objects that were accessed
by the committing transaction into account. Thus, any consistency definition that tries to capture
such constraints using a fixed number of objects and transactions will be either incorrect or overly
restrictive and disallow valid histories, i.e., consistency levels must be specified by considering all
accesses of atransaction.

16

We have achieved this goal by using a combination of constraints on object histories and serial-
ization graphs [BHG87]. These graphs provide a simple way of capturing multi-object constraints.
Each nodein thisgraph correspondsto some committed transaction T,; and edgesare added between
nodes corresponding to every read and write performed by T;. Some of our conditions are specified
intermsof the different typesof cycles(based on different types of conflicts) that must be disallowed
in these graphs, e.g., serializability disallows all types of cycles whereas the lowest isolation level
disallowsonly cyclesinvolving updates (and not reads). We also use graphsfor defining correctness
conditionsin mixed systemsin which different transactions may commit at different isolation levels.

Specifying consistency conditions using graphs and different types of conflicts/dependenciesis
a well-known technique and has been used in the literature for specifying serializability [BHG87,
KSS97, GR93], semantics-based correctnesscriteria[AAS93], and for defining extended transaction
models [CR94]. Our approach is the first that applies these techniques to defining ANSI and
commercial isolation levelsin an implementation-independent manner.

In [GLPT76], it has been shown that locking-based definitions of weak consistency levels
can also be expressed in terms of constraints on graphs. Since these graph-based definitions are
intended to be equivalent to locking, they are not as flexible as our specifications. Furthermore,
those definitions do not consider predicate-based operations and also lack some conditions that are
required for correctness.

Another property of our isolation definitionsisthat they allow an application to request different
isolation guarantees for committed and running transactions. This characteristic provides more
flexibility to system builders and all ows efficient implementationsfor providing various consistency
levels. We show our approach in the form of a graph in Figure 1-1. The graph shows guarantees
provided for committed transactions on the Y-axis and guarantees for running transactions on the
X-axis. Our specifications permit any scheme in the X-Y plane. The approach in [BBGT95]
allows only schemesthat are on the diagonal becausetheir specifications require that a concurrency
control scheme provide the same guarantees for running and committed transactions (a lock-based
implementation doesindeed have this property). Thus, we have extended the isolation specification
space from a single line to a two-dimensional grid. This flexibility ensures that a wide range
of concurrency control mechanisms are permitted by our isolation specifications. For example,
CLocc [AGLM95, Gru97] and CLocc with EPL-2+ (discussed in Chapter 5) are disallowed by
the definitions in [BBG195] (since they do not lie on the diagonal) but are permitted by our
specifications.

1.3.1 Déefinitionsof Existing I solation L evels

We have arrived at our new specificationsfor weak consistency levels by understanding the motiva-
tion of the original definitions [GLPT76] and the problems that were addressed in [BBG*95]. Our
isolation conditions capture the essence of the ANSI specifications [ANS92]; for each ANSI-

17

CcLOocCC
CLOCC with EPL-2+
3 + ° ° Z'Ph_ase
locking
2
é@ 2+ —+
g §> Degree 2
o a locking
=4 2 1
(=]
— 0 3
c :
g o Degree 1 :
£ *g locking [BBG+95] Approach
Bp 14
[OR=]
| |

1 2 2+ 3

Guarantees for running
transactions (Degree)

Figure1-1: Separate guaranteesfor running and committed transactionsas provided by our isolation
definitions allows schemes such as CLocc.

SQL degree, we have developed a corresponding portable isolation level that is precise and
implementation-independent. Our levels for committed transactions are called PL-1, PL-2, and
PL-3 where PL-3 is the same as serializability.

Along with the levels specified by ANSI, we present definitions of existing commercial lev-
els such as Cursor Stability [Dat90] Snapshot Isolation [BBG'95], and Oracle’'s Read Consis-
tency [Ora95]. Unlike earlier definitions, our specifications are implementation-independent. We
specify these levels by extending the graphs used for defining the ANSI levels; different types
of nodes and edges are added to capture the constraints relevant to each level. These definitions
demonstrate that the graph-based approach for specifying isolation levelsisflexible; as new degrees
are developed in the future, graphs can be used to specify them.

1.3.2 New Isolation Levels

Thereisawide gap between degree 2 (which does not provide consistent reads or writes) and degree
3 (which provides serializability). We have developed two new and useful levels between degree 2
and degree 3 and related them to existing commercial consistency guarantees.

Our first level, PL-2+, is the weakest level that ensures that transactions do not observe viol ated
multi-object constraints. However, it allows transactions to update the database in an inconsistent
manner. Thus, PL-2+ lies “halfway” between degrees 2 and 3 since it ensures consistent reads but
allows inconsistent writes. Level PL-2+ ensures that a transaction is placed after al transactions
that causally affect it, i.e., it provides a notion of “causal consistency”. This level disallows al
phenomenathat Snapshot Isolation was intended to disallow. Since PL-2+ isweaker than Snapshot
Isolation, it has the potential of being implemented more efficiently, especialy in a distributed
client-server system (an efficient optimistic scheme for providing PL-2+ in such environments is
presented in Chapter 5). Thus, PL-2+ may be preferable to Snapshot | solation.

18

Our second new level, PL-2L, captures useful properties of a lock-based implementation of
degree 2. It ensures that a transaction observes a monotonically increasing prefix of the database
history as it executes, e.g., in an online auction system, if a transaction closes the auction to sell
a product and a user transaction observes this closure and then the value of the product, PL-2L
will ensure that the user observes the final value of the product. PL-2L can be useful for legacy
applications that execute at degree 2 and assume such monotonicity properties are provided by
a locking implementation; when the system is changed from locking to a different concurrency
control mechanism, PL-2L can be used to ensure that these applications continue to run correctly.
An interesting observation about PL-2L is that it is similar to the Read Consistency guarantees
provided by the Oracle server [Ora95]. Level PL-2L disallows phenomenathat Read Consistency
was intended to disallow. Since PL-2L isweaker than Read Consistency, it may be less expensive
to provide PL-2L than Read Consistency, especially in distributed client-server systems.

1.4 Contributions. New Implementation Techniques

Our second set of contributions addresses the problem of providing high-performance consistency
mechanisms in distributed client-server systems. In such systems, objects are stored at servers
and clients execute transactions on cached copies of their machines. This architecture is desirable
because alarge fraction of the application’s work can be offloaded from serversto clients, thereby
enhancing the scalability of the system. It isimportant to devel op efficient consistency mechanisms
for such systems since they are expected to be common in the future.

We have designed optimistic schemesto support new and existing isolation levelsin distributed
client-server systems. Optimistic mechanisms are appealing in client-caching systems since they
allow clientsto executetransactions using cached information without extracommunication with the
servers; lock-based schemes may require such communication when an object has to be modified.
Thisintuition has been borne out by Gruber’swork [Gru97], which showsthat an optimistic scheme
called CLocc or Clock-based Lazy Optimistic Concurrency Control (CLocc was earlier referred to
as AOCC) outperforms the best-known locking implementation for client-server systems across a
wide range of workloads and system parameters: this research also shows that CLocc scales well
with the number of clients. An additional advantage of optimism is that it can be easily applied to
disconnected and mobile environments [KS91, TTP+95, GKLS94].

However, Gruber’swork studied only serializability in client-server systems. Efficient and scal-
able optimistic schemes for lower consistency levelsin such environments do not exist. Thus, the
first challengeisto design efficient consistency techniquesfor theselevelswith low communication
and server overheads. Furthermore, high-performance optimistic schemes such as CLocc provide
strong serializability guarantees for committed transactions but provide very weak guarantees as
transactions execute. These guarantees are important since application writers may expect certain

19

integrity constraintsto be valid while atransaction executes; otherwise, the application may behave
in an unexpected manner (e.g., crash or go into an infinite loop). Optimistic schemes such as
O2PL [FCL97] provide strong guarantees for running transactions but they do so at a high commu-
nication cost (to the extent that they lose the advantages of optimism over locking). Thus, another
challenge for client-server systems is to provide strong consistency guarantees to transactions as
they execute yet ensure that the cost of these mechanismsis low.

M ultistamp-based M echanisms and Multistamp Truncation

We have devel oped efficient implementations for providing different isolation guarantees to trans-
actions in distributed client-server systems. We have taken advantage of the system structure
and also utilized characteristics of real systems to optimize our mechanisms, e.g., we use loosely
synchronized clocks to truncate some of our data structures.

Our isolation levels have been defined in terms of different types of conflicts and we use
multipart timestamps or multistamps to capture these consistency constraints. Multistamps are
propagated to clients to warn them of potential violations of consistency; if a client does not have
information as indicated by the multistamp, it communicates with the relevant servers. Clients act
on the multistamp information only if it might affect the current transaction. Being lazy buystime
so that the needed consistency information is highly likely to be present by the time it is needed.
Furthermore, it allows us to piggyback most of the information on existing messagesin the system
thereby reducing the overheads of our schemes.

A negative aspect of multistamps is that they do not scale well with a large number of clients
and servers, mechanisms that send multistamps incrementally [BSS91] still require complete mul-
tistamps to be stored at different servers. Instead, we have devised a novel mechanism called
multistamp truncation that keeps them small; this technique takes advantage of the fact that our
multistamps contain real time clock values. Based on the stored time values, the mechanism de-
termines the consistency constraints that are old and replaces them with approximate information.
In our system, this approximation may lead to extra messages sent by clients called consistency
stalls. However, since the removed multistamp constraints are old, it is likely that the consistency
information has been received by the relevant clients from the servers. Thus, discarding it haslittle
impact on system performance; our simulation study shows that multistamps impose negligible
space and time overheads.

This technique assumes that clocks are loosely synchronized; this assumption is realistic in
today’s environment where protocols such as the Network Time Protocol [Mil92] are able to
achieve low synchronization even in wide-area networks [Mil96]. The correctness of our schemes
is not affected if the multistamps are truncated too early or if the clock synchronization is poor.

We also use our multistamp-based mechanisms for providing consistent views to transactions
as they execute and for efficiently committing read-only transactions. Read-only transactions are

20

common in transaction processing workloads and improving their performance can significantly
improve overall system performance. Our techniques help in reducing latency of read-only trans-
actions since they can commit these transactions without communicating with the serversin most
cases, CLOCC requires a message roundtrip for committing all read-only transactions. They also
make the system more scalable since there are fewer network messages and most of the work for
committing read-only transactions is offloaded to clients. Furthermore, the server need not vali-
date (i.e., check for serializability) read-only transactions; it needs to validate update transactions
only with other update transactions. Even though we present our mechanisms in conjunction with
CLocc, they can be used for committing read-only transactionsin hybrid systems, i.e., where update
transactions are committed using optimism or locking and read-only transactions are committed
optimistically using our mechanisms; such a system was presented in [CG85].

1.5 Contributions. Experimental Evaluation

This thesis also evaluates the relative performance of implementations of different isolation levels
in a distributed client-server system in which clients cache objects and the transaction code is
executed at client machines (i.e., adata-shipping system architecture). To our knowledge, thisisthe
first published study that compares implementations of different isolation levels in such systems.
We used a simulator to evaluate different isolation mechanisms using workloads with low to high
contention in LAN and WAN environments.

In our study, we assume that clients can cache the accessed objects for the duration of the
transaction; this assumption is valid for a large class of applications because we have developed
an efficient object-caching mechanism [CALM97]. We also expect our results to hold for some
applications in which a transaction’s accessed data cannot be cached at a client machine; in many
such applications, contention rarely occurs and our simulation results for |ow-contention workloads
can be applied to such cases as well.

We wanted to understand the performance gains offered by committing update transactions at
weaker isolation level s since these gains have a high productivity cost: adatabase programmer must
carefully analyzethe application code and ensure that it does not corrupt the database when executed
at alow isolation level. We were a so interested in determining the overheads of highisolation level
implementations such as PL-2+ and serializability for read-only and executing transactions since
providing stronger consistency guarantees for these transactions further reduces the burden on a
database programmer by making it relatively easier to reason about correctness of the application
code.

Our results show that providing strong consi stency guaranteesto update, read-only, and running
transactionsin client-server systemsis not expensive:

e The cost of providing strong consistency guarantees such as serializability to update trans-

21

actions is negligible for low-contention workloads. The reason is that CLocc (which we
use for providing serializability) haslow CPU and communication overheads when there are
few conflicts in the workload. This is an important result since many applications exhibit
low-contention and such workloads are one of the main environments recommended for using
weaker isolation levels; thisrecommendation is based on the assumption that ahigher isolation
level mechanism imposes unnecessary performance penalties for such an application.

e For workloads with moderate to high contention, the cost of providing seriaizability to
update transactionsis more but it is still not high. At higher contention, the number of aborts
is higher in any optimistic scheme including CLocc. However, in CLocc, the performance
degradation dueto serializability isnot proportional to theabort rate. Thereasonisthat CLocc
has low costs for restarted transactions and it prevents excessive wasted work by aborting a
transaction T early during T's execution. Thus, very high abort rates do not necessarily result
in a corresponding performance penalty. For example, even at very high contention (with
a high abort rate of more than 100%), the throughput degradation due to serializability was
observed to be approximately 10%. In general, we observed that the performance degradation
due to serializability is significant only when contention is high and the cost of restarting a
transaction is high.

e The cost of providing strong consistency guarantees such as PL-2+ using our multistamp-
based mechanismsto read-only transactionsislow in all workloads; a performance penalty of
2-10%isincurred in such animplementation compared to asystem that provides serializability
only for updatetransactions. Unlike CLocc, these schemesare ableto avoid sending acommit
message to the servers for most read-only transactions. The results show that the CPU,
memory, and network costsimposed by multistamps are very low: the multistamp truncation
technique is effective and multistamps smaller than 100 bytes are sufficient for ensuring that
few extra messages are sent in the system for maintaining consistency information. The
results also show that our multistamp-based mechanisms can be used for providing strong
consistency guarantees to executing transactions at very low costs.

1.6 ThesisOutline

Thisthesisis organized as follows.
Chapter 2 analysesthe definitions for different isolation degreesthat have been presented in the
literature; it showswhy the current definitions are inadequate and motivates the need for our work.
Chapter 3 presents our new specificationsfor the existing ANSI degrees of isolation and proves
that they are more flexible than the existing definitions; we provide definitions for both committed
and executing transactions. This chapter also discusses how various levels interact with each other.

22

Chapter 4 presents definitions of our two new isolation levels, PL-2+ and PL-2L, for committed
transactions. It describes the implementation-independent specifications of Cursor Stability, and
Oracle’'s Snapshot Isolation and compares it with PL-2+; it also presents a level that captures the
essence of Oracle's Read Consistency and comparesit with PL-2L.

Chapter 5 presents our mechanisms for providing different isolation guarantees to committed
and running transactions. It describes CLocc and our multistamp-based techniques for efficiently
committing transactions and for providing strong guaranteesto running transactions.

Chapter 6 discusses our experimental framework. It describes our simulator environment and
the workloads that we use for the performance study.

Chapter 7 presents the simulation results for comparing implementations of various isolation
levels; it also evaluates the cost of multistamps and the cost of committing read-only transactions.

Chapter 8 concludesthe thesiswith asummary of our work and suggestionsfor future research.

23

Chapter 2

Existing Definitions

This chapter discusses the specifications for different consistency levels that have been presented
earlier in the literature [GLPT76, ANS92, BBG*95] and motivates the need for our work.

The chapter is organized in the following manner. Section 2.1 presents the original definitions
of consistency [GLPT76] and Section 2.2 describes the ANSI/ISO SQL-92 definitions that were
later developed [ANS92]. Section 2.3 summarizes the discussion from [BBG195]. In Section 2.4,
we demonstrate why the solution suggested in [BBG™95] is inadequate.

2.1 Degreesof Isolation

The concept of weak consistency levels was first introduced in [GLPT76] under the name Degrees
of Consistency, with the aim of providing improved concurrency (and hence better performance) for
some workloads by sacrificing the guarantees of full serializability. The degrees were also referred
to as Level sof Consistency in acompanion paper [A 1 76] and Degreesof Isolationin [Dat90, GR93].
The definitions were based on notions of locking: weaker isolation was achieved by reducing the
duration (long to short) for which read or write-locks were held. Long-term locks are held until the
transaction taking them commits; short-term locks are released immediately after the transaction
completes the desired read or write that triggers the lock attempt.

Four degrees of consistency were defined in [GLPT76]. At degree O, only short write-locks are
acquired by atransaction (no read-locks); at degree 1, there are only long write-locks; at degree 2,
there are short read-locks and long write-locks; and at degree 3, there are long read and write-locks.

Degree 3 provides serializability since a history acting under 2-phase locking protocol is seri-
alizable [BHG87, GR93]. Early release of locks permits histories that are not serializable. Degree
2 requires transactions performing reads to take (at least) short read-locks, which implies that these
transactions are unable to read uncommitted updates of transaction acting under degree 1 or higher
(due to long write-locks). Transactions at all levels acquire long-term write-locks to prevent con-
current transactions from overwriting each others' changes. Transactions at degree 0 and 1 are not
normally expected to perform any writes, but only to get an approximate idea of the database state.

24

The word “isolation” was chosen to emphasize the fact that different isolation degrees provide
varying levels of non-interference of various transactions against each other. Serializability offers
the highest degree of isolation since aprogrammer can writethetransaction codewith theassumption
that the operations of other transactionswill not interfere with his/her transaction’s execution.

Thework in [GLPT76] aso suggests a promising approach that definesisolation levelsin terms
of graphs. However, since the authors wanted to give an aternate definition of locking behavior
using constraints on cycles, their definitions disallow many histories that are permitted by us; such
behavior can occur with optimistic or multi-version schemes. Furthermore, those definitions do not
consider predicate-based operations and also lack some conditionsthat are required for correctness.

2.2 ANSI/ISO SQL-92 Definitions

Further refinements to the original isolation levels along with new levels such as Cursor Stability
were introduced in [Dat90]. The work in [GLPT76] and [Dat90] set the stage for the ANSI/ISO
SQL-92 definitions[ANS92] for isolation levels. The ANSI levelswere informally defined in terms
of English statementsthat proscribed certain typesof behavior or phenomenafor eachisolationlevel;
acompletely serializable system disallowed all these situations whereas lower levels of consistency
prevented some situations but allow others.

ANSI/ISO SQL-92 [ANS92] defines the phenomenain English as follows:

Dirty Read — Transaction T, modifiesx. Another transaction T, then readsx before T,
commits or aborts. If T; then aborts, T, has read adataitem that was never committed
and so never really existed.

Fuzzy or Non-repeatable Read — Transaction T1 reads x and then T, modifies or
deletes x and commits. If T, then attempts to reread X, it receives a modified value or
discoversthat the data item has been deleted.

Phantom — Transaction T1 reads a set of data items satisfying some <sear ch
condi ti on>. Transaction T, then creates data items that satisfy T1's <sear ch
condi ti on> and commits. If T, then repeats its read with the same <sear ch
condi ti on>, it getsaset of dataitems different from the first read.

The phenomena have not been stated in terms of any particular concurrency control scheme. An
important goal of the ANSI/ISO isolation designers was to have flexible definitions that permit a
variety of concurrency control mechanisms. Furthermore, the designers also wanted a higher isola-
tion level to be obtained from alower one by ssmply disallowing more phenomenaor bad situations
(i.e., an “additive” kind of property). They defined successively more restrictive isolation levels:
READ COMMITTED, REPEATABLE READ, and SERIALIZABLE, which were intended to correspond to
degrees 1-3 of [GLPT76] respectively. The ANSI levels are defined as follows: READ COMMITTED
disallows Dirty Read, REPEATABLE READ disallows Fuzzy Read as well, and SERIALIZABLE pre-
vents al the above phenomena; the intent of the SERIALIZABLE isolation level is that disallowing

25

all bad situations should provide the normally accepted notion of seriaizability, i.e., even though
transactions execute concurrently, it seems as if they ran in some serial order. There was also a
lowest isolation level, READ UNCOMMITTED, that proscribed none of the phenomena. However,
READ UNCOMMITTED Was not allowed to operate in SQL except in the read-only access mode.

2.3 Preventative Phenomena Approach

The authors of [BBG™95] analyzed the ANSI-SQL standard and demonstrated several problemsin
itsisolation level definitions: some definitions were ambiguous, while otherswere missing entirely.
They showed that the ANSI/ISO definitions have at least two possible interpretations. The first
interpretation follows the written description closely and disallows the described situation; we will
call thisinterpretation asthe anomaly inter pretation. Theother interpretation preventsany execution
sequence that may lead to undesirable behavior; we shall call thisinterpretation the preventativein-
terpretation (thework in [ABJ97] presentsadifferent way of stating the preventativeinterpretation).
Thus, the anomaly interpretation allows more histories than the preventative interpretation.

[BBG'95] showsthat the anomaly interpretation is incorrect since disallowing all phenomena
does not necessarily disallow all non-seriaizable histories, i.e., a database system that provides
isolation guarantees using this interpretation can cause applications to behave incorrectly. Thus,
the authors suggest that the preventative interpretation is the correct interpretation of the ANSI
definitions. We now summarize this discussion.

We have shown the two different interpretations of the ANSI levelsin Figure 2-1. The anomaly
interpretation is prefixed by A and the preventativeinterpretation is prefixed by P. Reads and writes
aredenoted by “r” and “w” respectively; “a’ and “c” denote abort and commit. An operation “ri(X,
v)” indicates that transaction T1 has read object x and the read value isv. Similarly, “w1(X, v)”
indicates that transaction T, has modified object x's value to be v. Each entry in the table shows an
undesirable situation that must be disallowed.

For dirty reads, proscribing A1 ensuresthat if T, readsfrom an uncommitted transaction T, that
aborts, T, must not be allowed to commit. The preventative interpretation, P1, is more restrictive
and requires that a transaction T, must not read any object from an uncommitted transaction T,
(thereis no abort or commit action for T, between w1 (x) and r,(x)); the lack of an abort or commit

| Phenomenon | Anomaly Interpretation | Preventative Interpretation |
Dirty Write | None PO: wi(X) ... waz(X)
Dirty Read AL wi(X)...ra(X) ... (a; and c; inany order) P1: wi(X) ... ra(x)
Fuzzy Read | A2: ri(X)...wWa(X)...Co...1n(X)...C1 P2: ri(x) ... waz(x)
Phantom A3 n(P)...we(yinP)...c...11(P) ... 1 P3: ri(P) ... wy(yinP)

Figure 2-1: Anomaly and Preventative Interpretations of ANSI levels

26

action in the condition simply means that all combinations of aborts and commits after ro(x) are
disallowed.

For fuzzy reads, proscribing A2 prevents atransaction T, from committing if T, reads an object
X twice and another transaction T, overwrites x between the two reads by T1. Phenomenon P2
simply rules out the overwriting of an object being read by an uncommitted transaction.

In databases, queries and updates may be performed on a set of objects if a certain condition
calledthepredicateissatisfied. PhenomenaA3 and P3 deal withinconsistenciesinvolving predicates
and aresimilar to A2 and P2. The notation “r1(P)” meansthat transaction T, hasread objects based
on a predicate P and “wy(y in P)” says that an object which satisfies P has been modified by T».
Proscribing P3 requires that T» cannot modify a predicate P by inserting, updating, or deleting a
row if an uncommitted transaction T, has observed objects based on P,

However, phenomenon P3 does not prevent all problems with phantoms. For example, a
phenomenon similar to A1 can occur with respect to predicate reads, phenomenon P1 does not
prevent such a scenario as well.

An additional property, not included in ANSI/ISO SQL-92, isintroduced in [BBG*95]:

Dirty Write— Suppose T1 modifies x and T, further modifies x before T, commits or
aborts. If either T or T, aborts, it is unclear what the real value of x should be.

Thepreventativeinterpretation of dirty write, PO, saysthat atransaction cannot overwritethe changes
made by an uncommitted transaction. There is no anomaly interpretation given in [BBG95]; the
authors assume PO to be a basic requirement that should be included in all levels of consistency.

The paper noted that proscribing these phenomenato defineisolation levelsis simply adisguised
form of imposing a locking protocol on a history. Proscribing PO is simply a disguised locking
definition, requiring T1 and T» to acquire long write-locks. Similarly, proscribing P1 requires T,
to acquire along write-lock and T to acquire (at least) a short-term read-lock, and proscribing P2
requires the use of long read and write-locks; disallowing P3 requires acquisition of long phantom
read-locks [GR93].

The ANSI levels are redefined in [BBGT95] as follows: READ UNcomMITTED disallows PO,
ReaD ComMITTED disallows PO and P1, REPEATABLE READ disallows PO - P2, and SERIALIZABLE
disallows PO - P3. Figure 2-2 relatesisolation levels, preventative phenomena, and the use of locks.

We now present two examples from [BBG195] that differentiate the preventative and anomaly
interpretations. Since PO, P1, P2, and P3 together are equivalent to two-phase locking, all histories
permitted by them are serializable. However, the sameis not true for anomaly serializable histories,
which disallow PO, A1, A2, and A3.

The examplesconcernatransfer from xtoy, wheretheinvariantisthat + y = 100. History H;
differentiates P1 from A1; it showsthat A1 is not sufficiently strong to prevent anomalous behavior:

Hiy. rl(x, 50) W1(X, 10) rz(X, 10) rz(y, 50) Co rl(y, 50) Wl(y, 90) Cy

27

Locking Isolation Level Proscribed Read-Locks on Data Items | Write-Locks on Data
Phenomena and Phantoms(sameunless | Items and Phantoms
noted) (alwaysthe same)
Degree0 none none Short write-locks
Degree1=READ UNCOMMITTED | PO none Long write-locks
Degree 2 = READ COMMITTED | PO, P1 Short read-locks Long write-locks
REPEATABLE READ PO, P1, P2 Long data-item read-locks, | Long write-locks
Short phantom read-locks
Degree 3 = SERIALIZABLE PO, P1, P2, P3 | Long read-locks Long write-locks

Figure 2-2: ANSI isolation levels based on locking (preventative interpretation)

Transaction T, does the transfer properly yet transaction T, observes the total to be only $60. H;
is anomaly serializable: phenomenon PO does not occur because there are no concurrent writes in
the system, A1 does not happen since both transactions commit, and A2 does not occur since no
transaction reads the same data item twice. However, H4 is not serializable because T, observesan
inconsistent state of the database and commits. On the other hand, the preventative interpretation
disallows this history since P1 has been violated (T, performs adirty read of object x).

History H, differentiates A2 and P2 (a similar history can be used for A3 and P3):

Hy: ra(x,50) ri(x, 50) wi(x, 10) ri(y, 50) wi(y, 90) c1 ra(y, 90) ¢,

With theanomaly interpretation, A2 isnot violated since T, never readsx again after T, hasmodified
it (POand Al arealsonot violated). Thus, history H, isanomaly serializablebut it isnot serializable
since T, observes the sum of x and y to be $140 and commits. The preventative interpretation
disallows Hy because condition P2 has been violated (due to r»(x) and w1 (X)).

Thus, theauthorsconcludethat the ANSI/I SO SQL-92 i solation definitions should beinterpreted
using the preventative interpretation and not the anomaly interpretation.

2.4 Analysisof Preventative Definitions

The ANSI definitions are impreci se becausethey allow at least two interpretations; furthermore, the
anomaly interpretation is definitely incorrect. The preventative interpretation is correct in the sense
that it rules out undesirable (i.e., non-serializable) histories. However, this interpretation is overly
restrictive sinceit also rules out correct behavior that does not lead to inconsistenciesand can occur
inareal system. Thus, any systemthat allows such historiesis disallowed by thisinterpretation, e.g.,
databasesbased on optimistic mechanisms[AGLM 95, BOS91, BBG* 95, KR81, ABGS87, FCL97].
Wefirst show that the preventativeinterpretation isoverly restrictive sinceit rules out serializable
histories. Next we briefly discuss how optimistic schemes deal with good and bad histories; finally,
we show why the preventative interpretation disallows optimistic and multi-version mechanisms.

28

241 Restrictiveness

This section illustrates the restrictiveness of the preventative interpretation by giving examples of
serializable behavior that it rules out. First, consider the non-serializable history H1, which was
presented in the previous section:

Hy: ri(x, 50) wi(x, 10) ra(x, 10) rao(y, 50) ¢ ri(y, 50) wi(y, 90) c1

H; is clearly not serializable and ought not to be permitted by any concurrency control scheme.
However, suppose that transaction T, reads the new values of x and y asinstalled by T1:

Hy: ori(X, 50) wi(X, 10) ri(y, 50) wa(y, 90) ra(x, 10) ra(y, 90) c1 ¢

In this case, T,'s reads happen after T,'s writes have occurred but before T, commits. History Hy:
is serializable but is not permitted by the preventative interpretation because it violates P1. Now
consider history H, which is not serializable since T, reads x's old value and y's new value:

Hy: ro(X, 50) ri(x, 50) wi(x, 10) r1(y, 50) wa(y, 90) c1 ra(y, 90) ¢,

Instead of reading the new value of y, supposethat T, readsthe old values of x andy. Theresulting
history, Hy, is seridizable:

Hy: ry(X,50) ri(x, 50) wi(X, 10) ri(y, 50) ro(y, 50) wa(y, 90) ¢ ¢;

However, Hy is disallowed by the preventative interpretation becauseit violates P2 (T, overwrites
objects x and y that have been read by an uncommitted transaction T5).

It is not surprising that the preventative interpretation rules out histories like Hy: and Hyr. This
interpretation prevents conflicting operations from executing concurrently; it disallows all histories
that would not occur in alock-based implementation. Thus, even though the operationsin Hy and
Hx have been scheduled such that these histories are serializable, the preventative interpretation
disallows them because they allow conflicting reads and writes to run simultaneously.

The real problem with the preventative approach is that the phenomena are expressed in terms
of single-object histories. However, the properties of interest are often multi-object constraints.
To avoid prablems with such constraints, the phenomena need to restrict what can be done with
individual objects morethanisnecessary. Our approach avoidsthis difficulty by using specifications
that capture constraints on multiple objects directly.

24.2 Optimism

The fact that some legal histories are ruled out by the preventative interpretation would not be
important if those histories did not arise in real implementations. But in fact both histories Hy
and Hy are allowed by optimistic and multi-version mechanisms. Since an important goal of the
ANSI/ISO SQL-92 isolation levelsisto permit non-locking implementations while providing useful

29

guarantees to a database programmer, providing a definition of these levels that precludes all but
lock-based implementations is undesirable.

Before we describe how optimistic schemes deal with histories such as H, and Hyr, we briefly
discuss the characteristics of these schemes. Unlike alocking scheme, optimistic implementations
allow conflicting operations by concurrent transactions and abort some transactions if necessary.
In these schemes, modifications are not made to the database directly; instead they are made to
volatile copies. These copiesareinstalled in the database at commit timeif the transaction validates
successfully. During the validation process, the database system checksif acommitting transaction
T can be serialized by comparing T's reads/writes with the reads/writes of other transactions. |If
validation fails, T is aborted.

Validation is donein two different ways— forward and backward validation [Hae84]. Forward
validation compares the transaction with all uncommitted transactions; if a committing transaction
T has modified any object that has been read by an uncommitted transaction S, T is aborted. Thus,
when transaction S commits, only its writes will have to be validated; its reads are certain to be
valid. (Forward validation schemes are similar to “optimistic locking” implementations [FCL97].)
Backward validation checks the committing transaction T against all previously committed trans-
actions; if T has read any object x that has been modified by a committed transaction since T read
X, T isaborted. Since backward validation does not consider uncommitted transactions, the commit
of atransaction may cause an uncommitted transaction to abort later; furthermore, unlike forward
validation, a preparing transaction’s reads must be validated as well.

Disallowing Bad Histories

Both forward and backward schemes will reject H; and H,. History Hy is not permitted by most
optimistic implementations since these schemes operate on local copies and disallow dirty reads.
Consider a prefix of history H»:

H, (prefix): rao(x, 50) ri(x, 50) wi(x, 10) ri(y, 50) wi(y,90) A

If T, triesto commit at point A, aforward validation scheme will abort T, since T,'s modifications
conflict with the reads of an uncommitted transaction T». A backward validation schemewill allow
T, to commit. However, when T» triesto commit, it will be aborted because acommitted transaction
T1 has overwritten an object x that was read by T».

Accepting Good Histories

We now discusswhy phenomenalPO, P1, and P2 rule out optimistic schemeswhen each phenomenon
is considered individually.

Phenomenon PO can occur in optimistic implementations since there can be many uncommitted
transactions modifying local copies of the same object concurrently; if necessary, some of them will

30

beforced to abort so that serializability can beprovided. Thus, disallowing PO canrule out optimistic
implementations, e.g., thefollowing serializable history that is allowed by many optimistic schemes
isruled out by PO:

Hy: wa(x, 10) wi(y, 90) wa(x, 50) wa(y, 50) c1 &

Proscribing P1 disallows transactions from reading updates by uncommitted transactions. Such
reads are disallowed by many optimistic schemes, but they are desirable in mobile environments,
where commits may take a long time if clients are disconnected from the servers [GHOS96,
GKLS94]. For example, history Hy: can occur in a mobile system, but P1 disallows it. In
such a system, commits can be assumed to have happened “tentatively” at client machines; later
transactions may observe modifications of those tentative transactions. When the client reconnects
with the servers, itswork is checked to determine if consistency has been violated and the relevant
transactions are aborted. Of course, if dirty reads are allowed, cascading aborts can occur, e.g.,
in history Hy/, T2 must abort if T4 aborts; this problem can be aleviated by using compensating
actions[KS91, TTPT95, KSS97]. Another environment where reads from uncommitted transactions
may be desirable are high traffic hotspots [O’ N86]; disallowing P1 rules out mechanisms designed
for these situations.

Proscribing P2 disallows a transaction to modify an object that has been read by another un-
committed transaction (P3 rules out a similar situation with respect to predicates). As with PO,
uncommitted transactions may read/write the same object concurrently in an optimistic implemen-
tation. Thereis no harm in alowing phenomenon P2 if transactions commit in the right order. For
example, history Hor is accepted by both forward and backward validation schemes. Consider a
prefix of history Hy:

Hy (prefix): ra(x, 50) ri(x, 50) wi(x, 10) ri(y, 50) ra(y, 50) wi(y, 90) A

If T, and T, try to commit at point A (in the order T, followed by T1), both validation schemes
will allow the commits; T; will be seridlized after T.. When T» tries to commit, it succeeds
validation with aforward validation scheme since it has not modified any object. When T triesto
commit later, it succeeds since its modifications do not conflict with any uncommitted transaction’s
reads/writes. With a backward scheme, T»> commits successfully since it does not conflict with an
already committed transaction; similarly, T, is also allowed to commit |ater.

2.4.3 Multi-version schemes

Multi-version schemes [Ree78, BHG87, BBG95, Wei87] alow multiple versions of the same
object to exist in the database state. Thus, in a history such as H», when transaction T, tries to
read object y, it can be provided with an old version of y (and not the latest version) resulting
in a serializable history. However, the conditions in the ANSI definitions (and the preventative
interpretation) are specified in terms of single-version aobject histories rather than multi-version

31

histories. Thus, they are inadequate for analyzing multi-version schemes. In fact, the authors
in [BBG™95] point out that in order to place multi-version schemes such as Snapshot Isolation in
the isolation hierarchy, the designer of the scheme must first map the histories of such schemesto
single-version histories and then apply the consistency conditions. We address his problem directly
by specifying our conditionsin terms of multi-version histories.

25 Summary

This chapter has analyzed the existing definitions for various degrees of isolation. The origina
definitions presented in [GLPT76] were inspired by a lock-based interpretation. That work also
presented informal English statementsthat formed the basis of the ANSI/ISO SQL-92 definitions, an
industry standard [ANS92]. However, as shownin [BBG™95], these definitions are ambiguous and
at least oneinterpretation can permit historiesthat lead to inconsistencies. Theauthorsin [BBG™95]
suggest another interpretation called the preventative interpretation that is essentially a disguised
form of locking. Our analysis showed that this interpretation is overly restrictive since it disallows
historiesthat can occur in realistic implementations, especially systemsthat use optimistic or multi-
version mechanisms. The preventative interpretation only permits implementations that prevent
conflicting operations from running concurrently. On the other hand, optimistic schemesallow such
operations to execute simultaneously and then abort the relevant transactions.

32

Chapter 3

Proposed Specifications for Existing
| solation Levels

This chapter presents new specifications for the existing ANSI isolation levels. Our definitions
allow optimistic and multi-version implementations; we also specify a variety of guarantees for
predicate-based operations at weak consistency levels in an implementation-independent manner.
Our specifications address the i ssues of multi-object constraints directly by using complete read and
write sets of transactions. We specify different isolation levels using a combination of constraints
on object histories and graphs; we proscribe different types of cyclesin aserialization graph at each
isolation level. Apart from using graphs to define isolation levels for committed and transactions,
we also use them to specify interactions among various isolation levels.

Our graphsare similar to those that have been used beforefor specifying serializability [BHG87,
KSS97, GR9I3], semantics-based correctness criteria[AAS93], and for defining extended transaction
models [CR94]. Our approach is the first that applies these techniques to defining ANSI and
commercial isolation levels.

The rest of this chapter is organized as follows. Section 3.1 presents the system model and
terminology that we usefor our specifications. Section 3.2 presents our specifications of the existing
isolation levels for committed transactions. In Section 3.3, we discuss how various levels interact
with each other. 1n Section 3.4, we provethat our specificationsallow more historiesand are strictly
lessrestrictive than the preventativeinterpretation. In Section 3.5, we discusshow our specifications
can be extended to provide consistency guarantees to transactions as they execute.

3.1 System Model and Ter minology

We now present the system model and terminology that will be used for specifying our isolation con-
ditions. We use amulti-version model similar to what has been presented in the literature [BHG87].
However, unlike earlier work, our model incorporates predicates and handles them in a correct and
flexible manner at al isolation levels.

33

3.1.1 Database M odd

The database consists of objectsthat can be read or written by transactions. Each transaction reads
and writes objects and indicates a total order in which these operations occur; thus, our transactions
are segquential in nature. An object hasoneor moreversions. Transactionsinteract with the database
only in terms of objects; the system maps each operation on an object to a specific version of that
object. A transaction may read versions created by committed, uncommitted, or even aborted
transactions; constraints imposed by some isolation levels will prevent certain types of reads, e.g.,
reading versions created by aborted transactions.

When atransaction writes an object x, it createsanew version of X. A transaction T; can modify
an object multiple times; itsfirst update of object x is denoted by x; 1, the second by x; », and so on.
Version x; denotesthe final modification of x performed by T; before it commits or aborts. That is,

X; = X;.n Wheren = max {j | x; ; exists}
Thelast operation of atransactionisacommit or abort operation to indicatewhether thetransaction’s
execution was successful or not; there is at most one commit or abort operation for a transaction.

An event is added to a transaction’s sequence of events after it has been registered by the
database, e.g., for a read event of version x;, it could mean that the database has added x; to the
transaction’s read set and returned the relevant value. Similarly, in an optimistic system, a commit
may be requested for transaction T; but T; may abort; in this case, we register an abort event for T;
and not acommit event.

The database state refers to the versions of objects that have been created by committed and
uncommitted transactions. The committed state of the database reflects only the modifications of
committed transactions. When transaction T; commits, each version x; created by T; becomes a
part of the committed state and we say that T; installs x;. If T; aborts, x; does not become part of
the committed state. Thus, the system needs to prevent modifications made by uncommitted and
aborted transactions from affecting the committed database state.

Conceptually, the committed state comes into existence as a result of running a specia initial-
ization transaction, T;,;;. Transaction T;,;; createsall objectsthat will ever exist in the database; at
this point, each object x hasan initial version, X;,;:, called the unborn version. When an application
transaction inserts an object x (e.g., inserts atuple in a relation), we mode it as the creation of a
visible version for x. When atransaction T; deletes an object x (e.g., by deleting a tuple from some
relation), we model it as the creation of a special dead version, i.e., in this case, x; (also called
Xdead) 1S @ dead version. Thus, object versions can be of three kinds — unborn, visible, and dead;
the ordering relationship between these versionsis discussed in Section 3.1.2.

All objects in the database have a unique identity that is not based on field values. Suppose
transaction T; deletes x (i.e., X; is a dead version) and a later transaction T; checks if this tuple
existsand insertsanew tuple. Transaction T;’sinsert operation overwrites the unborn version of an
object y that has not been used before and createsavisible version of vy, i.e., the deleted and inserted

34

objects are different.

When atransaction T; performs an insert operation, the system sel ects a unique object x that has
never been selected for insertion before and T; creates avisible version of x if T; commits. If two
transactions try to insert a tuple with the same field values, the system selects two distinct objects
for insertion. The decision whether both tuples can be inserted is left to the application and the
database system, i.e., our model does not require that the database contains unique tuples.

We assumeobject versionsexist forever in the committed stateto simplify handling of insertsand
deletes. Animplementation only needsto maintain visible versions of objects, and a single-version
implementation can maintain just onevisibleversion at atime. Furthermore, applicationtransactions
inareal system accessonly visibleversions. Well-formed systemsenforcethisconstraintin different
ways. For example, in an object-oriented database system, an application might be unableto access
deleted objects since the system provides garbage collection. In arelational database with explicit
deletion, a transaction might look up an object using its primary key after that object has been
deleted. The system can inform the transaction that no such object exists, or, if keys are reused, it
could return a different object. As discussed above, in our model, these objects will be considered
to be distinct.

3.1.2 Transaction Histories

We capture what happensin an execution of a database system by a history. A history H over a set
of transactions consists of two parts — a partial order of events E that reflects the operations (e.g.,
read, write, abort, commit) of those transactions, and a version order, <, that is a total order on
committed object versions.

Each event in a history corresponds to an event of some transaction, i.e., read, write, commit
or abort. A write operation on aobject x by transaction T; is denoted by w;(x;) (w;(X;.,) for the
m*h modification to X); if the value v is written into x;, we use the notation, w;(x;, v). When a
transaction T; reads adataitem x, it reads some version of x that was written by atransaction T; (T;
could be the same as T;); we denote thisasr;(X;) (or rj(X;.,) if T; reads an intermediate version).
To indicate that T; has read x;’s value to be v, we use the notation r;(x;, v). Note that version x; is
not necessarily the most recently installed version in the committed state. (The subscript of “w” in
the write operation is always the same as the version of the modified object; this redundancy exists
so that the notation for writesis similar to that for reads.)

The partial order of events E in a history obeysthe following constraints:

o |t preservesthe order of al eventswithin atransaction including the commit and abort events.

o If aneventr;(x;,) existsin E, it is preceded by w;(X;.) in E, i.e., atransaction T; cannot
read version x; of object x beforeit has been produced by T;.

o If an event w;(X;.,) isfollowed by r;(x;) without an intervening event w;(X;) in E, X; must

35

be x; . Thiscondition ensuresthat if atransaction modifies object x and later reads x, it will
observeitslast update to x.

The partial order in [BHG87] places more constraints than the ones given above since their
theory has been developed for defining serializability. In our case, we add those extra conditions
as they are needed at each lower isolation level; our specification of serializability captures all
conditions presented in [BHG87].

For convenience, we will present history eventsin our examples as a total order (from left to
right) that is consistent with the partial order. Furthermore, wherever possiblein our examples, we
make this total order be consistent with the real-time ordering of eventsin a database system; a
similar approach was adopted in [GR93].

The second part of a history H is the version order, <, that specifies a total order on object
versions created by committed transactionsin H; thereis no constraint on versions dueto uncommit-
ted or aborted transactions. We refer to versions due to committed transactions in H as committed
versions and impose two constraints on H's version order for different kinds of committed versions:

o the version order of each object x contains exactly oneinitial version, X;,;:, and at most one

dead version, Xgeqd-

® Xt ISX' STirst versioninitsversion order and X 4.q4 iSits last version (if it exists); all visible
versions are placed between X;,,;¢ and Xgeqd-

We additionally constrain the system to allow reads only of visible versions:

e if rj(x;) occursin ahistory, then x; isavisible version.

For convenience, we will typically only show the version order for visible versionsin our example
histories; in cases where unborn or dead versions help in illustrating an issue, we will show some
of these versions as well.

The version order in ahistory H can be different from the order of write or commit eventsin H.
Thisflexibility is needed to allow certain optimistic and multi-version implementations where it is
possible that a version x; is placed before version x; in the version order (x; < X;) even though x;
isinstalled in the committed state after x; isinstalled. For example, consider history Hyyrite—order-

Huyrite—order: W1(X1) W2(X2) W2(y2) C1 Cz ra(X1) Wa(Xs) Wa(ys) a4 [X2 < X1]
In this history, the database system chooses the version order X, < X1 even though T, commits
before T,. The fact that the write of X; occurs before X, in the history does not determine the
version order either; the system chooses the version order for each object. Furthermore, there
are no constraints on xz (yet) or y4 since these versions correspond to uncommitted and aborted
transactions, respectively.

In our examples, the subscripts used for labeling transactions are used purely asidentifiers and
are not supposed to imply any ordering between transactions; all orderings are specified by the
history and the version order. Thus, in a history, events of T1 may or may not precede eventsof T».

36

3.1.3 Predicates

We now discuss how we handle predicates in our model. In databases, queries and updates may
be performed on a set of abjects if a certain condition called the predicate [GR93] is satisfied.
For example, a transaction can execute an SQL statement that updates the phone numbers of all
employeeswhose place of residenceis Cambridge; in this case, the predicateisthe condition * place
of stay = Cambridge’ over the relevant relations.

In our model, we assume that predicates are used with relationsin arelational database system.
There are two modification operations possible on the structure of relations: insertion or deletion
of tuples (of course, tuples can be read or updated as discussed earlier; our notation for reading via
predicatesis discussed below).

We extend our database model in the following way. We divide the database into relations and
each object (with all its versions) exists in some relation. As before, unborn and dead versions
exist for an object before the object’s insertion and after its deletion. A point to note here is that
an object’s relation is known in our model when the database is initialized by T;yi:, i.€., before
the object is inserted by an application transaction. Of course, this assumption is needed only at
a conceptual level. In an implementation, the system knows the relation of an object x when x is
inserted in arelation.

A predicate P identifies a boolean condition and the relations on which the condition has to be
applied; one or more relations can be specified in P. All objects that match this condition are read
or modified depending on whether a predicate-based read or write is being considered. We do not
make any assumptions about the language used for specifying predicates.

Definition 1: Version set of a predicate-based operation. When a transaction executes a read
or write based on a predicate P, the system selects a version for each object in P'srelations. The
set of selected versionsis called the Version set of this predicate-based operation and is denoted by
Vset(P).

The version set defines the state that is observed to evaluate a predicate P. Since we select a
version for all possible objectsin P's relations, this set will be very large since it includes unborn
and possibly dead versions of some objects. For convenience, we will only show visible versions
in aversion set; to better explain some examples, we will sometimes also show some unborn and
dead versions.

We use the following scenario for explaining variousissues regarding predicates. We consider a
database in which an Employeerelation containsvisible versions of objects, x andy. In many of our
examples, x is atuple for an employee in the Sales department and y corresponds to an employee
in the Legal department; in some cases, we will also consider object z for which only an unborn
version exists (there will be many other such objects in the relation but we will not need them in
our examples).

37

Predicate-based Reads

If atransaction T; performs reads based on a predicate P (e.g., in a SQL statement), we represent
the event in a history asr;(P: Vset(P)). To execute such aread, the system (conceptually) reads all
versions in Vset(P). Then, the system determines which objects match predicate P by evaluating
P's boolean condition on the versions in Vset(P); objects whose unborn and dead versions were
selected in the previous step do not match.

Here is an examplethat illustrates reads based on predicates using the above scenario. Suppose
that transaction T; executes a query to determine the tuples in the Employee relation for which the
predicate “Dept = Sales” istrue. This query (conceptualy) reads a version of al objects in the
Employee relation, e.g., X1 and y», and the unborn/dead versions (such as z;,;;) of other objects
in this relation. This predicate-based read could be shown in a history as r;(Dept=Sales: x1; y>);
in this case we do not show any unborn or dead versions in the version set. Version x; matches
the predicate and y» does not match; recall that z;,;; cannot match the predicate. After this query,
T; can execute operations on the matched object, e.g., it could read x;’s value. These reads will
show up as separate eventsin the history. If T; does not read x1, we do not add aread event to the
history, e.g., T; could simply use the fact that one object matched the predicate. Thus, the history
only shows reads of versions that were actually observed by transaction T;.

Predicate-based M odifications

For writes based on a predicate P, we use the following approach. Asfor predicate-based reads, the
system selects versions for all objects specified in P's relations and then determines which object
versions match P; asin the case of reads, unborn and dead versions cannot match P. Then, all objects
that match the predicate are modified by the transaction, i.e., in the case of the delete operation,
dead versions are installed for the deleted objects. We maodel this behavior as a sequence of events:
w;(P: Vset(P)) w;(x;) w;(y;) - .., wherex, y, ... are the objects that matched predicate P.

When a transaction modifies objects based on a predicate, it indicates the modification to be
performed. Thisinformation is used by the database system to generate appropriate write events.
Since a history captures what happened in a system, we show the write-events after the system has
interpreted the predicate-based operation.

Here are some examples to illustrate writes based on predicates. Suppose that transaction T;
executes the following statement for the employee database discussed above: “increment by $10
salaries of all employees where Dept=Sales’. Suppose that the system selects versions, X1, y», and
Zinit, fOr this operation. If x; matchesthe predicate but y» and z;,,;; do not, the following eventsare
added to the history: w;(Dept=Sales: X1; Y2, Zinit) W;(X;).

Similarly, if a transaction T; deletes all employees from the Sales department in the above
scenario, the following events are added to the history: w;(Dept=Sales: X1; Y2, Zinst) W;i(X;). Note

38

that similar events are added to the history in the case of deletion as well. However, there is a
difference: in the deletion example, x; is a dead version and cannot be modified further whereasin
the update case, x; can be overwritten later.

Note that a predicate-based modification can also be modeled as a predicate-based read followed
by a set of writes on the matched objects. Thus, in the example given above, the operations added
to the history are: r;(Dept=Sales: X1; Yo, Zinit) W;i(X;). This technique provides weaker guarantees
(than the approach given above) to predicate-based modifications at lower isolation levels and is
supported by some commercial databases. It is possible to change our definitions to allow such
semantics; we have chosen a different approach since we wanted to provide stronger guaranteesfor
predicate-based modifications at lower isolation levels.

We only treat updates and deletes as writes based on predicates; we do not provide special
“insert predicates’. Insert operations are modeled as discussed in Section 3.1.1, i.e., if T; insertsa
tuple, the system selects a unigque object x (which has never been selected for insertion before) and
creates avisible version of x; when T; commits.

An insert statement in a database language such as SQL specifies the tuples to be added to a
relation; these tuples could be specified explicitly or could be evaluated from a query. If aquery is
used for generating the values, our model treats such an insert operation as a predicate-based read
followed by a sequence of write events that correspond to the tuples being added. This approach
corresponds to the semantics of some commercial databases such as IBM’s DB2 [IBM99]. For
example, consider the following statement that copies employees whose commission exceeds 25%
of their salary into the BONUS table (this statement is executed by transaction T,):

T1: INSERT INTO Bonus SELECT name, sal, comm FROM Emp
WHERE comm > 0.25* sal
As stated in the DB2 manual [IBM99], the lock-protocol for the Emp relation is governed by the
“rulesfor read-only processing”; for the Bonus relation, the lock-protocol for * change processing”
isused. Thus, if the transaction executes at degree 2, read-locks on the Emp relation are released
after the insert statement. Thisallowslater transactionsto modify the Emp relation while T1 is still
uncommitted.

As stated above, our approach handles T1'sinsert in asimilar manner. Hereisapossible history
for T1's execution in our mode!:

Hguery—insert: T1(cOMm>0.25% sal: Xg) r1(Xo) Wi(y1) €1
In this history, since xo matches the predicate-based query, it is read by T, to generate a tuple
that is inserted into the Bonus table. We do not consider the insertion of y, as a predicate-based
write since the predicate is used to determine what tuples will be inserted in the Bonus relation
and not for determining which matched objects need to modified. Modeling an insert operation as
a predicate-based read followed by a set of write events allows flexibility and ensures that some
commercial systems are not ruled out.

39

Discussion

Our approach of abserving some version of each object in one of the selected relations allows us
to handle the phantom problem [GR93] in a simple way (as we will see later). However, this does
not constrain implementations to perform these observations, e.g., an implementation could use an
index.

To model reads and writes based on predicates, we introduced the notion of relations in a
database. A read operation based on predicate P only observes object versionsin relations that are
specified by P (similarly for writes). We chose this approach rather than having a predicate-based
read observe versions of all objects in the database because an object x in a relation that is not
specified by P does not matter. The only way that x can match Pisif its relation is changed to be
one of P’srelations. Since objects do not change relations in our model, we can ignore object x for
an operation based on predicate P since x's relation is not specified by P. Alternatively, we could
say that the system chooses unborn versions of all objectsin such relations. This is equivalent to
our approach of dividing the database into relations. Our approach has an additional advantage that
it models how predicates are used in application code, i.e., a predicate indicates the relations on
which it operates.

3.1.4 Conflictsand Serialization Graphs

We first define the different types of read/write conflicts that can occur in a database system and
then use them to specify serialization graphs. Our notion of conflicts and graphs is similar to the
ones given in [BHGS87] but they are not exactly same; we capture conflict-serializability with our
definitions whereas the conditions given in [BHG87] define view-serializability. We define three
kinds of direct conflicts that capture conflicts of two different committed transactions on the same
object or intersecting predicates — read-dependency, anti-dependency, and write-dependency. The
first type, read dependency, specifieswrite-read conflicts; atransaction T; dependson T; if it reads
T;’s updates. Anti-dependencies capture read-write conflicts; T; anti-dependson T; if it overwrites
an object that T; has read. Write-dependencies capture write-write conflicts; T; write-depends on
T; if it overwrites an object that T; has also modified. We now discuss these conflictsin detail. For
convenience, we have separated the definitions of predicate-based conflicts and regular conflicts.

Definition 2: Directly Read-Depends. We say that T; directly read-depends on transaction T; if
it directly item-read-depends or directly predicate-read-dependson T; (denoted by T; ﬂ T3).

Directly item-read-depends. We say that T directly item-read-depends on T; if T; installs some
object version x; and T; reads x;.

Directly predicate-read-depends Transaction T directly predicate-read-dependson T; if T; per-
forms an operation r;(P: Vset(P)) and x; € Vset(P).

40

Transaction T directly predicate-read-dependson the initialization transaction Ty, Since T
observes the unborn versions of objects that have yet not been inserted in P's relations; if
T, observes a dead version of some object, it directly read-depends on the transaction that
deleted that object.

For predicate-read-dependencies, all objects in the version set of a predicate-based read are
considered to be read, including objects that do not match the predicate. The versions that are
actually accessed by transaction T; show up as normal read events. Other versionsin the version
set are essentialy ghost reads, i.e., their values are not observed by the predicate-based read but
read-dependencies are established for them as well.

We now define the notion of overwriting a predicate-based operation that is useful for defining
anti-dependencies and write-dependencies.

Definition 3: Overwriting a predicate-based operation. We say that atransaction T; overwrites
an operation r;(P: Vset(P)) (or w;(P: Vset(P))) based on predicate P if T; installs x; such that
Xp < Xj, Xg € Vset(P) and x;, matches P whereas x; does not match P or vice-versa. That is, T;
makes a modification that changes the set of objects matched by T;’s predicate-based operation.
The notion of awrite operation overwriting a predicate-based operation can be defined similarly.

Definition 4: Directly Anti-Depends. A transaction T; directly anti-depends on transaction T; if
it directly item-anti-depends or directly predicate-anti-depends on T; (denoted by T; ﬁ) T;).

Directly item-anti-depends. Wesay that T; directlyitem-anti-dependsontransaction T; if T; reads
some object version x; and T; installs X's next version (after x;) in the version order. Note
that the transaction that wrote the later version directly item-anti-depends on the transaction
that read the earlier version.

Directly predicate-anti-depends:. Wesay that T; directly predicate-anti-dependson T; if T; over-
writes an operation r;(P: Vset(P)). That is, if T; installs a later version of some object that
changesthe matches of a predicate-based read performed by T;.

This definition handlesinserts and deletes. For example, supposethat transaction T ; insertsa
tuplexinan Employeerelation that correspondsto apersonwhoworksin the Salesdepartment.
Another transaction T; searches for all employeesin the Sales department but does not find
thisrecord, i.e., T; reads x’s unborn version. Transaction T directly predicate-anti-depends
on T; since T; changes the objects matched by T;’s read.

Note that read-dependencies are treated differently from anti-dependencies for predicates. A
transaction T; directly predicate-read-depends on all transactions that produced the versions in
Vset(P) However, if transaction T; performs an operation r;(P: Vset(P)), T; predicate-anti-depends

41

on T; only if T;'s modifications change the set of objects that matched P; simply overwriting a
version in Vset(P) does not cause a predicate-anti-dependency. We avoid extra anti-dependency
edges originating from T; since they can unnecessarily disallow legal histories.

In a two-phase locking implementation (for providing serializability), if a transaction Ty per-
forms a read based on predicate P and T tries to insert an object x covered by P, T is delayed
till T1 finishes. In our model, T1 reads Xynporn @nd To creates a later version x1. If T, changes
the matches by T;'s read, T, predicate-anti-depends on T;. Note that T1’s predicate read-locks
delay T, evenif T, does not change the objects matched by P. Our definitions are more flexible and
permit implementations that allow T, to proceed in such cases, e.g., precision locks and granular
locks [GR93].

Here is an example to illustrate anti-dependencies with respect to predicates. Consider the
employee database scenario described in Section 3.1.3 that contains visible versions of two objects
x and y. Suppose T; executes a query that selects all Employees in the Sales department and
examines versions X; and y, along with unborn/dead versions of other abjects; it determines that x
isin Salesandyisnot. If T; commits, it will read-depend on T; and T», T;,:, and transactions that
created dead versions observed by T;. A later transaction T; will directly predicate-anti-depend on
T; if T; adds a new employee to the Sales department, movesy to Sales, removes x from Sales, or
deletes x from the database.

Definition 5: Directly Write-Depends. A transaction T directly write-dependson T; if it directly
ww
item-write-dependsor directly predicate-write-dependson T; Thissituationisdenoted by 7; — T;.

Directly item-write-depends:. We say that T; directly item-write-depends on transaction T; if T;
installs aversion x; and T; installs X's next version (after ;) in the version order.

Directly predicate-write-depends. Wesay that T directly predicate-write-dependson T; if either

1. T; overwrites an operation w;(P: Vset(P)), or
2. T; executes an operation w;(Q: Vset(Q)) and x; € Vset(Q).

In other words, T, predicate-write-dependson T; if T; installs alater version of some object
that changes the matches of a predicate-based write performed by T; or if the system selects
aversionx; in T;’s predicate-based write.

The definition of predicate-write-dependencies is similar to the definitions of predicate-read-
dependencies and predicate-anti-dependencies given above. Part (1) of this definition matches
read-dependencies, i.e., al objects in the version set of a predicate-based write are effectively
considered to be modified, including objects that do not match the predicate. We refer to such
writes of unmatched objects as ghost writes since no new versions are created for them. For objects
that match the predicate, separate write events are generated.

42

Part (2) of predicate-write-dependsis similar to predicate-anti-depends: in both cases, a trans-
action overwrites a predicate-based read or write of another transaction. As in the case of anti-
dependencies, we do not consider a transaction T; to predicate-write-depend on T; if T; simply
overwritesaversionin Vset(P) (of an operation w;(P: Vset(P))); instead T; must change the objects
matched by P. Predicate-write-dependencies are chosen in this manner to prevent legal histories
from being unnecessarily disallowed.

Note that if predicate-based modifications are modeled as predicate-based reads followed by
normal writes, the notion of predicate-write-dependsis not needed.

The definition for predicate-write-depends handles inserts and deletes also. For example,
suppose T; updates the salaries of all employeesin an Employee relation for which “Dept=Sales’
is true. Suppose that a later transaction T; inserts a tuple (z;) for a new employee in the Sales
department. Transaction T; directly predicate-write-depends on T; since T; installs an object
version that changes the matches of T;'s predicate-based write (when T; performs its update,
w;(P: Vset(P)), its version set Vset(P) contains z;,;; Which does not match P).

Let us consider an example that involves deletes. Suppose that transaction T; deletesarecord x
that matches a predicate “social security number = SN” and alater transaction T; insertsarecord y
with the same social security number in the database. 1n our model, thesetwo objectsaredistinct: T;
createsthe dead version of x and T; createsthefirst visible version of y. T; predicate-write-depends
on T; since it changes the objects matched by T;’s predicate and installs a later version of y (T;’s
object set contains version y;y,;; that does not match whereasy; matches the predicate).

The following subsidiary definitions will also be useful:

Definition 6: Directly depends. We say T directly dependson T; if T; directly write-depends or
directly read-dependson T;.

Definition 7: Directly conflict-depends. We say that T, directly conflict-depends on T; if it
directly depends or directly anti-dependson T;.

Now we can define the Direct Serialization Graph or DSG. Thisgraphis called “direct” since
it is based on the direct conflicts discussed above.

Definition 8: Direct Serialization Graph. We define the direct serialization graph arising from
a history H, denoted DSG(H), as follows. Each node in DSG(H) corresponds to a committed
transaction in H and directed edges correspond to different types of direct conflicts. Thereis a
read/write/anti-dependency edgefrom transaction T; to transaction T if T; directly read/write/anti-
dependson T;.

There can be at most one edge of a particular kind from node T; to T; since the edges do not
record the objects that gave rise to the conflict; our conditions have been defined such that we only
need to know whether a particular type of edge exists between two nodes.

43

A DSG does not capture all information in a history and hence it does not replace the history,
e.g., aDSG only records information about committed transactions. The history is still available if
needed, and in fact, we use the history instead of the DSG for some conditions.

Figure 3-1 reviewsthe definitionsfor direct confli ctsbetween transactions and showsthe notation
used in DSGs. As an example, consider the following history:

Hseriatizable: W1(Z1) Wi(X1) Wa(y1) wa(xs) €1 ra(X1) wa(yz2) c2 rs(y2) ws(zs) cs
[X1 < X3, Y1 K Y2, 21 K 73]
Figure 3-2 shows the corresponding direct serialization graph for this history. Aswe can see, these

transactions are serializablein the order Tq; T»; Ts.

Definition 9: Transitive Conflicts. We also define some transitive conflicts in which the relation-
ship among transactions holdsindirectly.

Depends. We say that T; dependson T; in H if thereisapath from T; to T; in DSG(H) consisting
of one or more dependency edges.

Conflict-depends. We say that T; conflict-dependson T; in H if there is a path from T; to T; in
DSG(H). That is, conflict-dependsis the transitive closure of directly conflict-depends.

Anti-depends: We say that atransaction T; anti-dependson T; if it conflict-dependson T; but does
not depend on T;, i.e., the path from T; to T; contains at |east one anti-dependency edge.

3.2 Isolation Levelsfor Committed Transactions

We now present our specifications for the existing ANS| isolation levels. We developed our
conditions by studying the motivation of the original definitions [GLPT76] and the prablems that

| Conflicts Name | Description (T; conflictson T;) | Notationin DSG |

Directly write-depends | T; installs x; and T; installs X's next version (or T; per- | Ti———— T
formsa predicate-based write whose version set includes
X;) or T; performs a predicate-based write and T; over-
writesthiswrite

Directly read-depends || T; installs x;, T; reads x; or T; performs a predicate- | T;,——— T}
based read whose version set contains x;

Directly anti-depends T; readsx, and T; installsx'snextversionor T; performs | T; — —— — T
apredicate-based read and T; overwritesthis read

Figure 3-1: Definitions of direct conflicts between transactions.

Figure 3-2: Direct serialization graph for history Heriatizabie

were addressed by the phenomena in [BBGT95]; this enabled us to develop implementation-
independent specifications that capture the essence of the ANSI definitions, i.e., we disallow
undesirable situations while allowing histories that are permitted by a variety of implementations.
The conditionsin [GLPT76] and [BBG95] wereinspired by locking and actually reflect the use of
short and long read/write-locks. Therefore, we determined which abstract properties really matter,
and which ones are just artifacts of a particular concurrency control technique.

Like the existing approach, we will define each isolation level in terms of phenomenathat must
be avoided at each level. Our phenomenaare prefixed by “G” to denote the fact that they are general
enough to allow locking and optimistic implementations; these phenomenaare named GO, G1, and
so on (by analogy with PO, P1, etc of [ANS92]). We will refer to the new levelsas PL levels (where
PL stands for “portable level”) to avoid the possible confusion with existing names used in the
ANSI-SQL definitions.

3.2.1 Isolation Level PL-1

Disallowing phenomenon PO ensures that writes performed by T are not overwritten by T, while
T, is still uncommitted. There seem to be two reasons why this proscription might be desirablein
a database system:

1. It simplifies recovery from aborts. In the absence of this proscription, a system that allowed
writes to happen in-place could not recover the pre-states of aborted transactions using a
simple undo log approach.

2. It serializes transactions based on their writes dlone. That is, if T, writes some data item X
after T, writes x, there should not be some other dataitem y in which the reverse occurs, i.e.,
all writes of T, must be ordered before or after all writes of T.

The first reason does not seem relevant to all systems. Instead, it is based on a particular
implementation of recovery. A database system needs a way to prevent aborted transactions from
modifying the committed state. Traditionally, this goal has been achieved by performing writes
in-place and maintaining an undo log [GR93]; if the transaction aborts or the transaction manager
crashes, the database is restored using the before-images stored in the undo log. For example,
history Hyecovery has been presented earlier in the literature [BBG ™95, SWY 93] and researchers
have argued that it must be disallowed becauseit does not lead to correct recovery for such systems:

45

Hrecovery: Wo(Xo) Co Wi(X1) Wa(x2) a1
In the above history, transactions T, and T, modify object x and then T, aborts (the version order is
not specified since T1 and T, are not committed). At thispoint, restoring xto Xo (T1's before-image)
would be incorrect since T,'s update will be lost. Similarly, if T, also aborts now, restoring x to
T>’s before-image (i.e., X1) would also be wrong. History H;ecovery 1S disallowed by PO since two
uncommitted transactions T1 and T are concurrently modifying object x.

However, we believethat Hyccovery iSavalid history and our consistency condition for no-dirty-
writes (presented below) alowsit. Implementations can handle the abortsof T1 and T, in avariety
of ways. For example, when T, aborts, the system can let X, be the version that is stored in the
database. If T, also aborts, the system reverts the value of x to xg. Furthermore, some client-server
systems such as Thor [LACT96] do not install modifications into the committed state until the
commit point of transactions. In such systems, we do not even have to revert the value of x when
either transaction aborts.

Note that history Hyecovery involves blind writes (i.e., a transaction updates an object before
reading it) which may be uncommon for alarge class of applications. Thus, it may seem that disal-
lowing such historiesis not overly restrictive. However, recall that PO rules out efficient optimistic
and multi-version mechanismsby disallowing concurrent writesthat conflict. Thus, to allow arange
of concurrency control mechanisms, assumptions about a particular recovery implementation must
not be madein the consistency specifications and different recovery mechanisms must be permitted.

Thesecondreason for no-dirty-writes seemsrelevant to all systemsand it ensuresthat conflicting
updatesarenot interleaved, i.e.. transactionsare serialized based on writes. Thisproperty iscaptured
by phenomenon GO and we define PL -1 asthe level in which GO is disallowed:

GO: WriteCycles. A history H exhibitsphenomenon GO if DSG(H) containsadirected
cycle consisting entirely of write-dependency edges.

Our PL-1 specification is more permissive than degree 1 of [BBG™95] since GO allows concur-
rent transactionsto modify the same object whereas PO doesnot. Thus, non-serializableinterleaving
of write operations is possible among uncommitted transactions as long as such interleavings are
disallowed among committed transactions (e.g., by aborting some transactions).

The lock-based implementation of PL-1 (long write-locks) disallows GO since two concurrent
transactions, T; and T, cannot modify the same object; therefore, all writes of T either precede or
follow all writes of T;.

One might wonder whether there is any point in running a system that only supports the no-
write-cycles property. Asnoted in [GR93], this property may be useful for applications where the
modifications reflect information obtained by browsing the database to get an approximate idea of
what it contains. In a department store where all customer purchases are logged online, a manager
could use level PL-1 to obtain an approximation of the total value of the ordersin the purchaselog

46

(assuming that uncommitted transactions change the total by a small value). PL-1 is also useful
for transactions that do not want their updatesto be interleaved with updates by other transactions.
However, in general, it seems unwise to run read/write transactions at this level and most database
systems do not allow such transactions to be executed with the no-dirty-writes guarantee only.

Discussion
We now consider some examples that show the kind of guarantees that are provided at level PL-1.
Consider history Hy,cycie:

Hoyrite—cycte: W1(X1, 20) Wa(X2, 50) wa(y2, 50) ¢z wi(y1, 80) c1 [X1 < X2, Y2 K Y1]

Inthishistory, any serial executionresultsinz + y = 100, but the result of Hyyrize—cyere ISX2 + Y1
=130. Thishistory isdisallowed by PL-1 because the updates on x and y occur in opposite orders;
Figure 3-3 shows the DSG for this history.

T, =T,

Figure 3-3: Direct seriaization graph for history Hyrite—cycie

Here are some examplesthat illustrate the guarantees provided by PL-1 with respect to inserts.
Supposethat transaction T, incrementsthe salaries of all employeesfor which “ Department = Sales’
and another transaction T, adds two employees, x and y, to the Sales department. Suppose the
following situation occurs:

Hyred—update: W1(X1) Wi(y1) Wo(Dept=Sales: X1; Yinit) Wa2(X2) C1 C2

[Xinit < X1 <K X2, Yinit < Y]
The updates of transactions T1 and T, are interleaved in the above history (x's salary is updated
but y's salary is not). Thereis awrite-dependency edge from T4 to T, since x; precedes x» in the
version order. Furthermore, there is a (predicate) write-dependency edge from T, to T4 because T,
changesthe matchesdueto T,'s predicate (T1 createsy; which matchesthe predicate whereasy
does not). Since the DSG contains a write-dependency cycle involving T, and To, this history is
disallowed by our PL-1 definitions.

3.2.2 |solation Level PL-2

If a system disallows only GO, it places no constraints on reads. a transaction is allowed to
read modifications made by committed, uncommitted, or even aborted transactions. Proscribing
phenomenon P1 in [ANS92] was meant to ensure that T1's updates could not be read by T, while
T, was still uncommitted. There seem to be three reasons why disallowing P1 (in addition to PO)
might be useful:

47

1. It prevents a transaction T, from committing if T, has read the updates of a transaction that
might later abort.

2. It preventstransactions from reading intermediate modifications of other transactions.

3. It serializes committed transactions based on their read/write-dependencies (but not their
anti-dependencies). That is, if T, dependson T1, T; cannot depend on To.

This property ensures that there is unidirectional flow of information; if T, is affected by T,
T, cannot be affected by T».

Disallowing P1 (together with PO) captures all three of these issues, but does so by preventing
uncommitted transactions from reading or writing objects written by transactions that are till
uncommitted. We address the three guarantees due to P1 by the following three phenomena, Gla,
G1b, and Glc.

Gla: Aborted Reads. A history H exhibits phenomenon Glaif it contains an aborted
transaction T; and a committed transaction T; such that T; has read some object
(maybe via a predicate) modified by T;. Phenomenon Gla can be represented using
the following history fragments:

Wi(Xim) .. i(Xim) - .- (& and c; in any order)
W;(Xim) .. Ij(P: Xim, -..) ... (& andc; inany order)

Proscribing Glaensuresthat if T; readsfrom T; and T; aborts, T; must also abort; these aborts are
also called cascaded aborts [BHG87]. In area implementation, the condition also implies that if
T; reads from an uncommitted transaction T;, T;’s commit must be delayed until T;'s commit has
succeeded [BHG87, GR93].

Condition Glais needed for recoverability purposes. if the system recovers after a crash and
reruns all committed transactions in the same order as they ran earlier, the same committed state
should be reached as it existed before the crash. However, if a committed transaction depends on
an aborted transaction, thiswould not be possible. The problem of recoverability due to readsfrom
aborted transactions has been discussed in the literature [BHG87, Dat90, RKS93, Y BS91]; some of
the suggested solutions are similar to G1a and others are the same as condition P1.

G1b: Intermediate Reads. A history H exhibits phenomenon G1b if it contains a
committed transaction T; that has read a version of object x (maybe via a predicate)
written by transaction T; that wasnot T;’s final modification of x. Thefollowing history

fragments represent this phenomenon:

Wi (Xim) --- [(Xim) +- o Wi(Xem) .. Cj
Wi(Xim) --- (P Xim,) -0 Wi(Xim) --- Cj

48

Like our other conditions, G1b does not constrain the behavior of uncommitted transactions. It
alows an uncommitted transaction T, to observe the effects of other uncommitted transactions
as long as T; reads values that are finally installed into the database; if any of these values are
intermediate, disallowing G1b ensures that T; is aborted. Note that proscribing Gla and G1b
ensures that a committed transaction only reads object values that existed (or will exist) at some
point in the committed state.

Disallowing intermediate and aborted reads can be crucial for many applications. For example,
consider a company’'s web site on the internet where customers fill out online forms for their
purchases. A processing agent processes these orders and informs appropriate departments. If the
processing agent were allowed to see an order form while it was still being modified by a customer
transaction, it might incorrectly process an incomplete order. Inthiscase, it isimportant to disallow
Glaaswell; otherwise, the agent may process an order that never existed (i.e., if acustomer aborts
his/her purchase).

Glc: Circular Information Flow. A history H exhibits phenomenon G1c if DSG(H)
contains a directed cycle consisting entirely of dependency edges.

Intuitively, disallowing G1c says that if atransaction T; is affected by transaction T;, it does not
affect T;, i.e., there is a unidirectional flow of information from T; to T;. Note that G1c includes
GO0. We could have defined aweaker version of G1c that only concerned cycles having at least one
read-dependency edge, but it seems simpler not to do this.

Unidirectional flow of information can be important in many situations. For example, consider
an online firm that is selling tickets for a sports event. Each sales agent is structured such that it
“backs-off” if it observesaclaim request by another agent. Supposetwo salesagents A and B make
a simultaneous attempt to obtain a batch of 100 tickets. It is possible that agent A observes B's
request and vice-versa. As aresult, both of them back-off and neither agent obtains the tickets. If
unidirectional flow of information was guaranteed, at least one of them would have succeeded in
obtaining the tickets; if G1c is disallowed, one agent will observe that there are no other pending
requests.

Our condition that captures the essence of no-dirty-reads is G1, which is comprised of Gla,
G1b, and G1c. We defineisolation level PL -2 as one in which phenomenon G1 is disallowed. (As
mentioned, disallowing G1 also disallows G0.)

Proscribing G1 is clearly weaker than proscribing P1 since G1 allows transactions to read
from uncommitted transactions. The lock-based implementation of PL-2 disallows G1 because the
combination of long write-locks and short read-locks ensuresthat if T; reads a version produced by
T;, T; must have committed already and therefore it cannot read a version produced by T;.

Along with disallowing dependency cyclesinthe DSG, our specificationsalsoinclude conditions
Glaand G1b that are simply based on object histories. We could have expressed these phenomena

49

interms of graph properties by including aborted transactionsin the graph and defining phenomenon
Glaas one in which there is a read-dependency edge from an aborted transaction to a committed
transaction (G1c would be defined over committed nodes only). Similarly, consider a graph in
which edges are labeled by the objects causing the conflict; phenomenon G1b occursif there exists
a cycle consisting of exactly one read-dependency and one anti-dependency edge such that both
edges are labeled by the same object. However, these extra nodes, edges, and labels complicate
the graph unnecessarily. Thus, for simplicity reasons, conditions Gla and G1b are presented as
constraints on object histories rather than being expressed as graph properties.

Consistency Guaranteesfor Predicate-based Readsat PL-2

The PL-2 definition given in this section treats predicate-based reads like normal reads and provides
no extra guarantees for them. However, there are alternative approaches possible. Here are some
consistency guarantees that could be provided to such reads at PL-2 (from weakest to strongest).
Each predicate-based read is:

1. provided the same guarantees as anormal read.
2. indivisible with respect to any predicate-based write.

3. indivisible with respect to all writes of atransaction.

Our definition of PL-2 assumes the first option and disallows only Gla, G1b, and G1c (along
with GO) for PL-2 transactions. For example, the following history is allowed by level PL-2:

Hyred—noguar: Wi(Dept=Sales: Xo; yo) Wi(X1) wi(y1) rz(Dept=Sales: X1;Yo) r2(X1) €1 C2
[Xo < X1, Yo < Y1]

In this history, T, updates the salaries of al employeesin the Sales department and T, reads the
salaries of all these employees; T, observesonly partial effects of T1'swrite.

The second guarantee disallows this history and ensures that we can treat all operations
(normal/predicate-based reads and writes) as primitive operations. This guarantee essentially says
that the versionsin the version set of a predicate-based operation must not reflect the partial effects
of a predicate-based write, i.e., predicate-based operations are not interleaved with respect to each
other. This property can be supported by disallowing phenomenon G1-predA and PL-2' can be
defined as alevel that disallows Gla, G1b, Glc, and G1-predA:

G1-predA: Non-atomic Predicate-based Reads. A history H exhibits phenomenon
Gl-predA if H contains distinct committed transactions T; and T;, and operations
w; (P Vset(P)), w;(X;) ... wi(y;) and r;(Q: Vset(Q)) such that w;(x;) and w;(x;)
are events generated due to w;(P: Vset(P)), x; € Vset(Q), and w;(y;) overwrites
r;(Q: Vset(Q).

50

Disallowing G1-predA guaranteesthat if T,’s predicate-based read observes an update by T;’s
predicate-based write, it does not see any version older than the onesinstalled by T;’swrite. Thus,
disallowing G1-predA ensures that all read/write operations are indivisible with respect to each
other. However, level PL-2' till allows a predicate-based read to be interleaved with distinct writes
of the same transaction. For example, the following history is allowed by level PL-2':

Hatomic—reads: Wl(DeptzsaleS: Xo; Yo, ZO) Wl(xl) Wl(yl) Wl(zl)
ro(Dept=Salesor Dept=Legal: X1; Y1; Zg) r2(X1) rz2(y1) ¢ C
[Xo < X1, Yo < Y1, 20 < 1]

Thisscenariois similar to the one shown for Hp,q—noguar €XCept that T1 also updates the record of
an employeein the legal department (as a normal write) and T, reads an old version of this record
as part of its predicate-based read. All operationsin this history are indivisible with respect to each
other but the predicate-based read is not indivisible with respect to all operations of the transaction.

The third guarantee disallows history Hatomic—reads @Nd ensures that a predicate-based read
does not observe the partial effects of a transaction, i.e., the values observed by a predicate-based
reads are not interleaved with all modifications by another transaction. Phenomenon G1-predB
handles partial predicate-based reads:

G1-predB: Non-atomic Predicate-based Reads with respect to Transactions. A
history H exhibits phenomenon G1-predB if H contains distinct committed transactions
T; and T; such that T; overwrites an operation r;(P: Vset(P)) and there existsaversion
X; in Vset(P).

We define level PL-2" to be one that disallows Gla, G1b, Glc, and G1-predB. If predicate-based
reads are treated in this manner, each predicate-based operation becomesindivisible with respect to
all operations of atransaction (GO providesthis property for predicate-based writes). Thislevel can
be useful in many situations such as the one shown in history Hatomic—reads-

Even stronger guarantees are provided by a lock-based implementation for predicate-based
reads. These guarantees are discussed in Section 4.2.2. Furthermore, many commercial systems
execute each SQL statement atomically and hence ensure that each predicate-based read observesa
database state achieved by the complete execution of some set of transactions; the issue of atomic
SQL statements at lower isolation levelsis discussed in Section 3.3.2.

3.2.3 Isolation Level PL-3

In a system that proscribes only G1, it is possible for a transaction to read inconsistent data and
therefore make inconsistent updates. For example, consider history Hiost—update:

51

Hiost—update: T1(Xo0, 10) r2(Xo, 10) Wa(X2, 15) €2 Wi(Xy, 14) C1 [Xo < X2 < X1]

This history illustrates the “lost update” problem [GR93], in which T, and T, attempt to add 4 and
5, respectively, to x but T,'s update is “lost” and x is incremented by 4 instead of 9. Although
phenomenon P2 prevents such histories, it also prevents legal histories such as Hy (presented
in Section 2.4.1) and hence, disallows many concurrency control schemes, including optimistic
and multi-version concurrency schemes. What we need is to prevent transactions that perform
inconsistent reads or writes from committing. Thisis accomplished by the following condition:

G2: Anti-dependency Cycles. A history H exhibits phenomenon G2 if DSG(H)
contains a directed cycle having one or more anti-dependency edges.

We define PL-3 as an isolation level that proscribes G1 and G2. Thus, all cycles are precluded at
this level; since the DSG for history Hios:—update CONtains acycle (see Figure 3-4), it is disallowed
by PL-3. Of course, the lock-based implementation of PL-3 (long read/write-locks) disallows
phenomenon G2 also since two-phase locking is known to provide complete serializability.

Figure 3-4: Direct serialization graph for history Hiost—update

Proscribing G2 is weaker than proscribing P2, since we allow atransaction T; to modify object
X even after another uncommitted transaction T; has read x. Our PL-3 definition allows histories
suchasHy and Hyx (presentedin Section 2.4.1) that were disallowed by the preventative definitions.

The conditions given in [BHG87] provides view-serializability whereas our specification for
PL -3 provides conflict-serializability (thiscan shown using theorems presented in [GR93, BHG87]).
All redlistic implementations provide conflict-serializability; thus, our PL-3 conditions essentially
provide what is normally considered as serializability.

3.24 |solation Level PL-2.99

Thelevel called REPEATABLE READ or degree 2.99in [ANS92] provideslessthan full serializability
when predicatesarein use. In particular, it useslong locksfor all operations except predicate-based
reads for which it uses short locks, i.e., it ensures serializability with respect to regular reads and
provides guarantees similar to degree 2 for predicate-based reads. Thus, anti-dependency cycles
due to predicates can occur at thislevel. We use the following condition to allow these cycles:

G2-item: Item Anti-dependency Cycles. A history H exhibits phenomenon G2-item
if DSG(H) contains a directed cycle having one or more item-anti-dependency edges.

52

wr

wr ®

To Ty ~T,

Figure 3-5: Direct serialization graph for history Hppantom

Level PL-2.99 is defined as one that proscribes G1 and G2-item. For example, consider the
following history:

Hphantom: r1(Dept=Sales: Xq, 10; yo, 10) r(Sumg, 20) w»(z2=10in Dept=Sales)

W2(Sum2, 30) Co rl(Slsz, 30) C1 [Sumo &K SUMy, Zinit K 22]

When T1 performs its query there are exactly two employees, x and y, both in Sales (we show only
visible versions in the history). T1 sums up the salaries of these employees and compares it with
the sum-of-salaries maintained for this department. However, before it performs the final check,
T» inserts a new employee in the Sales department, updates the sum-of-salaries, and commits.
Thus, when T reads the new sum-of-salaries value, it finds an inconsistency. This situation is an
example of the read phantom problem [GR93] where transactions observe an inconsi stent state due
to predicate-based reads.

The DSG for Hppantom isshownin Figure 3-5. Thishistory isruled out by PL-3 but permitted by
PL-2.99 because the DSG containsacycle only if predicate anti-dependency edges are considered.

Even though a transaction can observe inconsistencies due to predicate-based reads at level
PL-2.99, we can still provide strong consistency guarantees to each predicate-based read or even
each SQL statement; such guarantees are discussed in Sections 3.2.2, 3.3.2, and 4.2.2.

3.25 Summary of Isolation Levels

We summarize the isolation levels discussed in this section in Figure 3-6.
Like the existing definitions for isolation levels [GLPT76, BBG95], each of our consistency
conditions captures a different type of conflict. However, instead of preventing those conflictsfrom

Level Phenomena Informal Description (T; can commit only if:)

disallowed
PL-1 GO T;’swrites are completely isolated from the writes of other transactions
PL-2 Gl T; has only read the updates of transactions that have committed by the

time T; commits (along with PL-1 guarantees)

PL-2.99 || G1, G2-item T; is completely isolated from other transactions with respect to data
items and has PL-2 guarantees for predicate-based reads

PL-3 Gl, G2 T; is completely isolated from other transactions, i.e., all operations of
T; are before or after all operations of any other transaction

Figure 3-6: Summary of portable ANSI isolation levels

53

occurring at transaction execution time, our definitions place constraints on the transactions that
are allowed to commit; in Section 3.5, we discuss how isolation guarantees can be specified for
executing transactions as well. Each isolation level disallows cyclesin the DSG corresponding to
the conflicts being handled at that consistency level. PL-1 manageswrite-write conflicts, PL-2 also
handles write-read conflicts, and PL-3 (or serializability) takes care of all types of conflicts.

Conditions G1 and G2 provide the well-known definition of serializability, i.e., we can perform
a topological sort on the acyclic direct serialization graph and obtain a total order on the com-
mitted transactions. If these transactions are executed in this order, the result will be the same as
when the transactions executed concurrently. Furthermore, condition G1la also handles recoverabil-
ity [BHG87, KSS97]. Thus, our definition of serializability is the same as what has been generally
accepted in the literature.

Using graphsfor capturing multi-object constraintsis awell-known techniquefor serializability
purposes [BHG87, GR93, KSS97]; we have extended their use to lower degrees of isolation. Our
definitions GO, G1c, and G2 (i.e., the cycle invariants) are similar to the conditions defined towards
the end of [GLPT76]. However, since the authors wanted to give an aternate definition of locking
behavior using constraints on cycles, their graph contains committed and executing transactions.
As a result, their conditions disallow certain histories that are permitted by us; these situations
may actually occur when optimistic concurrency control is used. Furthermore, their cycle-based
conditions do not handle predicates and do not include properties Glaand G1b.

3.3 Mixing of Isolation Levels

So far, we have only discussed systems in which all transactions are provided the same guarantees.
However, in general, applications may run transactions at different levels; Section 3.3.1 discusses
how such “mixed” systems are modeled and discusses how these transactions interact with each
other. Another form of mixing occursin real database systems: each SQL statement in atransaction
T; is executed atomically even though T; has been specified to execute at a lower isolation level
than serializability. Issuesrelated to modeling such systems are discussed in Section 3.3.2.

3.3.1 Guaranteesto Transactionsin Mixed Systems

In amixed system, each transaction specifiesits level when it starts; this information is maintained
as part of the history (in our examples, we do not use any notation and simply indicate the levels of
different transactionsin the text) and used to construct a mixed serialization graph or MSG. Like a
DSG, the MSG contains nodes corresponding to committed transactions and edges corresponding
to conflicts; however, only conflicts relevant to atransaction’s level or obligatory conflicts show up
asedgesin the graph. Transaction T; has an obligatory conflict with transaction T; if T; isrunning
at ahigher level than T;, T; conflictswith T, and the conflict isrelevant at T;’s level. For example,

54

an anti-dependency edge from a PL-3 transaction to a PL-1 transaction is an obligatory edge since
overwriting of reads matters at level PL-3.

Edges are added as follows. since write-dependencies are relevant at all levels, we retain all
such edges. For aPL-2 or PL-3 node T;, since reads are important, read-dependencies coming into
T; areadded. Similarly, we add all outgoing anti-dependency edges from PL-3 transactionsto other
nodes.

Now we can define correctness for a mixed history:

Definition 10: Mixing-Correct. A history H is mixing-correct if MSG(H) is acyclic and phenom-
ena Glaand G1b do not occur for PL-2 and PL-3 transactions.

It is possible to restate the above definition as an analog of the Isolation Theorem [GR93]:

Mixing Theorem: If a history is mixing-correct, each transaction is provided the
guaranteesthat pertain to its level.

The above theorem holds at the level of a history and is independent of how synchronization is
implemented. Note that the guarantees provided to each level are with respect to the MSG. The
reason isthat an M SG considersthe presence of transactionsat other levelswhereasaDSG issimply
constructed with al edges. Aswe discuss below, an MSG is useful for determining correctness if
PL-1and PL-2 transactions*know” what they are doing whereasaDSG ensures correctnesswithout
making any assumptions about the operations of lower level transactions.

A mixed system can be implemented using locking (with the standard combination of short
and long read/write-locks) and all histories generated by a lock-based system are mixing-correct.
PhenomenaGlaand G1b cannot occur at PL-2 or PL-3 since such transactions only read the updates
of committed transactions. Furthermore, there are no cyclesin the MSG because of the following
property: If an edge existsfrom T; to T; inthe MSG, it implies that T; commits after T; in alock-
based implementation. For write-dependency edges, long write-locks ensurethat T ; isdelayed until
T; commits. A read-dependency edge from T; to T; is added for PL-2 and PL-3 transactions only.
Since (at least) short read-locks are acquired by such transactions, a read-dependency edge from
T; to T; implies that T; is delayed until T; commits. Similarly, anti-dependency edges are only
considered from PL-3 transactions; a PL-3 transaction T; acquireslong read-locksthereby ensuring
that if atransaction T; overwrites T;’s updates, it will commit after T;. Thus, if acycle of the form
(T1, T, ... Ty, T1) existsin the MSG, it leads to a contradiction that T, commits before T, . ..
T, commits before T;. Thus, the MSG must be acyclic, i.e., any history allowed by the lock-based
implementation is mixing-correct.

Mixed systems can also be achieved using other concurrency control techniques. For example,
an optimistic implementation would attempt to fit each committing transaction into the serial order
based on its own requirements (for its level) and its obligations to transactions running at higher

55

levels, and would abort the transaction if thisis not possible. An optimistic implementation that is
mixing-correct is presented in Chapter 5.

Consistency of Database State

Even if a history H satisfies the mixing theorem, it does not imply that PL-3 transactions in H
observe a consistent database state since lower level transactions may have modified the committed
state inconsistently. This property is aso true for the Isolation Theorem given in [GR93].

For example, suppose that a database contains three objects x, y, and z such that g is 25, yq is
20, and zy's value is 50. Thefollowing history is executed:

Higing: T1(X0, 25) r1(Yo, 20) ri(zo, 50) ra(Xo, 25) wi(X1, 40) wi(y1, 10) c1 ra(y1, 10)

W2(22, 35) C2 r3(X1, 40) ra(y1, 10) rs(zz, 35) c3 [Xo < X1, Yo K Y1, Z0 K Z7]
rw
P Tl wr wr
T T
Wr Wr
DSG MSG

Figure 3-7: DSG and MSG for history Hpizing-

In this history, T; and T3 commit at PL-3 whereas T, commits at PL-2. This history is possible
in a lock-based implementation in which T, acquires short read-locks on x and y whereas long
read/write-locks are acquired for all other accessesby T1, T» and T3. The DSG and M SG of history
Hmizing 1S Shown in Figure 3-7; for the sake of simplicity, we have not shown Ty in the graphs.
Supposethat aninvariantz + y < zisbeingmaintained by thetransactions. Both T, and T, update
the database to preserve this invariant according to their reads. However, since T, makes decisions
based on reading the partial effects of transaction T, it updates the database inconsistently. Thus,
even though T3 is provided PL-3 isolation, it observes a broken invariant.

As dtated in [GR93], to ensure that a PL-3 transaction observes a consistent state, lower
level transactions must “know” what they are doing, i.e., they must somehow update the database
consistently even if they observe an inconsistent state. Similarly, an acyclic MSG ensures that
transactions update and observe a consistent database state if each lower level transaction handles
inconsistencies correctly in its code. Thus, even though Hpizing iS mixing-correct, it does not
result in serializable state being observed by T3 since T, commits at PL-2 and destroys the database
consistency. On the other hand, the DSG considers all edges and henceresultsin acyclefor history
Hmizing (Se€ Figure 3-7).

56

3.3.2 Guaranteesto SQL Statements

In most commercia database systems, alanguage such as SQL isused to accessand modify database
objects. These systems ensure certain guarantees with respect to SQL statements executed by a
transaction. We now describe how such guarantees can be provided in our framework. Consider
the following SQL application code:

INSERT INTO Highcom
SELECT ename, salary, commission FROM Employee
WHERE commission > 0.25 * salary
UNION
SELECT ename, salary, commission FROM Manager
WHERE dept = Sales
... Rest of the transaction code . ..

The INSERT statement first selects employees from the Employee relation whose commission is
morethan 25% of their salary and all managersin the Salesdepartment; then these selected tuplesare
inserted into the Highcom relation. There are two sub-queries executed by the INSERT statement;
in general, an arbitrary number of queries may be executed as part of a SQL statement.

Suppose that there exists a tuple x in the Employee relation with visible version, xq such that
the commission for Xg is less than 25% of its salary. The Manager relation contains an object y
corresponding to a manager in the Marketing department. Both relations may contain other objects
(with unborn or visible versions) but they are not relevant for this example and we will not consider
them. Now suppose that a transaction T, executes the SQL code shown above. A concurrent
transaction T, increases X's commission to be more than 25% of x's salary; T, also changesy such
that y1 isin the Sales department. Suppose that the following execution occurs:

Hjgi—insert: T2(cOmmission >0.25* salary: xo) wa(x1) wa(ys)

ro(dept=Sales: y1) ra(y1) wz(z2) ¢ c2 [Xo < X1]
In this history, T,'sfirst predicate-based read misses T,'s updates (it reads Xg) but the second query
observes T1's updates (y1 isin the Sales department). Thus, y; matches the predicate and the field
valuesread from y; areinserted into the Highcom relation (version z, isthe new object that is added
by T»). Thishistory is allowed by level PL-2 and even by level PL-2" (described in Section 3.2.2);
level PL-2" only ensures indivisibility of each predicate-based read (and not multiple reads) with
respect to other transactions. The MSG for this history is given in Figure 3-8(a); both transactions
in this history commit at PL-2.

However, most commercial database systems ensure that SQL statements execute atomically
even if the transaction executes at degree 2. For example, in a lock-based implementation, read-
locks are acquired (conceptually) on the Manager and Employee relation for the duration of the
insert operation. Thus, in such systems, either both queries observe T,'s updates or both miss its
effects, i.e., these systems will disallow history Hgg;—insert-

57

T; - T, T INSERT stmt
@ (b)
Figure 3-8: MSG and MSSG for history Hgg—insert and the INSERT statement.

Atomic execution of SQL statements can be modeled by considering a transaction to be com-
posed of a number of “sub-transactions’ that execute at PL-3, i.e., thisis atype of mixed systemin
which different parts of atransaction execute at different isolation levels. If the transaction executes
with PL-3 guarantees, no additional constraints are needed to provide the indivisibility property of
SQL statements. However, more conditions are needed for lower level transactionsto provide such
atomicity guarantees. For this purpose, we use a graph called Mixed Satement Serialization Graph
or MSSG. For a history H and for each SQL statement Sin alower level transaction T;, we define
MSSG(H, S) that issimilar to MSG(H): this graph contains al nodes (except T;) and edges (except
those incident on T;) in the MSG. Then we add a node corresponding to Salong with its edgesin
the graph while treating Sas a PL-3 transaction. To ensure that all SQL statements are atomic, the
following phenomenon must be disallowed for each SQL statement executed in the system (Gla
and G1b must not be permitted as well):

G-SQL -atomic: Non-atomic SQL statements. A history H and SQL statement Sin
history H exhibit phenomenon G-SQL-atomic if MSSG(H, S) contains acycle.

This phenomenaoccurs for history Hyg—inser+ and its insert statement; thus, database systems that
provide atomicity guaranteesto SQL statementswill disallow this history (Figure 3-8(b) showsthe
MSSG).

3.4 Correctnessand Flexibility of the New Specifications

Our conditions for PL-3 provide the well-known notion of conflict-serializability [BHG87, GR93].
Thatis, DSG(H) isacyclic, and G1a, and G1b are satisfied for ahistory H iff H isconflict-serializable.
We can prove the equivalence of our PL-3 conditions with conflict-serializability using the proof
given in [GR93]; our DSGs are similar to their graphs. This equivalence can also be proved along
the lines of the proof givenin [BHG87] for view-serializability.

Proving correctnessfor lower isolation levelsis more difficult since precise guaranteesfor these
levels have not been defined before. Thus, for PL-1 and PL-2, we analyzed behaviorsthat have been
considered undesirable in the literature and ensured that our conditions do allow such histories.

58

Since our PL-3 conditions are equivalent to conflict-serializability, we know that all conflict-
serializable histories are allowed at PL-3. Again, it is more difficult to prove completeness with
respect to lower isolation levels. However, we can show that our specifications are strictly less
restrictive than the preventative interpretation. We show this result by proving the following
theorem (we say that a set of consistency definitions C1 is more restrictive than another set C2 if
C1 permits fewer histories than C2):

Flexibility Theorem: The preventative interpretation of [BBG195] is more restrictive than our
specifications for the ANSI/SQL isolation levels.

Pr oof:

There are two parts of the proof. We first show that there exist histories that are allowed by our
definitions but are disallowed by the preventative interpretation. We use histories Hy» and Hy
that were presented in Section 2.4.1. We repeat those histories below for completeness (with the
Versions):
Hy: r1(Xo, 50) wi(X1, 10) ra(yo, 50) Wi(y1, 90) ra(x1, 10) ra(y1, 90) €1 2
[Xo < X1, Yo < y1]
Hy: 12(Xo, 50) r1(Xo, 50) Wa(x1,10) ra(yo, 50) ra(yo, 50) wa(y1, 90) c; ¢
[Xo < X1, Yo < V1]

As discussed in that section, Hy is disallowed by condition P1 and history Hy is disallowed
by condition P2. Our definitions allow Hy; and Hx since there are no cycles formed in the direct
serialization graph and conditions G1la, and G1b are not violated.

The second part of the proof requires us to show that all histories allowed by the preventative
interpretation are allowed by our definitionsaswell. Thisissimpleto provefor PL-3 sinceour PL-3
conditions allow all conflict-serializable histories whereas alock-based implementation (recall that
the preventative interpretation is essentially a disguised form of locking) only allows a subset of
these histories.

For PL-1 and PL-2, we show that there exist no histories that are allowed by the preventative
interpretation and disallowed by our definitions. We prove this result using contradiction for each
isolation level L, i.e., we assume that there exists a history Hip,possisie thet is disallowed by our
definitions but is allowed by the preventative interpretation at level L. We then show that this
assumption leads to a contradiction.

PL-1

Consider a write-dependency edge from Ty to T, in DSG(H;impossisie)- Such an edge implies that
there exists some version x; that was installed by T; and then overwritten by T, (i.e., X1 < X2).
Thus, this history contains a segment of the form “wi(X1) ... Wa(X2)". Since the history does not
exhibit phenomenon PO, T1 must commit beforews,(x2) occurs, i.e., T1 commits before T, commits.

59

Since Himpossisie 1S disallowed at PL-1, it exhibits phenomenon GO, i.e., acycle consisting only
of write-dependency edges occursin DSG(H;mpossivie)- Supposethat this cycleis of theform (Ty,
T2, T3,... Tp, T1). Since PO allows Hippossiste, We know (from above) that T1 must commit before
T, does, To must commit before T3 commits, .. ., T,, must commit before T, commits. Thisleads
to acontradiction.

PL-2

As in the PL-1 case, we can show that if there exists a read-dependency edge from T1 to T in
DSG(Himpossibie), T1'S commit must precede T,'s commit. Using an argument similar to the one
given for PL-1, we can show that there exists no history that is disallowed by Gl1c at level PL-2 and
is accepted by P1.

Furthermore, it is not possible that P1 is disallowed but Gla or G1b occursin a history. The
reason isthat if atransaction T; observesthe updates of acommitted transaction T;, it observesthe
final state of objects (i.e., G1lbisdisalowed) and T; cannot abort later (i.e., Glais disalowed). O

Thus, we have shownthat there existsno history that isallowed by the preventativeinterpretation
and is disallowed by our definitions. Furthermore, since there exist historiesthat are allowed by our
specifications but not by the preventative interpretation, our definitions are strictly less restrictive
than the latter definitions.

3.5 Consstency Guaranteesfor Executing Transactions

All definitions presented in this chapter till now provide guaranteesto committed transactions only.
However, an application may require certain constraints to be valid as its transactions execute; this
may be necessary to ensure that the application does not behave in an unexpected manner. In this
section, we discuss how the isolation levels presented in this chapter can be extended to provide
guaranteesto executing transactions. To ensure that there is no confusion regarding isolation levels
for committed and executing transactions, we prefix all levels for executing transactions by “E”.
In Section 3.5.1, we motivate the need for providing different isolation guarantees to executing
transactions. Section 3.5.2 discusses the requirements on running transactions that need EPL-1 or
EPL-2 and Section 3.5.3 presents the specifications for EPL-3.

3.5.1 Motivation

Suppose that a programmer writes code under the assumption that certain integrity constraints
will hold. If these constraints are violated, the transaction will be aborted when it tries to commit.
However, before the transaction reachesits commit point, the program may behavein an unexpected
manner, e.g., it may crash, go into an infinite loop, or output unexpected results on a user’s display.
Debugging also becomes more difficult for an application programmer; if the transaction observes

60

a broken invariant, it may be difficult for the programmer to determine whether the invariant was
violated due to acode bug or due to weak consistency guarantees provided to executing transactions
by the system. Furthermore, interactive applications become more complicated since end users may
get confused on reading inconsistent data on the screen. Thus, if strong guarantees are not provided
to executing transactions, a programmer must take temporary inconsistencies into account in the
application code.

Here is an example in which the program goes into an infinite loop since it observes an
inconsistent database state. Suppose that there are two circular lists p and q stored at servers P and
Q respectively. Each nodein thelist hasakey and adata field. The code maintainsthe invariant that
the keysin both lists are exactly same (they may be ordered differently). Transaction T, addsanew
key to the beginning of each list and successfully commits. Suppose that transaction T, executes
the following piece of code:

% Invariant: Keysin p and g are the same
% Search circular list g for key = p.key (thefirst keyin circular list p)

ptr:=q

while (p.key # ptr.key) do
ptr := ptr.next
end

The programmer has written T,'s code assuming that T, will observe a serializable state while
executing; since the invariant states that the key must exist in g, the code need not check for its
presence. Suppose that T, reads the new value of p (i.e,, p1) and the old value of q (i.e., go). Since
T, observes an inconsistent state (p; but not q;), it will be aborted at the end. However, since the
code does not find the new key in g, T»'s execution will never finish. The basic problem hereisthat
T» has observed the partial effectsof T1; if T, was guaranteed to observe a consistent database state
asit was executing, it would have avoided the infinite loop. O

Thus, to allow programmers to rely on code invariants, it is important that certain consistency
guarantees are provided to transactions as they run. If a transaction T; requires execution-time
isolation guarantee L, the system must ensure that T; does not detect that it is running below level
L at any given instant. Transaction T; can detect that it is running below level L if it reads objects
in a manner that is not allowed by that level. If the system cannot provide degree L guarantees to
T; at some point (e.g., because the needed version has been overwritten), T; must be aborted, e.g.,
if atransaction requests for serializability guarantees during execution, it must be aborted before it
observes a non-serializable database state. (The work on orphan detection [L SWW87] in the Argus
distributed system [L CJS87] aso ensured that a running transaction is aborted before it observesa
non-serializable state.)

Since atransaction can determine whether it is executing below a certain degree only by observ-
ing the state of the database, our conditionswill provide guarantees only for reads of uncommitted

61

transactions and not for their writes.

For the purpose of providing consistency guaranteesto an executing transaction T, we consider
T;'s predicate-based writes as predicate-based reads. This approach is taken so that appropriate
guarantees can be provided for version sets of predicate-based writes performed by T; (ghost writes
performed by T; are essentially reads).

Our isolation levelsfor executing transactions are analogousto the level s presented for commit-
ting transactions: whatever property was formerly provided at commit time is now ensured as the
transaction executes.

We assume that a transaction T; requests two isolation levels— alevel L. for committing and
level L, while it is executing. We assume that level L. is at least as strong as level L, eg., a
transaction can request EPL-2 while executing and serializability (but not PL-1) for committing.
This is a reasonable assumption since providing strong guarantees to running transactions if the
database is being updated at alower isolation level does not make sense. It is possible to consider
systems in which execution-time guarantees are stronger than commit-time guarantees. Of course,
in such systems, transactions executing at higher isolation levels observe a consistent database state
only if lower isolation level transactions update the database in a consistent manner. Consistency
conditionsfor these systems can be devel oped in amanner similar to the approach used for committed
transactions in mixed systems (Section 3.3). For simplicity, we only consider systems where the
commit-time guarantees are at least as strong the execution-time guarantees.

3.5.2 Isolation LevelsEPL-1 and EPL-2

Isolation level PL-1 provides guaranteeswith respect to writes. Since our execution time guarantees
are provided only for reads, level EPL -1 does not place any constraints on executing transactions.

Isolation level PL-2 guaranteesthat atransaction is allowed to commit if it observesvalues that
existed in the committed state and there is unidirectional flow of information. To ensure that a
transaction T (while executing) reads from a transaction T; that does not later abort or modify the
objects read by T, we disallow reads from uncommitted transactions; furthermore, no dirty reads
also ensure unidirectional information flow.

We define EPL -2 asalevel that disallows phenomenon P1. EPL -2 guarantees can be useful for a
transaction T; since an application can display objectsonascreen as T ; readsthem; the programmer
can be sure that the data is based on committed information. As another example, suppose that T;
modifies some object x by making a number of incremental changesto it. A transaction running at
level EPL-2 is certain to see T;'s complete set of changes, rather than an intermediate state.

3.5.3 Isolation Level EPL-3

If only EPL-2 guarantees are provided, transactions can observe an inconsi stent database state:

62

Hincons—m’ew: WO(XO) WO(yO) Co Wl(Xl) Wl(yl) C1 IfZ(XO) r.2(y1) [XO < X1, Yo K yl]

In this history, To and T1 are serializable but T, is provided EPL-2 guarantees; T, observes an
inconsistent view since it observesthe partial effects of T;.

To understand what isneeded for the EPL -3 conditions, consider thegraph for history H;pcons—view
shown in Figure 3-9; note that this graph containsanodefor T, eventhoughit isnot committed. We
can see that the graph contains a cycle with a dependency edge and an anti-dependency edge. Our
definition for EPL-3 will prevent such cycles and ensure that T, observes a serializable database
state as it executes.

(committed) T, T, (executing)
wr

Figure 3-9: Graph for history H;pcons—view that includesarunning transaction T, (Tg is not shown).

To specify EPL-3 for a history H and an executing transaction T;, we use a new graph called
the Direct Transaction Graph that is denoted by DTG(H, T,); recall that a DSG was defined for
a history only. The DTG is exactly the same as DSG with one addition: it also contains a node
for executing transaction T; and we add all edges corresponding to the reads of T;. Recall that we
treat all predicate-based writes of T; as predicate-based reads so that consistency guarantees can
be provided for version sets of predicate-based writes. Thus, we get some extra read-dependency
and anti-dependency edges due to such “reads’, e.g., if executing transaction T; performs w;(P:
Vset(P)) and Vset(P) contains x;, we add a read-dependency edge from T to T; in the DTG.

EPL -3 isdefined as an isolation level that disallows phenomenaP1 and E2:

E2: Anti-dependency Cyclesat Runtime. A history H and an executing transaction
T; exhibit phenomenon E2 if DTG(H, T;) contains a directed cycle involving T; that
consists of dependency edges and 1 or more anti-dependency edges.

Phenomenon E2 is similar to the phenomenon G2 presented earlier for committed transactions;
an execution time phenomenon similar to G2-item and a level EPL-2.99 can aso be defined that
does not provide serializability guarantees with respect to predicate-based reads. Note that we are
ignoring anti-dependency edges due to writes by uncommitted transactions. Thisis in accordance
with our goal of providing execution time guaranteesfor reads only. However, it also turns out that
such writes must be ignored so that optimistic schemes can be allowed. We now show why thisis
the case.

To provide EPL-3, one might be tempted to say that all cycles are disallowed in the direct
transaction graph. However, this condition is overly restrictive as shown by the following history:

63

Hntidep—cycie: T1(X0) W2(X2) ra(yo) €2 wi(y1) [Xo < X2, Yo < Y1]

In this example, T and T, overwrite an object that the other transaction has read. The DTG for
history Hantidep—cycte 1S sShown in Figure 3-10 if T’s writes are also considered; we have also
extended the version order to include y;. Transaction T1 is doomed to abort since a cycle with
two anti-dependency edges has been formed. However, sinceit does not observe a non-serializable
database state, there is no harm in executing it. Furthermore, this situation can occur with an
optimistic scheme in a client-server distributed system where T1 may read xg and write y1 in its
client’s cache before information about T2's commit arrives at T1's client.

rw
mmi T -
(committed) WW, Wr “ : .
To T, T =T, (executing)
(committed) rw
WW, Wr

Figure 3-10: DTG for history Hantidep—cycie @nd transaction T if To's writes are also considered.

A consistency condition that considerswrites and disallows situations such asthe onein history
Hantidep—cycte WOUld be unnecessarily restrictive; hence, our phenomenon E2 does not consider
writes by an uncommitted transaction. Note that phenomenon P2 is overly restrictive because it
does consider such writes and disallows a transaction from modifying an object if an uncommitted
transaction isreading it.

3.6 Summary

In this chapter, we described our new definitionsfor the existing ANSI-1SO SQL-92 isolation levels.
We have separated out the notion of providing guarantees for committed and running transactions
so that a wide range of concurrency control implementations can be permitted. We presented
correctness conditionsfor both types of transactions. Unlike previouswork, our conditions provide
avariety of guaranteesfor predicate-based operationsin an implementation-independent manner.
To capture multi-object constraints, our consistency conditions are specified using invariants
based on all objects accessed by a transaction. We used a graph-based approach to define different
isolation levelsin asimple and intuitive manner. Different types of cycles are disallowed at various
isolation levels. We also use graphs for defining correctness conditions in mixed systemsin which
different transactions may commit at different isolation levels. Our conditions for serializability
define the well-known notion of conflict-serializability. We showed that our definitions are strictly
less restrictive than the preventative interpretation of the existing ANSI specifications because our
specifications allow more histories. Our definitions are strong enough to rule out bad histories but

64

are sufficiently flexible to allow a variety of concurrency control mechanisms including locking,
optimistic and multi-version schemes.

65

Chapter 4

Specifications for I nter mediate | solation
L evels

There is a wide gap between PL-2, which provides neither consistent reads nor consistent writes,
and PL-3, which provides both (thisis analogousto the gap between degrees 2 and 3). This chapter
presents specifications for isolation levels that lie in this gap; we call these levels intermediate
degrees of isolation. Researchersin the past have discussed the gap between degrees 2 and 3 and
suggested consistency levels, such as Cursor Stability [Dat90], Read Consistency [Ora95], and
Snapshot Isolation [BBGT95], in thisregion.

We have developed two new intermediate degrees. Our first level, PL-2+, is the weakest level
that provides consistent reads; it ensures that applications do not commit transactions that have
observed an inconsistent state of the database. It is similar to Snapshot Isolation [BBG 95, Orad5]
and proscribes all phenomena that Snapshot Isolation was intended to disallow. Since PL-2+ is
weaker than Snapshot Isolation, it has the potential of being implemented more efficiently than
Snapshot Isolation, especialy in a distributed client-server system. Our second new level, PL-2L,
captures a useful monotonicity property of alock-based implementation of PL-2; PL-2L is similar
to Oracle’s Read Consistency [Ora95]. Thislevel is beneficial for legacy applications that rely on
these characteristics; such applications can continue to run correctly when the system is changed to
using a different concurrency control mechanism.

Along with the specifications for these two new levels, we also present implementation-
independent specifications of some existing intermediate levels that have been described in the
database literature or are being used in commercial databases, e.g., Snapshot Isolation, Read Con-
sistency [Ora95], Update Serializability [GW82, HP86] and Cursor Stability [Dat90]. Our specifi-
cations are of interest since they are supported in commercial systems, and previous specifications
are either given in English (e.g., Snapshot Isolation) or presented in terms of locking (e.g., Cursor
Stability). We define these levels based on variations of the direct serialization graph: we add new
kinds of nodes and edges as necessary and disallow certain types of cyclesfor each isolation level.

Figure 4-1 shows the relationships between various levels presented in this chapter and the

66

Strict Serializability (PL-SS)

Full Seridlizability (PL-3)

Snapshot Isolation (PL-S1) Update Serializability (PL-3U)

Forward Consistent View (PL-FCV)

Repestable Read (PL-2.99)

Consistent View (PL-2+)
Monotonic Snapshot
Reads (PL-MSR)

Cursor Stability (PL-CS) Monotonic View (PL-2L)

PL-2

|

PL-1
Figure 4-1: A partial order to relate variousisolation levels.

previous chapter. Various levels can be ranked according to their “strength”: one level is stronger
than another if it allows fewer histories. In the figure, if level Y is stronger than level X, thereisa
directed path from X to Y; if there is no path between two levels, they are unrelated to each other.

For al intermediate levels, we have also developed corresponding guarantees that can be
provided to transactions as they execute. Asin the previous chapter, the levels defined for running
transactions are similar to the corresponding levels for committed transactions.

Therest of this chapter isorganized asfollows. In Section 4.1, we present our specificationsfor
PL-2+. In Section 4.2, we present definitions for PL-2L . In Section 4.3, we describe specifications
of Snapshot Isolation. We discuss anew isolation level called Forward Consistent View in 4.4 that
has been inspired by Snapshot Isolation. We describe a level that captures the essence of Oracle’s
Read Consistency in Section 4.5 and compare it with level PL-2L. Cursor Stability is presented in
Section 4.6. Section 4.7 describes update serializability, a consistency guarantee that is useful for
read-only transactions, and comparesit with PL-2+ and serializability. Finally, in Section 4.8, we
extend our definitions for intermediate levels to provide guarantees for executing transactions.

4.1 I|solation Level PL-2+

Isolation level PL-2+ is motivated by the fact that certain applications only need to observe a
consistent state of the database and serializability may not be required, e.g., aread-only transaction
in an inventory application may simply want to observe a consistent state of the current orders
and in-stock items. It is the weakest level that ensures that integrity constraints are not observed
as violated as long as update transactions modify the database consistently and are serializable.

67

Furthermore, the level can be implemented efficiently; an implementation that provides PL-2+ in a
distributed client-server systemis discussed in Section 5.3.

Consider the following history Hy,.xen Where transaction T, observes an inconsistent state of
the database:

Hypoken: T1(Xo, -50) ra(Xo, -50) ra(yo, 100) wa(x2, 100) wa(y2, -50) 2 ri(y2,-50) ¢y
[Xo < X2, Yo K 2]

The consistency constraint, z +y > O, is preserved by T,. However, transaction T, observes
a state reflecting both before and after results of T, and erroneously concludes that the constraint
is broken. Figure 4-2(a) shows that history Hy,oxer 1S alowed by PL-2 because the only cycle in
DSG(Hgroken) involves an anti-dependency edge (for simplicity, T is not shown); however, it is
disallowed by PL-3. Note that PO and P1 also allow Hp,oxen -

wr wr
— T /\
rw wr
Tl """""""""" - T2 Tl' """"""" - T2 T3

(@) (b)

Figure 4-2: Direct serialization graph for histories Hyroren and Hipndirect-

The basic problem in Hy,.xern iSthat To has observed a modification of T but has also missed
one of T,'s modifications. However, in general the missed modification might not be made by T,
but instead by some earlier transaction that T, depends on. (Recall that the depends relation given
in Definition 9 is the transitive closure of the directly-depends relation). For example, consider
history H;,direct, in Which the transactions maintain the invariant, z > y:

Hingirect: 1(Xo0, 50) r2(Xo, 50) Wa(x2, 100) c2 ra(X2, 100) wa(ys, 75) c3 ri(ys, 75) ¢1
[Xo < X2]

Both T, and Tz maintain the invariant, but T, observes the invariant to be broken because it sees
T3'seffect but missesthe effect of T,, which T3 (and hence T;) dependson; the DSG for this history
is shown in Figure 4-2(b) (for simplicity, T is not shown).

4.1.1 Specification

Before we define conditions that avoid the problems of histories Hy,okern @aNd Hindirect, We first
present a few assumptions and definitions.

We assume that the committed database state is consistent if the integrity constraints as defined
by an application are valid. Furthermore, if an update transaction T; observes valid integrity
constraints and runs alone to compl etion, we assumethat it transforms the committed database state
such that the integrity constraints continue to hold after T; commits.

68

Definition 11: Basic-Consistency. A transaction T; is provided basic-consistency if the values
read by T; are the result of aserial execution of some subset of committed update transactions and
each update transaction in the serial execution executes the same steps as it did in the concurrent
execution.

The above definition was given by Weihl [Wei87]. Asdiscussed in [Wei87], basic-consistency
ensuresthat T, observesa consistent state of the database because the result of aserial execution of
update transactions always results in a consistent state, by our assumption.

In basic-consistency, each update transaction T; behaves the same (and hence results in the
same write operations) in the serial and concurrent execution if it observes the same state in both
executions. Thus, T; cannot read from an arbitrary set of transactions. For example, if T; observes
the updatesof T, it must not “missthe effects’ of atransaction T, whose updates were observed by
T;, i.e., basic-consistency requires that if the subset of transactions chosen for T;’s observed view
includes T}, it must include Ty as well. Missing the effects of a transaction can be formalized as
follows:

Definition 12: Missing Transaction Updates. A transaction T; misses the effects of atransaction
T; if T; installs x; and an event r;(x) exists such that x; < X;, i.e., T; reads aversion of x that is
older than the version that was installed by T;.

According to the above definition, a transaction T; will not miss the effects of T; if T; reads x; or
alater version of x (i.e., i = k or X; < X) or T; and T; do not conflict. Inconsistencies observed
by transaction T1 in histories Hy,oken @aNd H;nairect Can be avoided if the following condition is
satisfied:

Definition 13: No-Depend-Misses. If T; dependson T;, it does not miss the effects of T;.

This property (along with P1) has been shown by Chan and Gray [CG85] to ensure that transaction
T, does not observeviolated integrity constraintsif updatetransactions are serializable (i.e., commit
at PL-3). We give a synopsis of this proof in Section 4.1.2. In order to ensure that transactions
observe a consistent database state, we use the following condition:

G-single: Single Anti-dependency Cycles. A history H exhibits phenomenon G-
singleif DSG(H) contains a directed cycle with exactly one anti-dependency edge.

Level PL-2+ proscribes G1 and G-single. Intuitively, PL-2+ provides consistency because cycles
with one anti-dependency edge occur exactly when some transaction both observes and misses
modifications of another transaction.

We now prove that disallowing G-single is equivalent to no-depend-misses. As we show in
Section 4.1.2, this implies that a transaction running at level PL-2+ is certain to see a consistent
state, if update transactions are serializable and modify the database consistently.

69

Theorem 2+: History H does not exhibit phenomena G-single iff it satisfies the no-depend-misses
property.

Proof:

Part A: Disallowing G-single implies no-depend-misses.

Supposethat ahistory H doesnot exhibit G-single but the no-depend-missesproperty isviolated.
Then there exist transactions T; and T; such that T; depends on T;, yet it misses some effect of
T, recall that missing T;’s effects implies that history H contains events r;(x;) and w;(x;) such
that X < X;. This situation is shown in Figure 4-3 where T,, overwrites x; and hence there is
an anti-dependency edge from T; to T,; a“*” denotes O or more edges and a “+” denotes 1 or
more edges. In thisfigure, T; could be the same as T,, i.e., T; could have overwritten the version
that T; read. Thus, the DSG has a cycle with one anti-dependency edge, which is a contradiction.
Therefore, if history H does not exhibit phenomenon G-single, it satisfies the no-depend-misses

property.

Figure 4-3: A direct serialization graph with a cycle containing one anti-dependency edge.

Part B: No-depend-missesimplies that phenomenon G-single cannot occur.

Suppose that a history H satisfies no-depend-misses but exhibits phenomenon G-single. The
existence of a cycle with one anti-dependency edge implies that there must be transactions T; and
T, such that T; depends on T; and also T; directly anti-depends on T;. Because of the direct
anti-dependency, there must be some object x such that T, overwrote the version of x that T; read,
i.e., T; missed T;'s effects even though it dependson T;. But this contradicts the no-depend-misses
property. Therefore, if H satisfies the no-depend-misses property, phenomenon G-single cannot
occurinH. O

4.1.2 Relationship between PL-2+ and Basic-Consistency

We now show that PL-2+ is the weakest level that ensures basic-consistency provided update
transactions modify the database consistently and are serializable. A proof similar to the one given
below can be used to show that EPL-2+, the analog of PL-2+ for running transactions (defined in
Section 4.8), ensures that application code never sees an inconsistent database state. Since basic-
consistency guarantees that no violated integrity constraints are observed, PL-2+ is a useful level
for committing transactions, especially read-only transactions.

Theorem: In a history that contains a set of transactions @, such that all update transactions in

70

@ are serializable, each transaction is provided basic-consistency iff it is committed with at least
PL-2+ guarantees.
Proof:

We will prove this theorem with respect to the reads of atransaction Q in ®; Q's writes are not
considered since basic-consistency is only concerned with what a transaction observes. Of course,
if Qisan update transaction, it must be serializable (by assumption).

(a) PL-2+ is Sufficient: Giventhat all updatetransactionsin @ are serializable and Q is committed
at level PL-2+ (at least), Q must be provided basic-consistency.

Suppose that transaction Q depends on a sequence of transactions T;,, T, ... T;,, in ® (these
transactions are serialized from left to right); we call these transactions Q's depend-set. Transaction
Q missesthe effects of therest of the transactionsin ®; these transactions are called Q's missed-set;
Q may anti-depend on some of the transactionsin its missed-set.

Consider any transaction T, , in Q's depend-set; T;,'s depend-set is a subset of Q's depend-set
because depends is a transitive relationship. Since T;, does not depend on any transaction Ty, in
Q’'smissed-set, Ty, hasnoimpacton T;,’sbehavior, i.e., T;,’smodifications (which are based oniits
reads) are unaffected by the presence or absence of any transactionin Q’s missed-set. If we consider

ahistory consisting only of T;,, T;,, ... Tj,,, and Q (in this order), there will be no change in the

im
database state observed by Q or by any transaction in its depend-set. Since Q commitswith at |least
PL-2+ guarantees, none of the transactions in its depend-set could have aborted (property Gla);
furthermore, G1b cannot occur for Q as well. This implies that Q is provided basic-consistency
since the view observed by Q can be obtained by the serial execution of committed transactions
Ti,, Tiy, - - T4, (inthegiven order) and these transactions execute the same steps in the concurrent

and serial executions. O

(b) PL-2+ is Necessary: Given that all update transactions in ® are serializable (i.e., commit at
PL-3), Qs provided basic-consistency only if it is committed with at least PL-2+ guarantees.

We haveto prove that Q will not be provided basic-consistency if it is committed below PL-2+.
For this purpose, we will show that if any phenomenon of PL-2+ is alowed, it resultsin violation
of basic-consistency.

Phenomena Gla and G1b: The definition of basic-consistency requires a transaction to read from
a set of committed transactions. Thus, Gla and G1b must be disallowed for providing basic-
consistency.

Phenomenon G1c:

Phenomenon G1c can occur only when update transactions form a cycle consisting of depen-
dency edges. However, since we are given that all update transactionsin @ are serializable and we
are only concerned with Q’s reads, phenomenon G1c cannot occur in the history.

71

Phenomenon G-single:

Suppose that an isolation level L allows phenomenon G-single, i.e., a cycle exists in the DSG
with one anti-dependency edge and n-1 dependency edges (n > 1). We will now present a counter-
examplewhich showsthat basic-consistency can beviolated at level L. Consider ahistory containing
n update transactions and transaction Q. Suppose that each update transaction T; doublesthe values
of two objectsxandy. Theinitial valuesof xandy are 5 and 7, respectively; an invariant maintained
by the update transactionsis z < y. Supposethat Q reads versionsyo and X,

Hy_cyete: 11(X0, 5) ra(yo, 7) Wi(X1, 10) wa(ys, 14) ... Wp(Xn, 5* 27)
Wy, (Y, 7% 2%) 1Yo, 7) ro(Xn, 5* 27) [Xo << . . Xn, Yo K - - Va]
Each transaction T; maintainsthe invariant z < y but Q observesit as broken,; this history exhibits
phenomenon G-single. As we can see, there exists no serial ordering of transactions that allows
Q to observe the same state as in the concurrent execution. Thus, G-single must be disallowed to
ensure that basic-consistency is hot violated. O

4.1.3 Discussion

From a programmer’s perspective, PL-2+ provides a useful guarantee sinceit allows an application
torely oninvariantswithout full serializability. For example, consider historiesH1 and H, presented
in Section 2.2 (we specify these histories along with the version numbers on objects):

Hi: r1(Xo, 50) wi(xa, 10) ra(xa, 10) ra(yo, 50) €2 ri(yo, 50) wa(y, 90) c1
[Xo < X1, Yo < Y1]
Hj: 1a(Xo, 50) r1(Xo, 50) wi(X1, 10) ri(yo, 50) wi(y1, 90) c1 ra(yz, 90) c;
[Xo < X1, Yo < Y1]
In both histories, T, observesthe invariant z + y = 100 as violated. If these transactions are
executed at PL-2+, both histories will be disallowed and T, will be aborted because it has observed
the partial effectsof T1.

Figure 4-4: DSG for Hy, Hp, and Hppantom Where T, observes an inconsistent database state (for
simplicity, T is not shown).

Anomalous situations in both histories cause a cycle with exactly one anti-dependency edgein
the DSG (see Figure 4-4). For these histories, PL-2+ is sufficient and PL-3 is hot needed to ensure
consistent reads. Of course, like other levels below serializability, atransaction committing at level
PL-2+ may update the database inconsistently. For example, it allows histories such as H sz

72

Hyskew: T1(X0, 1) r1(Yo, 5) r2(Xo, 1) ra(yo, 5) wi(X1,4) 1 Wa(y2,8) €2 [Xo < X1, Yo <K Y2l

In this history, transactions break the constraint z + y < 10 because their operations are interleaved
in a non-serializable manner; Figure 4-5 shows that the only cycle in the DSG contains two anti-
dependency edges. Nevertheless, PL-2+ isuseful for read-only transactions and update transactions
where the application programmer knows that the writes will not destroy the consistency of the
database, e.g., if the updates are performed to a private part of the database.

WW, Wr
M_
TO WW, W Tl ____________ = TZ

v rw -

Figure 4-5: DSG for history Hy, ke that is alowed by PL-2+.

Level PL-2+ also rules out inconsistencies due to phantom reads, since these also give rise to
cycles containing one anti-dependency edge. For example, it disallows history Hppantom Presented
in Section 3.2.4 (the DSG for this history is shown in Figure 4-4):

Hphantom: r1(Dept=Sales: X, 10; yo, 10) r>(Sumo, 20) wo(z>=10in Dept=Sales)
Wz(sumz, 30) Co rl(Sumz, 30) C1 [Sumo K SUMy, Zinit K 22]

Another advantage of PL-2+ over PL-2 isthat it avoidsthe lost updates problem. Thefollowing
history (presented in Section 3.2.3 and repeated here) is disalowed by PL-2+ because the DSG
contains a cycle with one anti-dependency and one write-dependency edge.

Hiost—update: T1(Xo, 10) r2(Xo, 10) Wa(X2, 15) €2 Wi(Xy, 14) 1 [Xo < X2 < X1]

PL-2+ providesanotion of “causal consistency” sinceit ensuresthat atransaction is placed after all
transactions that causally affect it. Causality [Lam78] or causal consistency has been used earlier
in many non-transactional systems. For example, causal memory [ANK T95] provides a processor
memory model for reads and writes that is similar to PL-2+; it ensures that a read/write operation
Ais ordered after the operations on which A causally depends. Similarly, notions of causality have
been used in non-transactional settings for replication [LLSG92], atomic broadcast [BSS91] and
mobile systems [KS91, TTP95].

4.2 I|solation Level PL-2L

A lock-based implementation of degree 2 (i.e., long write-locks and short read-locks) provides
stronger guarantees than what is specified by degree 2 (READ COMMITTED), and transaction code
in legacy applications may rely on these guarantees. Of course, applications should not make
assumptions beyond the specifications of the programming interface. However, if the underlying
database is changed to use a different concurrency control scheme (such as optimism), we would

73

still like to ensure that such applications continueto work correctly. Our new isolation level, PL-2L,
characterizes one such guarantee, the lock-monotonicity property. If a legacy application relies
on just the lock-monotonicity property, it will continue to run correctly when moved to a new
concurrency control implementation if transactions are executed at PL-2L. The application might
be run this way initially; it can be examined later and changed to use PL-2, PL-2+ or PL-3. An
efficient optimistic implementation of PL-2L in a distributed client-server system is presented in
Appendix B.

4.2.1 Specification

A lock-based implementation of degree 2 provides the following lock-monotonicity property:

L ock-monotonicity. Suppose that an event r;(x;) existsin a history. After this point,
T; will not missthe effects of T; and all transactionsthat T; depends on.

This property says that a transaction observes a monotonically increasing prefix of the database
history as it executes (in accordance with write/read-dependencies). For example, if T; modifies
objectsxandy, and T; readsx; and then'y, this property ensuresthat T, observesy; or alater version
of y after reading x;. However, if T, readsy beforeit readsx;, it could haveread aversion of y that is
older thany;. Thus, the lock-monotonicity property isweaker than the no-depends-misses property
and does not guaranteethat T; observesa consistent database state; recall that the no-depend-misses
property ensuresthat T; does not miss T;’s effectsirrespective of when T; reads x;.

The lock-monatonicity property is satisfied by a lock-based implementation of degree 2 (i.e.,
long write-locks and short read-locks) for the following reason. When transaction T, acquires a
short read-lock on object x that was last modified by transaction T;, T; must have committed by
that time since write-locks are held until commit. Furthermore, any transaction Ty, that T; depends
on must also have committed. Suppose that T; reads an object y that was also modified by T; (or
Tg). At this point, the database must contain a version of y no earlier thany; (or y;). Thus, when
T; acquiresaread lock onyy, it will either read y; (or y;), or alater version of y. But in any casg, it
will not read a version of y produced before T; (or Tx) committed.

We now define the lock-monotonicity property for a transaction T; in terms of graph-based
conditions. We use a graph called the Unfolded Serialization Graph or USG that is a variation of
the DSG. The USG is specified for the transaction of interest, T;, and a history, H, and is denoted
by USG(H, T,); recall that aDSG is specified over a history. For the USG, we retain all nodes and
edges of the DSG except for T; and the edges incident on it. Instead, we split the node for T; into
multiple nodes — one node for every read/write event in T;. The edges are now incident on the
relevant event of T;. Here are the details on how USG(H, T;) is obtained by transforming DSG(H).

For each node p (p # T;) in DSG(H), we add a node to USG(H, T;). For each edge from node
p to node g in DSG(H), where p and q are different from T;, we draw a corresponding edge in

74

rs(y1)
T3\ wr rw .’ 3Pt order
wr
' V4
; WwW W3(29

VW, Wr Jorw T, T T,
T T WL
' ww s ra(xy
Direct Seridization Graph Unfolded Serialization Graph

Figure 4-6: USG and DSG for history H,,,, 21, that is disallowed by level PL-2L.

USG(H, T;). Now we add a node corresponding to every read and write performed by T;; these
nodes are called read nodes and write nodes respectively. Any edge that was incident on T; in the
DSG is now incident on the relevant event of T; inthe USG, e.g., if r;(x;) (or r;(P: X;, .. .)) exists
in H, a read-dependency edge is added from T to r;(x;) (or ry(P: X;, ...)) in the USG. Finaly,
consecutiveeventsin T; are connected by order edges, e.q., if an action (e.g., SQL statement) reads
object y; and immediately follows a write on object z in transaction T;, we add an order-edge
from w;(x;) to r;(y;). These edges are needed to maintain the order of events in a transaction;
we denote such order edges between events p and ¢ as p"ﬂ" g. Here is a sample history and
USG(Hpon—21, T3) isshown in Figure 4-6:

Hnon—2r: W1(X1) Wi(y1) €1 Wa(y2) Wa(X2) Wa(Z2) ra(x2) ws(zz) ra(yi) C2 Cs
[X1 K X2, Y1 K Y2, 22 K 73]

Since the lock-monotonicity property is defined from the perspective of a particular transaction T,
as it executes, we define PL-2L with respect to T;. Isolation Level PL-2L for transaction T; is
defined such that phenomena G1 and G-monotonic are disallowed:

G-monotonic: Monotonic Reads. A history H exhibits phenomenon G-monotonic
for transaction T; if there exists a cycle in USG(H, T;) containing exactly one anti-
dependency edge from aread noder;(x;) (or r;(P: X;, . . .)) to some transaction node T
(and any number of order or dependency edges).

Disallowing phenomenon G-monotonic isidentical to the lock-monotonicity property given above
and their equivalence can be proved in a way similar to Theorem 2+ where we showed that the
no-depend-misses condition and disallowing G-single areidentical. Hereisabrief argument for one
direction: if G-monotonic is disallowed, the lock-monotonicity property must be satisfied. Suppose
that the lock-monotonicity property is violated such that after a transaction T reads x;, it misses
the effects of T; or sometransaction T; that T; dependson, i.e., there is a history subsequenceof the
form “r;(x;) ... r;(yx)" andyx < y; (or yx < y;). Thissituation implies that an anti-dependency
edge exists from r;(y,) to T; (or T;). Since a path containing dependency and order edges from T;
to r;(yx) aso exists, this history exhibits phenomenon G-monotonic, i.e., a contradiction.

75

4.2.2 Consistency Guaranteesfor Predicate-based Readsat PL-2L

In Section 3.2.2, we discussed possible guarantees for predicate-based reads at level PL-2. The
following consistency guarantees can also be provided to such reads:

o If apredicate-based read observesthe effects of transaction T;, it observesthe complete effects
of T; and al transactionsthat T,; depends on.

e Each predicate-based read executes as a PL -3 transaction.

The first guarantee is provided by level PL-2L because of the following reason. When a
transaction T; performs a read based on a predicate P, we represent this read event, r; (P: Vset(P)),
in USG(H, T;) by asingle read node; this node captures conflicts with respect to all object versions
accessed by r;(P: Vset(P)). Since G-monotonic ensures that there is no single anti-dependency
cycle originating from r;(P: Vset(P)), PL-2L ensures that this event does not miss the effects of
sometransaction T; that it dependson, i.e., r;(P: Vset(P)) observesaconsistent view of the database
(assuming that transactions modify the database consistently). Intheextreme case, whentransaction
T; contains only one action, the whole transaction observes a consistent database state, i.e., we get
isolation level PL-2+. Isolation level PL-2+ provides stronger guaranteesfor normal and predicate-
based reads; it ensures that if aread by transaction T; observes T;’s effects, all reads by T; observe
the complete effects of T; and all transactions that T, depends on.

The second guarantee is stronger than the first guarantee and is provided by a lock-based
implementation since reads based on a predicate are performed after the predicate read-lock has
been acquired. This guarantee can be provided by considering each predicate-based read as a
sub-transaction that requires PL-3. A correctness condition similar to the one discussed in 3.3.2 for
SQL statements can be used for providing atomicity guaranteesto predicate-based reads.

We can also provide guarantees to predicate-based writes such that the version set of such
operations is consistent. For this purpose, we can treat predicate-based writes as predicate-based
reads and add the corresponding edges in the USG for these operations, e.g., if transaction T;
performs w;(P. Vset(P)) and Vset(P) contains x;, we can treat w;(P: Vset(P)) as a predicate-based
read, r;(P: Vset(P)), and add a read-dependency edge from T to r;(P: Vset(P)) in the USG.

4.2.3 Discussion

History H,,.»_21 givenin Section 4.2.1 is not allowed by PL-2L since there is a cycle with one
anti-dependency edge from r3(y1) to To; T3 reads X, but misses T,'s effects after this point (see
Figure 4-6). If T3 had read y,, PL-2L would have allowed H,,,, 21,

Let us consider history Hy,onotonic that is allowed by PL-2L but not by PL-2+:

Hmonotonic: W1(X1) €1 Wa(y2) Wa(X2) ra(X1) ra(y2) ¢z Cs [X1 < X2]

76

Figure 4-7 shows that phenomenon G-monotonic does not occur but G-single does occur (since
thereisacyclein the DSG with one anti-dependency edge). Level PL-2L permits this history since
T3 does not missthe effects of T, after it readsy, (although it has already missed reading x»); level
PL-2+ does not allow T3 to miss T,'s effects irrespective of when T3 becomes dependent on T».

In Figure 4-1, we have shown that level PL-2L isincomparable with level PL-2.99. The reason
is that PL-2L ensures consistent views to each predicate-based read whereas PL-2.99 does hot.
If required, such guarantees can be provided at level PL-2.99 as well, e.g., we may want each
predicate-based read to be treated as a PL-3 transaction at level PL-2.99.

Py
wr T wWr T
WW wr 1 2~
T T, T3 \rw order
AR w .
rs(xy)
Direct Serialization Graph Unfolded Serialization Graph

Figure 4-7: DSG and USG for history Hy,onotonic that is accepted at PL-2L but rejected at PL-2+.

PL-2L is useful for more than just legacy code: it allows code to rely on invariants after
observing a particular value of an object. For example, consider a stock exchange system where
arecord is maintained for each stock. Thereis also a record that stores the status of the market,
i.e.,, open or closed. Suppose that the stock exchange commission runs a transaction that stores
the final information about each stock in the stock records and closes the stock market. Now a
brokerage firm runs a transaction T; that observes that the market is closed. Transaction T; then
obtains information about certain stocks, reads some customer records, and generates summary
information for the customers. If T; asksfor PL-2L guarantees, the system will ensurethat T; can
commit only if it observestoday’s final stock information; the monotonicity property ensures that
T; does not miss the final stock value after observing that the market is closed. PL-2 isinsufficient
here since it does not provide this guarantee; strong guarantees of PL-2+ may not be needed since
the customer records are unrelated to the stock information.

A lock-based implementation of degree 2 (i.e., short read-locks and long write-locks) actually
provides stronger guarantees than monotonicity. For example, it ensures that when a transaction
reads an object X, it observes the latest version of x in the committed state. We chose not to
specify an isolation level that also provides this guarantee since the latest-version property seems
less interesting than monotonicity and we believe that most applications executing at degree 2
do not rely onit. At degree 2, reading the current version does not prevent the object from being
modified before the transaction commits; therefore, application code cannot redlly tell the difference
between the current version or a slightly earlier one. Furthermore, more efficient implementations

77

are possible for the lock-monotonicity property than for the latest-version property. There are other
guarantees that are provided by the lock-based implementation of degree 2. However, we chose
not to specify them since they are complicated and seem less useful than the lock-monotonicity
property. Furthermore, we believe that application writers should be discouraged from relying on
complicated assumptions about the implementation of the underlying system.

4.3 Snapshot Isolation

Snapshot Isolation was first defined in [BBG195] and is provided by Oracle [Ora95]. The defi-
nition in [BBG*95] is both informal and operational: it comes very close to describing how an
implementation would work. It is defined as follows:

Definition 14: Snapshot Isolation. A transaction T1 executing with Snapshot |solation always
reads data from a snapshot of committed data valid as of the (logical) time T, started, called the
start-timestamp. (The snapshot could be at the time when T, started or some point in logical time
before it.) Updates of other transactions active after T, started are not visibleto T;. When Ty is
ready to commit, it is assigned a commit-timestamp and allowed to commit if no other concurrent
transaction T, (i.e., one whose active period [start-timestamp, commit-timestamp] overlaps with
that of T1) has already written datathat T, intends to write; thisis called the First-committer-wins
rule to prevent lost updates.

4.3.1 Specification

To specify Snapshot Isolation, we need to add a component to the history, atime-precedes order, to
capture the notion of how the start of a transaction relatesto commits of other transactions. When a
transaction T; starts (e.g., at itsfirst event), the system selectsa start point, s;, for it and determines
the ordering between this start point and the commits of all other transactions. Transaction T;'s start
point need not be chosen after the most recent commit when T; started, but can be selected to be
some (convenient) earlier point. For example, the system might keep track of all transactionswhose
updates must not be observed by T;; in this case, T;’s start point is chosen before the commits of
any transaction in this set. The system’s decision about choosing the start point is captured in the
time-precedes order:

Definition 15: Time-Precedes Order. Thetime-precedes order, <;, isapartial order specified for
history H such that:

1. s; < ¢, i.e,thestart point of atransaction precedes its commit point.

2. for al i and j, if the scheduler chooses T;’s start point after T;’s commit point, we have
c; <t sj; otherwise, wehaves; <; ¢;.

78

Definition 16: Concurrent Transactions. Two transactions T; and T; are concurrent if s; <; c;
and s; <; ¢;. Thus, concurrent transactions overlap; neither starts after the other one commits.

To capture the system’s choice of ordering start and commit events of different transactions, we
include the time-precedes order in a history (along with the version order and the partial order of
events). For convenience, in our examples we will only show time-precedes constraints of the type
c; <¢ s, norelationship is shown for a pair of concurrent transactions T, and Ty, i.€., sq < cp
and s <; ¢, holds for these cases. Here is an example history to illustrate the above definitions:

Hyi_egampie: W1(X1) C1 W3(Z3) C3 r2(X1) r2(zo) C2 [20 < z3; €1 <t S

In this history, the time-precedes order showsthat T3 is concurrent with T, and T, (as stated above,
we do not specify such orderings) whereas T» follows T1. History Hyi_czample demonstrates an
important point: the order of eventsin the history does not specify the relationship between commit
and start points of transactions. For example, T3's commit occurs in the history before To's first
event but s, is not chosen to be after c3 in the time-precedes order.

Now we can restate the definition of Snapshot Isolation (Definition 14 above) in terms of two
properties, Snapshot Read and Snapshot Write, that completely define it. These properties will be
used later to prove that our specification is correct.

Definition 17: Snapshot Read. All reads performed by a transaction T; occur at its start point.
That is, if r;(x;) occursin history H, then:

1. Cj <t Sis and
2. if wg(xg) aso occursin H (j # k), then either
(@) s; <¢cg,0r

(b) cx <t s and X <X

Definition 18: Snapshot Write. If T; and T; are concurrent, they cannot both modify the same
object. That is, if w;(x;) and w;(x;) both occur in history H, then either ¢; <; s; or ¢; <; s;. This
is the first-committer-wins property.

We now define the notion of start-dependency and a Start-ordered Serialization Graph or SSG.
Definition 19: Start-Depends. T; start-dependson T; if ¢; <; s, 1.e., if it startsafter T; commits.

Definition 20: Start-ordered Serialization Graph or SSG. For ahistory H, SSG(H) containsthe
same nodes and edges as DSG(H) along with start-dependency edges.

We will represent start-dependency edgesin an SSG as solid arrows labeled with “s”. Hereis an
example history that is allowed by Snapshot Isolation; its SSG is given in Figure 4-8:

79

Tl - T2 R T3

ww, S rw

Figure 4-8: Start-ordered serialization graph for history Hs;

Hgr: wi(X1) wi(y1) €1 Wa(X2) ra(x1) wa(y2) ra(y1) c2 C3
[X1 < X2, Y1 K Y2; C1 <t S, C1 <+ Sg]

Since the start point for T3 is before the commit of T, Snapshot Isolation ensuresthat T3 does not
observe T,'s modifications.

Now we define phenomenon G-Sl that has two parts. The first part ensures that concurrent
transactions do not observe one another’s effects and do not modify the same objects:

G-Sla: Interference. A history H exhibits phenomenon G-Sla if SSG(H) contains a
read/write-dependency edge from T; to T; without there also being a start-dependency
edgefrom T; to T;.

This property constrains only concurrent transactions, since start-dependency edges always exist
between non-concurrent transactions.

The second property ensures that a transaction T; observes the complete effects of transactions
that committed before it started (i.e., those transactions whose commit point is chosen before T;’s
start point):

G-Slb: Missed Effects. A history H exhibits phenomenon G-Slb if SSG(H) contains
adirected cycle with exactly one anti-dependency edge.

This property captures the rest of the Snapshot Read requirement since if a transaction T; does not
observe the updates of a transaction that committed before T; started, it will cause a cyclein the
SSG with asingle anti-dependency edge and a start-dependency edge. G-Slb issimilar to condition
G-single but provides stronger guarantees because of the extra start-dependency edgesin the SSG.

Like the no-depend-misses and lock-monotonicity properties, G-Slb can be expressed in more
“operational” terms, i.e., if atransaction T; dependson T;, T; must not miss the effects of T; and
all transactions that committed before T; started. The equivalence of this operational definition and
G-Slb can be shown in a manner similar to Theorem 2+.

Property G-SI consists of G-Sla and G-SIb, and level PL-SI proscribes G1 and G-SI. Since
G-Slb is dtrictly stronger than G-single, PL-SI is strictly stronger than PL-2+. Like our earlier
definitions, PL-SI is also specified only for committed transactions (see Appendix A for execution
time guarantees); furthermore, readsfrom uncommitted transactionsare allowed by thisspecification
also (aslong as G1 is satisfied). We now show that our specification for level PL-Sl is correct.

80

Theorem 2: A history H consisting of committed transactions executes under Snapshot Isolation
iff G1 and G-SI are disallowed.

Proof:
Part A: If ahistory H executes under Snapshot Isolation, G1 and G-Sl are disallowed.

Suppose G-Slais alowed, i.e., there is a read/write-dependency from some T; to T; without a
corresponding start-dependency. If thereis no start-dependency, T; and T; must be concurrent and
neither aread-dependency (by Snapshot Read property) nor awrite-dependency (by Snapshot Write
property) can exist between T; and T;. So we have a contradiction and G-Sla must be disallowed.

Now suppose that G1 or G-Slb is alowed and SSG(H) contains a cycle with 0 or 1 anti-
dependency edges. Let thiscycle havetheform (Ty, To, T3, ... Ty, T1). We know the following
facts about a SSG generated under PL-SI:

1. If thereisa(start/read/write) dependency edge from T; to T;, ¢; <t s;.

2. If thereisan anti-dependency edgefromT;to T, s; <; ¢;. Thisisbecausean anti-dependency
edgeimpliesthat T; did not see T;’s update. Therefore, we cannot havec; <; s;; by property
(2) of Definition 15, we must have s; <; c;.

If there is a dependency edge (i.e., start/read/write-dependency) from T; to T;,1, we must have
ci <t Siy1 <t ci+1andhencec; <; ci+1. Thus, if there are no anti-dependency edgesin the
cycle, wegeter <: ¢ ... <3 c1, whichisimpossible, and therefore G1 is disallowed. So, there
must be at |east one anti-dependency edgein the cycle. Without loss of generality, supposethisedge
isfrom T to T, and therest are dependency edges. Thenwehave: s1 <: ¢2 <t €3 ... ¢ <t S1,
i.e, s1 < s1, whichagainisimpossible, and therefore G-Slb is disallowed.

Therefore, if history H executes under Snapshot Isolation, G1 and G-SI will be disallowed.

Part B: If G1 and G-SI are disallowed for history H, H must have executed under Snapshot I solation.

Wewill now show that G1 and G-SI ensurethat the Snapshot Read and Snapshot Write properties
are satisfied. Suppose Snapshot Writeis not satisfied. Then H contains two concurrent transactions
T; and T; such that one of them, say T;, overwrites T;’s modification of some object x. Thisimplies
that a write-dependency edge exists from T; to T;, but no start-dependency edge, which violates
G-Sla. Therefore, the Snapshot Write property is satisfied.

Now suppose that the Snapshot Read property is violated. Property G-Sla guarantees that a
transaction can only observe modifications of transactions that committed before it started (using
the same argument as was given above for Snapshot Write); this handles properties (1) and (2a)
of Snapshot Read. Now we consider the other part of Snapshot Read concerning missed updates
(Snapshot Read 2b). Suppose transaction T, reads x but does not observe the updates to x made
by transactions that committed before T; started; assume T made the first of these updates. This
means that there exists an anti-dependency edge from T; to T,. Furthermore, sincec;, <: s;, there

81

exists a start-dependency edge from T, to T;. Therefore, phenomenon G-Slb exists in the history,
which is a contradiction.
Therefore, level PL-SI provides Snapshot Isolation. O

4.3.2 Discussion

PL-2+ disallows al phenomena that Snapshot Isolation was intended to disallow [BBG'95],
i.e., consistent reads, including no read phantoms (Hphantom ON page 73), and no lost updates
(Hiost—update ON page 73).

It ispossiblethat what isreally desired from Snapshot Isolation is exactly what PL-2+ provides.
Since PL-2+ is weaker than Snapshot Isolation (the latter requires a snapshot to be observed
whereas PL-2+ just requires transactions to observe causally consistent views), it has the potential
of beingimplemented more efficiently than Snapshot I solation, especially indistributed client-server
systems, e.g., extra communication may be required to ensure that a client observes the database
state as it existed at the same logical time value at different servers. Thus, it may be desirable to
use PL-2+ instead of Snapshot Isolation. (An efficient optimistic implementation of PL-2+ in a
distributed client-server system is described in Section 5.3.)

Snapshot Isolation isincomparable with PL-3. It both accepts some non-serializable histories,
and rejects certain serializable histories. Some serializable histories are rejected because of the
Snapshot Write property. This property was introduced to rule out lost updates, however, it also
preventsblind writes by concurrent transactions. (Recall that ablind write occurswhen atransaction
modifies an object without first reading it.) For example, the following history is not permitted by
Snapshot | solation (phenomenon G-Sla occurs) but is alowed by PL-3:

Hplind-nons1: T1(Xo) r2(Xo) wi(z1) wa(z2) c1 ¢ [z1 < 22; Co <t S1, Co <t 2]
Since blind writes are rare, history Hping nonsr 1S Unlikely to occur (but it shows that PL-S| and
PL-3 are incomparable). Note that blind writes by non-concurrent transactions are allowed by
Snapshot Isolation.

The Snapshot Read property also rules out certain serializable histories. It prohibitsatransaction
T; from reading a modification made by atransaction T; that committed after the start point chosen
for T; or from missing updates of transactions that committed before T ;s start point. For example:

Hgerial-nonsr: Wi(X1) C1 r2(Xo) Cz [Xo < X1} Co <t S1, €1 <¢ 5]
Thishistory isserializableinthe order Tg; T»; T1 but Snapshot I solation disallowsit since T, misses
T1’supdateseventhough c; <; S;. Notethat the system could have chosen adifferent time-precedes
order (e.g., in consonance with the serial order) and allowed the above history. Thisis similar to
the case with version orders where the database system could choose a version order that allows a
history to be serializable. However, our conditions smply check for PL-3 or PL-S| based on the
version and time-precedes orders chosen by the system and hence disallow Heriai—nonsr Under
Snapshot | solation.

82

Real Time Guar antees

The definition of Snapshot Isolation has a notion of logical time that we have captured with the
time-precedes order. If this ordering is consistent with real-time, an application can be provided
useful guaranteesthat are not provided by PL-2+ or even PL-3. For example, if aclient runsaquery
that requests a snapshot of stock values and the system returns the values as of 4:00 pm, Snapshot
I solation would guarantee that the client observesthe final valuesof all stocksat that time. Consider
the following history:

Htock—sr: W1(X1, $100) 1 wa(y2, $50) ¢ r3(x1, $100) ra(y2, $50) c3
[Xo < X1; Co <¢ S8, C1 <¢ S8, C2 <¢ S

In this case, T1 updatesthe database at 3:58 pm, T, at 3:59 pm, the stock market closes at 4:00 pm
and T3's start point is 4:00 pm. Transaction T3 reads the final values of x andy. The SSG for
Hiock—s1 iSin Figure 4-9(a); it showsthat thishistory will be allowed by Snapshot Isolation. Thus,
a Snapshot I solation implementation based on real -time will disallow the following history in which
T3 observes an old value of x and anew value of y:

Htock—nonsr: Wi(X1, $100) €1 wx(y2, $50) C2 r3(Xo, $99) ra(y2, $50) c3
[Xo < X1; Co <t S3, C1 <t S8, C2 <¢ 3

Itisinteresting to notethat Snapshot I solation disallowsH ock—nonsr €venthoughitisserializablein
theorder To; T3; T1. Thishistory isdisallowed because the time-precedes order is chosen according
to the occurrence of events in real-time but T3 does not read the effects of all transactions that
committed before T3's start point in real-time. Figure 4-9(b) shows that the only cycle in the SSG
for history Hsoek nonsr involves a start-dependency edge. In this example, if the implementation
had chosen a different time-precedes order (i.e., not added the constraint ¢; <; Sg), the resulting
history would been allowed by Snapshot Isolation.

‘y TO - [V'V- - wr, S TO

wr, s wr, s s s s %

Tl > T3 - T2 Tl > T3 - T2
(@ (b)

Figure 4-9: The SSGsfor histories Hgzocr— 51 @8N Hytock—nonsi-

Some applications may work correctly with database snapshotsin logical time whereas others
may require stronger real-time guarantees (as in the example given above). Thus, it would be useful
for application programmers if a Snapshot 1solation implementation indicates whether it uses real-
time for ordering transactions or not. Of course, like the informal definition given in [BBG*95],
our specification of Snapshot Isolation does not include this real-time constraint to provide more
flexibility for implementations.

83

4.4 Forward Consistent View

The stronger requirements of Snapshot Isolation lead to the question of whether everything in the
descriptionin [BBGT95] isrequired. That description is operationa and it could easily be the case
that some details of what that implementation provides do not matter.

We now discuss how some constraints of Snapshot Isolation can be removed to obtain aweaker
isolation level that isstill useful. Snapshot Read requiresthat all reads occur at some point inlogical
time before a transaction started. Not missing the effects of transactions that committed before a
transaction’s start point can be a useful property for some applications. We define an isolation level
called Forward Consistent View or PL-FCV that providesthis property by precluding G1 and G-Slb.
Since G-Slais not precluded, atransaction T; is allowed to observe the updates of transactions that
commit after it started, i.e., read “forward” beyond the start point. However, these reads are only
permitted aslong as T; observesa consistent database state. PL-FCV isstrictly stronger than PL-2+
because G-Slb is strictly stronger than G-single (G-Slb is defined on an SSG).

Since PL-FCV is weaker than PL-SI, it can allow more concurrency than PL-SI, which can
improve performance. For example, consider:

Hrpcov: Wi(X1) ra(Xq) ra(yo) wa(ys) ca ra(ys) ra(Xo) c1 C2 Cs [Xo < X1, Yo <K Y3; C3 <¢ S4]

Thishistory isnot allowed under PL-SI since T, observesupdates of transaction T that isconcurrent
with T, (phenomenon G-Sla occurs). However, this history is permitted under Forward Consistent
View because G1 and G-Slb do not occur. The SSG for Hgpey is shown in Figure 4-10 (for
simplicity, T is not shown).

wr
T

rw rw

v
T3

Ty

Wr, s

Figure 4-10: The SSG for history Hr oy showsthat G-Slb is not violated.

4.5 Monotonic Snapshot Reads

We now present implementation-independent specifications of a level called Monotonic Shapshot
Readsor PL-MSR that capturesthe essence of Oracle's Read Consistency; however, wedo not claim
that PL-M SR captures all aspects of Read Consistency necessarily.

Oracle’'s Read Consistency [Ora95] is stronger than degree 2: along with committed reads, this
level ensures that each action (e.g., SQL statement) in atransaction T; observes a snapshot of the
database state as it existed before the action started (in logical time). Furthermore, a later action

84

of T; observes a snapshot that is at |east as recent as the snapshot observed by an earlier action of
T;. Read Consistency can provide a different snapshot to every action, whereas Snapshot |solation
provides the same snapshot to all actionsin atransaction.

The lock-monotonicity property of PL-2L is similar to the guarantees provided by Read Con-
sistency. We use those ideas for our specifications of Monotonic Snapshot Reads. For a history H
and transaction T;, we construct a graph, SUSG(H, T;) or the Sart-ordered Unfolded Serialization
Graph, that is essentially a combination of the SSG and the USG. In SUSG(H, T;), there existsa
node corresponding to each transaction (except T;). We also add aread/write node corresponding to
every read and writein T,;. We add order-edges between T;’s read/write nodes (see Section 4.2) and
start-dependency edges from transaction nodes to other transaction nodes; start-dependency edges
from atransaction T; to T; in the SSG are now added from T; to the read/write nodes of T; in the
SUSG. Since we need to know which transactions committed before aread operation of transaction
T; was executed, we specify the time-precedes order for all reads of T;; the time-precedes order for
reads of other transactions is not specified because we are only concerned about guarantees with
respect to transaction T;.

Monotonic reads of snapshots for queries in Read Consistency are specified by a combination
of two conditions— G-M SRa and G-M SRb. Both conditions are specified with respect to the reads
of aparticular transaction T;; as stated in Section 4.2, we can provide guarantees for version sets of
predicate-based writes by treating these operations as predicate-based reads.

G-MSRa: Action Interference. A history H exhibits phenomenon G-M SRaif SUSG(H, T;)
containsaread-dependency edgefromatransaction T ; to aread noder;(x;) (or r;(P: x;, . . .))
without there al'so being a start-dependency edge from T to the same read node.

Disallowing G-M SRa ensures that a read event observes the updates of transactions that have com-
mitted before its start point; unlike Snapshot Isolation, this level allows blind writes by concurrent
transactions and hence we do not need a constraint with respect to write-dependency edges. The
next condition ensures that a read does not miss the effects of al transactions that have committed
before the read started:

G-MSRb: Action Missed Effects. A history H exhibits phenomenon G-MSRb if
SUSG(H, T;) contains a directed cycle with exactly one anti-dependency edge such
that this edge starts from aread node r;(x;) (or r;(P: X;, . ..)) to atransaction node.

Phenomenon G-MSR is composed of G-MSRa and G-MSRb, and isolation level PL-M SR pro-
scribes G1 and G-MSR. This level is stronger than PL-2 and PL-2L. For example, the following
history provides PL-2L guarantees but fails to meet G-M SRb:

85

Hyon—msr: Wi(X1) Wa(y2) €1 C2 r3(P: Xo; y2) C3
[Xo < X1; Co < 13(P: Xo; Y2), €1 <¢ r3(P: Xo; Y2), C2 <¢ 3(P: Xo; Y2)]

The USG and SUSG for thishistory isshownin Figure4-11. Inthiscase, action r3 readsthe updates
of T, and T but misses the update of T, that committed before r3 had started; objects xo and y»
do not match predicate P. Transaction T, changes x such that x; matches P; this causes T; to anti-
depend on T,. Since there is no dependency constraint between T, and T,, PL-2L allows history
Hnon_msr. However, the additional constraint of requiring queries to read database snapshots
results in a single anti-dependency cyclein the SUSG; hence, history Hy,on—arsr is disallowed by
PL-MSR.

rw Wr, S /—m
T, rg(P: XgiYp) ------- - T T, ra(P: XgiYp) ------- -T
Unfolded Serialization Graph e G

Figure 4-11: History H,,,,_ nmrsr 1S accepted by isolation level PL-2L but not by PL-MSR.

Isolationlevel PL-MSRissimilarto PL-2L sincebothlevelsrequirethat eachreadin atransaction
observes a monotonically increasing view of the database. In Section 4.2.2, we showed that level
PL-2L provides each predicate-based read with a consistent view of the database assuming that
update transactions maintain consistency (PL-2L places constraints on such reads with respect to
dependency conflicts). Level PL-MSR provides stronger guarantees to each predicate-based read:
it ensuresthat aread observe a database snapshot asit existed at some point in logical time. Recall
that Snapshot Isolation and PL-2+ also differ from each other in a similar way, i.e., the former
provides a database snapshot whereas PL-2+ simply ensures a consistent view based on read and
write-dependencies.

LevelsPL-MSR and PL-2+ areincomparable even though PL -2+ provides a consi stent database
to the whole transaction and PL-MSR only guarantees this property for each read. The reason is
that PL-2+ does not ensure that each read observes a snapshot of the database whereas PL-MSR
does provide this guarantee.

Oracle’'s Read Consistency provides stronger guarantees to a transaction than provided by
our definition of PL-MSR since the Oracle database system executes SQL statements atomically;
conditions for providing such guarantees were discussed in Section 3.3.2. To ensure monotonicity
of readswith respect to SQL statements (i.e., each SQL statement observes a database state that is at
least as recent as the previous one), we can change the SUSG for atransaction T; to contain action
nodes corresponding to T;'s SQL statements rather than its individual reads and writes; we can
also define avariant of PL-2L that provides guarantees based on SQL statements rather individual
operations.

86

It seems that the main purpose of Read Consistency is to provide consistent views to each
action [Ora95]. PL-2L can achieve the same effect without requiring that each action observe
a database snapshot. Thus, PL-2L allows more concurrency than PL-MSR and hence may be
preferable to PL-MSR.

4.6 Cursor Stability

Cursor Stahility [Dat90] is awell-known consistency guarantee that is supported by many commer-
cial databases. Like some of the other isolation levels, Cursor Stability is also defined in terms of
locking in [BBG195]. We now describe how Cursor Stability can be defined to allow optimistic
mechanisms as well; as before, our specifications are presented for committed transactions.

Cursor Stability usesthe notion of acursor that refersto a particular (say current) object being
accessed by a transaction; there can be multiple cursors in a transaction. When a transaction T;
access an object x using a cursor, instead of releasing a read-lock immediately after reading x (as
in degree 2), T; retains the lock until the cursor isremoved from x or T; commits; if T; updates the
object, the lock is upgraded to a write-lock. This approach prevents the lost update problem, i.e.,
histories such as Hypgt—ypdate that was presented in Section 3.2.3:

Hiost—update: T1(X0, 10) r2(Xo, 10) wWa(X2, 15) C2 wi(x1,14) €1 [Xo < X2 < X1]
Inhistory Hiost—update, DOth T1 @and T, increment x based on x's old value and hence T,'sincrement
is “lost”. Cursor Stability prevents this scenario by ensuring that T, is not allowed to modify x
while T1 isuncommitted (if T, accessesx using a cursor and does not remove the cursor from x till
it has modified).

Since Cursor Stability is defined in terms of particular objects, we need to annotate the edges
in a DSG with object names; this graph is called a Labeled Direct Serialization Graph or LDSG.
Phenomenon G-cursor(x) is defined as:

G-cursor(x): Labeled Single Anti-dependency Cycles. A history H exhibits phe-
nomenon G-cursor(X) if LDSG(H) contains a cycle with an anti-dependency and one
or more write-dependency edges such that all edges are labeled x.

Cursor Stability or PL-CSis defined to be the level that disallows G1 and G-cursor. PL-CS alows
two or more transactions in optimistic schemes to overwrite the same object based on old values
as long as only one of the transactions commits, e.g., history Higst—update €Xhibits phenomenon
G-cursor(x) and is disallowed (Figure 4-12 shows the LDSG for this history.)

4.7 Update Serializability

Read-only transactionsare common in transacti on-processing workloads and improving their perfor-
mance can significantly improve overall system performance. It may be relatively more expensive

87

Figure 4-12: Labeled Direct Serialization Graph for history Hjost—update

to provide serializability than to provide lower isolation guarantees for read-only transactions.
Furthermore, read-only transactions may not need strong guarantees such as serializability. For
example, if aread-only transaction just needs to observe a consistent state of the database, PL-2+
will be sufficient. In this section, we present an isolation level, PL-3U, for read-only transactions
that is stronger than PL-2+ but weaker than serializability. This consistency guarantee has been
presented earlier in the literature [GW82, HP86]; we present it using our terminology and describe
an optimistic schemein Section 5.4 that provides thisisolation level.

Isolation level PL-3U ensures that a transaction is serializable with all the committed update
transactions. The following condition is sufficient to ensure PL-3U for a transaction T; (T; could
be aread-only transaction):

No-update-conflict-misses: If T; dependson T}, it must not missthe effects of T; and
all update transactionsthat T; depends or anti-depends on.

Note that the no-update-conflict-misses condition imposes stronger constraints than the no-depend-
misses condition since it takes anti-dependencies into account as well. We express the no-update-
conflict-misses condition using a DSG that contains all update transactions and transaction T; (the
transaction of interest):

G-update: Single Anti-Dependency Cycles with Update Transactions. A history
H and transaction T; show phenomenon G-update if a DSG containing all update
transactions of H and transaction T; contains a cycle with 1 or more anti-dependency
edges.

A transaction T; is provided PL-3U if phenomena G1 and G-update are disallowed; we can prove
the equivalence of G-update and the no-update-conflict-misses using an argument similar to the
one presented for Theorem 2+. This isolation level is also called update serializability (the work
in [HP86] defines this condition based on view serializability). Isolation level PL-3U is weaker
than PL-3 since read-only transactions are not considered in phenomenon G-update. In PL-3U, two
transactions T; and T; may observe a serializable database state but unlike PL-3, the serial ordering
observed by both transactions could be different; an examplethat differentiates PL-3U from PL-3is
presented in Section 4.7.2. Aswe will seein Chapter 7, providing PL-3U to read-only transactions
can be less expensive than providing PL-3 in adistributed client-server system.

88

4.7.1 Differentiating Between Levels PL-2+ and PL-3U

PL-2+ ensures that a transaction observes a consistent state of the database and PL-3U states that
the transaction observes a serializable state of the database. It may seem that PL-3U does not add
much value over PL-2+ for read-only transactions. Here is an example that shows the difference
between the two consistency guarantees and motivates the need for PL-3U.

Consider a stock reporting system. We know that stock prices will not change after the stock
market has closed. We assume that there is an object called Market-status that indicates whether
the market is open or not. Suppose there are companies X and Y whose stock prices are always the
same and supposetransactions Ty, Ty, T3, and T, are executed in the following way:

Hyon—3u: (Mo, Open) wi(X1, 50) wi(Yq,50) c1 ra(Mo, Open) wa(Xz, 55) wa(Y2, 55) ¢
w3(M3, Close) c3 rg(Ms, Close) r,(X1,50) rg(Y1,50) ¢,
[Mo < M3, X1 < X2, Y1 < Y3]
Transactions T1 and T, check that the market is open and update the stock prices to be $50 and $55
respectively and transaction T3 closes the market.

Figure 4-13: DSG of a history that executes at PL-2+ but not at PL-3U (T is not shown).

Suppose that a read-only transaction T, reads the stock market status and the stock prices of X
and Y. PL-2+ guaranteesthat T, will seethe same pricesfor X and Y, e.g., the two observed values
will be $50 or both will be $55. However, with PL-2+, it is possible that T, observes the stock
market to be closed and reads the stock prices to be $50, i.e., it observes T3's updates but misses
the effects of transaction T, that T3 anti-depends on; this is what happensin history H, 3. In
general, if the observed order of conflicting transactions is important, PL-2+ may not be sufficient
and PL-3U may be needed. With PL-3U, if T, finds out the market is closed, it is guaranteed to
observe the stock price to be $55. Figure 4-13 givesthe DSG of H,,,, 3. Level PL-2+ alowsthis
history sincetheonly cyclein thegraph (among T», Tz and T,) involvesat |east two anti-dependency
edges.

4.7.2 Differentiating Between Levels PL-3U and PL-3

The reader might wonder how the introduction of another read-only transaction in the direct serial-
ization graph results in acycle. Here is a variation on the above stock-market example that shows

89

a history that executes at PL-3U but not at PL-3. We assume that transaction T1 has executed;
transactions T, and T3 are not included in this example. Supposethat the following transactions are
executed (we are no longer maintaining the invariant that the stock prices of X and Y are the same):

Hzy: r4(Mo, Open) wy(X4, 70) ¢4 rs(Mo, Open) ws(Ys, 75) cs
ra(X4, 70) I'a(Y]_, 50) Ca rb(Xl, 50) rb(Y5, 75) Cp [Xl KXy, Y1 K Y5]

Transactions T4 and Ts check that the market is open and update the stock pricesof X and Y to be
$70 and $75 respectively (they do not conflict with each other). Transaction T, observesthe updates
of Ty and T4 but misses Ts's effects. Transaction T, reads the updates of T, and T but misses
T4's effects. Thus, each read-only transaction “forces’ transactions T4 and Ts to be serialized in
the opposite order to what the other transaction requires. transaction T, forces the serialization
order (Tq, T4, Ta, Ts) Whereas T, forces an order where Ts must be serialized before T4, e.g.,
(Ty1, Ts, Ty, T4). The DSG of history Hsy isshown in Figure 4-14 (for simplicity, we do not show
T4 in the graph or the history).

Ty

\\
% rw
T

a\

Figure 4-14: DSG of history Hsy that executesat PL-3U but not at PL-3.

The DSG contains a cycle but if we remove either T, or T, from the graph, the cycle no longer
exists. Thus, each read-only transaction is at level PL-3U but the whole system is not serializable.
If clients/entities that execute T, and T, communicate with each other, they may be confused
about the relative order in which the stock prices went up. Thus, this departure from serializability
matters only when clients of read-only transactions communicate with each other directly [GW82];
otherwise, PL-3U is as good as serializability.

4.8 Intermediate Degreesfor Running Transactions

All isolation levels presented in this chapter can be extended to specify consistency guarantees
for running transactions. For each isolation level, we modify the relevant graph to include the
executing transaction, T;, under consideration. Then we define phenomena on the new graph that
are analogous to the ones disallowed at the corresponding level for committed transactions.

For EPL-2+, we usethe Direct Transaction Graph or DTG presented in the last chapter to define
aphenomenon that is analogousto G-single. Level EPL -2+ disallows P1 and E-single:

90

E-single: Single Anti-dependency Cyclesat Runtime. A history H and an executing
transaction T; exhibit phenomenon E-single if DTG(H, T;) contains a directed cycle
involving T; with exactly one anti-dependency edge.

To define EPL-2L, we use a modified form of the USG called the Unfolded Transaction Graph or
UTG for ahistory H and an executing transaction T;. Thegraph UTG isthe same as USG except that
the UTG only contains read nodes (and no write nodes) dueto T;; since T;'s predicate-based writes
are considered as predicate-based reads, hodes and edges corresponding to such “reads’ are also
added. A phenomenon, E-monatonic, that is analogous to G-monotonic is defined and transaction
T; isprovided level EPL-2L guaranteesif phenomenaP1 and E-monotonic do not occur:

E-monotonic: Monotonic Readsat Runtime. A history H and an executing transac-
tion T; exhibit phenomenon E-monotonic if thereisacyclein USG(H, T;) containing
exactly one anti-dependency edge from a read node r;(x;) (or r;(P: X;, ...)) to some
transaction node T, (and any number of order or dependency edges).

In asimilar manner, other levels such EPL-SI, EPL-FCV, EPL-CS, EPL-MSR and EPL-3U can be
defined by extending the relevant graph and phenomena conditions. The definitionsfor theselevels
are given in the Appendix A.

49 Summary

In this chapter, we presented specifications for a variety of isolation levels that lie between PL-2
and PL-3; we presented our specifications for committed transactions and then extended them for
running transactions.

We used the framework presented in the previous chapter to specify two new isolation levels,
PL-2+ and PL-2L. Isolation level PL-2+ ensures that a transaction commits successfully only if
it has observed a consistent state of the database. We showed that it is the weakest level that
ensures consistent reads. Level PL-2+ is especially useful for read-only transactions in certain
applications where observing a consistent database state is sufficient, e.g., if a transaction reads
the savings and checking account values of a bank customer and commits, PL-2+ will ensure that
the transaction observes consistent balances in the two accounts. PL-2+ disallows all phenomena
presentedin [BBG™95] that Snapshot | sol ation wasdesigned to prevent, i.e., inconsistent reads, read
phantoms, and lost updates. Since PL-2+ is weaker than Snapshot Isolation, it has the potential of
being implemented more efficiently, especialy in adistributed system with multiple servers. Thus,
we believe that PL-2+ isan isolation level that database vendors may be interested in providing.

Our second new level, PL-2L, was inspired by a lock-based implementation of degree 2 and
allows a transaction to commit only if it has observed a monotonically increasing prefix of the
databaseasit executed. PL-2L hasbeen designed to support legacy applicationswhenthe underlying

91

Level | Name | Phenomenadisallowed |

PL-CS Cursor Stability G1, G-cursor
PL-2L Monotonic View G1, G-monotonic
PL-MSR | Monotonic Snapshot Reads | G1, G-MSR
PL-2+ Consistent View Gl, G-single
PL-FCV | Forward Consistent View G1,G-Slb

PL-SI Snapshot Isolation G1, G-S

PL-2.99 | Repeatable Reads Gl, G2-item
PL-3U Update Serializability G1, G-update
PL-3 Full Serializability Gl, G2

Figure 4-15: Isolation levels stronger than PL-2

concurrency control mechanism is changed to (say) optimism. However, it is a useful level in its
own right, e.g., many browsing applications may find its guarantees more desirable than just PL-2.
In fact, Oracle provides alevel called Read Consistency that is similar to PL-2L.

This chapter has also shown that a graph-based technique can be used for defining a variety
of isolation levels. We have redefined existing commercial levels such Snapshot Isolation, Read
Consistency, and Cursor Stability in an implementation-independent using variations of direct
serialization graphs. For example, to specify Snapshot | solation, we add new edgesin the graph that
capture the notion of logical time, for Cursor Stability, we labeled the edges with objects names,
and to capture the essence of Read Consistency, we added nodes corresponding to individual events
in atransaction.

Various levels can be ranked according to their “strength”: one level is stronger than another if
it allows fewer histories. Figure 4-16 shows how various levels are related to each other: if level Y
is stronger than level X, there is a directed path from X to Y; if thereis no path between two levels,
they are unrelated to each other. Thisfigure is the same as Figure 4-1; we have simply repeated it
here for convenience.

Read Consistency and Snapshot Isolation are unrelated to some of the levels on the right side
of the figure because of their snapshot read requirement for queries and transactions respectively;
this is also the reason why PL-2+ and PL-2.99 are not strictly stronger than Read Consistency.
Snapshot Isolation is weaker than strict serializability. Strict serializability [Pap79] ensures that
al transactions can be serialized in an order that also respects the real-time ordering of non-
overlapping transactions. A lock-based system (i.e., long read-locks and write-locks) providesstrict
serializability guaranteesto transactions but a multi-version timestamp scheme may not.

We can easily define strict serializability in our framework. Consider a graph called the Real-
time Serialization Graph or RSG which is the same as the DSG except that there are some extra
edges to capture the order of non-overlapping transactions: If atransaction T; commits before T

92

Strict Serializability (PL-SS)

Full Seridlizability (PL-3)

Snapshot Isolation (PL-S1) Update Serializability (PL-3U)

Forward Consistent View (PL-FCV)

Repestable Read (PL-2.99)

Consistent View (PL-2+)
Monotonic Snapshot
Reads (PL-MSR)

Cursor Stability (PL-CS) Monotonic View (PL-2L)

PL-2

|

PL-1
Figure 4-16: A partial order to relate various isolation levels for committed transactions.

executesits first event in real-time, we add areal-order edge from T; to T;; these extra edges force
non-overlapping transactionsto be serialized in the order in which they executed in real-time. Strict
serializability or PL-SSis defined asthe level that disallows G1 and G2 when these phenomenaare
defined on the RSG instead of the DSG.

93

Chapter 5

Optimistic Implementations for
Client-Server Systems

This chapter presents optimistic mechanisms that provide different degrees of isolation to running
and committed (update and read-only) transactionsin a distributed client-server system. Since the
consistency guarantees provided at a particular level for running and committed transactions are
similar, the implementation for both casesis also similar. Our schemes have been designed for a
system where database objects may be distributed over multiple serversand clients may cache some
of the abjects on their machines for better performance. In our implementations, a transaction can
either read its own modifications or the updates of other committed transactions (dirty reads are not
allowed).

To provide serializability for committed transactions in these systems, we use an optimistic
scheme called CLocc [Ady94, AGLM95, Gru97]. This scheme has been shown to outperform the
best-known locking implementation, ACBL [CFZ94, ZCF97], in a client-server system [Gru97]
on many workloads. Our optimistic mechanism for providing PL-2 is based on CLocc and shares
many of its advantages; we call this scheme Weak-CLoccC.

ForlevelssuchasPL-2+, PL-2L, PL-3U, and their corresponding execution-timelevels, we have
designed a mechanism that captures conflict relationships efficiently using multipart timestamps or
multistamps. Multistamps contain timestamp entries for every server or client-server pair in the
system. However, in earlier systems [BSS91, PST97], multistamps have not scaled well with
a large number of clients and servers. We have designed a simple and novel technique called
multistamp truncation that keeps multistamps small. The truncation technique takes advantage
of the fact that our multistamps contain real time values and makes time-based judgements to
approximate old timestamp entries.

Our mechanisms for lower isolation levels offer a number of performance advantages over
CLocc. These schemes (except PL-3U) do not require clients to send information about the objects
read by their transactions to the servers; this results in lower network bandwidth requirements.
They also provide additional benefits for read-only transactions compared to CLocc. First, read-

94

only transactions do not interfere with update transactions, i.e., they do not cause update transactions
to abort. Second, transaction latency is decreased: when a read-only transaction finishes, it can
be committed without communicating with the servers (CLOCC requires such communication);
although asmall message may be sometimesrequired for PL-2+ and PL-3U, our resultsin Chapter 7
show that such messages are rare. Finally, the system is more scalable since these mechanisms
reduce the utilization of resources such as the network (fewer and smaller messages) and the server
CPU (most of the work for committing read-only transactions is offloaded to clients and the server
validates only update transactions with other update transactions). Asin CLocc, we do not require
atransaction to declare whether it is read-only or not when it starts; we detect this property when a
transaction ends.

Therest of this chapter is organized as follows. Section 5.1 describes CLocc and gives a brief
overview of the Thor distributed database system since our work has been done in the context of
Thor. Section 5.2 presents our modifications to CLocc for providing PL-1 and PL-2. Section 5.3
presents our multistamp-based techniquefor guaranteeing PL -2+ to committed transactions; we also
show how this scheme can be modified to provide EPL-2+ for running transactions. In Section 5.4,
we show how the multistamp-based scheme can be extended for committing read-only transactions
efficiently at level PL-3U; our technique ensuresthat the read-only participant optimization [GR93]
for two-phase commitisnot sacrificed. Finally, Section 5.5 discussesrelated work. |mplementations
for PL-2L and EPL-2L along with atechnique for efficiently committing read-only transactions at
PL-3 are discussed in Appendix B; this appendix also presents techniques for providing different
levels of causality to clients.

5.1 Database Environment and CLocc

Our work has been done in the context of the Thor database system; detailed information about
Thor can be found in [Ghe95, LACT96, CALM97]. We assume that application computations
occur within transactions so that persistent objects can be maintained consistently despite concurrent
accesses from multiple applications and possible failures. Each application session runs a single
transaction at atime. It specifies when to commit the current transaction: the transaction includes
all objects accessed by the application since the last commit point.

Persistent database objects are stored at servers on server disks; each object residesin asingle
page and objects are typically much smaller than pages. There may be many servers; the server
where an object residesis called its owner. The owner can be ascertained from the object identifier
(oid) of an object. Servers are replicated for high availability in Thor.

To improve performance, the application code is executed on the client machine using locally
cached copies of objects. Each client has an object cache that is maintained using techniques
presented in [CALM97]. There could be multiple clients on a single machine; each client would

95

haveits own cache of objects. Transactionsrun entirely at clients; clients communicate with servers
only when there is a miss in the cache, and to commit transactions. Clients and servers use an
ordered delivery protocol such as TCP for communication.

The server maintains information about data being cached by each client. For each client C,
it maintains a cached set that keeps track of objects being cached at C (as discussed later, these
sets are maintained at a coarse-granularity to reduce space overheads). Cached sets are used for
performing validation checks in CLocc. For recovery purposes, a server keepstrack of the clients
that are connected to it on stable storage; if the server crashesand recovers, it contactsthe clientsto
determine the pages cached by those clients.

The code that manages the cache on the client machine is a part of Thor and will be referred
to asthe client. Each server has a cache of objects in main memory, which it uses to satisfy fetch
regquests from clients. The organization of the system is shown in Figure 5-1.

Application Application
Sesson | Session
Client Client
Thor
Server Server

Figure 5-1: The client-server model of Thor.

5.1.1 Serializability for Committed Transactions. CLocC

We now present CLocc or Clock-based Lazy Optimistic Concurrency Control scheme; for details
on CLocc, see [Ady94, AGLM95, Gru97] (CLocc was earlier referred to as AOCC). CLocc has
been designed to perform well for cacheable transactions, i.e., for workloads in which a client can
cache al objects read/written by a transaction during its execution. Gruber [Gru97] has shown
that CLocc outperformsthe best known locking scheme, ACBL [CFZ94, ZCF97], for client-server
systems, across a wide range of workloads. Low communication requirements, fewer delays, and
low cost of aborts are some of the reasons why CLoccC has a higher throughput and scales better
than ACBL. CLocc has been designed to work well for environments where all operations are
executed by clients. In environments where servers may perform part of the work, another scheme
called AACC (Asynchronous Avoidance-based Cache Consistency) has been shown to outperform
CLocc [OVU98]. Both CLocc and ACBL are not expected to perform well in workloads where
there are hotspots, i.e., high contention on asingle or very few objects. For such cases, mechanisms

96

such asfield calls [Reu82] and escrow reads [O’'N86] are known to offer superior performance.

In a distributed system, transactions that have accessed objects at multiple servers must be
serialized in the same order at all servers. In CLOCC, transactions are serialized in timestamp order
where timestamps are taken from real clocks. When a client wants to commit transaction T;, it
assigns a timestamp T;.ts that contains the client’s local clock value augmented with the client’s
identity to make it globally unique. We assumethat clocks are loosely synchronized, i.e., clocks at
different nodesin the network may differ by at most a small skew (say, afew tens of milliseconds).
The presence of such clocks is a reasonable assumption for current systems; protocols such as the
Network Time Protocol [Mil192, Mil96] provide such afacility. Mills [Mil96] has shown that NTP
provides synchronization within a few milliseconds even across wide area networks. We assume
that server clocks never run backwards, and advance rapidly enough that each transaction can be
assigned a distinct timestamp; these assumptions are easy to guarantee (see [Lis93]). These clocks
simplify our algorithm and, since their values are close to real time, they allow us to make time-
dependent design decisions, and to reason about the performance of our scheme. In CLocc, loose
synchronization is needed only for performance reasons and not for correctness.

Commit and Coherence Protocol

To enable serializability checks at the end of a transaction, the client keeps track of objects read
and written by its current transaction T,;. At commit time, along with T,’s timestamp (T;.ts), the
client sendsthe identity of all objects read and written by T; (i.e., T;.ReadSet and T,.WriteSet) to
the servers that own these objects; it also sends copies of objects maodified by T;.

If objects from only one server are used by the committing transaction, this server can commit
the transaction unilaterally if the serializability checks succeed. Otherwise, the client chooses one
of the serversasthe coordinator of acommit protocol with the other owners, called the participants.
We use a standard 2-phase protocol [GR93]. We describe the protocol briefly here to provide the
context for our scheme.

In phase 1, the client sends information about the objects accessed by its transaction to all
the participants. Each participant (the coordinator is also a participant) validates the committing
transaction T;; we describe how validation works later in this section. |f validation succeeds,
the participant logs the installation information on stable storage and sends a positive response
to the coordinator; otherwise, it rejects the transaction. If al participants respond positively, the
coordinator commits transaction T; by logging a commit record on stable storage; otherwise, the
transaction is aborted. In any case, the coordinator notifies the client of its decision. Phase 1
includes two log updates to stable storage, but the optimizations suggested by Stamos [Sta89] can
reduce this to asingle log update.

In phase 2, the coordinator sends commit messages to the participants. On receiving a commit

97

message, a participant installs new versions of the abjects that were modified by T; (so that future
fetches see the updates), logs a commit record on stable storage, and sends an acknowledgement
to the coordinator. When the coordinator receives acknowledgements from all participants, the
protocol is complete. This phaseis not executed for transactions involving a single server; objects
areinstalled by this server after the transaction succeedsvalidation. Furthermore, the delay observed
by the client before it can start the next transaction is due to phase 1 only; phase 2 happensin the
background.

If T; has not modified any object at some participant, that server is called aread-only participant
(other participantsare called read-write participants); no installation information needsto belogged
at this participant. Furthermore, a read-only participant does not need a commit message from
the coordinator during phase 2; this optimization is aso referred to as the read-only participant
optimization for two-phase commit [GR93].

Some concurrency control schemes (e.g., callback locking [ZCF97] and the multi-version
scheme in [ABGS87]) guarantee that all read-only transactions are serializable; thus, commit-
ting such transactions does not require any communication with the servers. However, our scheme
requires validation to be performed for read-only transactions; therefore, phase 1 messages must be
sent to all participants for such transactions also. But, in our case, the coordinator of a read-only
transaction does not need to be reliable, and does not need to use stable storage. Therefore, the
client can act asthe coordinator: it sendsthe prepare messagesto the participants and collects their
responses, for details on this mechanism, see [AGLM95]. This saves a message roundtrip and re-
ducesthe latency for committing read-only transactions to a single message roundtrip; furthermore,
there are no updates to stable storage. (In Appendix B, we discuss a technique that avoids this
roundtrip as well.)

After a client C's modification transaction T; has committed at a server, the server examines
the cached set to determine clients other than C that may be caching objects modified by T;. The
server maintains an invalid set for each client D and adds the list of obsolete objects (becauseof T;'s
modifications) to D’sinvalid set. It informs clients about these old objects by sending invalidation
messagesto them. Notethat client C isnot waiting while invalidation messagesare being sent since
a server sends them after phase 2 has started. When a client D receives an invalidation message
that contains object x, it removes x from its cache. If D’s current transaction has accessed object
X, the transaction is aborted. When a transaction aborts at the client, any objects updated by the
transaction are also removed from the cache. To avoid refetching these modified objects after an
abort, the client maintains an undo log; before any object is updated, the client makes a copy of the
object. Thus, when the transaction aborts, the updated objects are simply reverted to their original
state unless they have been invalidated; this simple optimization is very important in enhancing
CLocc's performance.

The two-phase commit protocol for Thor is shown in Figure 5-2. Numbers indicate the order

98

of messages, i.e., message i precedes message i+1; messages with the same numbers can be sent
in parallel. A log force to stable storage that is shown asi/j indicates that it is done after receiving
message i but before sending message .

1
Prepare Request

\
N

4~
Invalidation \\
Messages .

N

Coordinator ---_

12 H 3/4

.23 Prepare Record Decision
Decision ,
/ V.
Stable Stable
Storage Storage

_— Work done in the foreground (Application is waiting)

——————— - Work donein the background.

Figure 5-2: The two-phase commit protocol in Thor.

Clients send acknowledgements after processing i nvalidation messages; when the server receives
the acknowledgement, it removes the information about the invalidated objects from that client’s
invalid set. Invalid sets, and hence invalidation messages, are small (just afew entries) because of
these acknowledgements (see [AGLM95, Gru97] for experimental results).

Both invalidation messages and acknowledgements are piggy-backed on other messages being
exchanged between the client and server; the term “lazy” in CLocc comes from the fact that this
scheme avoids sending synchronous messagesas much aspossible. Thereisalwaysacertain amount
of such traffic: in addition to fetch and commit requests and replies, clients and servers exchange
“I'm alive” messages for failure detection purposes; these messages are sent if there has been no
communication between a server and a client for a certain timeout period, e.g., half asecond in a
LAN environment. Therefore, our scheme does not cause extra message traffic, although messages
may be bigger; however, as shownin [AGLM95], the increase in messages size due to invalidations
issmall.

Invalidation messages are not required for correctness but they have the following desirable
effects:

99

1. If aclient receives an invalidation message for an object x that has not been read or written by
the current transaction, it Ssmply evictsx, thus avoiding a potential abort that would otherwise
result from reading X later.

2. If the current transaction has already read or written X, the client aborts the transaction
immediately, thus limiting wasted work (since the transaction would abort later anyway).

3. Invalidation messages also help in ensuring that the effective client cache is not lowered
because of obsolete objects. If these messages were not sent, a large number of objectsin
the client cache can become stale, resulting in low utilization of the cache since old objects
are effectively useless (and even harmful because a transaction that reads obsolete objectsis
forced to abort later).

4. Some of the checks that would have been performed at the server are now performed at the
client, i.e., work is offloaded from servers to clients making the scheme more scalable. A
client checksits read set against the list of old objects received in the invalidation messages;
without these messages, the server would performed these checks at commit time.

Although cached sets are maintained for each client, their space overhead is not large because
the server stores them at the page level: a cached set for client C contains the identifiers of the
pages containing objects cached at C rather than individual object identifiers. The client cache may
not contain all objectsin a page and therefore some unnecessary invalidation messages may be sent
(piggy-backed on other messages). However, these messages do not result in spurious aborts at
the client since an invalidation message causes an abort only if the corresponding object is being
used at the client. At the cost of larger invalidation messages, the size of these cached sets can be
substantially reduced by further approximating this information using Bloom filters [FCAB98].

Validation

Thepurpose of validationisto prevent the commit of any transaction that violates PL -3 requirements.
Our scheme uses backward validation [HaeB84] to provide serializability: avalidating transaction T;
ischecked against all transactionsthat have already validated successfully. Our validation algorithm
is embedded in the commit protocol described above. The presentation assumes that servers do
not fail; for a discussion on how we deal with failures, see [AGLM95]. We define the following
relationship for conflicts: two transactions conflict if one has modified an object that the other has
read or modified.

When a participant receives the validation information of a committing transaction T; (T;.ts,
T;.ReadSet and T,.WriteSet), it checks T;’s read set and write set against the information of
earlier committed and prepared transactions. Validation information of all successfully validated
transactionsis maintained in a data structure called the validation queue, or VQ; thus, the VQ holds

100

theread and write sets of transactionsthat have prepared or committed previously at the server. If T;
cannot be serialized in timestamp order due to some transaction T ; in the VQ, the participant aborts
T; by sending a negative acknowledgement to the coordinator. (Even if T; is only prepared, the
server cannot abort T, since the 2-phase commit protocol disallows a participant from unilaterally
aborting a prepared transaction.)

To simplify our algorithm, we arrange the read set to always contain the write set (no blind
writes), i.e., if atransaction modifies an object but does not read it, the client entersthe object in the
read set anyway. This implies that some transactions might exhibit spurious read-write conflicts,
but aborts due to such spurious conflicts are rare becauseit is unlikely that a transaction writes an
object without reading it.

The rules for validation differ according to the timestamp order between an already validated
transaction T; and the incoming transaction T;. We now discuss these checks.

Suppose T; has a timestamp later than T;. Since T; is prepared/committed, it could not have
observed T;’s updates (there are no dirty readsin CLocc). Since T islater in the schedulethan T;,
T; should not modify any object that T; hasread. If T; has read an object that T; has modified, T;
can still be serialized. However, asdiscussed in [AGLM95], we abort T; in this case also to provide
external consistency (so that transaction commit order as observed by clientsis the same asthe real
time order). Thus, the validation check against alater transaction T ; isthe following: if T; conflicts
with T;, T; is aborted.

Now we consider the checks performed by each participant to validate T; against a pre-
pared/committed transaction T; that has an earlier timestamp than T;. If T; has read an object
xand T; hasmodified x, T; can be serialized after T;. However, if T; hasread xand T; isin prepared
state and has modified x, T; must be aborted because T; could not have read that version (dirty reads
arenot allowed). If T; isacommitted transaction, we must ensurethat T; hasread the latest version
of x; thisis called the version check.

The version check can be performed by associating a version number (such as the timestamp of
the installing transaction) with each object. The version number of an object read by T; can then be
checked against that installed by T,. However, storing a version number per object consumes disk
storage as well as space in the server cache. More importantly, if the objects are not in the server
memory at validation time, the server may have to perform read the pages from disk to obtain the
version numbers.

Instead, we perform the version check without using version numbers. Recall that the server
maintains an invalid set for each client; this set keeps track of those objects in the cached set that
have been invalidated but whose invalidations have not been acknowledged by the client. To check
whether a validating transaction T; has read the latest version of an object, the participant checks
theinvalid set of T;'sclient and regjects T; if it has used an object in that invalid set.

The memory requirements for validation are low enough that the server can keep the needed

101

informationin primary memory. The datastructures used for validation are cached sets, invalid sets,
and the VQ. We have aready argued that the cached setsand invalid setsare small. TheVQ isalso
kept small by removing old validation records in a timely manner. We take advantage of loosely
synchronized clocks to determine which entries are old and remove them; the removed entries are
summarized using awater mark timestamp, which isgreater than or equal to all the timestamps of the
removed entries. Since aserver no longer hasfine-grained information about transactions below the
watermark, it must be conservative and abort an incoming transaction T; if T,;’stimestamp isearlier
than the watermark (or ask T;’s coordinator to retry after assigning ahigher valueto T;’stimestamp);
this check is called the watermark check. Our notion of approximating a transaction’s information
is similar to the Commit_LSN technique [Moh90] that uses a watermark called Commit_LSN to
determine whether a piece of datais committed or not. Their technique approximates information
about objects on a page using the Commit_L SN whereas we use a watermark to remove validation
information and summarize the removed entries.

Setting the watermark to a high value (i.e., later timestamp) has the advantage that the VQ
contains few entries but has the disadvantage that transactions may be rejected unnecessarily;
setting it far back in time reduces the probability of unnecessary aborts but increases the size of the
VQ.

We set the watermark by taking network delays into account. When a transaction T; commits,
the client usesits local clock and assigns a timestamp T;.ts to the transaction. The client’s prepare
request reaches each participant when the latter’s clock timeis T;.ts+ § + € where § is the network
delay and ¢ is the approximate clock skew. Thus, to ensure that T; is not rejected due to the
watermark check, a participant must not have not removed any VQ entry with a timestamp less
than T,.ts, i.e., aserver keepsthe watermark at least § + € below its current time. Details about the
watermark mechanism are discussed in [AGLM95].

We have now described all of the validation checks performed at each participant to validate a
given transaction T;; Figure 5-3 summarizes these checks.

5.2 Mechanismsfor Isolation LevelsPL-1 and PL-2

We now modify CLocc to provide PL-1 guarantees for committed transactions; in this scheme,
servers perform checks to ensure that GO is disallowed. Since dirty reads are not permitted in our
environment, this scheme also ensures that G1 cannot occur. Hence, our PL-2 schemeis identical
to our PL-1 implementation.

The checksfor the PL-2 scheme are similar to the onesin CLOCC except that we do not have to
validate the reads of a committing transaction; we compare the write set of a PL-2 transaction with
the write sets of other transactions (the checks are changed to only consider write sets). Invalidation
messages are handled asin CLoccC except that a client abortsits current transaction T; only if T; has

102

Water mark Check
If T;.ts< Watermark then send abort reply to coordinator

Checks Against Earlier Transactions

For each uncommitted transaction T; in VQ such that T;.ts< T;.ts
% Committed transactions are handled by the version check
If (T;.WriteSet N T,.ReadSet # ¢) then send abort reply to coordinator

\ersion Check

% T; ranat client C
For each object x in T;.ReadSet
If x € C'sinvalid set then send abort reply to coordinator

ChecksAgainst Later Transactions

For each transaction T; in VQ such that T;.ts< T.ts
If (T;.ReadSet N T;.WriteSet # ¢) or (T;.WriteSet N T;.ReadSet # ¢) then
Send abort reply to coordinator

Figure 5-3: Validation checksin CLocc for transaction T;

modified an object x specified in the invalidation message; if T; has just read X, the client discards
x from its cache (T; is not aborted since simply reading from committed transactions ensures G1).
We do not store the read set of a PL-2 transaction in the VQ since its reads need not be validated
against writes of transactions that commit |ater.

In amixed system, some of the transactions may commit at PL-3. To ensure that all histories
generated in our system are mixing-correct, we need to ensure that PL-2 transactions handle
obligatory conflictscorrectly. Asdiscussedin Section 3.3, obligatory conflictsfor PL-2 transactions
correspond to anti-dependency edges originating from PL-3 nodes, i.e., overwriting of reads by PL-
3 transactions needs to considered. Thus, we ensure that if a committing PL-2 transaction T;
overwrites an object that was read by a PL-3 transaction T, T;’s timestamp is greater than T;’s
timestamp. We call this check as obligatory check and our PL-2 schemeis called Weak-CLocc.

The validation checks in Weak-CLocc are actualy identical to the ones given in Figure 5-3 if
we simply consider a PL-2 transaction’s read set to be null for these checks. A similar changeis
needed to use CLocc in a mixed system where both PL-2 and PL -3 transactions can commit: when
aPL-3 transaction is validated against a PL-2 transaction T, the server assumes that T;.ReadSet
is null; this is acceptable in a mixed system since anti-dependencies for PL-2 transactions are not
considered.

Weak-CLocc and CLocc ensure that all histories generated in the system are mixing-correct
(see Section 3.3.1 for definition of mixing-correct). Since we do not allow dirty reads, phenomena
Glaand G1b cannot occur for any transaction/ We can prove that the MSG is acyclic by using the

103

following property: if thereis an edge from T; to T; in the MSG, T,’s timestamp must be less then
T,'stimestamp. Both CLocc and Weak-CLocc ensurethat this property isvalid for transactionsthat
commit at PL-3 and PL-2 levels respectively. Furthermore, the abligatory checksin Weak-CLocc
ensure that this property is valid for anti-dependency edges originating from PL-3 transactions.

Weak-CLocc has a number of advantages over CLocc. First, it has lower network bandwidth
requirements since clients do not send information about their read sets to servers. Second, servers
perform much less validation work since they only check write sets of transactions and not the
read sets; write sets are expected to be much smaller than the read sets. Third, when a read-
only transaction finishes, it can commit immediately without communicating with the servers.
Thus, read-only transactions do not interfere with update transactions and the server does not
need to validate them. Finally, read-only transactions are never aborted by Weak-CLocc since an
invalidation message can result in an abort only if the client’s current transaction has modified that
object; also, update transactions abort less frequently because they never conflict with read-only
transactions. Of course, these performance benefitsover CLocc comeat acost: Weak-CLocc offers
much weaker guarantees than serializability.

Weak consistency schemes based on locking for providing PL-1 and PL-2 in a client-server
system have been presented in [BK96]. However, like locking schemes for serializability, these
mechanisms require extra message roundtrips for acquiring write locks; our optimistic schemes
have lower communication requirements.

5.3 Multistamp-Based M echanism for PL-2+ and EPL -2+

We now present our multistamp-based consistency mechanisms provide PL-2+ to committed trans-
actions and EPL-2+ to running transactions. These techniques form the basis for other schemes
discussed in later sections. Multistamps lie at the heart of these schemes and are used to place
constraints on the reads performed by transactions.

Section 5.3.1 gives an overview of our multistamp-based schemes for PL-2+ and EPL-2+.
Sections 5.3.2 and 5.3.3 describe the processing at the server and the client, ignoring size issues:
multistamps are allowed to grow without bound and so are local tables at the server. Section 5.3.4
describes how validation is performed for PL-2+ and also gives an informal argument to show that
the schemeis correct. Section 5.3.5 shows how the mechanism can be modified for providing EPL -
2+ to running transactions. Section 5.3.6 describes how we solve the size problems for multistamps
and other data structures maintained at the server; it also discusses how the truncation technique can
be applied in other systems. Section 5.3.7 presents an optimization to offload work from serversto
clients.

104

5.3.1 Overview of the PL-2+ and EPL -2+ I mplementations

Before describing the details, we give a brief overview of our PL-2+ and EPL -2+ implementations.
We first present a scenario in which a transaction observes an inconsistent state of the database;
this scenario is allowed by CLocc for running transactions and by Weak-CLocc for committed
transactions. We then describe how our mechanism prevents this situation.

ClientC Client D ClientC

Fetchb
Fetch reply

CERER CERER

Server X Server Y Server X Server Y

Commit T,

Figure 5-4: Inconsistent database state viewed by client C due to observation of T;’s partial effects.

Supposethat two servers X and Y store objectsa and b respectively and an application maintains
the invariant that a is equal to b. A transaction T; from client D updates the values of the objects
from 3 to 4 and commits (see Figure 5-4). Another client C's transaction T; reads the old value of
a and triesto read b. Since b is missing from its cache, it fetches b from server Y and observes
an inconsistent state of the database. The Weak-CLocc scheme allows T; to commit because PL-2
does not guarantee consistent reads. On the other hand, any implementation of level PL-2+ would
abort T;. Note that CLocc allows T to observe inconsistent values of a and b but does not permit
T to successfully commit. However, observing an inconsistent state of the database may cause T ;
to behave in an unexpected manner, e.g., the application could crash. To prevent T; from observing
an inconsistent view, it must be provided level EPL-2+ during its execution.

Let us see how EPL-2+ can be provided to client C as it executes. The protocol is shown in
Figure 5-5; the numbers indicate the order of messages sent in the system. When transaction T;
commits at servers X and Y, the servers store extra consistency information with objects a and b.
The extra information stored at server Y is a requirement on transactions that read object b: if
transaction T, reads the new value of b, it must have communicated with object a's server X in the
recent past so that T; does not see an old value of a. A similar requirement is placed at server X
along with object a. When client C fetches object b, server Y piggybacks these requirements on
the fetch reply. In this scenario, since client C is not sufficiently recent with respect to server X, it
sends a messageto X requesting for recent consistency information. When it receivesareply, it is
alsoinformed that it has read an old value of object a. Asaresult, transaction T ; is aborted before it

105

views an inconsistent state, i.e., T, executesat level EPL-2+. To provide PL-2+ instead of EPL-2+,
client C checksthe requirements sent by server Y only at commit time and not immediately after a
fetch reply.

Client C

1
3
Consistency Fetch b

Information
Request

Fetch reply2

onsistency
Information
Reply

Seen recent enough Seen recent enough
changesfromY ? changes from X ?
Server X Server Y

Figure 5-5: With EPL-2+, client C is prevented from viewing an inconsistent state due to extra
consistency information stored with b.

The above example describes the essential ingredients of our algorithm: the consistency re-
guirements are generated by servers during the two-phase commit protocol and piggybacked on
fetch replies to clients; clients ensure that they are sufficiently recent with respect to the relevant
servers.

The requirements on clients can be captured by maintaining lists of transaction ids and prop-
agating them among clients and servers. However, due to the transitive nature of the dependency
relationship, these lists can become very large resulting in significant memory, processing and net-
work overheads. Instead, consistency requirements contain information about invalidations in the
form of multistamps.

Recall from Chapter 4 that a client C's transaction T, is provided PL-2+ or EPL-2+ if it does
not miss the effects of any transaction that T, depends on. One of the key insights regarding
invalidations in our system is that they can easily used to capture the notion of “not missing a
transaction’s effects’. Suppose a client C receives the invalidations generated by a transaction T;,
After this point, if C triesto accessan object x that was modified by T;, it will beforced to go to the
server and receive the latest version of X, i.e., it cannot miss T;'s effects. Thus, to provide PL-2+,
we need to ensure that a client C must receive the invalidations of T; and al transactions that T;
depends on before C observes T;’s updates.

Information about invalidations is maintained in the form of multistamps. Each committed

106

transaction T; is associated with a multistamp, T,;.mstamp, that indicates its invalidations and those
of all transactions it depends on. A multistamp is a set of tuples (client, server, timestamp); each
tuple (C, X, ts) saysthat an invalidation was generated for client C by the prepare of sometransaction
at server X when the value of X's clock wasts. When client C receives a multistamp with a tuple
(C, X, ts) initsfetch reply, it can continue execution (for EPL-2+) or commit (for PL-2+) only after
it has received all invalidations that were generated by server X before X's clock reached timets.
We assume the obvious merge operation on multistamps: if the two input multistamps contain
atuple for the same client/server pair, the merge retains the larger timestamp value for that pair.
We now describe the details of how multistamps are generated and used in our implementation.

5.3.2 Processing at the Server

Servers havetwo responsibilities: they must compute multistamps and they must send them in fetch
responses so that clients can act accordingly. When a server repliesto afetch, it sendsthe requested
page P along with P's multistamp; the multistamp of a page P is the merge of the multistamps of all
transactions that have ever modified P.

The server maintains the following data structures. The PSTAMP table maps pages to their
multistamps. The invalid set or ILIST maps clients to invalidation information. Each element,
ILIST[C], contains a timestamp ts and a list of object ids, indicating that these objects were
invalidated for client C at timets. The VQ stores multistamps of committed transactions along with
other information needed for validation.

Commit Processing. In the prepare phase, the server validates a preparing transaction T; to
ensure that it has not missed any updates, and that its updates do not conflict with updates of other
transactions. The latter check is done using the Weak-CLocc algorithm discussed in Section 5.2
(i.e., assuming that T;'s read set is empty). The former check requires tracking of transaction
dependenciesand is done using multi stamps; we describe how thistest isperformedin Section 5.3.4.

If the validation of transaction T; succeeds, participant X computes multistamp T;.mstamp as
follows:

1. Xinitializes T;.mstamp to be empty.

2. If T;’s commit would cause invalidations to be generated for any client, X setststo be the
current time of its clock. For each potentially invalidated client C:

(8 X addstuple <C, X, ts> to T;.mstamp.

(b) X adds <ts, olist> to the ILIST for C, where olist contains ids of all objects modified
by T; that are located on pageslisted in X’s directory for C.

107

3. For each transaction T; that T; depends on, X merges VQI[T;].mstamp with T;.mstamp. The
dependenciesare determined using X's VQ (we do not merge the multistamps of transactions
that T; anti-depends on since PL-2+ does not capture anti-dependencies).

T; 'svalidation info
(fromclient C)

ReadSet: { a b}
WriteSet: { b} —\
- - - - - - - - - - - -=-=-=-=-== ~
Ve \
/) A Page P’s new
/ Pages: P, Q, . . ! multistamp
ClientD’s Page P's multistamp D|Y [3:02:21pm
Cached Set

D|Y| 30221 pm
E | X | 3:02:11 pm

‘ E | X | 3:02:11 pm

D | X | 3:02:17 pm

Transaction TJ.

| |
| :
| |
| |
| |
| |
| |
| | ReadSet: {a} |
| WriteSet: { b} |
| |
| |
| |
\ :

Mstamp: | DY |3:01:52pm
D|Y | 30152 pm
S = > =X (20211 pm
E | X | 3:02.11 pm
) D | X | 3:02:17 pm
\
\ Validation Queue ! T, 's multistamp
N

(Current time = 3:02:17 pm)

Figure 5-6: Generation of multistamp for a committing transaction T; and page P.

Then X sends T,;.mstamp in the vote message to the coordinator. If the coordinator decides
to commit T;, it merges multistamps received from participants to obtain T;’s final multistamp.
This multistamp is sent to participants in the commit messages. The participants store T;'s final
multistamp in VQ[T;].mstamp. Furthermore, for each page P modified by T;, the participant merges
this multistamp into PSTAMP[P]. Overheads of this scheme are determined by the processing
overheads associated with multistamps. In Section 5.3.6, we present our truncation technique that
keeps the size of multistamps small.

If the transaction is aborted, the participant receivesthe abort decision and removesinformation
about T; from the ILIST.

Figure 5-6 shows the multistamp of atransaction T; and a page P being computed at server X
when T; commits; T; is a single-server transaction that has modified object b (on page P) and read
object a. Since page P is being cached by client D, an invalidation entry is generated for it and
added to T;’s multistamp; T,;.mstamp is also merged into T;.mstamp since T; dependson T,. We
obtain P's multistamp by merging T;'s multistamp into its current value.

Unlike CLocc, the VQ simply contains atransaction T;’s write set. The read set is needed just

108

to compute T;'s multistamp at prepare time; it is not required to calculate the multistamps of later
transactions or for validation purposes. In Section 5.3.7, we present a technique that alows clients
not to send read setsto servers.

Fetch Processing. When a server receives a fetch message for object x on page P and a prepared
transaction T; has modified x, it waits for T; to complete. Then it sends the fetch reply, which
contains P and also PSTAMP[P]. (In CLocc and Weak-CLocc, the system never delays a fetch
reply. However, the likelihood of adelay islow since the prepare window is very small.)

Invalidations.

To produce an invalidation message, the server goesthrough the ILIST in timestamp order from
smallest tolargest, stopping when it has processed the entirelist, or it reachesan entry for aprepared
(but not yet committed) transaction. The ids of all objects in the processed entries are sent in the
message along with the largest timestamp contained in the processed entries. When a server sends
an invalidation messageto aclient C and C's ILIST is empty, it sendsits current clock value as the
timestamp.

As mentioned earlier, invalidation messages are piggybacked on every message sent to a client
and clients acknowledge invalidations. The acknowledgement contains the timestamp ts of the
associated invalidation message. The server then removes all entries whose timestamps are less
than or equal to tsfrom the ILIST.

A client may also send an invalidation-request message to the server containing a timestamp
ts; this request indicates that the client wants all invalidations that were generated for it before
time ts. The server responds by sending back an invalidation message as above except that the
timestamp in the message must be greater than or equal to ts. It is possible that some entry in the
table with a timestamp less than or equal to ts exists for a transaction that has not yet committed
(it is till prepared); in this case, the server simply sends the invalidations due to that transaction
optimistically assuming that it will commit. Furthermore, if tsis greater than the timestamp of all
entriesin the ILIST, the server responds with its current time; it waits for its clock to advance past
tsif necessary, but adelay is extremely unlikely since clocks are loosely synchronized.

5.3.3 Processing at the Client

A client C is responsible for maintaining sufficient information about dependencies so that it can
validate the transaction’sreads at commit time. Client C maintainstwo tables that store information
about serversit is connected to. LATEST[X] storesthe timestamp of the latest invalidation message
it hasreceived from server X; REQ[X] isthelargest timestamp for X that C isrequired to hear about
if C accesses X and tries to commitsits transaction; if REQ[X] > LATEST[X], this means server X
hasinvalidationsfor C that C has not yet heard aboui.

109

The client also maintains a set CURR that identifies all servers used by its currently running
transaction. When the client receivesan invalidation messagefrom server X, it storesthe timestamp
in the message in LATEST[X].

Client C does the following when a transaction first uses abject x:

1. Addsx'sserver X to CURR.

2. Fetchesxif itisnot already present in the client cache. When thefetch reply arrivesit updates
the information in REQ to reflect the multistamp in the fetch response: for each multistamp
entry < C, Y, ts > suchthat tsislarger than REQ[Y], it storestsin REQ[Y].

Invalidations are handled asin CLOCC, i.e,, if the client’s current transaction has accessed an object
specified in the invalidation message, the transaction is aborted.

5.3.4 Validation

A transaction T;’s reads are validated by its client and its writes are checked by the servers using
Weak-CLocc. To validate T;'s reads, its client C ensures that C has recent-enough information
about invalidationsfor all serversused by T;, i.e., for each server X in CURR, the client checksthat
LATEST[X] > REQ[X]. This check is called the read-dependency check. If this condition does
not hold for some servers, a consistency stall occurs and the client sends an invalidation-request
messages to each server X where the information was not sufficiently recent; in this message, the
client requests server X to send al invalidations that were generated at X before time REQ[X].
When the client receives the replies, it processes them as in CLOCC, i.e., it aborts T; if the reply
indicates T; has read an obsolete object; otherwise, T; passes the read-dependency check.

If transaction T; is read-only, there is no more work to be done and the transaction commits
locally at the client. Otherwise, the client sends the read and write sets to the servers so that
the Weak-CLocc checks can be performed, and so that T;'s multistamp can be computed. In
Section 5.3.7, we will show an optimization in which the client computes the read-dependency part
of the multistamp and sends it to the servers; this alows it to avoid sending the read sets in the
commit request.

Figure 5-7 shows an example where the REQ and LATEST arrays change after a message. In
client C's current transaction, servers X and Y are being accessed. When C fetches page P from
X, it updates LATEST[X] with the time sent in X's fetch reply. It also updates REQ[Y] using P's
multistamp. With this update, LATEST[Y] is now less than REQ[Y]. Thus, if C tries to commit
its transaction now, there will be a consistency stall due to Y. No invalidation-request message
will be sent to server Z since it is not being accessed in the current transaction (even though the
read-dependency condition is violated for server Z).

In CLocc, the validation information in the VQ islogged on stable storage as part of the prepare
record by the participants. In the PL-2+ scheme, the final multistamp of atransaction T; islogged

110

CURR ={X, Y} Client C CURR={X, Y}

REQ LATEST REQ LATEST
3:01:12 pm 3:01:19 pm 3:01:12 pm 3:01:29 pm
3:00:47 pm 301:06pm| | D> | [FEEEE pm 3:01:06 pm
3:01:08 pm 3:00:51 pm 3:01:08 pm 3:00:51 pm

Page P + P’s multistamp

Fetch
page P

Page P Page P’ s multistamp
O()O C|Y|3:01:17 pm
o oO D | X | 3:02:11 pm

Server X (Current time = 3:01:29 pm)

Figure5-7: Handling of afetch reply by client C (changed entries are shown in adarker background)

along with the coordinator’'s commit decision and can be recovered after a crash; similarly, the
PSTAMP table can a so be reconstructed from the prepare and commit records.

An advantage of the PL-2+ scheme over CLocc is for read-only transactions. In CLocc, al
read-only transactions must communicate with the servers for validation purposes. In our PL-2+
scheme, a multi-server transaction T; can be committed locally if the read-dependency check is
satisfied for T; at commit time. Our results in Chapter 7 show that most multi-server read-only
transactions do not require communication with the servers at commit point. Furthermore, single-
server read-only transactions can be committed locally without any communication. The reason
is that when client C receives invalidations from server X due to atransaction T, it also receives
invalidations of all transactionsthat have committed earlier at server X; thisincludesall transactions
that T; depends on at server X. Thus, when a read-only transaction T; reads T;’s updates from
server X, the no-depends-misses condition property must be satisfied with respect to server X for
transaction T;.

Correctness

The checksin Weak-CLocc ensure that phenomenon GO does not occur and disallowing dirty reads
guaranteesthat G1 is disallowed. We now argue why the no-depend-misses condition (Section 4.1)
issatisfied, i.e., G-single is disallowed.

The no-depend-misses condition requires that if T; dependson T;, it must not miss the effects

111

of T;. The notion of not missing the effects of a transaction is captured using invalidations and,
ultimately, multistamps. Suppose that a transaction T; modifies objects x and y. When T; observes
the X's new value, the server can inform T;’s client that there might be an object modified by T;
which T; must not miss (from other servers). This is essentially the information that is stored in
invalidation entries of multistamps. Thus, for the purposes of PL-2+, T;’s update information is
completely captured using invalidations/multistamps as a requirement on later transactions.

Given that multistamps represent dependency information, the correctness of our schemerelies
on two properties. (i) multistamps reflect dependencies properly; (i) multistamp information flows
and is acted upon correctly.

Step 2(a) of the commit processing at the server ensures that the multistamp for a transaction
T; at server X contains tuples for all invalidations caused by it at X. Furthermore, step (3) ensures
that T;’s multistamp contains all tuples in multistamps of transactions that T; dependson at X. In
the PL-2+ scheme, T;’s final multistamp is obtained by merging its initial multistamp generated
during the prepare phase. By induction on the dependency relation, we can show that T;’s final
multistamp contains tuples reflecting all invalidations of T; and any transaction that T; depends
upon across all servers. Notethat atransaction T;'s final multistamp is sent by the coordinator only
to the read-write participants. Thisis acceptable since later transactions can become dependent on
T; only by reading objects from these servers.

Multistamp information is propagated and used appropriately in our scheme. The only way
atransaction T; becomes dependent on another transaction T; is by reading a modification of T;.
This can occur only if T;’s client C fetches a page modified by T;. But when such a fetch occurs,
T;'s multistamp is sent to C in the multistamp of the returned page; the fact that we delay client
C that fetches an object modified by T; while T; is prepared ensures that C is given T;’s final
multistamp and not an intermediate value. Since client C merges the multistamp information in
REQ, this data structure correctly captures the dependency constraints on T;’s reads. Thus, when
the read-dependency check is performed at commit time, the client ensuresthat T; has not missed
the effects of any transactionsit depended on, i.e., the no-depend-misses condition is satisfied.

5.3.5 EPL-2+for Running Transactions

It is easy to modify the above scheme to provide EPL-2+; we simply perform read-dependency
checkswhile the transaction is executing.

A client C that wants to provide EPL-2+ guarantees to its running transaction T; ensures that
the cache is kept EPL-2+-consistent with respect to the currently accessed servers (CURR). The
multi stamp-based schemeismaodified so that the read-dependency condition (LATEST[X] > REQ[X])
istruefor each serverin CURR during T;’sexecution, i.e., client C guaranteesthat it hasreceived all
invalidations specified in a page P's multistamp before T; reads P. The read-dependency condition
can beviolated in two ways. when C fetches apage from aserver and, when aserver is accessed for

112

the first time in a transaction and added to CURR (since the cache may not be consistent according
to EPL-2+ specifications with respect to a server not present in CURR). Asin the PL-2+ casg, if
the read-dependency condition fails for a server X, a consistency stall occurs and the client sends
an invalidation-request message to X asking for all invalidations that were generated before time
REQ[X] and waits for areply. Thus, the cost of providing EPL-2+ shows up in the form of consis-
tency stallsasthetransaction executes. In[AL97], we have described our multistamp-based scheme
for providing EPL-2+ to running transactions when CLocc is used for committed transactions.

5.3.6 Truncation

Due to the transitive nature of the dependency relationship, the size of the multistamp can become
prohibitively high in a distributed system with a large number of servers and clients. Large
multistamps can lead to larger messages, high memory storage costs at servers and increased server
CPU overheadsfor manipulating them. We now present amechanism called multistamp truncation
that keeps multistamps small and addresses al these problems. We also show how to keep the VQ
and PSTAMP tables small.

How Truncation is Perfor med

All our optimizations for truncating information rely on the fact that our multistamps contain real
time values. We use these clock values to determine which tuples are old and then remove them
from multistamps. To account for the removed tuples, each multistamp m also contains atimestamp
m.threshold; m.threshold is greater than or equal to timestamps of all tuplesthat have been removed
from m. The threshold allows us to compute an effective multistamp EFF(m) containing a tuple
(C, X, ts) for every client/server pair, where ts is the timestamp in the tuple for client C and
server X in mif one exists and otherwise, tsis m.threshold. Supposethat mis truncated to obtain a
new multistamp n'. We know that this truncation preserves dependencies because, the timestamp
for any client/server pair in EFF(m’) is greater than or equal to the timestamp for the pair in EFF(m),
i.e., the truncated multistamp is a more conservative/restrictive version of the original multistamp.
Figure 5-8 shows an example of truncation where the entries below 3:02:11 pm are removed and
replaced by athreshold timestamp.

C|Y|30117 pm Thresh = 3:02:11 pm

D|X|30211pm| m—> C|X|3:02:21pm

C | X | 3:02:21 pm

Figure 5-8: Multistamp truncation.

When aclient receivesatruncated multistamp mfrom aserver X, it computes EFF(m) and updates
REQ[X] using this value; it then proceeds as described in Section 5.3.3. Thus, the correctness of

113

our scheme not sacrificed since a truncated multistamp simply increases the client’s requirements;
truncation does not cause a client C to miss any invalidations that C was required to receive with
the original multistamp.

The result of the truncation process is a loss of precision in multistamps. For example, in
truncating a multistamp, the server may have removed an entry <D, X, ts> concerning some client
D different from C. When that multistamp arrives at C, C may increase REQ[X] unnecessarily.
During the read-dependency check at client C, C may request invalidations from X even though X
has no invalidationsfor it. Thus, there is atradeoff involved with the size of the multistamp and the
number of consistency stalls. Chapter 7 examines this tradeoff and shows that small multistamps
(less than 100 bytes) are sufficient to ensure that consistency stalls have a minimal impact on
performance.

Using Real Timeto Remove Old Entries

We now describewhen serversdecideto truncate multistamps. Asmentionedin Section5.1.1, clients
receiveinvalidation information from serverswithin atimeout period of when it was generated. This
communication implies that if a server has a tuple containing a timestamp ts that is older than the
server’s current time by more than this period, this tuple is not useful since invalidations specified
init will aimost certainly have been propagated to the relevant clients by thistime. Therefore, such
old entries are aged, i.e., automatically removed from multistamps.

Simple aging of tuples may not be enough to keep multistamps small, so we also prune the
multistamp by removing tuples that are not old. The system bounds the size of multistamps:
whenever a multistamp m exceeding this size is generated, it is immediately pruned by removing
some tuples. Pruning occurs in two steps: First, if there is more than some number of tuples
concerning a particular server, these tuples are removed and replaced by a server stamp. Then, if
the multistamp is still too large, the oldest entries are removed and the threshold is updated. A
server stamp isa pair <server, timestamp>; EFF(m) expands a server stamp into a tuple for each
client for that server and timestamp.

The VQ and PSTAMP are also truncated. Retaining information in the VQ about transactions
that committed earlier than the timeout period is also not useful. Whenever the multistamp of a
transaction contains no tuples (i.e., it consists only of a threshold), it is dropped from the VQ.
The VQ has an associated multistamp VQ.threshold that is greater than or equal to the (effective)
multistamps of all transactions dropped from VQ. When a server generates a transaction T;'s
multistamp (T;.mstamp), it initializes T;.mstamp to be VQ.threshold. Recall that CLocc aso
removes entries from the VQ using a similar strategy. Thus, to take both these schemes into
account, we remove an entry from the VQ when it is not needed by both algorithms.

Information is dropped from PSTAMP in the same way, with information about multistamps of

114

dropped entries merged into PSTAMP.threshold; if afetch request for page P arrives and PSTAMP
contains no entry for P, the fetch response contains PSTAMP.threshold.

For both the VQ and PSTAMP, the server can remove entries earlier at any point in time; it just
needs to ensure that the associated threshold multistamps are updated accordingly. Thus, a server
maintains entries only for recently committed transactions in the VQ and information only about
recently modified pagesin PSTAMP.

The above decisions for truncating multistamps are based on the fact that clocks are loosely
synchronized in the system. The use of loosely synchronized clocks to truncate old information is
awell-known technique; CLocc also uses this ideato truncate the VQ. The reader can see[Lis93]
for other practical uses of loosely synchronized clocks.

Using Multipart Timestamp Truncation in Other Systems

Multistamps have been proposed and used in many distributed systems[BSS91, LLSG92, TTP*95,
ACD™96] for capturing causality constraints. Our truncation technique can be used for keeping
multistamps small in some (but not all) parts of these systems. We enumerate guidelinesthat can be
used to determineif our truncation technique is applicable to an implementation. These guidelines
cover a large class of schemes in the literature but are not supposed to be sufficient or necessary
conditions for using our truncation mechanism because multistamps are used in a variety of ways
to capture causality constraints:

1. Each multistamp entry containsalogical clock value so that it can be replaced by areal clock
value.

2. A multistamp represents arequirement on someentity (e.g., clientsin our case) and astronger
reguirement must not affect the correctness of the scheme; this also implies that a truncated
multistamp must represent a stronger constraint than the original multistamp.

3. Exact values are not required for the correct functioning of the scheme.

Our implementation satisfies al the conditions stated above. We now consider the lazy repli-
cation system [LL SG92], and discuss where our truncation technigue can be applied and where it
cannot be; the arguments are similar for other systems.

In lazy replication, a databaseisreplicated at several server replicas. Each server X maintains a
server multistamp that containsan entry for every other server Y inthe system. Each entry containsa
timetsindicating that X hasreceived all updatesfrom Y generated beforets(Y’sclock time). Clients
also maintain multistamps; when a client sends a request to a server X, the operation is delayed
until X's multistamp dominates the client’s multistamp (a multistamp A dominates multistamp B if
al entriesin A are greater than or equal to the corresponding entriesin B).

115

Server multistamps cannot be truncated since an exact value is required in each entry; thus,
the third guideline given above is violated. Approximating some entries by a threshold timestamp
will incorrectly indicate that messages have been received from all servers up to the threshold.
To reduce the network overheads of server multistamps, techniques such as sending multistamp
differences [BSS91] will have to be used.

Our truncation technique is applicable to client multistamps since they act as requirements on
servers; servers cannot process client requests until they are sufficiently recent. Truncation simply
makes the regquirements more conservative: if some entriesin aclient C's multistamp are replaced
by athreshold timestamp, C can access server X only if X has received messages that are marked
higher than the threshold timestamp from all serversin the system.

In general, for many schemes, when multistamps are used for represent the state of the system,
it may not be possible to truncate them. Thus, the server multistamps cannot be truncated, whereas
client multistamps can be truncated since they represent causality constraints/requirements.

We now discuss some general performance considerations for truncating a multistamp. When
truncation is performed on a multistamp, we lose some fine-grained information about individual
entries. Thislossof information usually showsup intheform of aninefficiency in some other part of
the system, e.g., asextramessages or blocking of operations. In our PL-2+ scheme, it resultsin extra
invalidation-request messages being sent to the servers. To reduce the impact of this performance
penalty, it is desirable that periodic communication occurs among the relevant processes in the
system. In our system, “I'm alive” messages exchanged between a client and servers ensure that
the client is kept reasonably recent with respect to all its connected servers. Similarly, “gossip”
message are sent in lazy replication [LL SG92] to ensure that servers are reasonably up-to-date with
respect to other servers; these messages reduce the likelihood that a client operation is delayed at a
server.

In lazy replication, the threshold timestamp in a client-request to server X will require that X
delay the operation until X has received messages higher than the threshold from all serversin
the system; this can result in significant delays for the client’s operation. Thus, the notion of “al
servers’ denoted by the threshold needs to be localized so that the threshold constraint does not
cause a significant performance penalty; this can be done by exploiting the system structure or the
semantics of the application. For example, in our PL-2+ scheme, by taking advantage of the system
structure, the threshold constraint on a client is reduced to a requirement with respect to servers
accessed in the client’s current transaction; this localization reduces a large number of unnecessary
consistency stalls.

5.3.7 Offloading Multistamp Generation to Clients

We now discuss an optimization that allows clients (instead of servers) to generate multistamps,
making the scheme more scalable. When a client C receives a page P's multistamp, it retains

116

the multistamp in a table, CLIENTPMAP; this table maps page ids to their multistamps for all
pagesin C's cache. The CLIENTPMAP table is maintained in a manner similar to the PSTAMP
table, i.e., only multistamps of recently fetched pages are kept; other multistamps are summarized
using athreshold multistamp. When atransaction T; reachesits end, the client computes T;’sinitial
multistamp by merging the multistamps of pagesaccessed by T; and sendsit to the coordinator. Each
participant simply sends tuples generated due to T;’s invalidations in its vote to the coordinator,
who merges these tuples to obtain T;'s final multistamp. Thus, the servers do not perform any
intersections to compute T;’s multistamp. We refer to this scheme as the client-merger scheme.

Our original approach for generating multistamps used exact write sets from the VQ and T;'s
read set. However, in the client-merger scheme, T;’s initial multistamp is computed at a client
based on coarse-grained information, i.e., pages accessed by T; (since the CLIENTMAP table is
maintained at a page granularity). Theloss of precision can result in larger multistamps, and hence,
more truncation, leading to a higher number of consistency stalls. To aleviate this problem of
false dependencies, the server maintains an object bitmap for each entry in the PSTAMP table; this
bitmap keeps track of the objects modified by recently committed transactions on each page. (As
mentioned earlier, objects do not span pagesin our system.) When atransaction T; modifies page
P and enters P's multistamp into PSTAMP, the server sets the bits in the bitmap corresponding to
the objects modified by T;; the bitmap is removed when P's multistamp is removed from PSTAMP
(at this point, P’'s multistamp is merged into PSTAMP.threshold). When a client fetches page P, this
bitmap is also sent in the fetch reply along with PSTAMP.threshold. The client keeps the bitmap
in the CLIENTPMAP table and also maintains the last known PSTAMP.threshold for each server.
When aclient generates T;’sinitial multistamp and T; hasread x on page P, it merges P's multistamp
from CLIENTPMAP only if x is marked in P's bitmap; otherwise, it merges PSTAMP.threshold of
the server that owns P,

The client-merger scheme has advantages over our original mechanism. First, server CPU
overheads are reduced since the server does not have to perform any intersections for generating
atransaction’s multistamp; with this optimization, servers are responsible only for performing the
checksin Weak-CLocc, generating invalidations, and obtai ning the final multistamp of acommitting
transaction. Second, a transaction’s read set does not have to be sent to the servers. Furthermore, if
aserver X isaread-only participant, it isnot sent any message by the client because no invalidations
will be generated at X.

54 PL-3U Mechanism for Read-only Transactions

We now extend our multistamp-based scheme for providing PL-3U to read-only transactions. We
also show how the PL-3U scheme can be modified to provide EPL-3U and EPL-3 for running
transactions. For update transactions, we continue to use CLocc. The advantage of our PL-3U

117

scheme over CLOCC is that the client rarely needs to communicate with the servers for committing
read-only transactions. Thus, this scheme is strictly better than CLocc in terms of message
requirements and delays (and it provides strong guarantees that are close to serializability).

Our implementation for committing a read-only transaction T, at PL-3U ensures that the no-
update-conflict-misses condition is satisfied, i.e., if the client running T, observes a modification
of transaction T;, it can commit T, locally only if it has received all the invalidations of T; and
any update transactions that T; depends or anti-depends on. Thus, multistamps need to capture
dependencies and anti-dependencies.

We make the following change to the multistamp-based schemefor PL-2+. When atransaction
T; prepares at a server X, the server computes the multistamp by merging the multistamps of all
transactions that T; depends and anti-depends on. In the client-merger scheme for PL-2+, the
PSTAMP table maintains the multistamps of all transactions that have modified a page P at the
server. For PL-3U, we also need to maintain anti-dependency information for pages; for this
purpose, we use a new table, RPSTAMP, which maps a page P to the (merged) multistamp of all
update transactions that have read P. For each page P modified by T;, it merges RSTAMP[P] into
T;'s multistamp.

If a read-only transaction T, requests level PL-3U and accesses objects from only a server
X, it can be committed locally regardiess of the values of LATEST[X] and REQ[X] (recall that
single-server transactions can be committed locally at level PL-2+ aswell). In this scenario, if T,
observesthe effects of atransaction T; from X, it will not miss the effects of any committed update
transaction that T; depends or anti-depends on. The reason is that after T; prepares at X, CLocC
prevents any transaction that conflicts with T; to prepare with atimestamp earlier than T;. Thus, T,
can be serialized after all update transactions (such as T;) that T, depends or anti-depends on.

The PL-3U scheme has higher overheads compared to the PL-2+ scheme. First, in the PL-3U
implementation if apreparing transaction T; anti-depends on a prepared transaction T;, T;"'s prepare
is delayed till T; commits or aborts (we expect these delays to be short since a coordinator sends
the commit decisions promptly). This delay is needed to ensure that the server merges T;’s final
multistamp into T;’s multistamp; such a delay does not occur in the PL-2+ implementation since
anti-dependencies are not captured at PL-2+. Second, since transaction read sets are needed for
computing anti-dependencies, the client needsto send them to serversin the PL-3U implementation;
this increases the network bandwidth consumption and the server CPU utilization for receiving the
read sets. Third, the server CPU is further utilized in the PL-3U scheme since the server has
to perform the intersections in the RPSTAMP table; this computation must be performed at the
server since page P may have been read by another client after a transaction T;'s client fetches P,
i.e, a T;'s commit point, T;’s client may not know about the multistamps of all transactions that
have read P. Fourth, the likelihood of a read-only transaction requiring communication with the
serversat commit timeis higher in PL-3U ascompared to PL -2+ since multistamps contain stronger

118

requirementsfor clients. Finally, as we show below, this scheme requires an additional mechanism
to ensure that the read-only participant optimization for two-phase commit is allowed.

54.1 Read-only Participant Optimization for PL-3U Implementation

The PL-3U scheme presented above assumesthat all participants receive the commit decision since
a preparing transaction T; must merge the final multistamp of all transactions that T; depends or
anti-depends on. If T; anti-depends on a prepared transaction T at server X, X delays T;’s prepare
until T;'s commit decision is received. However, with the read-only participant optimization, the
commit decision is not sent to read-only participants [GR93]. Thisimplies that if X isaread-only
participant for T;, X will not receive T;’s final multistamp and T; would be stalled indefinitely.

We could abandon the read-only participant optimization, but this seems unwise since we expect
read-only participants to be common. Therefore, we use the following technique: we place the
onus of obtaining T;’sfinal multistamp on the update transaction’s (i.e., T;) commit protocol. Inthe
above scenario, when T; prepares at X, anti-dependson T, and T;’sfinal multistamp is not known,
X sends a multistamp-request messageto T;’s coordinator; this extra communication occurs during
T;’s prepare phase, causing aprepare block. T;'s coordinator sends T;'s final multistamp to X; this
reply is delayed if T; is still prepared. Note that X can also send the multistamp-request message
to T;’s client but we do not use this approach since clients can crash and cease to exist whereas
serversare highly available in Thor.

However, this protocol has a problem. If read-only participants are common (as is expected),
this approach can cause a substantial number of prepare blocks for update transactions; a prepare
block will occur whenever an update transaction T; anti-depends on some earlier transaction T at
server X and T isread-only at X. We can avoid such blocks by piggybacking some information to
servers and taking advantage of the fact that clients communicate with servers at least once every
timeout period (see Section 5.1.1). Each client C keeps track of the transaction id or tid of its last
committed update transaction called CURRTID along with amultistamp called CURRUSTAMP (a
transaction id is a tuple that contains the client’s id and its current clock value). This multistamp is
obtained by merging the multistamps of all update transactions committed by C; it acts as an upper
bound on the multistamp of each transaction that was earlier committed by C. In each message to
aserver, client C sendsits CURRTID and its CURRUSTAMP. The server maintains a table called
KNOWNSTAMP that maps clients to the most recent values of CURRTID and CURRUSTAMP
received from that client.

Thus, in the above scenario, when update transaction T; prepares at server X, X stores T;’sttid
and coordinator in its VQ entry, and marks it asincomplete. When T; prepares at X, X determines
all incomplete transactionsthat T; depends or anti-dependson. For each suchtransaction T, if T;’s
tidislessthan or equal to the CURRTID specifiedin KNOWNSTAMPfor T;’sclient, X mergesthat
client’'s CURRUSTAMP into T;'s multistamp; otherwise, it sends a multistamp-request message

119

to T;'s coordinator. Thus, multistamp-request messages are sent to other servers only when T;
commits at server X, anti-dependson T, X isaread-only participant for T;, and X has not received
amessage from T;'s client after T;'s commit. The probability of this situation is low since T;’s
client sends a message to X at least once every timeout period and anti-dependencies on recently
committed transactions are unlikely in common workloads.

Since CURRUSTAMP is an upper bound and not an exact value, some false dependencies
and anti-dependencies may be captured resulting in extra transaction stalls. However, as shownin
Chapter 7, the performance impact of stalls (which includes such stalls) is low even for stressful
workloads.

T;'svalidation info

ReadSet: { a b}
WriteSet: { a, b}

Multistamp request

oo 1
V";‘ggﬁg” Client= E, Tid = 25

q

Client Tid Read Write Mstamp Coord Client Tid Mstamp

Mulistamp reply Client Tid Read Mstam
D |15 ta| (3|1 Y|D |17 - P
= El=[1]
E | 25 |[{b}|{} | A E 24 . .. ||
Validation Queue
Validation Queue KNOWNSTAMP Table

(Mstamp | = Incomplete) Server Z

Server X

Figure 5-9: Transaction T;'s prepare is blocked since it anti-depends on a transaction whose
multistamp is not known at server X.

Figure 5-9 shows an example of atransaction T; that anti-depends on two transactionsthat were
read-only at server X. Their multistamp entries are marked as incomplete. Server X checks the
KNOWNSTAMP table for the multistamp values of these transactions and determines that an upper
bound is available for the transaction with tid 15 but information for the transaction with tid 25
(committed by client E) is not present. Thus, server X sends a multistamp-request message to the
transaction’s coordinator, server Z, and waits for the reply.

Certain optimizations can improve the performance of the above scheme. First, the probability
of sending a multistamp-regquest message can be reduced further if it is sent only when the update
transaction (i.e., T; in the above case) is a multi-server transaction; otherwise, we simply add T,’s
information to T,;’s VQ entry and mark T; as incomplete. Now X needs to send a multistamp-
request message to T;’s coordinator only when a multi-server transaction arrives at X and depends
or anti-depends on T; or T;; we expect the scenario of a multi-server transaction depending on

120

another recently committed multi-server transaction to be rare. We call this the single-server delay
optimization.

Second, we could be lazier: rather than having T; find out T;’s final multistamp, we could
let this work be done by a transaction that occurs later than T; in the chain of dependencies and
anti-dependencies. For example, if transaction T, reads T;’s updates and we place this onuson Ty,
itismorelikely that X knowsT;’sfinal multistamp at T's preparethan at T;’s prepare. Thisscheme
might reduce prepare blocks further but it is considerably more complicated and our performance
resultsin Chapter 7 show that prepare blocks are rare. Thus, we believe that this optimization is not
needed.

Like the PL-2+ scheme, the server can log the PSTAMP and RPSTAMP information along
with the commit decision. For read-only participants, we can avoid logging the RPSTAMP to
stable storage by using a technique similar to one presented in [AGLM95]. The basicideaisthat a
server maintains a stable threshold timestamp that is an upper bound on all the timestamp entries
in RPSTAMP. When a server crashes and recovers, the stable threshold timestamp is used to
initialize the threshold multistamp of RPSTAMP. To avoid frequent updates of the stable threshold
timestamp, we update this value in jumps (e.g., a few seconds). To avoid delaying a client at a
read-only participant, this threshold can be increased in the background, e.g., by piggybacking its
modifications on log updates by other transactions; more detail s about this mechanism can be found
in[AGLM95].

The CURRTID and the CURRUSTAMP values of different clients can beflushed lazily to stable
storage. If a crash occurs, the server can lose this information; when the servers recovers, it will
initialize this data about clients with older values. Thisloss of latest information can result in some
extra messages but does not affect correctness; this is not a problem since crashes are expected to
berare.

5.4.2 Providing EPL-3U and EPL-3 to Running Transactions

Running transactions can be provided EPL-3U guarantees by combining the technique presented in
this section with the EPL-2+ scheme presented earlier. That is, a client computes the multistamps
as presented above and checks for stalls when it fetches a page from as server and when it uses a
server for thefirst time in atransaction. The likelihood of stallsis higher in EPL-3U scheme since
multistamps contain stronger constraints than in the EPL-2+ case.

To provide EPL-3, we require that all transactions (including read-only transactions) are com-
mitted at the serversusing CLOCC. To generate atransaction T;’s multistamp, the server also merges
the multistamps of read-only transactions that T; anti-depends on; recall that only multistamps of
update transactions are merged in for PL-3U and EPL-3U. In the client-merger scheme, the RP-
STAMP table aso needs to maintain multistamps of read-only transactions as well. Therest of the
EPL-3 implementation is the same as the EPL -3U implementation.

121

5.4.3 Requirementson Concurrency Control mplementations

The PL-2+ and PL-3U schemes can be used for efficiently committing read-only transactionswhile
CLocc can beused for committing updatetransactions. Even though we presented these mechanisms
in conjunction with CLocc, they can be used in hybrid systems [CG85] where update transactions
are executed using a concurrency control scheme such as locking (e.g., ACBL [ZCF97]) and read-
only transactions are executed optimistically (using these implementations). Our mechanisms will
be beneficial in such hybrid systems because read-only transactions need not hold locks. Asaresult,
there may be fewer delays in the system. For example, with ACBL, fewer callbacks may be sent
by a server; aso, the callback replies need not be delayed at a client if a read-only transaction is
accessing the object.

To commit read-only transactions using our PL-2+ scheme, the concurrency control mechanism
must provide serializability for update transactions and use a protocol like two-phase commit for
atomicity; this result has been shown in [CG85]. To commit read-only transactions at PL-3U using
our scheme, an additional property must be satisfied:

No transaction dipping in the past: After an update transaction T; prepares at a
server X, X will not serialize another transaction T; before T; (in the equivalent serial
order) if T; conflictswith T;.

This property ensures that T;’s final multistamp does not miss the information of any transaction
that T; depends or anti-depends on. A locking scheme like ACBL guarantees this property since
atransaction T; that conflicts with T; and arrives after T;, will be serialized after T; (T; acquires
locks after T; releases them). CLOcCC also satisfies this property; as disussed in Section 5.1.1, its
aborts a preparing transaction T; if it tries to serialize before T; and conflictswith T;.

55 Reated work

In this section, we discuss earlier work in the literature related to our optimistic schemes. Sincethe
literature for concurrency control schemes is vast, we only discuss work that is closely related to
our mechanisms.

5.5.1 Optimistic Schemes

Eswaran et al. [EGLT76], and later Kung and Robinson [KR81], suggested the idea of using
optimism for concurrency control. Since then a number of optimistic schemes have been discussed
in the literature.

Other distributed schemes achieve a global serialization order using atomic multicast [RT90]
or logical clocks [ABGS87, Gru89]. Atomic multicast adds additional per-message overhead,
whilelogical clocks must be explicitly managed as part of the two-phase commit, complicating the

122

algorithm. Our use of loosely synchronized clocks avoids al these problems; more importantly,
it also allows us to make time-dependent decisions and optimize our algorithm, e.g., to determine
what transactions can be removed from the validation queue.

Apart from CLocc, other backward validation algorithms have been proposed in the litera-
ture [ABGS87, BOS91, C0O82, KR81, RT90]; forward validation schemes such as O2PL [FCL97]
have also been suggested. In a client-server system, forward validation requires a validating trans-
action to contact all clients that are caching updated objects, to obtain latches on the cached copies.
If alatch cannot be obtained, the transaction aborts; otherwise, it commits and rel eases the latches
(updating or invalidating the client caches). Thisapproach addsan additional communication phase
to all commits, even when only asingle server isinvolved; moreover, the delay incurred is observed
by the committing client. In contrast, backward validation just uses the standard 1 or 2 phases
required for a single-site or distributed commit (as described for our scheme), and therefore is a
better choice for a client-server system.

Previous optimistic schemes have largely ignored implementation issues regarding time and
space overheads. Some schemes [ABGS87, CO82, KR81, LW84] validate a transaction against all
transactions serialized betweenits start and end times; alarge amount of validation information must
be stored to validate along transaction. In our scheme, the invalid set summarizes most information
required for validation in a compact way, while our VQ, PSTAMP, and other data structures for
the weak consistency schemes are truncated according to a bound on expected message delay; the
information we maintain is not proportional to transaction length, but still allows us to correctly
validate long transactions.

M ost optimistic schemes store some concurrency control information per object (e.g., thescheme
in [ABGS87] maintains two timestamp values with each version). Space overhead for version
numbers can be significant for small objects; e.g., most objects in the OO7 benchmark [CDN93]
are smaller than 100 bytes; an 8-byte version number would add 8% overhead. Another potential
problem with version numbers is that they are usually cached and uncached with the rest of their
object state; missing version numbers would then require disk reads during validation. In contrast,
all of our validation information can be kept in main memory.

Multi-version schemes[ABGS87, BOS91, LW84] keep multiple versions of objectsto provide
aconsistent view of the database to all active transactions, making validation unnecessary for read-
only transactions. However, this approach has very high space overheads: multiple versionsneed to
maintained in different parts of the system, including the server cache and the disk. Asaresullt, the
effective server cache size and the effective disk bandwidth available to the server may be reduced.
Furthermore, there is the additional complexity of maintaining and discarding multiple versions.
Maintaining multiple versions also requires storing version numbers in objects — a cost that we
wanted to avoid.

123

5.5.2 PL-2+ Mechanismsand Causality

Chan and Gray [CG85] have proposed PL-2+ as a correctness criterion for read-only transactions
and described a mechanism to commit these transactions in a distributed system such that they do
not interfere with update transactions. Although their scheme also uses multistamps, their multi-
stamps are different from ours and suffer from a variety of inefficiencies, making their mechanism
impractical. In their scheme, multistamps capture the dependency information using transaction
ids; hence, it is difficult to truncate this information. Also, multistamps in their scheme capture
dependenciesin a very conservative manner: a server X assumes that a preparing transaction is
dependent on all transactions that have already committed at X. In our multistamp-based schemes,
this assumption can lead to a large number of unnecessary consistency stalls.

Multipart timestamps have been used widely in distributed systems for capturing causal re-
lationships [BSS91, LLSG92, TTPT95, KCZ92, ANKT95]. However, multipart timestamps can
become quite large if there are tens of thousands of processes involved. This can result in large
messages, higher server memory usage, and higher server CPU consumption to manipulate these
multistamps. To reduce network overheads imposed by multistamps, researchers [BSS91] have
suggested a “difference” mechanism in which a process P only sends those multistamp entries
to another process Q that P knows Q does not have; this optimization is useful in cases where
changes to multistamps are small compared to the size of the multistamps so that the differences
result in smaller network messages. However, this solution does not solve al the problems due
to large multistamps, especially server storage and server CPU overhead problems: performing a
difference between large multistamps can be CPU and memory intensive. Our solution uses|oosely
synchronized clocks and gets rid of entries in multistamps; as we show in Chapter 7, the cost of
approximating the multistamp information is low for our environment.

Snapshot Isolation has been implemented in the Oracle server [Ora95] but we do not have
information about distributed client-server implementations of this isolation level. We believe that
an implementation for Snapshot Isolation in such environments will have higher communication
and space overheads than our PL-2+ implementation because Snapshot Isolation has stronger
requirementsthan PL-2+; extramessagesor more versionsmay need to be maintained just to ensure
that a client has a snapshot of the database as of some point in the past. On the other hand, PL-2+
has weaker requirements and our multistamp-based implementation for PL-2+ is lazy: it ssimply
requires that object versions be present in a client’s cache according to dependency constraints and
sends messages only when there is a potential violation of consistency.

5.5.3 Orphan Detection Mechanisms

Our EPL-2+ scheme for running transactions has been primarily designed to ensure that the ap-
plication code does not view consistent data and behave in an unpredictable manner. This was

124

also one of the main reasons that motivated the work on orphan detection [LSWW87, MH86]. An
orphan is a transaction that is doomed to abort. Such a transaction can waste resources and view
inconsistent data. Orphan detection and elimination was implemented in the Argus distributed sys-
tem [LSWW87, Ngu88] to solvethese problems. The Argusmodel consists of multiple processesin
the system that communicate with each other viaremote procedure call. Orphan detection schemes,
like our mechanisms, usetheideaof (transitive) propagation of information. However, these orphan
detection schemes have much higher space overheads and higher complexity. For example, the
consistency information in the Argus schemes contains a list of transaction ids and processids that
is more difficult to compress than our multistamps. Mechanismsto garbage collect old information
in these schemes can also result in high overheads. As shown in [Ngu88], some of the orphan
detection protocols can impose significant performance penalties.

5.5.4 Read-only Transactions

Researchers in the past have suggested a variety of schemes to optimize read-only transac-
tions[Wei87, GW82, ABGS87]. Themain purpose of these mechanismsisto ensurethat read-only
transactions do not interfere with update transactions. Hence, these schemes use multiple object
versions alowing read-only transactions to read old versions while update transactions modify
the current version. Our schemes for read-only transactions can also be extended to use multiple
versions. However, as discussed earlier, we decided against such schemes because of the costs
involved.

Theprotocolssuggested by Weihl [Wei87] for read-only transactions suffer from excessivespace
overheads or require extra messages in the system compared to our schemes. One of the schemes
assignstimestampsto aread-only transaction T, when it begins; T,. reads object versions according
toitsassignedtime. The problem with thisapproachisthat it requiresan initiation phasefor aread-
only transaction, i.e., before T,. starts, it must communicate its timestamp to all sitesthat it is going
to access. This scheme also requires predicting the objects or sites that the transaction is going to
access; such predictions are not needed in our schemes. Furthermore, any timestamp-based scheme
where aread-only transaction reads object versionsaccording to its timestamp requires accesstimes
to be stored with an abject, thereby converting every read into awrite. Thisinformation isneeded so
that later update transactions can be assigned a higher timestamp. The scheme suggested in [Ree78]
also hasasimilar requirement.

In another scheme suggested by Weihl, each transaction T; maintains dependency and anti-
dependency information and stores it with the versions that T; creates. A read-only transaction
T, uses this information to determine which object versions to read. However, this approach is
impractical since the dependency/anti-dependency information consumes a large amount of space
and garbage collecting this information is difficult. Like the previous scheme, this protocol also
suffers from the problem that it converts every read into a write; when a read-only transaction T,

125

accesses an object X, it must update x's dependency/anti-dependency information.

5.6 Summary

This chapter presented a variety of optimistic schemes for distributed client-server systems that
provide different isolation degrees to running and committed transactions. In all our schemes,
we have taken advantage of the system structure and also utilized characteristics of real systems
to optimize our mechanisms, e.g., we use loosely synchronized clocks to truncate some of our
data structures. We have aso taken care to avoid adding a significant number of messages to the
system; wherever possible, wetry to piggyback the relevant information on existing messages. This
chapter described efficient implementations for providing PL-2+ and PL-3U and the corresponding
isolation guarantees for running transactions, EPL-2+ and EPL-3U. An important advantage of
weaker isolation level implementations over CLocc is for read-only transactions. In CLoOCC,
such transactions require communication with the servers at commit time whereas most read-only
transactions can commit locally at the client machine using our PL-2+ and PL-3U implementations.
Our mechanisms are based on multi-part timestamps or multistamps and we presented a simple
technique called multistamp truncation that allows multistamps to be kept small in large distributed
client-server systems.

126

Chapter 6

Experimental Framework

This chapter describes the experimental setup for evaluating the consistency mechanismsthat were
discussedin the previous chapter. The experimentswere performed with the help of an event-driven
simulator. We used a simulation technique rather than implementing the schemesin a client-server
system such as Thor [LACT96] because we wanted to eval uate the performance of our techniques
in the presence of alarge number of serversand clients. Apart from scalability considerations, we
also wanted to evaluate our schemes with a range of system parameters such as different network
speeds, different CPU speeds, etc.

We constructed the workl oads starting from earlier concurrency control studies[Gru97, CFZ94].
These studies were performed for a single-server, multi-client system; we extended them to a dis-
tributed database with multiple servers. Some parameters such as the disk and network models,
database model at each server, and the access patterns in two of our workloads have been derived
from Gruber’s work [Gru97]; the simulator scheduling model and some parameters for CPU pro-
cessing overheads have al so been borrowed from his study. Parametersfor disks and networkswere
taken from products that are currently being used in the market and in office environments. Fi-
nally, CPU overheadsfor some operations such as multistamp processing were derived by profiling
our simulator: some parts of the ssimulator code have been derived from the Thor implementa-
tion [CALM97, LAC™96]; other parts have been structured such that they can be easily migrated to
areal implementation.

In our experiments, we make assumptions similar to the ones that have been made by con-
currency control studies in the past [Gru97, ZCF97, CFZ94]. First, we assume that the client
cache is large enough to keep all objects touched by a single transaction. This assumption holds
for many applications and systems; current memory trends and recent work on efficient cache
management [CALM97] suggest that this assumption will continue to hold in the future for many
applications. Wecall thesetransactionscacheabletransactions. Second, transactionsarerestartable,
i.e., if atransaction aborts, the code of the aborted transaction can be re-executed; of course, are-
run may access a different set of objects. Thus, the application code must be written to handle

127

aborts; thisis areasonable assumption since applications need to prepared for aborts dueto resource
problems, deadlocks (in a locking implementation), etc. Third, transactions are medium-sized,
i.e., each transaction accesses a few hundred objects and lasts for a relatively short time, i.e., a
few seconds. Long-running transactions are usually handled using application-specific concurrency
semantics [BK91]. These implementations typically use serializability-based mechanisms as basic
primitives for manipulating groups of objects in the database. For example, a check-in/check-out
approach for cooperative design work may use atomic operationsto retrieve data from the database
and release the acquired locks after the retrieval.

Our simulation setup models a system with a large number of servers and clients. We have
scaled down some of the system parameters to make the simulation more tractable. However, the
scaling has been performed so that we still maintain the important aspects of system components
that can affect therelative performance of different isolation mechanisms. For example, eventhough
the total size of the data stored at each server in our smulationsis 3.4 MBytes, this does not imply
that we are modeling a system in which the database size is so small. This size (also called the
server working set size) actually reflects the amount of data that is accessed by the clients during
the simulation. Furthermore, since our aim is to compare different isolation mechanisms, a more
important parameter is the amount of contention in the workload rather than the size of the server
working set. For this purpose, we model different workloads with varying levels of contention.
In fact, our evaluation is somewhat pessimistic since most of the sensitivity analysisis performed
using stressful workloads with high contention. In a database system, where clients access a much
larger data set size, contention is expected to be lower than our stressful workloads. For realistic
low-contention workloads, the results in the next chapter show that our optimistic mechanisms for
strong isolation levels such as PL-2+ and seriaizability have negligible overheads over the PL-2
implementation; they have relatively low costs in the case of high contention workloads as well.

Another property of our simulation setup alows our results to hold for realistic systems: the
relative sizes of different components are chosen according to the relative ratios observed in a
realistic system. For example, the absolute size of the client cache in the simulation is not very
important. The size of the client cacherelative to the accessed datais more important becauseit has
a significant impact on the number of fetches performed during atransaction, e.g., choosing avery
small client cache relative to the accessed data can bias the results since a high number of capacity
misses may dwarf the cost of the concurrency control mechanisms. Our decisions regarding sizes
of various system components are further discussed in Section 6.1.

This chapter is organized as follows. Section 6.1 describes how we model various components
of a distributed client-server database system and how these components are connected together.
Section 6.2 describes the different types of workloads that we use for our simulation study and how
accessesfor atransaction are generated.

128

6.1 System Mod€

To simulate a distributed database system accurately, it is necessary to model all components that
can impact performance in a significant manner. In this section, we describe various components
of the system — servers, clients, network, disks, database, and the connectivity of clients with the
servers. The default parametersand the range of valuesused for our sensitivity analysisexperiments
for these system components are shown in Figures 6-1 and 6-2.

Database Parameters

Parameter Default Value | Sensgitivity analysisrange
Object size 100 bytes —
Pagesize 4KB —
Objects per page 40 —
Server working set 875 pages 875-1750 pages

Connectivity Parameters
Parameter Default Value | Sengitivity analysisrange
Serversin cluster 2 —
Client in cluster 30 10-80
Total clustersin system 8 8-30
Client connections with servers 4 4-10
Preferred serversfor each client 2 —
Non-preferred servers for each client 2 2-8

Client/Server Parameters
Parameter Default Value | Sensgitivity analysisrange
Client CPU speed (for DB processing) 600 MIPS —
Server CPU speed (for DB processing) | 1200 MIPS —
Client cache size 612 pages 150 — 3500 pages
Server cache size 437 pages —

Network Parameters

LAN network bandwidth per cluster 120 Mbps 10— 1024 Mbps
LAN extradelay 0 msec 0—20 msec
WAN network bandwidth per cluster 15 Mbps 10— 60 Mbps
WAN extradelay 75 msec (avg) 40 — 300 msec

Figure 6-1: Summary of System Parameter Settings — |

6.1.1 Database

The database objects are spread over a number of servers. Each server contains 875 pages; we call
these pages the server working set of the simulator run. The server working set does not represent
the complete database stored at each server. Instead, it represents the fraction of the objects at a
server that is accessed by the clients during the simulation. As discussed earlier, the actual size of
various system parts is less important than the fact that the relative sizes of different components
mirror their counterparts in real systems. Similarly, since we are comparing different isolation
mechanisms, contention on the server working set has more importance than the absolute size of

129

Disk Parameters

Rotational latency 3.0 msec
Average Seek 5.2 msec
Transfer Bandwidth 20 MB/s
Disks per server 4
Multistamp Parameters

Server namesize 4 bytes
Client name size 8 bytes
Threshold timestamp size 8 bytes
Timestamp increment size 4 bytes

Maximum invalidations per server in amultistamp
LAN timeout period

50% of total entries
1sec

WAN timeout period 30 sec
CPU Processing Over heads
Client/Server cache lookup 300 instr
Reading an object in client cache 5000 instr
(sengitivity analysis: up to 4 million instr)
Writing an object in client cache 10000 instr
(sensitivity analysis: up to 8 million instr)
Invalid set lookup for each object 10instr
Multistamp operation cost 300 instr/entry
Fixed transaction restart cost 5000 instr
Transaction restart cost per modified object 400 instr
Disk setup cost 5000 instr
Fixed network cost 36000 instr

Variable network cost

43000 instr/KB

Figure 6-2: Summary of System Parameter Settings— |1

the server working set.

We assume that objects are small and that they do not cross page boundaries. These are
reasonable assumptions for object-oriented databases, e.g., the average size of objects accessed by
most traversals of the OO7 benchmark [CDN93] in Thor [CALM97] is approximately 30 bytes.
The size of each page is 4 KBytes and a page contains 40 objects of 100 bytes each.

6.1.2 Client-Server Connections

We chose to connect clients and serversin a manner that reflects how real systems are configured.
Typically, datais distributed across serversto reduce bottlenecksin the system, for load balancing,
to enable accessing data at nearby sites, etc. Thus, database users mostly access the servers that
are located near them; this results in reducing the latency observed by clients and in localizing the
network traffic. To capture this notion of locality, we partition clients and servers into different
clusters: a server is more likely to be accessed by clients in the same cluster than by those in a
different cluster. For example, employees of a department may access a set of database serversin
their cluster (e.g., on their LAN) frequently and access other departments’ servers occasionaly.

130

In the simulation experiments, each cluster contains 2 servers and 30 clients. Each client is
connectedto 4 serversin the system of which two are preferred and the other two are non-preferred.
A client’s preferred serversarein its cluster whereasits non-preferred servers are chosen randomly
from other clusters. Most of our experiments use a system with 8 clusters, i.e., 240 clients and 16
servers. This system size does not represent the complete distributed system; it simply represents
a part of the rea system that is under observation during the simulator run. As we show in the
next chapter, our results also hold for a system with more clusters; we chose a 8-cluster system to
keep the simulation tractable. To understand scalability effects, we varied the number of clients per
cluster from 10 to 80; we also varied the number of clusters from 8 to 30.

In our default system, each server is connected to 30 clients that prefer it and 30 (on average)
non-preferred clients. In the experiments for the default system, each server receives about 1
transaction from a non-preferred client for every 5 transactions received from preferred clients,
i.e., non-preferred clients are not very idle from a server’s point of view. Our workloads simulate
a scenario with reasonably active clients and servers; we use such an environment to stress the
performance of our mechanisms.

—— Preferred connection

ClientC ----- Non-preferred Client D
connection

o 06 00 00 ..

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 8

Figure 6-3: Client connectionsin a simulator run.

Many of our parameters have been chosen to affect the performance of our multistamp-based
schemes negatively. We chose 2 preferred servers for a client instead of one (which is what is
expected in real systems). Asa client switches between the two preferred servers, the likelihood of
stalls increases since the client can create inter-transaction dependencies/anti-dependencies across
servers. Furthermore, the connectivity in our simulated environment is high; each client has
two random connections to non-preferred servers in other clusters. Thus, a client can “spread”
the multistamp from its cluster to other clusters via non-preferred servers. Increase in multistamp
propagation can lead to aggressivetruncation and unnecessary stalls. To study the effect of spreading
information through preferred servers as well, we changed the topology such that each client has
one preferred server in a cluster other than its own with varying probabilities. Similarly, we
also increased the number of non-preferred servers from 2 to 8 to understand the impact on the
multistamp-based schemes.

We modeled a default system size in which multistamps can become fairly large if aging or

131

pruning is not used: they can reach a maximum size of 960 tuples (since there are 960 client-server
connections). Thus, to ensure that network and server storage costs are low, multistamps must be
truncated in our default system.

Figure 6-3 showsatypical setup of the system where client C is connected to two of its preferred
serversinits cluster and its non-preferred serversare chosen from two other clusters (in general that
is not necessary). In the figure, clients C and D share one server.

6.1.3 Client and Server

We model each client and server as a simple processor where events are scheduled using a nanosec-
ond granularity clock. Various events are charged in terms of CPU instructions and then they are
converted into time using a client’s and server’s speeds specified in MIPS, or million instructions
per second. Events on a processor are executed using an event queue after the specified delay; if
the server is heavily utilized, an event may be scheduled later than its specified time.

The client speed is chosen to be 600 MIPS and the server speed is 1200 MIPS. These speeds
correspond to the amount of processing power that can be devoted by aclient or server for database-
related activities; in general, we expect client machines to be used for other applications while the
transactions are executing.

The server working set in our system is half the size used in [Gru97, CFZ94]. Since the client
mostly accesses objects from two preferred servers, the effective working set for aclient is similar
to the values chosen in the earlier studies; this ensuresthat contention is essentially the same asin
earlier studies. In the next chapter, we show results for a system in which we double the server
working set size; our basic performance results do not change significantly with a larger working
Set.

The client cache size is 612 pages; cache management is done using LRU. Although an object
cache provides better performance than a page cache [CALM97], we have used a page cache in our
simulator for simplicity; an object cachewill help in increasing the effectiveness of the client cache
but will not change our basic results (our results are essentially the same with bigger client caches).

We chose the client cache size relative to the size of the accessed data so that the concurrency
control costsare not dwarfed by ahigh number of capacity misses; asstated earlier, therelative cache
sizeismoreimportant than the absolute cache size. Therelative cache sizeis approximately 25% of
the data accessed by aclient in the simulation (thisratio is explained below). This percentagevalue
was also chosen by other concurrency control studies[Gru97, CFZ94]. Furthermore, inthe medium
database experiments of the OO7 benchmark [CDN93], the client cache size is approximately 25%
to 35% of the accessed pages (the percentage depends on how much space is used by a database
implementation to store the benchmark objects on disk).

A client can potentially access 3500 pages from the database (875 from each server). So it
might seem that our relative client cache size (612 pages) is smaller than what was used by earlier

132

single-server concurrency control studies. However, in our multi-server system, approximately 85-
90% of accesses go to objects stored at preferred servers, i.e., to 1750 pages. These pages mostly
make up the client’s working set and relatively few accesses go to the remaining 1750 pages at the
non-preferred servers. Thus, our choice of client cache size between 437 and 875 pages (between
25% of 1750 and 25% of 3500), with a slight bias towards 437, isin line with earlier work.

Each server has a cache whose size was chosen so that the disk costs were not the dominant
costs. The server cache size corresponds to 50% of the server’'s working set, i.e, 437 pages for a
875 page server working set; asimilar ratio was chosen in earlier single-server concurrency control
studies [Gru97, ZCF97]. Even though the client’s cache size is larger than a single server’'s cache
size, it is smaller than the combined cache size of two preferred servers (a client accesses two
preferred serversinstead of onein our setup). The issue of the server cache size is discussed more
in Section 6.2.2.

6.1.4 Disk

The database objects are stored on multiple disks on the server and each database pageis statically
assigned to a disk independent of the workload. The disk is modeled as a shared FIFO queue on
which operations are scheduled in the order they are initiated. Time spent in disk operations are
charged to the queue; more contention on the disk can result in delays due to queuing effects. Disk
delays are composed of a seek followed by rotational latency. We use an average seek of 5.2 msec
and latency of 3.0 msec; the disk bandwidth is 20 MB/s. These performance values correspond to
the Cheetah model of Seagate [Sea99] which is one of the faster disks available in the market. We
use 4 disks per server to reduce contention on the disk. We also model installation of objects by
approximating the MOB architecture presented in [Ghe95].

6.1.5 Network

Instead of modeling a particular type of network like Ethernet, ATM or FDDI, we have modeled a
network in a more abstract manner. Each network message has a latency that is divided into four
components: processor cost for sending the message, wire time, router delay, and processor cost
for receiving the message. Processor costs at each end consist of a fixed number of instructions
and a variable number of instructions according to the size of the message. We assume that each
cluster of clients and servers is connected by a network that is modeled using a FIFO queue; the
network bandwidth for each cluster multiplied by the message size is used to determine the time
charged to the network queue, i.e., the network queue is utilized for this duration by a message.
When a message is sent to a server, the network of that server’s cluster is chosen for transmitting
the message. When amessageis sent to aclient by a server, the latter's cluster network is used.
The network parameters for each cluster network are shown in Figure 6-2; these values have
been obtained from a user-level messaging system called the U-Net [VEBBV 95] running over a 155

133

Mbps ATM. We use a network bandwidth of 120 Mbps since this was the bandwidth achieved in
the U-Net system for TCP. For our sensitivity analysis, we varied the network bandwidth for LAN
environments from 10 Mbpsto 1024 Mbps.

We have chosen a network bandwidth of 120 Mbps even though faster networks are available
in the market. The reason isthat current office environments use networksin the 100 to 200 Mbps
range (or even lower bandwidth, e.g., 100 Mbps Ethernet). On the other hand, we have used one
of the fastest disks available in the market for our disk parameters; the reason is that users upgrade
disks much faster than networks since disks are more autonomous than networks.

We also performed experiments for a WAN environment whose parameters are shown along
with the LAN parameters in Figure 6-2. We add a router delay of 75 msecsin the WAN case (a
randomly chosen number between 50 and 100 msec); this delay is not added for the LAN casein
our default system. The router delay is not charged to the network queue, i.e., it does not increase
network utilization. We chose abandwidth of 15 Mbpsfor each clusterin WANSs. For our sensitivity
analysis experiments, we varied the network bandwidth per cluster from 10 to 60 Mbps. We also
varied the average router delays from 40 to 300 msecs for WANs and 0 to 20 msecsfor LANS.

6.1.6 Multistampsand Other Parameters

Our multistamps contain server names of size 4 bytes and client names of size 8 bytes; these
numbers have been derived from the Thor system [LAC*96]. Each threshold timestamp entry
in a multistamp uses 8 bytes and a timestamp entry uses 4 bytes; instead of maintaining the full
timestamp for each client-server pair, we store it as an increment over the threshold. To ensure that
most of the entriesin a multistamp do not belong to one server, we alow at most 50% of the entries
in a multistamp belong to the same server; if this limit is exceeded, we remove these entries and
approximate the deleted entries with a server-stamp (as explained in Section 5.3.6).

We assume that the timeout period for “I’m alive” messagesis 1 second in aLAN environment
and 30 secondsin the WAN environment. Clock skews are not modeled since they are insignificant
compared to the network delays and the timeout period; the Network Time Protocol [Mil92] can
maintain clock skewsof afew microsecondsin LAN environments and afew millisecondsin WAN
environments [Mil96].

6.1.7 CPU Processing Overheads

We now describe the CPU processing overheads that are charged at the server and the client for
various operations. As stated earlier, our CPU processing overheads have been either derived from
Gruber’swork or obtained by profiling our simulator (since our simulator codeis similar to the code
in Thor).

We charge 300 instructions to perform a cache lookup at the server, to generate an invalidation
for aclient by checking the cached set, and to set up an object for commit at the client [Gru97]; these

134

costs correspond approximately to afew second level processor cache misses on modern machines.
We charge 10 instructions for looking up each object in a client’s invalid set. The cost of each
multistamp operation is 300 instructions per multistamp entry; we obtained this result by profiling
our simulator.

Thecostsfor reading and writing an object at aclient are 5000 and 10000 instructionsrespectively
(i.e., 8usec and 16usec for our client machines). These times are based on the observation that a
transaction operates on an object for a short period when it accesses the object; these times have
been obtained from [Gru97]. Asin the case of the server, the cost of looking up an object in the
client cacheis 300 instructions. When a transaction restarts, the client is charged 5000 instructions
for resetting some data structures. The client is also charged 400 instructions per modified object
(torevert the object to its original version); this correspondsto the memory copying costs on current
machines. There is no think time spent at a client between transactions; as a result, transaction
latency can be calculated using our throughput results.

The server is charged afixed cost of 5000 instructions for setting up a disk operation, i.e., the
read isinitiated after 5000 instructions have executed on the server CPU; thisisthe same charge used
in[Gru97, CFZ94]. For sending and receiving network messages, we charge afixed message cost of
36000 instructions and a variable cost of 43000 instructions per KB. Thetime for sending/receiving
messages on our client machines with these instruction costs is similar to the time taken in the
U-Net system for slower processors; we did not scale these costs for faster machines since a large
fraction of the work performed during a message send or receive does not scale with the processor
speed [Ous90, ALBL91].

6.2 Workloads

In this section, we present different workloads used in our experimental study. We also describe
how accesses for a transaction are generated. Two of our workloads, HOTREG and HICON,
have been derived from Gruber's study. These workloads have moderate to high contention
since they were designed to compare the performance of different concurrency control mecha-
nisms. These workloads stress our multistamp-based mechanism since contention leads to more
dependencies/anti-dependencies, bigger multistamps, more truncation and hence the possibility of
lower performance due to more consistency stalls. Furthermore, higher contention enhances the
difference between weak and strong isolation mechanisms; we were interested in understanding
how high these differences can become.

We also designed alow contention workload called LOWCON to eval uate the performance of our
schemesin arealistic environment where most clients accesstheir private regions and occasionally
access a shared region. We did not design a workload with access patterns similar to the TPC-C
benchmark (used for online transaction processing [TPC92]) since TPC-C models lower contention

135

compared to our moderate and high-contention workloads (and higher contention tend to stress our
strong consistency mechanisms).

Common Workload Parameters
Parameter Default Value | Sensitivity analysis range
Single server transactions 80% 0% —90%
Preferred server probability (for less than 3 servers) 90% —
Read-only transactions 50% 0% —90%
Read-only participants 50% —
Minimum object accesses per transaction 180 90 -450
Maximum object accesses per transaction 220 110-550
Object accesses per page 5to 15 —
Probability of modifying a page 50% —
Probability of modifying an object on a modifiable page | 40% —
Net object write probability 20% —
(except for hot-shared in HOTREG)
Restart change probability 20% 0% — 100%

Figure 6-4: Summary of Workload Parameter Settings

In our simulation study, we only focus on access patterns of an application and do not consider
thefact that inconsi stenciesmay beintroducedin the database dueto execution of update transactions
at weak isolation levels; we assume that a programmer has determined that it is correct to execute
the transactions at a particular level.

We first describe the workload model for generating transaction accesses and the parameters
related to it. Then we describe the workloads used in our study. Figure 6-4 shows the parameter
settings that are common across workloads.

6.2.1 Transaction Generation

Each client runs asingle transaction at atime that consists of a sequence of reads and writes. These
accesses are generated by a module called the workload generator. This generator can generate
different shared access patterns with different levels of contention. Depending on the workload, the
server working set consists of different regionsand each region isaccessed with acertain probability,
e.g., in LOWCON, each server has a private region for each client and a shared region. Before
we discuss particular workloads, we describe our strategy for generating a transaction’s accesses,
Figure 6-5 gives an overview of our strategy.

Step (1) involves determining the number of servers that will be accessed in the transaction.
We first decide whether the transaction involves more than one server and then choose the number
of servers. In all workloads, 80% of the transactions use a single server and 20% involve multiple
servers. We chose a high percentage of multi-server transactions to stress our multistamp-based
schemes (to spread invalidation information more quickly to different servers resulting in larger

136

Access Generation Steps

(1) Select the number of serversin the transaction.

(2) Determine how many servers are preferred and non-preferred, and select
servers according to these constraints.

(3) Determine if transaction is read-only. If not, determine whether
each server is aread-only participant or not.

(4) For each server, generate required number of clustered accesses.
(a) Pick aregion according to region access probabilities.
(b) Pick apagein that region and select afew object accesseson that page.

(5) Repeat step (5) until all accesses have been generated for all servers.

Figure 6-5: Generation of accessesfor atransaction

multistampsand moretruncation). Benchmarkssuch asTPC-A and TPC-C[TPC92] havefewer than
10-15% multi-server transactions. In each multi-server transaction, we bias the selection towards a
smaller number of servers since transactions involving alarge number of servers (accompanied by
a high modification rate of 20% that we chose for our experiments) are expected to be uncommon;
in most of our experiments, 11.5% of our transactions use two servers and 8.5% use more than
two servers. Thisisin line with what has been reported in the literature. For example, in TPC-C,
multi-server transactions involve only two servers; other researchers have also reported two-server
transactions to be common for distributed transactions [SBCM95]. In our sensitivity analysis
experiments, we varied the percentage of multi-server transactions from 10% to 100%.

In step (2), we choose a preferred server with probability 90% for transactions with one or two
servers. For ahigher number of servers, we choose both preferred servers and then choose randomly
from the remaining non-preferred servers. For experiments with our default system, this choice
resulted in 18% of the chosen serversto be non-preferred.

Although real systems are dominated by read-only transactions [GW82, SBCM95], we only
allow 50% of our transactions to be read-only; this selection is done in step (3). As before, the
purposeof thischoiceisto stress our schemes. More modificationslead to more conflictsand tend to
increase the performance degradation due to higher isolation level implementations. Furthermore,
more contention also increases the stall rate in the multistamp-based schemes. For our sensitivity
analysis experiments, we varied the percentage of read-only transactions from 0% to 90%. If the
transaction is not read-only, each server can be aread-only participant with 50% probability, except
that at least one server is chosen to be a read-write participant.

137

In step (4), we generate the accesses for each server. Each transaction accesses between 180
and 220 objects, i.e., 200 objects on average. For our sensitivity analysis experiments, we varied the
number of object accessesfrom 100 to 500. In amulti-server transaction, the number of accessesis
divided according to the probability of accessing that type of server, e.g., if one non-preferred and
two preferred servers are chosen, 10% of the accesses go to the non-preferred server. Thisselection
is done so that preferred servers have an overall access rate of 90%.

At each server, aregion is selected according to the workload's characteristics and a page that
has not been accessed in this transaction is randomly selected in the chosen region. We select
between 5 and 15 objects on this page, i.e., on an average, 10 objects are chosen on a page resulting
in approximately 20 pages being accessed in atransaction. More than one object is chosen on each
page to model the notion of clustering. Clustering enhances database performance since related
objects are read from the disk and sent on the network as a single group; researchers have described
techniques for reorganizing placement of data periodically such that objects which are likely to
accessed together are stored close to each other [CS89, GKM96, MK 94, TN92].

Objects are also updated in a clustered manner in the following way. First, when a page is
selected, we determine whether the page can be modified; this probability is chosen to be 50%. In
the second step, each selected object on that page is updated with a 40% probability. Thus, the
net probability of modifying an object is 20%; these probability values were also used in [Gru97].
We chose a high probability of object writes since it affects the performance of the higher isolation
schemes negatively due to increased contention; it also results in larger multistamps (due to more
invalidations) and hence more truncation.

For each experiment, we measure the performance of the system after 48000 transactions have
been executed in the default system; for larger systems, we add 200 transactions per client to this
total. To eliminate end-effects, we start our measurements after warming the system.

If atransaction aborts, it is restarted with the same set of accesses. However, when a restarted
transaction accesses a hewer object version (compared to its previous execution), its remaining
accesses may change with a probability of 20%; this probability is called the restart change
probability (in our simulation runs, we observed that approximately 30-35% of aborted transactions
access different objectsin arerun after observing anew version of an abject). This strategy models
the notion that application may take a different path in the code after reading a different value
of an object. In our setup, if accesses are changed, al further accesses are chosen independently
of the previous run. In reality, new accesses are expected to have a significant overlap with the
previous run. This strategy impacts the performance of higher isolation implementations since it
increases the cost of aborts: when new accesses are chosen, it is likely that one or more objects
in the new run are not cached and fetches need to be performed for them. In the next chapter,
we show that the restart change probability is an important factor that increases the performance
difference between isolation mechanisms. For our sensitivity analysis experiments, we varied the

138

restart change probability from 0% to 100%.

6.2.2 Workload Descriptions

We now discuss the different workloads that are used in our experimental study. These workloads
range from low contention to high contention. The low contention workload models behavior that
is expected to be common whereas the moderate to high contention workloads are intended to stress
the isolation mechanismsin avariety of ways. Figure 6-6 showsthe parameter settings for different

workloads.
Parameter LOWCON | HOTREG | HICON
Private region size at preferred server 25 pages 25pages | —
per client (750total) | (750 total)
Cold-shared region size per server 850 pages | 100 pages | 750 pages
Server working set (from a client’s perspective) | 875 pages | 875 pages | 875 pages
Hot-shared region size per server - 25pages | 125 pages
Hot-shared region access probability - 10% 80%
Private region access probability 80% 80% -
Cold-shared region access probability 20% - 20%
Rest of database access probability - 10% -

Figure 6-6: Characteristics of different workloads
LOWCON

Thisworkload modelsarealistic system with low contention (like those observed in [KS91, SS96]).
Each client has a private region of 25 pages at each preferred server, i.e., each server stores 750
private pages. Each server has a cold-shared region of 850 pages. 80% of a client’s accesses go
to its private region; the rest go to the cold-shared regions at its connected servers. Thus, in this
workload, aclient can access875 pagesat apreferred server and 850 pagesat anon-preferred server.
Note that each server has 1600 pages but at most 875 pages are relevant from a client’s perspective
because private regions of other clients are not accessed by a client. Since most of the accesses of
aclient go to its private region (80%), there are few conflicts in this workload; most of the conflicts
occur at the cold-shared region of the preferred servers (non-preferred servers are accessed with a
low probability).

With a server cache size of 437 pages, we observed that the disk costsin LOWCON were the
main reason for limiting the system throughput. We observed that various isolation mechanisms
had a very similar performance (within 1%) for LOWCON with this choice of the server cache
size. To enhance the difference between the isolation schemes, we chose an unrealistic cache size
of 800 pages for our LOWCON experiments. Since the private region is not shared by clients, the
server cache was able to cache most of the cold shared region resulting in very high server cache

139

hit ratios of more than 90%. Another reason for changing the server cache size for LOWCON was
that we wanted to eval uate the performance of our mechanismsin for aworkload with few fetches
per transaction in an environment where a resource other than the disk is a bottleneck; the next
workload, HOTREG, hasasimilar client cache hit ratio asLOWCON, and the disk isthe bottleneck
resource for HOTREG.

HOTREG

Asin LOWCON, each client hasa private region of 25 pagesat each preferred server; together these
regions consume 750 pages. Each server also has a cold-shared region containing 100 pages and a
small region of 25 pages (called the hot-shared region). Thus, the working set size at each server is
875 pages. 80% of aclient’s accesses go to its private region and 10% go to the hot-shared region;
the remaining 10% of the accesses go to the rest of the database (or RDB) region consisting of all
other pages at its connected servers, including private regions of other clients and the cold-shared
region. Private regions exist at the preferred servers only and al reads/writes at non-preferred
servers go to the hot-shared and or RDB region.

The hot-shared region might be the top of a naming hierarchy that is accessed often by clients.
To capture the fact that such a directory is not modified often, only one in every ten transactions
maodifies the hot-shared region. But when a transaction does modify this region, half of the objects
are updated in the selected pages, i.e., the probability of modifying a hot-shared object is 5%.
Note that even at this probability value, the rate of conflicts due to the hot-shared region is high.
Since 30 clients share two preferred servers and most accesses are to preferred servers, there are
approximately 15 clients accessing objects from a server at any instant of time (there are more
than 15 clients since 20% of the transactions are multi-server). At any given time, at least one
transaction is modifying objectsin the hot-shared region; these updates result in invalidations being
generated for a large number of clients since the hot-shared region is aimost completely cached
at each preferred client. Thus, moderate to high contention on the hot-shared region causes large
multistamps to be generated and stresses the performance of our multistamp-based schemes.

The HOTREG workload is used for evaluating the performance of the system when clients have
skewed sharing patterns; it model s the scenario when a client has higher affinity for its own objects
than the rest of the database. The HOTREG workload has higher contention than LOWCON.
In HOTREG, contention occurs over the small shared-region, and when an RDB access (20%
probability over 825 pages) on a page conflicts with the access of the client that owns that page
(80% probability over 25 pages). In LOWCON, aconflict occurs only when both clients accessthe
cold-shared region of 850 pages at a server with 20% probability.

The HOTREG workload has the richest access patterns. It includes both uniform sharing
(@l clients access the hot-shared region uniformly) and skewed sharing (one client accesses its

140

private region more frequently than other clients). These type of accesses can be expected in an
object-oriented database system [Gru97].

HICON

HICON isavery unrealistic workload used in concurrency control studiesto model high contention.
There are two regions at each server — a hot-shared region with 125 pages that is accessed 80%
of the time and a 750-page cold-shared region that is accessed 20% of the time. Both regions are
shared uniformly among clients. High contention in thisworkload is primarily dueto the hot-shared
region. HICON is aworkload that is intended to enhance the difference between weak and strong
isolation implementations. It degrades the performance of strong isolation level implementations
relatively more since these levels capture more conflicts and hence experience a higher number of
aborts. HICON also stresses the multistamp-based schemes: since the preferred clients can cache
a significant fraction of the hot-shared region, a large number of invalidations are generated by an
updatetransaction. Thus, the HICON workload can result in large multistamps|eading to aggressive
truncation and a high consistency stall rate. Along with HOTREG, we also use HICON for our
sensitivity analysis experiments.

141

Chapter 7

Performance Results

In this chapter, we present the results of a simulation study that evaluates the performance of
our optimistic mechanisms in a distributed client-server system for cacheable transactions that
access a few hundred objects during their execution. We use CLocc for providing serializability,
Weak-CLocc for PL-2, and the multistamp-based schemes for intermediate isolation levelsin our
experiments. The reader should note that these schemes are efficient. Recall that CLocc has been
shown to be the best concurrency control mechanism for cacheable transactions in a client-server
system [Gru97]; it outperforms the best locking mechanism [CFZ94] for arange of workloads and
system parameters. Weak-CLocc and the multistamp-based schemes share many advantages of
CLocc's basic cache coherency mechanism, e.g., piggybacked invalidation messages.

Our results show that the cost of strong consistency levels such as serializability is negligible
for low-contention workloads. Even for moderate to high contention workloads, the performance
degradation due to higher isolation levelsislow. The low performance difference between serializ-
ability and lower isolation levelsis primarily due to the fact that CLoCC prevents excessive wastage
of work by aborting a transaction early during its execution and CLocc has low restart costs for
aborted transactions. Our results also show that multistamps impose a low performance penalty:
multistamps with a size less than 100 bytes are sufficient to ensure that there are few consistency
stalls. Thus, strong consistency guarantees such as PL -2+ can be provided to read-only and running
transactions at very low costs.

Our results apply only to data-shipping client-server systemsin which transactionsrun at clients.
The CLocc implementation takes advantage of this system architecture and offloads most of the
work to clients. Thus, the extrawork dueto aborts occursat clients, rather than at the servers, which
arethe scarceresource. If transactionsran at servers(i.e., pure function-shipping systems), the extra
work due to aborts would slow down all clients rather than just the client whose transaction aborted,
so that the cost of serializability may be higher in these systems. In fact, in such architectures,
optimism may not be the best approach. However, our results may be applicable to hybrid systems
in which the client performs most of the transaction’s work and short queries are executed at a

142

server, or to three-tier systemsin which servers store persistent objects, clients run applications, and
transactions are executed at shared “ proxies”.

Section 7.1 introduces a notation for describing systems that provide different isolation guar-
antees to update, read-only, and executing transactions. Section 7.2 presents a simple analytical
model for comparing the performance of different isolation level implementations. In Section 7.3,
we examine the relative cost of providing serializability for committed transactions over PL-2. We
evaluate these costs by comparing CLocc and the multi stamp-based for PL-2+ with the Weak-CLocc
scheme. In this section, we also present our sensitivity analysis for a variety of parameters such
as longer transactions, different mixes of read-only and update transactions, lower contention, etc.
Section 7.4 presents the overheads of providing intermediate isolation guarantees such as PL-2+,
PL-3U, EPL-2+ and EPL-3U for read-only and executing transactions using our multistamp-based
schemes. Section 7.5 presents a detailed analysis of the cost imposed by our multistamp-based
schemes. The cost of providing different levels of causality is presented in Appendix B

7.1 Interaction of I solation Schemesfor Different Typesof Transactions

We use the notation W/R/E to indicate that the databaseis updated at level W and no inconsistencies
below level W are introduced in the database state, no read-only transaction is committed if it has
observed an inconsi stency below level R, and no transaction observesan inconsistency below level E
whileitisexecuting. InaW/R/E system, the update transactions are committed using the optimistic
technique presented in Chapter 5 for level W, read-only transactions are committed using the level
R scheme, and transactions are executed using the scheme presented for level E. For example,
3/3/2 denotes a system where all committed (read-only and update) transactions are serializable and
executing transactions do not observe dirty reads; thus, 3/3/2 denotes CLoccC.

In our simulator runs, al transactions of a particular type (update/read-only/executing) are
provided the same isolation guarantees. For example, in the 3/2/2 system, all update transactions
commit using the level PL-3 scheme. In a system where all update transactions commit at level
W, it is guaranteed that inconsistencies disallowed by level W are not introduced in the committed
database state. For example, in the 3/2/2 system, update transactions are serializable with respect
to each other and a DSG constructed using only update transactions contains no cycles, i.e., the
committed database state can be achieved by the serial execution of all update transactions.

For our simulation experiments, we implemented levels PL-2, PL-2L, PL-2+, PL-3U, PL-3 and
their equivalent levels for executing transactions. However, as discussed in Chapter 3, we ensure
that transactions are committed at an isolation level that is at least as strong as the level at which
they execute. Similarly, we also ensure that update transactions are committed at a level that is at
least as strong as the level chosen for committing read-only transactions; we make this assumption
since it is not useful to provide read-only transactions with stronger guarantees when the database

143

isbeing updated at alower level. Thus, for agiven combination W/R/E, level Wis at least strong as
R, and level Ris at least as strong as level E. These requirements rule out certain combinations of
isolation levels, e.g., PL-2 for update transactions, PL-2+ for read-only transactions, and EPL-2 for
executing transactions (the 2/2+/2 system) is disallowed.

Apart from disallowing the combinations that violate the strength order discussed above, we
also rule out certain combinations because of implementation considerations. In particular, level
PL-3U is not provided along with levels EPL-2L or EPL-2+ since the multistamps for the latter
levels only capture dependencies whereas the multistamps for PL-3U capture anti-dependencies
also. Providing PL-3U in conjunction with EPL-2+ requires an additional overhead of maintaining
and propagating two sets of multistampsin all parts of the system. Thus, systems such as 3/3U/2+
and 3/3U/2L are disallowed in our simulator implementation.

7.2 A SmpleModed for Comparing I solation | mplementations

We use a simple analytical model to explain the performance difference between various isolation
implementations. In our optimistic implementations, a transaction may abort a few times before it
commits successfully. Thefinal execution in which the transaction succeedsis called the successful
run and all previous executions are called aborted runs; the combined runs for a transaction that
commits successfully are called the transaction’s complete execution.

A transaction’s complete execution time, R is broken down into three components — time
spent for fetching objects, time spent for performing reads and writes on locally cached copies of
objects, and time spent in committing the transaction; these components are denoted by F', L, and
C, respectively.

Some of the work performed during a transaction’s aborted run may be wasted whereas part of
it may help the successful run of this transaction or some future transaction executed by the same
client. For example, if atransaction T fetches a page P and aborts, the fetch is useful if T's client
C uses some object in P during the successful run of T or some future transaction at client C. To
model this notion of wasted and useful work, we divide atransaction’s complete execution time (R)
into two parts — useful running time, R,,, and wasted running time, R,,. We also divide the time
taken by for fetching, executing local operations, and committing transactions into their respective
useful and wasted components, e.g., F' isdivided into F,, and F,,. Each useful part contributes to
T, and the wasted part contributesto T,,. We can write simple equations for these parameters:;

R:F+C+L:Ru+Rw (71)
F=Fu+Fw, C=Cu+cw, L=Lu+Lw (7'2)
Ry=Fy,+Cy+ Ly, Ry=Fy+Cy+Ly (7.3)

144

Thus, there are six basic components of a transaction’s complete execution time: F,, F,
Cy, Cy, Ly, and L,,. With the help of these parameters, we will explain how different isolation
implementations differ from each other. Let us see what each parameter means exactly and how it
is computed in asimulation run.

Local Times, L, and L,,: All local accesses performed during aborted runs are wasted and time
spent for this purpose adds up to give L,,. Thetime, L,,, is computed by adding up all local
accesses performed during a transaction’s successful run.

Commit Times, C,, and C,,: Time spent to validate and commit a transaction’s successful run is
classified under C,,. Thelatency observed by aclient for commitsthat fail validation is added
up to give Cy,.

Fetch Times, F, and F,,: Classifying fetches as wasted or useful based on whether they were
performed during an aborted or a successful run is not correct due to inter-transaction client
caching; somefetches performed during atransaction’saborted run may be useful for the same
or some later transaction’s successful run. Let us understand how a fetch can be classified
as useful or wasted. Fetches whose status (useful or wasted) is not known yet are called
unclassified fetches.

Consider afetch F by client D of a page P. We define F's delta set to be the set of objectsthat
are retrieved by F but are not present in D’s copy of P. We also define F's delta-union set to
be the union of the delta sets of P's unclassified fetches (including F's delta set) that occurred
before F at client D. Fetch F is classified as a useful fetch if some object in its delta-union set
is used in the successful run of atransaction T; and T; commits:

1. Before Pisremoved from the cache, and
2. Before al objectsin F's delta set are invalidated, and

3. Before another fetch of P occurs.

When a fetch by client D to page P is classified as useful, all other unclassified fetches to P
by client D (at that instant of time) are classified as wasted.

Cases (@) and (b) declare fetch F to be wasted if all objects that were brought in by it are
discarded before being used in a transaction’'s successful run. Case (c) says that fetch Fis
wasted if a later fetch brings in the same page, i.e., all objects that had been retrieved by F
are refetched and the latter fetch supersedesthe F'swork. Thus, if there exists a sequence of
unclassified fetches of page P and an object on P is used from one of the delta sets of these
fetchesin a successful transaction, only the last fetch is classified as useful.

In our simulator, a client obtains a complete page in every fetch reply. We could have
used an approach in which a client just fetches objects on a page that are missing from the

145

cache due to invaidations [CALM97, ACLT97]; in that case, some fetches that are being
classified as wasted will become useful. However, it would greatly complicate the analysis;
our page-based approach simplifies the analysis.

Using the above basic parameters, we will show which components increase or decrease the
performance difference among various isolation level implementations. Since a weak isolation
level schemeimposesfewer constraintsthan a stronger isolation level, atransaction that has weaker
isolation requirements may abort fewer times and hence perform less wasted work.

To keep our analysis simple, we classify time spent during stalls as wasted fetch time (F,) for
systems where stalls may occur during the execution of a transaction, e.g., in the 3/2+/2+ system.
In systems where read-only transactions stall at commit time, we classify the stall time as wasted
commit time (Cy,). Aswe will see later, the component due to stalls is small since there are few
stallsin the system; hence, this approximate classification does not affect our analysis significantly.

In many of our experiments, we observed that two systems providing different isolation guaran-
tees performed the same amount of useful work (with other simulation parameters kept the same).
Thus, the performance difference between the systems was largely determined by the extra wasted
work done by the stronger isolation level implementation, e.g., for HOTREG and HICON in the
2/2/2 and 3/2/2 systems. Let us understand why the useful work done was the same for two systems
providing different isolation level implementations by considering HICON and HOTREG in the
3/2/2 and 2/2/2 systems. First, the wasted work did not increase the utilization of some resource by
a significant amount to affect the useful work done. For the HICON workload, the network is the
bottleneck resource (it is saturated) in the 2/2/2 system. Additional fetches per transaction in the
3/2/2 system do not increasethe network time since network saturation provides anegative feedback
to the system, i.e., clients submit fetches at the same rate in the 3/2/2 system and the 2/2/2 system.
A similar phenomenon occurs in the HOTREG workload where the disk is heavily utilized (around
80%); additional fetches did not increase the disk utilization significantly. Similarly, utilizations of
other resources did not change for these workloads. Second, our algorithms for different isolation
levels do not alter the client caching behavior; as a result, the same number of useful capacity
misses and conflict misses occur in both systems. These two factors ensure that F,, is similar for
the two systems. Third, both systems commit read-only transactions at the client and all update
transactions are validated at the server; furthermore, since the server CPU is not a bottleneck and
the server is reasonably fast, the additional validation work in the 3/2/2 system is negligible. Thus,
the useful commit work, C,, is similar for the two systems. Finally, the work done for performing
local accesses (L,,) remainsthe same since the same number of objectsis accessed in the successful
run in both implementations.

In some cases, a stronger isolation level implementation may perform more useful work to
provide its consistency guarantees. For example, CLocc (the 3/3/2 system) requires a commit

146

message be sent to servers even for read-only transactions whereas the 3/2/2 system does not; thus,
CLocc will have ahigher C,, component than the 3/2/2 system.

In our simulator runs, we measured the number of useful and wasted fetches, the number of
aborted and successful commits, and the number of useful and wasted accesses. We also measured
the average time taken to perform a fetch, a commit, and a local read or write. We used these
times and numbersin equations 7.1 and 7.2 to compute the total time taken to execute atransaction.
We compared this time with the measured latency of a transaction complete execution time. In
all experiments, we observed that the computed sum was within 1% of the measured transaction
executiontime. This showsthat the model and the simulator are self-consistent with each other and
increases our confidence about the simulator’s fidelity in modeling areal system.

7.3 Cost of Serializability

To understand the performance gains achieved by committing transactions at PL-2 instead of
serializability, we use the 2/2/2, 3/2/2 and 3/3/2 systems. Performance is evaluated in terms of
transaction throughput, which is defined as the number of successfully committed transactions per
second in the database system. We also define a term called the abort rate, which denotes the
number of aborts that occur in the system for every successful transaction commit; the abort rateis
expressed as a percentage. We now give an overview of our results before presenting them in detail.

For alow contention workload such as LOWCON, the relative performance degradation of the
3/2/2 system compared to the 2/2/2 system was very low (less then 3%) across a wide variation of
system parameters; the reason is that CLocC has been designed to impose very low overheadswhen
there are few conflictsin the system. For HOTREG and HICON, workloads with moderate to high
contention, we observed that the performance difference varied from 7% to 10%. The performance
degradation of the 3/2/2 system is due to the extra wasted fetches performed relative to the 2/2/2
system.

When read-only transactions are also serialized (i.e., we use CLocc for al transactions), the
performance degradation is higher for two reasons. First, since read-only transactions are also
validated in the 3/3/2 system, they may abort (they never aborted in the 2/2/2 or the 3/2/2 systems)
resulting in more wasted work. Second, an extra roundtrip message delay is added to commit
read-only transactions; this factor has a larger impact in WANS since message latencies are high
in those environments. For LOWCON, the performance degradation for the 3/3/2 systemis 6% in
LANs and 14% in WANSs relative to the 3/2/2 system. For HOTREG and HICON, the penalty of
the 3/3/2 system varies between 9% to 15% relative to the 3/2/2 system.

A sengitivity analysis on different parameters shows that serializability penalizes performance
relative to PL-2 when the following two conditions are satisfied:

e Contention is high, and

147

e The cost of restarting atransaction is high

Parametersthat increase contention along with restart costsresult in increasing the performance dif-
ference, e.g., increasing the transaction length, increasing the restart change probability, increasing
the amount of work done per object access, decreasing the percentage of read-only transactions, etc.
For some of our experiments, we observed that contention was high but the relative performance
difference between the PL-3 and PL-2 mechanisms was low. The reason is that CLocC has been
designed such that the restart costs are low for cacheable transactions.

It is important to understand that our workloads (HICON and HOTREG) and our system
parameters have been setup to stressthe higher consistency mechanisms. Theseworkloads have been
derived from concurrency control studiesin the past and need not correspond to real applications; in
fact, we expect real applicationsto haveless contention resulting in smaller performance differences
between the 2/2/2 and 3/2/2 systems.

The performance win for the 2/2/2 system compared to the 3/2/2 system comes with the cost
that there is a higher likelihood of corrupting the database system, i.e., atransaction is not aborted
when the 3/2/2 system would have aborted it. Hence, it is desirable that update transaction are not
committed below PL-3. For the experimentsin this chapter beyond (and including) Section 7.4, we
provide PL-3 for update transactions using CLoCC.

Therest of the section is organized as follows. In Section 7.3.1, we present the results for our
default system. In Section 7.3.2, we compare the performance of the 2/2/2 and 3/2/2 system across
awide range of system parameters. In Section 7.3.3, we compare the performance of the 2+/2/2
system to that of the 2/2/2 and 3/2/2 systems.

7.3.1 Basc Results

Before presenting the results, let us understand some of the important performance characteristics
of our three workloads. For the default system parameters, we observed that the disk is the main
bottleneck for the HOTREG workload in LAN environmentswith a utilization of more than 80%; in
LOWCON and HICON, the network is saturated (as discussed in the previous chapter, LOWCON
would have been disk-bound if the server cache size was smaller). In WAN environments, the
extra delay of 50-100 msec results in increasing transaction latency substantially. In LOWCON
and HOTREG, each transaction performs 3.7 to 4.4 fetches per transaction whereas there are 19
to 23 fetches per transaction for HICON. In genera, if the workload has a high abort rate, we
expect the number of fetchesto be high dueto conflict misses (objectsinvalidated by other clients);
in HICON, more than two-thirds of the fetches are due to conflict misses. For all workloads in
these experiments, the time spent in performing page fetches (£') forms a significant fraction of a
transaction’s execution latency.

Figure 7-1 shows the transaction throughput for different workloads and systems; it also shows

148

System

LAN environment

WAN environment

LOWCON | HOTREG | HICON LOWCON | HOTREG | HICON
20212 | 7443 4017 1490 357.2 350.9 79.1
3/22 | 7344 (1%) | 3647 (9%) | 1355(9%) | 352.9(1%) | 325.1(7%) | 71.4(10%)
3/3/2 | 7020 (6%) | 3304 (18%) | 1227 (18%) || 307.6 (14%) | 276.7 (21%) | 62.9 (20%)

Figure 7-1: Throughput (transactions per sec) variation with and without serializability guarantees

the throughput degradation of each workload/system combination relative to the throughput of the
corresponding 2/2/2 system.

L OWCON wor kload

Figure 7-1 shows that the cost of providing serializability to update transactions in the LOWCON
workload is negligible in LAN and WAN environments. The reason is that LOWCON has a low
abort rate (see Figure 7-2) and CLocc has been designed to be inexpensive when there are few
conflicts in the system; the cache coherence and validation mechanismsin CLocc are efficient and
have low communication, CPU, and disk costs. With alow abort rate, there is very little wasted
work donein LOWCON (see Figure 7-3). The breakdown of a transaction’s execution time shown
in Figure 7-4 demonstrates that the extra wasted work component for the 3/2/2 system compared to
the 2/2/2 system is very small for LOWCON.

When serializability is provided to read-only transactions (the 3/3/2 system), the performance
degradation increases to 6% (in LANS) due to the extra roundtrip message for committing these
transactions (an increase in the C,, component). Since the network is saturated in LOWCON, these
extra messages do have an impact on increasing the transaction latency. However, these commit
messages have ancther interesting effect. If we consider atime interval t in both systems, the 3/3/2
system sends more commit messagesin time t than the 3/2/2 system. Since the 3/3/2 system sends
fewer fetch messagesin timet, it has lower network bandwidth requirements than the 3/2/2 system
resulting in lower network queuing delays. Asaresult, thereisaminor decreasein useful fetch time
(#) iIn LOWCON for the 3/3/2 system in LANS (see Figure 7-4). If message latency had remained

System LAN environment WAN environment
LOWCON | HOTREG | HICON || LOWCON | HOTREG | HICON
2/2/2 0.7% 4.6% 25.6% 0.7% 4.2% 26.3%
3/2/2 2.9% 19.7% 105.1% | 2.9% 21.1% 111.1%
3/3/2 5.3% 33.1% 182.4% || 5.5% 34.4% 191.3%

Figure 7-2: Abort rate with and without serializability guarantees

149

System LAN environment WAN environment
LOWCON | HOTREG | HICON || LOWCON | HOTREG | HICON

2/12/2 1.0% 6.4% 6.9% 1.1% 4.4% 7.0%
3/2/2 2.1% 15.3% 17.5% 2.2% 11.9% 17.6%
3/3/2 3.3% 24.5% 28.6% 3.3% 17.8% 28.6%

Figure 7-3: Ratio of wasted work to useful work (77, /T,,) for different systems

the samein the 3/3/2 system, the impact of the extra roundtrip message would have been higher. In
fact, this effect is seen in WAN environments where message latencies remain the same; the extra
message results in a larger performance degradation compared to LANs. As we will see later, a
programmer may want to use levels such as PL-2+ or PL-3U for read-only transactions since their
implementations avoid the commit roundtrip message and have a lower performance degradation
than seriaizability.

These results show that strong consistency guarantees such as serializability can be provided for
low-contention cacheable transactionsin a client-server system without any significant costs. This
isanimportant result since many applications exhibit |ow-contention and such workloads are one of
the main scenariosrecommended for using weaker isolation level s; thisrecommendationisbased on
the assumption that a higher isolation level mechanism imposes unnecessary performance penalties
for such an application. However, since CLocc (which is used for update transactions in the 3/2/2
system) has low overheads, the performance degradation in LOWCON due to serializability is not
high in our experiments for the 3/2/2 and 3/3/2 systems.

HOTREG and HICON wor kloads

For HOTREG and HICON, the performance degradation of the 3/2/2 and 3/3/2 systems is more
than in LOWCON because the abort rates are much higher for these workloads (see Figure 7-2).
However, alargeincreasein the abort rate doesnot result in acorresponding increasein performance
penalty. The main reasons are that CLoccC has low restart costs and invalidation messages prevent
excessive wastage of work by aborting a transaction early during its execution. In HOTREG, more
than 80% of the aborts occur at client machines and, for HICON, client-aborts account for 90% of
thetotal in LAN environments; amgjority of aborts occur at client machinesin WAN environments
aswell. In our client-server system, the cost of re-executing a transaction at a client is not very
expensive relative to the transaction execution time since the client processor is relatively fast and
is not heavily utilized; in centralized systems where a server executes most of the transaction code,
these aborts can be much more expensive.

Apart from invalidation messages, other mechanismsin CLocc also help in reducing the restart
costs. For example, maintaining an undo log for modified objects at the client reducesthe number of

150

I
?

80 3/2+/2 31312 2501

opalp /272 32+/2 31312 322
2212
| vzp 770 T4, 72 601 % % %

3/2+/2 3/312

200

—~20 3212 ,
7 N,
2 150 Y774 % /
=20 401
“E’ 100
= 101 201 5]
o o —
LOWCON HOTREG HICON
LAN
1000+
8001 332
. 20212 3212 2+12 773 8004 Il Wasted commit time
o v PID
8 00 o] Wasted fetch time
§, Useful commit time
© 400 ,
= 400 [Ussful fetch time
2001 2001
o o
LOWCON HOTREG HICON
WAN

Figure 7-4: Breakdown of atransaction’s execution time (L is negligible in these experiments)

fetch messages that need to be performed after a transaction aborts; earlier optimistic mechanisms
did not incorporate such techniques and hence incurred excessive abort costs. In HOTREG, if this
log were not maintained, there could have been 2 or 3 unnecessary fetches per abort; these extra
fetches can have a significant impact on the throughput compared to the 2/2/2 system (recall that
there are approximately 4 fetches per transaction for HOTREG).

Another reason why aborts do not hurt performance significantly is that not all work donein an
aborted run is wasted, especially due to fetches (see Section 7.2). Figure 7-3 showsthat the ratio of
wasted to useful work does not increase substantially even for very high abort rates, e.g., for LAN
environments, the abort rate for HICON is more than 5 times that for HOTREG in the 3/2/2 system
but the fraction of wasted work performed in both workloadsis similar and hence thereisasimilar
performance degradation.

Theincreasein transaction execution time for the 3/2/2 system compared to the 2/2/2 is largely
explained by theincreasein the time spent in performing wasted fetches, F, (seeFigure 7-4). There
are two factors that cause F,, to increase:

e Refetchinginvalidated objects: Inthe2/2/2 system, if aclient receivesan invalidation message
for an object that has been read (not modified) by its current transaction T, T is allowed to
continue running; however, in the 3/2/2 system, T is aborted. When the client restarts and
accesses the same object, it must refetch the object from the relevant server.

e Fetchesdueto changed accesses after abort: Dueto a20% restart change probability for each
new version read in arerun, approximately 30-35% of aborted transactions access different

151

objectsintheir new run; this causes some fetches performed during aborted runsto be useless.

For the 3/3/2 system, the transaction execution time is higher than the 3/2/2 system due to a
further increasein F,, caused by extraaborts of read-only transactions and due to an increasein C,,
caused by the extracommit roundtrip message sent for read-only transactions (see Figure 7-4). The
impact of this roundtrip is more prominent in WANS where message delays are more significant.
For example, in HOTREG, the C,, component relative to the total execution time (Ry) is 12%
in the 3/2/2 system and 20% for the 3/3/2 system (for HICON, these numbers are 2.5% and 4.5

respectively).
7.3.2 Sensitivity Analysis

We now present a sensitivity analysis to understand how different system parameters affect the
throughput difference due to serializability guarantees. We focus on the performance difference
between the 3/2/2 and 2/2/2 systems because the 3/2/2 system is the cheapest reasonable system
which ensuresthat updatesdo not corrupt the database state. Wereport only theresultsfor HOTREG
and HICON workloads since they stress the system more than LOWCON.

Before we present a detailed sensitivity analysis, here is a brief synopsis of the results:

e Increasing the restart change probability causes more fetches when a transaction aborts and
hence increases the cost of re-executing a transaction. Thus, the performance penalty of
serializability is higher for a high restart change probability; most of the wasted work is due
to wasted fetches.

e Increasing the percentage of read-only transactions in the workload reduces contention and
hence reduces the throughput difference between the 3/2/2 and 2/2/2 systems.

e If more objects are accessed per transaction, contention is increased along with the cost of
re-executing a transaction. Thus, the performance penalty of serializability increases with
transaction length.

o If the time spent per object is increased, the performance difference increases because the
cost of restarting atransaction is higher (more time hasto be spent to accessthe same number
of abjectsin the rerun). In such cases, most of the wasted work is due to the L,, component,
i.e., wasted local time at clients.

¢ Varying the cache sizes does not change the performance difference significantly becausethe
reduction/increase in the number of fetches dueto different client cache sizesis similar inthe
2/2/2 and 3/2/2 systems.

152

e Increasing the number of clientsincreases contention for HICON resulting in ahigher perfor-
mancedifference. For HOTREG, the contention remains same and the performance difference
between the 3/2/2 and the 2/2/2 systems does not change.

o Variationsin network delays, network bandwidth, and processor speeds have alow impact on
the throughput difference between the 2/2/2 and 3/2/2 systems.

Restart Change Probability

CLocc has been designed such that transaction re-execution is cheap: when a transaction reruns
after an abort, most of the objects accessed in the previous run are cached at the client (except the
objectsthat were invalidated). However, since we have chosen arestart change probability of 20%,
it is possiblethat an aborted transaction accesses a different set of objectsthan its previousrun after
reading a newer version of an object. Since it is not necessary that the objects selected in the new
run are cached, the client may perform extra fetches that would not have occurred if the transaction
had not aborted.

g __ 400+
g 4000;;,\-:\:“, _________________ 5 t,‘::: ———————— T
8 el . S 300 e
< 3000 ~m._._, -e- 2/22(HOTREG) =) I
5 - - 3/2/2 (HOTREG) 5
g —+= 2/2/2 (HICON) £ 5001
320004 3/2/2 (HICON) 2
S o
< e e —e——— nd £
=] M Ao A
£ 10004 % iy -
5 A LR Ao A
a 0 T T T T 1 % 0
0 20 40 60 80 100 0 20 40 60 80 100
Restart Change Probability (%) Restart Change Probability (%)
LAN WAN

Figure 7-5: Variation of the restart change probability

To understand the impact of the restart change probability, we varied it from 0% to 100%. The
results in Figure 7-5 show that the performance difference between the 2/2/2 and 3/2/2 systems
increases as this probability is increased. With a high probability value, the number of wasted
fetches increases because a transaction is more likely to changeits accesseswhen it is restarted; in
Figure 7-6, we can see that wasted fetches account for most of the increase in transaction latency.
The useful fetch time for HOTREG in the 3/2/2 system with a 100% restart change probability
(LANS) increases because there are more disk reads than the 2/2/2 system. Since the disk is a
bottleneck resource for this workload and environment, increasing its use results in more queuing
delays and the time per fetch increases slightly.

We also observed that as the restart change probability is increased, the abort rate increases for
both systems, e.g., for HICON, it increased from 95% to 120%. The reason is that wasted fetches

153

30212 250+
80 30212
— 200 / Il Wasted commit time
Beol 22232 o % o2 322 222 % Wasted fetch time
c 1501 === V772 /)) o
= Useful commit time
40-] .
g 1007 I Useful fetch time
= 201 501

2

0% 100 % 0w 100 %
HOTREG HICON

Figure 7-6: Transaction breakdown for 0% and 100% restart change probability in LANs

increase the duration of an aborted transaction T; relative to successful transactionsmaking T; more
vulnerable to be aborted again. The abort rate increase due to a high restart change probability is
higher for the 3/2/2 system since it has more wasted fetches than the 2/2/2 system. This increase
in abort rate feeds back into the system and results in raising the number of wasted fetches even
more. The processof higher abort rates raising the number of wasted fetches and vice versadoes not
continue forever since the contribution by both factors keeps diminishing in each feedback cycle. In
general, atransaction T, aborts another transaction only after T, commits. If this process continued
forever, no client transaction would be able to commit. At this point, some transaction would be
able commit and then progress could be made, i.e., there is a negative feedback due to aborting of
transactions. (Two multi-server transactions may abort each other during the two-phase commit
protocol dueto different ordering at servers. However, the window of vulnerability isvery small for
such cases. Furthermore, it is very likely that these transactions do not rerun and prepare again in
alock-step manner, e.g., adlight difference in network delays for the two transactions during their
reruns will allow one of them to be ordered before the other transaction and commit successfully.)
As discussed earlier, the performance difference between systems that commit transactions at
different levels increases whenever the cost of aborts is high and the abort rate is significant. A
higher restart change probability value raises the abort costs and hence increases the performance
difference between the 2/2/2 and 3/2/2 systems for the HOTREG and HICON workloads.

Per centage of Read-only Transactions

Our workloads contain amix of 50% read-only transactions. In many applicationsand environments,
a larger percentage of transactions may be read-only. In Figure 7-7, we show how the throughput
varies with the percentage of read-only transactions. Since read-only transactions are committed
at PL-2 in both systems and these transactions result in lower amount of contention (due to fewer
modifications), thethroughput difference reduces asthe percentage of these transactionsisincreased,
e.g., for the HICON workload, the performance difference between the two systems reduces from
20% to 3% when the percentage of read-only transactions is increased from 0% to 75%; a similar

154

differenceis observed in the HOTREG workload as well.

= . 6007
§ 5000 o 2 y
2 = D 500 7
= 4000 o 8 7
= e < 400 i
§ 3000J,~;_/./-" -+~ 2/2/2 (HOTREG) 2 v -
= L~ -=—-3/2/2 (HOTREG) 5, 3004 e
3 L —+-2/2/2 (HICON) 3 .
= 2000 - ° -
£ g 3/2/2 (HICON) £ 2007
- g =
S GOV
é 1000 f A & 1004 e
v SSPrTTEErCD CEIILELEE
a‘ 0 T T T T 1 a‘ 0 T T T T 1
0 20 40 60 8 100 0 20 40 60 8 100
% Read-only Transactions % Read-only Transactions
LAN WAN

Figure 7-7: Transaction throughput (transaction per sec) as the percentage of read-only transactions
isvaried

Transaction Length

We also ran an experiment in which the number of objects accessed by a transaction was varied
from 100 to 500 (the minimum and maximum accesses were 10% below and above these values
respectively, e.g., 450 to 550 accesses for the 500 access case). In order to run this experiment, we
doubled the size of each region by afactor of two, i.e., the private region at each server is 50 pages
instead of 25, the working set is 1750 pages, and so on. This change was needed becauseit was not
possible to run the HOTREG workload with more object accesses: the private region (25 pages)
at each preferred server in our default system was not large enough to allow 80% of accessesto
be private region accesses. The increased region size reduces data contention and the performance
difference between the 2/2/2 and 3/2/2 systems decreases to 3-5% instead of 7-10% in our original
system.

The results of this experiment for HOTREG and HICON are shown in Figure 7-8. Increasing
the number of objects accessed by atransaction resultsin higher contention [GR93] and hence more
aborts, e.g., the abort rate in HOTREG goes up from 3% to 60% in LAN environmentsfor the 3/2/2
system. Furthermore, alonger transaction can abort at alater point during its execution and a client
has to read/write more objects to rerun the transaction to the same point in the new run. Thus, the
performance difference between the 2/2/2 and 3/2/2 systems increases from 2% with 100 object
accesses to 16% at 500 object accesses for HOTREG; like previous experiments, the increase in
transaction execution time is due to the extratime spent by aclient performing wasted fetches. This
result isin line with our arguments given earlier, i.e., increased abort costs along with higher abort
rates result in a performance degradation of the 3/2/2 system.

155

700+

Bao00] 8 JP R

e 8000 \ o 600 \

% A\ % N

= A\ = 5004 \

£ 6000+) -+--2/2/2 (HOTREG) = \

2 A\ -=-3/2/2 (HOTREG) 3 4004 kY

< \ —+=2/2/2 (HICON) =y Y

3 4000- L - 3/2/2 (HICON) 3 3004 N

pul “_5\ — \.{\\

£ £ 200
2000 AN gl e T

5 B o % 100 N -

% v . B L

%) 0 Ty & 0 e

0 100 200 300 400 500 0 100 200 300 400 500
Object access per transaction Object access per transaction
LAN WAN

Figure 7-8: Variation in number of object accesses per transaction
Local Work at Clients

To better understand the effect of higher abort costs, we ran another experiment in which a client
spends more CPU cycles on each object accessed in atransaction (the time to modify an object is
twice the time for reading an object). When a transaction aborts, the amount of work that hasto be
redoneis higher, i.e., abort costs are increased.

Figure 7-9 shows the variation of throughput as the work performed per object is increased; it
also showsthe breakdown of atransaction’s execution time in the HICON and HOTREG workloads
for the 0% and 100% cases (we do not show the commit times since they are negligible compared
to the other components). In LAN environments, asthe work cyclesare increased, the transaction’'s
executiontimeisdominated by thelocal work component (L) and local wastedwork (L ,,) constitutes
alarge fraction of the total wasted work. Thus, the performance difference between the 2/2/2 and
the 3/2/2 systemsis essentially dueto L,, asthe CPU work per object isincreased (see Figure 7-9).
In HOTREG, the abort rate (11-20%) is not sufficiently high to increase the performance difference
between the 2/2/2 and the 3/2/2 systems by alarge amount. In HICON, ahigher abort rate has more
significant impact and the throughput difference between the two systems increases.

Aninteresting phenomenon occurs when the client processor becomesthe bottleneck. After this
point, the local work component becomes so dominant that the performance difference between the
2/2/2 and the 3/2/2 systems decreases or remains the same. Furthermore, the abort rate increases
before the client CPU becomes heavily utilized and then decreases after this point. The abort rateis
determined by the relative rate at which objects are modified to the rate at which their invalidations
become known to other clients. After the client CPU bottleneck point, information is propagated
relatively faster to clients: clients modify objects at the same rate but invalidations come relatively
faster to clients since more “1'm alive messages’ are sent by servers (more timeouts at the servers).

Another interesting observation about both workloadsin LANs environmentsis that with more

156

4000+

ol "
% "
& 30004 -+~ 2/2/2 (HOTREG) 250 5001
et i -a-3/2/2 (HOTREG) oo 22 212
3 * —+=2/2/2 (HICON) 200 — 400] B Wasted local time
So0004 ¢ 0 - 3/2/2 (HICON ; .
5 2000 { () g; . 0] - Wasted fetch time
R £ Useful local time
F 10004\ G) 3212)
£ SN) £ 1004 opoi 322 200 '2'2”2 B Useful fetch time

‘ 2 .. = ——
jd F 507 7] 100
2 ; ; ‘ : . .

0 1000 2000 3000 4000 o] ol
Cyclesper read (x 1000) 25K 500 K 25K 500 K
LAN HOTREG HICON

Figure 7-9: Variation in the amount of work done for every object access (LANS)

time spent on local work, the network and disk utilizations are reduced and the time to perform a
fetch decreases. Asaresult, the total useful fetch time spent by a transaction (£,) reduces, e.g., in
Figure 7-9, the useful fetch time for the 500K cycles caseis approximately 60% lower than the 25K
cycles case.

For WAN environments, the performance differenceislargely unaffected until the CPU process-
ing costs become comparable with the work done by atransaction dueto fetches. The performance
variations are similar to the LAN case after this point, i.e., HHCON’s performance degradation
increases whereas the throughput difference does not vary much for HOTREG.

Clientsper Cluster

We varied the number of clients per cluster from 10 to 60; the results are shown in Figure 7-10. For
HICON, increasing the number of clients raised the contention level substantialy since we did not
change the size of the working set at the servers. As aresult, the abort rate increased from 30%
to 240% causing more wasted fetches and the performance difference increased from 4% to 18%.
In HOTREG, we added a private region for every client and the contention level did not change
substantially. The performance degradation of the 3/2/2 system relative to the 2/2/2 system varied
between 7% and 10%.

Client Caches

To understand the impact of client cache sizes, we varied the size of the client cache from 150 to
3500 pages. Asthe cache sizeincreases, capacity misses decrease but most of these are replaced by
conflict missesin HICON and HOTREG. Thus, thereis a small decrease in the number of fetches
asthe cache sizeisincreased and, more importantly, the reduction in fetchesis similar for the 2/2/2
and 3/2/2 systems. Asaresult, the performance difference between these systems remains the same
across arange of client cache sizes.

157

1
~
o
o

1

o] . -+ 222(HOTREG) ol .
D 0004 -t . —=3/22(HOTREG) ; 600 “a
8 T —+—2/2/2 (HICON) 8 o
=3 ~-a- 3/2/2 (HICON) & 5007 o
g 30003 3 4004 -
< w <
3 2 300 =
5 20004 © ™
= e . £ 2001
£ 1000 B £ R
% 7 1004 Aﬁfﬁr/_fr—,fff‘—f """" e
S 20 N e ——

0 10 20 30 40 50 €0 0 10 20 30 40 50 60

Clientsper cluster Clients per cluster
LAN WAN

Figure 7-10: Throughput changeswith variation in number of clients per cluster

Processor Speeds

We also varied the processor speeds and observed that the change in the performance difference
between the 3/2/2 and 2/2/2 systems was not significant for client speeds beyond 300 MIPS (recall
that our default system uses a client CPU speed of 600 MIPS). For a 200 MIPS server processor
(100 MIPS client processor), we observed that the performance difference was higher (13% instead
of 9%) in LAN environmentsfor the HICON workload. The reason isthat the server CPU becomes
heavily utilized (due to network message handling) and hence there is an increase in the time to
fetch a page or commit atransaction. Thus, apart from the increase in the wasted fetch time (F,),
the useful fetch time (F7,) increases aswell and results in a higher performance degradation.

Network Variations

We varied the network parameters in two ways. We changed the extra router delays from 0 to 20
msec in LANs and from 40 to 300 msec in WANS; we also varied the network bandwidth allocated
for each cluster. With extrarouter delays, atransaction spends moretime in the network resulting in
alower load on resources such asthe disk in HOTREG and the network queuein HICON. However,
since these resources were utilized to a similar degree in the 2/2/2 and the 3/2/2 systems, reduced
utilization helped both systems in a similar manner. Thus, variations in network delays did not
change the performance difference significantly.

For similar reasons, variationsin network bandwidth did not change the performance difference
between the two systems. The utilization of some resources (e.g., disk) may increase at higher
bandwidths due to faster communication but the increase is similar for both systems. Furthermore,
for workloads such as HICON in which the network is the bottleneck, a faster network helps both
systems. Hence, the rel ative performance remains the same with an increase or decrease in network
bandwidth.

158

7.3.3 Cost of PL-2+ for Update Transactions

To evaluate the cost of PL-2+ for update transactions, we ran experiments with the 2+/2/2 system
and compared them with the 2/2/2 and 3/2/2 systems. We observed that the cost of the 2+/2/2 system
is similar to that of the 3/2/2 system. Since PL-2+ offers weaker guarantees than PL-3 (PL-2+ can
result in inconsistent updates to the database), it is not worthwhile to support PL-2+ for update
transactions; the 3/2/2 system should be used instead.

7.4 Cost of Intermediate | solation Levels

In this section, we evaluate the cost of providing EPL-2+ and PL-2+ using our multistamp-based
mechanisms. To evaluate the cost of providing PL-2+ to read-only transactions, we compare the
performance of the 3/2/2 and 3/2+/2 systems. To determine the overheads of EPL -2+, we compare
the 3/2+/2 system with the 3/2+/2+ system. We also evaluate the cost of EPL-2+ by comparing the
performance of CLocc (3/3/2) and the 3/3/2+ system; the 3/3/2+ system provides strong guarantees
(serializability) to all committed transactions and makes it easier for an application programmer to
reason about the code (since the transaction always observes a consistent database state).

The results show that cost of providing PL-2+ in the case of LOWCON are negligible; for
HICON and HOTSPQT, the 3/2+/2 system has less than 10% throughput degradation compared
to the 3/2/2 system. Our results also show that the cost of multistamps and consistency stalls is
low, i.e., it is not extensive to provide strong consistency guarantees such as EPL-2+ or EPL-3U to
executing transactions.

7.4.1 Overheadsof PL-2+ and EPL -2+

Figure 7-11 shows the system throughput and performance loss of different systems compared to
the 3/2/2 system. Similar to the results shown in the last section for serializability, the performance
penalty of providing PL-2+ relativeto PL-2 in LOWCON isnegligible. The transaction breakdown
graph in Figure 7-4 shows that the extrawork due to wasted fetchesis negligible in the 3/2+/2 and
3/2+/2+ systems for LOWCON.

For HICON and HOTREG, providing PL-2+ to read-only transactions (3/2+/2 system) results
in asignificant increase in the number of data conflicts. At PL-2, read-only transactions never abort
whereasthey can be aborted at PL-2+. In LAN environments, the abort rate for HOTREG increases
from 20% to 32% whereasfor HICON, it increasesfrom 105% to 174%; theriseis primarily dueto
the aborts of read-only transactions. These extra aborts and a 20% restart change probability cause
more fetches and hence result in a throughput drop from the 3/2/2 system to the 3/2+/2 system.
Figure 7-4 shows that wasted fetches account for the increase in transaction latency for the 3/2+/2
system.

Apart from extra aborts, providing PL-2+ has additional costs due to multistamp manipulation

159

System LAN environment WAN environment
LOWCON | HOTREG | HICON LOWCON HOTREG HICON
3/2/2 7344 3647 1355 352.9 325.1 714
3/2+/2 | 7177 (2%) | 3308(9%) | 1243 (8%) || 346.3(2%) | 304.4(6%) | 65.5(8 %)
3/2+/2+ | 7173(2%) | 3335(9%) | 1243 (8%) || 344.1(2%) | 301.3(7 %) | 64.8(9%)
3/3/2 7020 (4 %) | 3304 (9 %) | 1227 (9 %) || 307.6 (13%) | 276.7 (15%) | 62.9 (12%)
3/3/2+ | 7072(4 %) | 3352 (8%) | 1231 (9%) || 310.8(12%) | 271.1(16%) | 62.2 (13%)

Figure 7-11: System throughput (transactions per sec) and performance penalty (relative to the
3/2/2 system) for PL-2+ and EPL-2+.

and consistency stalls when read-only transactions commit. Our multistamp truncation technique
ensuresthat the multistamp sizeislessthan 100 bytes; hence, the cost of processing and propagating
them onthe network islow. Furthermore, there arefew consistency stallssinceaclient isusually up-
to-date with respect to al participants when aread-only transaction commits; during atransaction’s
execution, the client performs some fetches from different servers and this enables the client to
become reasonably up-to-date with respect to those servers, e.g., there are an approximately 4
fetches per transaction in HOTREG. Thus, we observed that fewer than 3% read-only transactions
reguire communication with servers at commit time.

The 3/2+/2 system has similar or better performance than the 3/3/2 system because the client
is able to avoid a commit message roundtrip for read-only transactions in these systems whereas
CLocc requires this communication. Figure 7-4 shows that the extra overheads due to consistency
stallsfor committing read-only transactionsis negligible, i.e., the useful commit time (C,,) issimilar
in the 3/2/2 and 3/2+/2 systems.

Varying Per centage of Read-only Transactions

Sincetheextracostin the 3/2+/2 systemisimposed by aborts of read-only transactions, we eval uated
the sensitivity of the system throughput with respect to the percentage of read-only transactionsin
the workload.

When there are no read-only transactions, both systems are identical because all update trans-
actions are provided the same guarantees. With a higher percentage of read-only transactions in
the workload mix, contention drops significantly; as a result, there are fewer conflict misses at the
clients and the system throughput increases. Furthermore, alower abort rate resultsin fewer wasted
fetches (due to the 20% restart change probability). Thus, lower contention tends to reduce the
performance difference between the 3/2+/2 and 3/2/2 systems.

However, a second opposing factor causes an increase in the throughput difference. As the
percentage of read-only transactions is increased, a larger percentage of transactions that abort in

160

600+

§ s000- s 8 -
o o - @ 500 ,’,//‘
8 Jooo - & 7
< £ a0
= -+~ 3/2/2 (HOTREG) 3 u

30004 =3 .
5 - 3/2+/2 (HOTREG) 5,300 =
3 —— 3/2/2 (HICON) 3 T
£ 20004 ~-a- 3/2+/2 (HICON) = 2004
~ -
& 10004 5
& &

0 7 7 7 7 | 0 7 y 7 7 |
0 20 40 60 80 100 0 20 40 60 80 100
% Read-only Transactions % Read-only Transactions
LAN WAN

Figure 7-12: Cost of PL-2+ for read-only transactions

the 3/2+/2 system are read-only. Since read-only transactions never abort in the 3/2/2 system, the
throughput difference between the two systemstendsto increase due to this factor.

The throughput variation is shown in Figure 7-12. At 0% read-only transactions, there is no
throughput difference. As the percentage of read-only transactions is increased, the second factor
dominates and increases the performance difference between the systems. However, beyond a
certain percentage of read-only transactions (e.g., 50% for HICON), the contention is reduced
sufficiently and the throughput difference decreases, i.e., thefirst factor dominates.

Cost of EPL-2+

The difference between the 3/2+/2+ and 3/2+/2 systemsin Figure 7-11 shows the cost of providing
EPL-2+ to transactions as they execute; the performance difference between the 3/3/2+ and 3/3/2
systems also evaluatesthe cost of EPL-2+. In both cases, we see that the performance differenceis
negligible. As stated above, the multistamp processing overheads are low in our implementation.
Thus, the extra cost is only due to consistency stalls. The 3/2+/2+ system can have more stalls
than the 3/2+/2 system since the former system provides stronger guaranteesto transactions as they
run; in the 3/2+/2 system, a read-only transaction can stall only at its commit point whereas in
the 3/2+/2+ system, any transaction can stall during its execution. We measured the overhead of
invalidation-request messagesterms of the stall rate, i.e., the relative ratio of these messagesto the
number of fetchesin this system. We observed that the stall rate is low for the 3/2+/2+ system and
henceit has a negligible impact on performance, e.g., in the worst case, the stall rate was 2.5% (for
HOTREG in a WAN environment). In Section 7.5, we present an analysis on how the stall rate
changeswith a variation of different system parameters.

A consistency stall penalizes performancein aLAN environment lessthan aWAN environment
since the message latency is much lower in LANs. In fact, in such environments, stalls can
sometimes be beneficial since they force a client to get invalidation information slightly early, i.e.,
consistency stalls can keep a client cache even more up-to-date and hence help the client to abort

161

early or avoid some aborts. This benefit is lost in WAN environments where a message roundtrip

slows down atransaction substantially.

7.4.2 Overheadsof PL-3U, EPL-3U and EPL-3

We now discussthe performance penalties of providing PL-3U and EPL-3U guarantees. Figure7-13
shows the throughput of various systems that provide PL-3U and EPL-3U guarantees. As before,

we have shown the throughput values relative to the 3/2/2 system.

System LAN environment WAN environment

LOWCON | HOTREG HICON LOWCON HOTREG HICON
3/2/2 7344 3647 1355 352.9 325.1 71.4
3/2+/2 7177 (2%) | 3308 (9%) | 1243(8%) || 346.3(2%) | 304.4(6%) | 65.5(8%)
3/2+/2+ | 7173(2%) | 3335(9%) | 1243(8%) || 344.1(2%) | 301.3(7%) | 64.8(9%)
3/3/2 7020 (4 %) | 3304 (9%) | 1227 (9%) || 307.6 (13%) | 276.7 (15%) | 62.9 (12%)
3/3/2+ 7072 (4%) | 3352(8%) | 1231(9%) || 310.8 (12%) | 271.1(16%) | 62.2(13%)
3/3U/2 | 7204 (2%) | 3288 (10%) | 1236(9%) || 346.6(2%) | 301.9(7%) | 65.3(9%)
3/3U/3U | 7146 (3%) | 3367(8%) | 1243(8%) || 342.4(3%) | 296.0(9%) | 64.3(10%)
3/3/3 7059 (4 %) | 3336(9%) | 1229(9%) || 299.5(15%) | 257.3(21%) | 61.1 (14 %)

Figure 7-13: System throughput (transactions per sec) and performance penalty (relative to the
3/2/2 system) for different isolation guarantees.

Thefigure showsthat the cost of providing PL-3U to read-only transactionsis similar to the cost
of providing PL-2+ for these transactions (compare the 3/2+/2 and 3/3U/2 systems). Similarly, the
performance of the 3/3U/3U and 3/2+/2+ systemsis similar showing that the extra cost of EPL-3U
over EPL-2+ islow.

Level PL-3U provides stronger guarantees than PL-2+ since PL-3U captures conflicts due to
anti-dependencies whereas PL-2+ does not. Capturing constraints due to anti-dependencies results
in larger multistamps and hence more truncation. Thus, more read-only transactions can stall at
commit time than with PL-2+. However, our results show that these extra stalls are few; in the
worst case (HOTREG in WANS), 4% read-only transactions stalled in the 3/3U/2 system instead of
2.3%inthe 3/2+/2 system. Again, asfor PL-2+, it isusually the casethat aclient is up-to-date with
respect to its participants when the commit point is reached.

The performance of the 3/3U/2 and the 3/3U/3U systemsis comparableto CLocc in LAN en-
vironments; in WAN environments, these systems perform better than CLocc because they avoid a
commit roundtrip message for read-only transactionsin most cases. Thus, an application program-
mer may choose PL-3U instead of PL-3 for read-only transactions to achieve better performance;
since PL-3U isvery close to PL-3, the loss in ease of programming with PL-3U is small.

For executing transactions, we observed that the cost of providing EPL-3U is not high relative

162

to EPL-2+. Even though there are more consistency stalls in the 3/3U/3U system than the 3/2+/2+
case, the number of stallsare still low enough so that system throughput is not significantly affected.
In Section 7.5, we compare the stall rates of the 3/3U/3U and 3/2+/2+ systems.

In the PL-3U and EPL-3U implementations, a server may send extra multistamp-regquest mes-
sages at prepare time to other serversif it requires the final multistamp of a committed transaction
(see Section 5.4.1). In our simulation experiments, we observed that very few update transactions
required such messagesin all workloads. In the worst case of HICON, 15% of update transactions
(i.e., lessthan 8% of the total number of transactions) required a message to be sent; for HOTREG,
less than 7% of update transaction needed this extra message. Compared to fetches and commits,
these messages represent a very small fraction of the total number of messages in the network.
Hence, the impact of the extra multistamp-request messages among serversis negligible.

For the sake of compl eteness, we have also shown the throughput of the 3/3/3 systemin Figure 7-
13. In this system, all transactions are committed using CLoccC and a transaction’s multistamp s
computed by merging the multistamps of all transactions that it depends and anti-depends on; in
aPL-3U or EPL-3U system, only the multistamps of update transactions are merged. As aresult,
multistamps are bigger, there is more truncation and hence more consistency stalls. However, these
stalls are still low enough to not adversely affect performance. In LAN environments, the extra
throughput degradation of this systemis negligible compared to the 3/3U/3U system. In WANS, this
system has lower throughput than the 3/3U/3U system because an extra commit roundtrip message
for committing read-only transactions has a higher cost in these environments.

7.4.3 Comparing PL-2L with PL-2 and PL-2+

We used the HICON and HOTREG workloads to evaluate the costs of our PL-2L scheme. Recall
that this scheme also provides EPL-2L to running transactions, i.e., we ran the workloads with the
2L/2L/2L system. The performance of this system is similar to that of the 2/2/2 system. The only
extracost of this systemisthe extra stallsthat may occur during atransaction’s execution. Asin the
EPL-2+ case, we observed that a client sends very few invalidation-request messages compared to
fetch requests and hence the performance degradation is low. Thus, PL-2L can be easily provided
to applications instead of PL-2 without a significant cost. Of course, a programmer has to be
careful about committing update transactions at a level below PL-3 since the database state can be
corrupted.

We al so ran experiments using the 3/2L/2L system and observed that its performanceis similar
to that of the 3/2/2 system. It performs about 10% better than the 3/2+/2 system because it never
aborts aread-only transaction whereas the latter system can.

163

7.5 Stall Rate Analysis: Cost of Multistamps

For our multistamp-based implementationsto be efficient, it is crucial that the consistency stall rate
be low. In this section, we explore the variation of the stall rate when different system parameters
such as multistamp size, percentage of multi-server transactions, etc., are changed. We use the
3/2+/2+ system since it stresses the system more than the 3/2+/2 system. We also analyze the
relative stall rates due to EPL-2+, EPL-3U and EPL-3 in this section.

A dtal has a low performance impact on the system throughput compared to a fetch since
an invalidation-request message and its reply are small compared to fetch replies. However, it is
desirable to keep the stall rate as low as possible because extra messagesincrease client/server CPU
and network utilization. If any of these resources is aready near saturation, a high stall rate can
impact performance in an adverse manner. Furthermore, other applications sharing the network
will be penalized if the number of consistency messages is high. Thus, even if the throughput
difference between two systemsis negligible, it is still desirableto haverelative few extramessages
dueto consistency stalls. In this section, we use consistency stall rate as a performance measure for
comparing different workload/isolation combinations. Recall that the consistency stall rate is the
ratio of invalidation-regquest messagesto the total number of fetchesin the system.

In the client-merger scheme presented in Section 5.3.7, a client computes the read-dependency
part of a transaction’s multistamp before sending a commit message to the participant. We did
not use this scheme for computing a transaction’s multistamp in our simulator. Instead, we used
the following mechanism to generate multistamps at servers based on coarse-grained intersections.
When atransaction T; prepares, the server considers T; to depend on T if T; has modified page P
and T; hasread some object on P. Thus, our multistamps are more conservative than necessary and
hence give an upper bound on the number of stalls that can occur with the client-merger scheme.
We ran an experiment with fine-grained checks and observed stall rates that were 25% to 30%
lower. However, since the stall rate is aready low for our stressful workloads, we used coarse-
grained checksfor all our experiments. Note that validation of transactionsis still performed using
fine-grained checks.

Hereis a brief synopsis of our experimental results:

e Small multistamps of size less than 100 bytes are sufficient to maintain a low consistency
stall rates (less than 3-4%).

e The stall rate remains low for alarge variety of system parameters. The impact of a stall is
very low in LAN environments; in WAN environments, this cost is higher. However, alow
stall rate in both environments results in a negligible impact on the overall performance.

e The number of stallsincreaseswith contention but the stall rate does not necessarily increase.

164

e EPL-3U and EPL-3 may increasethe stall rate by afactor of 2to 5 relative to EPL-2+ but the
stall rate value is still low (less than 7% in the worst case).

e Simple aging of multistampsis not sufficient for keeping them small; pruning is also needed.

e Increasing the percentage of multi-server transactions does not necessarily increase the stall
rate; ahigher percentage of multi-server transactions hel psin keeping aclient more up-to-date
with respect to its connected servers, especially non-preferred servers.

¢ The stall rate does not change significantly when more clients are added to a cluster or when
more clusters are added to the system, i.e., the multistamp-based schemes scale well with the
size of the system.

We chosethe HOTREG and HICON workloads since they stressthe performance of the 3/2+/2+
system more than LOWCON. Our evaluation is pessimistic since we have chosen parameters that
are not favorable to the multistamp-based implementations. For example, we have chosen two
preferred servers instead of one (which is normally expected); as aresult, alarge number of client
stalls occur due to the fact that a client keeps “switching” between these two servers. Similarly, we
used a high percentage of multi-server transactions to increase the distribution of invalidations to
alarge number of servers. Our workloads, especially HOTREG, have been designed to stress the
multistamp truncation mechanism. In HOTREG, 1 in 10 transactions modify the small hot-shared
region and there are 30 clients sharing 2 preferred servers; thus, at least one client is modifying
the hot region at any given time. Due to contention on this hot-shared region, a large number of
invalidations are generated resulting in larger multistamps and hence more truncation. In realistic
environments with less stressful conditions, we expect stall rates to be lower than the stall rates
shown for HICON and HOTREG.

7.5.1 Consistency Stallsand Contention

The number of stalls is directly related to contention in the workload. Let us consider the case
when a client C observes a high number of stalls. Suppose that C stalls with respect to a server
S. Since (piggybacked) invalidation messages keep client caches aimost up-to-date, it must be the
case that C has fetched object x that was modified by a recently-committed transaction T,; and T;
must have generated invalidations for client C at server S. If transactions reads the modifications of
recently-committed transactions close in time, the workload must have high contention (at least at
the page-level since servers maintain page-level cache directories).

The above argument holds in the other direction as well, i.e., more contention leads to more
stalls. Due to high contention, aclient C can read an object x that was recently modified by another
transaction T; and stall if T;’s commit generated an invalidation for C at some other server (C may
not be recent enough with respect to that server). Contention also leads to more stalls for another

165

reason. As contention increases, each transaction depends/anti-depends on more transactions and
hence multistamps become bigger. This leads to more truncation, a higher multistamp threshold,
and hence a higher number of stalls.

It isimportant to understand that alarge number of stalls does not necessarily imply ahigh stall
rate. A high contention workload also hasalarge number of fetches dueto conflict misses. Thus, in
the HICON workload, we observed that the stall rate was low even though the number of stallswas
high. For other workloads, we observed that there are fewer stalls due to lower contention. Thus,
the stall rate is low across all workloads.

A client C stalls when it depends on a multi-server transaction and C is not up-to-date with
respect to one of the servers being accessed in C's current transaction. A multi-server transaction
can stall at two points: when it accesses a server for the first time and when it performs a fetch; we
call these start stalls and running stalls, respectively. However, a single-server transaction can stall
only when it starts; it cannot stall after it performs a fetch since the multistamp constraints with
respect to other serversareirrelevant for this transaction.

752 EPL-2+ Stall Rate

Figure 7-14 shows the consistency stall rate of the 3/2+/2+ and 3/3/2+ systems for different work-
loads. The stall rate is similar for both systems since they have a similar caching behavior; hence,
we will just consider the 3/2+/2+ system for our discussion.

System LAN environment WAN environment
LOWCON | HOTREG | HICON || LOWCON | HOTREG | HICON

3/2+/2+ 0.5% 1.9% 1.6% 0.5% 2.5% 1.8%

3/3/2+ 0.5% 1.9% 1.6% 0.5% 2.4% 1.8%

Figure 7-14: Consistency stall rate for EPL-2+

Thefigure showsthat the stall rateisvery low for all workloadsin LAN and WAN environments.
For low contention workloads such as LOWCON, the stall rate is negligible because transactions
rarely depend on recently-committed transactions (due to low contention on the shared region).

For a high contention workload such as HICON, the number of stalls is much higher than
HOTREG (17500 stalls occur in our experimental setup for HICON as opposed to 3900 for
HOTREG). However, HICON also suffers from a large number of conflict misses; as a result,
the number of stalls relative to the number of fetches (approximately 23 per transaction) islow. In
the HOTREG workload, the small hot-shared region at aserver resultsin ahigh conflict rate causing
dependencies on recently-committed transactions; most of the invalidations in this workload are
due to this region. Since the hot-shared region has higher contention than the shared region of
LOWCON and most of the hot-shared region can be cached at clients, the stall rate for HOTREG is

166

ol
1
o
]

Extra EPL-3 stalls >
Extra EPL-3U stalls 7
I EPL-2+ stalls /

—~ —~ 57
SHhE S
R w 44
8 34 V E
) / w3y ¥
=) ///) =)
8 5] / 8 % w7i
§ & 24 /
» ®
o 14 (A
Aa 04
LOWCON HOTREG HICON LOWCON HOTREG HICON
LAN WAN

Figure 7-15: Consistency stall rate for EPL-2+, EPL-3U or EPL-3.

higher than that for LOWCON. However, the conflict ratein HOTREG is not as high asthe HICON
workload since only 10% of the accesses go to this region and it is modified by only 1 in every ten
transactions. Thus, a transaction has significantly fewer fetches (approximately 4) resulting in a
stall rate similar to HICON. Of course, the stall rate in HOTREG is still very low (below 3%).

7.5.3 Stall Rate Comparison for EPL-2+, EPL-3U and EPL-3

Figure 7-15 presents the stall rates for EPL-2+, EPL-3U and EPL-3; above the EPL-2+ stall
rate, we show the extra stalls for EPL-3U and EPL-3. We compared the 3/2+/2+, 3/3U/3U and
3/3/3 systems for our experiments; except for the extra commit message in the 3/3/3 system for
read-only transactions, these systems had a similar performance in terms of abort rate, fetches,
etc. As expected, EPL-3U has a higher rate than EPL-2+ since it captures anti-dependencies as
well as dependencies; the number of transactions whose multistamp is merged into a committing
transaction’s multistamp doublesfor HOTREG and LOWCON. Thus, the multistamp sizeincreases
and more truncation takes place, resulting in more stalls. In the case of EPL-3, atransaction T,;’s
multistamp also contains multistamps of read-only transactions that T; depends or anti-depends
on. For example, in HOTREF and LOWCON, the number of transactions whose multistamps are
marged into a committing transaction’s multistamp is more than three times than the corresponding
number for the EPL-2+ implementation; this results in EPL-3 having a higher stall rate compared
to EPL-2+ and EPL-3U.

7.5.4 Sizeof Multistamps

We varied the size of multistamps to understand the impact of aging and truncation on the stall
rate in the 3/2+/2+ system. Figure 7-16 shows the variation of the stall rate as the maximum size
for multistamps is increased from zero entries (just the threshold timestamp) to the size reached
when just aging is used. (A system that uses just the threshold timestamp is using Lamport
clocks [Lam78].) When multistamps are very small (e.g., 0 or 1 entries), most of the information

167

g4 —— HOTREG

—=—HICON 8- —e— HOTREG
""" LOWCON —=—HICON
—+- LOWCON

Per centage stalls (%)
Per centage stalls (%)

0 5 10 15 20 25 Inhnity | 0 5 10 15 20 25 Infinity |
Maximum multistamp entries Maximum multistamp entries
LAN WAN

Figure 7-16: Consistency stall rate as the size of multistampsis varied

is truncated resulting in a high stall rate. However, with a slight increase in multistamp size, the
information in the multistamps is sufficient to lower the stall rate significantly.

When multistamps are not truncated, they can grow to a size that equals the number of client-
server connections in the system, i.e., 960 entries. Figure 7-17 shows that aging reduces the size
of multistamps but still they are relatively big. Large multistamps increase network utilization and
server CPU overheads substantially resulting in a significant degradation of system performance.
For example, in the LOWCON workload for the LAN environment, where network is a bottleneck
resource, the throughput of the 3/2+/2+ system that uses only aging is 40% lower than the default
3/2+/2+ system (in which multistampslarger than 5 entriesaretruncated). Theseresultsdemonstrate
that pruning is needed to ensure that the costs of multistamps is low. As shown in Figure 7-16,
pruning to areasonable size does not increase stall rate significantly. Based on this observation, we
chose a multistamp of 5 entries for our default system; the size of 5-entry multistamps is less than
100 bytes.

Workload LAN environment WAN environment
LOWCON | HOTREG HICON LOWCON | HOTREG HICON

Entries 113 314 449 305 674 620
Size 970 bytes | 2700 bytes | 3800 bytes || 2600 bytes | 6100 bytes | 5200 bytes

Figure 7-17: Size of multistamps when only aging is used

7.5.5 Increasing Multi-server Transactions

In another experiment, we varied the percentage of multi-server transactions in the system from
10% to 100% in the 3/2+/2+ system; note that our default setting of 20% already denotes a high
percentage of multi-server transactions. The stall rate variation is shown in Figure 7-18; we show
results for HICON and HOTREG since they are more stressful than LOWCON. There are two

168

—e HOTREG

Stall Rate (stalls/fetch %)
N

Stall Rate (stalls/fetch %)
N

= == HICON = == HICON
O T T T T 1 O T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
Multi-server transactions (%) Multi-server transactions (%)
LAN WAN

Figure 7-18: Stall rate for EPL-2+ as the percentage of multi-server transactions are increased.

effects that impact the stall rate. First, with a higher percentage of multi-server transactions, more
dependenciesare generated across servers and more transactions become dependent on multi-server
transactions; this can result in bigger multistamps and more truncation. Furthermore, as discussed
earlier, a multi-server transaction can stall while it is executing (i.e., running stalls can occur)
whereas a single-server transaction can stall only at the beginning. Thus, a higher percentage of
multi-server transactions tends to increase the stall rate.

However, a second opposing effect tends to decrease the stall rate as multi-server transactions
are increased. A higher percentage of multi-server transactions results in more transactions that
involve non-preferred servers. Thus, clients communicate with these servers more often and become
more up-to-date with respect to them; as aresult, they incur fewer start stalls due to these servers.

In our simulation setup, different variationsin stall rate are observedin LAN and WAN environ-
mentsfor the HOTREG workload. In LANS, therelativeratio of thetimeout period (1 second) to the
transaction execution time (approximately 100 msec) is lower than thisratioin WAN environments;
in WANSs, the timeout period is 30 seconds and the transaction execution time is approximately 800
msec. Since a client can run more transactions involving non-preferred servers during its timeout
period in WANsthan in LANS, the possibility of a start consistency stall at anon-preferred server is
higher in the WAN case. Thus, at a high percentage of multi-server transactions, the second factor
dominates (i.e., increased communication with non-preferred serversisrelatively more helpful) and
decreases the stall rate for HOTREG in WAN environments.

For HICON, there are significantly more fetches per transaction than in HOTREG resulting in
a higher execution time; as aresult, the relative ratio of the timeout period to transaction execution
timeislower. Hence, clients are mostly up-to-date with respect to non-preferred serversaswell. In
this case, the first factor dominates and the stall rate increases with an increase in the percentage of
multi-server transactions.

IN LAN environments, the first factor dominates for both workloads and the stall rate increases

169

as the percentage of multi-server transactions is increased.

This experiment shows that even with a high timeout period and a high percentage of multi-
server transactions, the stall rate is still low for stressful workloads such as HICON and HOTREG.
When the timeout period is high, the extrastalls are primarily dueto non-preferred servers: if fewer
transactions at a client access non-preferred servers, there is a higher likelihood of a start stall with
respect to these servers. However, since only a small fraction of transactions access non-preferred
servers, the overall stall rateis still low. Thus, the timeout period need not be set very aggressively
for maintaining alow stall rate.

To further understand the impact of multi-server transactions, we ran an experiment where a
client had more than 2 non-preferred servers; we varied the number of non-preferred serversfrom 2
to 9, and allowed transactions to use al connected servers. In the worst case of HOTREG in WAN
environments, the stall rate increased from 2% to 11.8%. Additional experiments showed that this
effect was largely due to transactions that used large numbers of servers rather than the number
of connections per client. Of course, as discussed in Section 6.2.1, transactions that use 8 or 9
servers are highly unlikely in practice. Furthermore, even if transactions do access a large number
of servers, we do not expect a high update ratio of 20% as used in our experiments, i.e., we expect
the stall rate to be low even in such cases.

7.5.6 Scalability

To evaluate the scalability of our mechanisms, we varied the number of groups in the system
from 2 to 30, i.e., the largest system had 60 servers and 900 clients. The results for the 3/2+/2+
system are shown in Figure 7-19. In a larger system, multistamps can spread to more servers;
merging of entries at a higher number of servers can increase the multistamp size, and hence lead to
more truncation and more stalls. However, we observed that the stall rate decreasesas more clusters
are added in the system. The reason is that dependencies across groups are propagated only via
non-preferred servers. With the increasein the number of groups, the likelihood of two clientsin a

4 54
S She
0 0
© B 3
ko] ko] 8
o) o)
< —— HOTREG 823
§ —=— HICON §
5 14 ol
o o 14
O T T 1 0 T T 1
0 10 20 30 0 10 20 30
Client/Server Clusters Client/Server Clusters
LAN WAN

Figure 7-19: Stall rate variation with the size of the system

170

cluster sharing the same non-preferred servers decreases. Suppose that a client C's transaction T;
modifies objects at servers X and Y. Suppose another client D reads T;’s modifications at server X
and isinformed about T;'s multistamp. In alarger system, it islesslikely in alarger system that C
and D also share server Y; asaresult, T;'s multistamp constraints will not result in D’s transaction
stalling due to server Y. Thus, this factor dominates over the truncation effect and the stall rate
decreasesin alarger system.

To better understand the spread of dependency information across servers, we ran an experiment
inwhich one preferred server of each client was chosen in adifferent cluster than the client’s cluster
with varying probabilities; in this setup, dependency information is spread across clusters due to
preferred as well as non-preferred servers. As in the above experiment, there are two conflicting
factors that affect the stall rate as the probability of the second preferred server being in a different
cluster isincreased. First, the stall rate can increase due to more spreading of information (larger
multistamps and more truncation). Second, the stall rate can decrease due to less sharing of the
same preferred servers by clients. In the default system, two clients in the same cluster share the
same preferred servers; with different topol ogies, the likelihood of two clientsin any cluster sharing
the same preferred serversis lower. Depending on the workload and the network environment, we
observed that the stall rate remained the same or changed slightly. More importantly, the stall rate
remained below 3%.

We also varied the number of clients per cluster from 10 to 80; the results are shown in Figure 7-
20. With alarger number of clients, contention levelsare higher and hencethe stall rateisexpectedto
be higher. However, in LAN environments, the stall rate actually decreases. In LANS, the network
and the disk become more heavily utilized when more clients are added to a cluster resulting in an
increase in network delay due to congestion. Extra delays result in a higher transaction execution
time and the relative ratio of the timeout period (for “I’'m alive” messages) to the transaction’'s
execution time is reduced. Thus, more timeout messages are sent and clients become relatively

—— HOTREG

Per centage stalls (%)
-

Per centage stalls (%)
i L

| [¢
—=—HICON 1
O T T T 1 O T T T 1
0 20 40 60 80 0 20 40 60 80
Clients per cluster Clients per cluster
LAN WAN

Figure 7-20: Stall rate variation with number of clients per cluster

171

more up-to-date with respect to servers; thus, the stall rate decreases with as more clients are added
to each cluster in the LAN case. In HICON, this effect does is not significant at 10 clients per
cluster since the network is not saturated. Thus, the stall rate increasesinitialy in HICON; when
the network saturates, the stall rate decreases.

In WAN environments, the network delays do not change substantially as the more clients are
added to each cluster. Thus, the above effect is not observed in the WAN case except in HICON
when each cluster has 80 clients; in this case, the network is 96% utilized and the stall rate decreases
dlightly due to extra timeout messages.

The above experiments show that our multistamp-based technique scales well as more clients
and servers are added to the system since larger multistamps are not needed to maintain a low stall
rate.

172

Chapter 8

Conclusions

Data consistency is an important requirement in database systems sinceit allows application writers
and end users to make sense of the data in the presence of concurrency and failures. Although
strong consistency guarantees such as serializability provide a simple programming model in these
systems, they may result in increased resource consumption, communication delays or transaction
aborts. Furthermore, such overheads may be unnecessary for applications that do not need strong
consistency guarantees for correct operation. To address this problem, current databases allow
applicationsto trade off consistency for apotential gainin performance. Furthermore, an ANSI/ISO
standard hasbeen established that definesdifferent level sof consistency (called degreesof isolation);
this standard is supported by all commercial database systems. However, the current ANSI standard
is ambiguous and an approach suggested to fix this problem is overly restrictive since it disallows
efficient optimistic and multi-version mechanisms. Apart from the inadequacy of the existing
isolation definitions, there is also a need for high-performance weak consistency mechanismsin
distributed client-server systems.

This thesis has focused on the problem of providing data consistency efficiently to applications
in database systems. It addressesthe limitations of the existing isolation definitionsand al so presents
efficient implementations of various weak consistency levels for client-server systems. It makes
contributions in three areas. First, it presents new specifications of the existing ANSI isolation
levels that allow a variety of concurrency control implementations. It also presents definitions
for other commercial levels using a uniform framework and proposes two new isolation levels
that provide useful consistency guarantees to applications. Second, it presents new and efficient
implementation techni ques based on multipart timestampsfor supporting different weak consistency
levelsin distributed client-server systems. Finaly, it presents the results of a simulation study that
evaluates the relative performance of different consistency implementations.

173

8.1 Isolation Level Specifications

We have redefined the existing ANSI isolation levels to allow a wide range of concurrency control
implementationsincluding optimism, locking and multi-version schemesin Chapter 3. Our isolation
levels are similar to the current ANSI levels and capture their essence thereby making it easy for
application writers to use them. Our isolation levels are named PL-1, PL-2, and PL-3, where PL
stands for portable level. Like the existing definitions, each isolation level in our specifications
captures different kinds of conflicts, e.g., PL-1 captures write-write conflicts, and serializability, or
PL-3, captures all types of conflicts. We have removed some of the constraints from the existing
definitions since they were applicable only to particular concurrency control schemes (locking) and
were overly restrictive for optimistic implementations.

An important property of our specifications is that they alow different guarantees to be pro-
vided to running and committed transactions. This flexibility is needed since efficient optimistic
implementations may provide strong guarantees such as serializability to committed transactions
but weak guarantees to transactions as they execute. The guarantees for committed transactions
ensure that the database integrity is not destroyed while guarantees for running transactions ensure
that database programmers can write application code with the assumption that the program will not
observe violated integrity constraints and behave in an unexpected manner, e.g., crash or display
erroneous data on a screen. Our specifications for both types of transactions are similar making it
easy for application programmers to use them.

Our specifications use a combination of conditions on serialization graphs and transaction
histories. Serialization graphs contain nodes for committed transactions and directed edges corre-
sponding to different types of read and write conflicts. They provide a smple way of capturing
multi-object constraints. Similar graphs have been used in the past for serializability semantics-
based correctness criteria and extended transaction models. Our approach is the first that applies
these techniquesto defining ANSI and commercial isolation levels.

We have also specified avariety of guaranteesthat can be provided to predicate-based operations
at weak consistency levelsin an implementati on-independent manner; a database system can choose
the guarantees that it wants to support at each consistency level. Earlier definitions for these
operations were either incomplete, ambiguous, or specified in terms of an implementation such as
locking or in terms of a particular database language such as SQL .

In Chapter 4, we have presented i mplementati on-independent definitions of various commercial
levels such as Cursor Stability, Snapshot Isolation, and Read Consistency; earlier definitions of
these levelswere either informal or based on alocking implementation. Our specificationsfor these
levels are based on variations of the graphs used for defining the ANSI levels; different types of
nodes and edges are added to capture constraints relevant to each level.

We also presented the specifications of two new isolation levels, PL-2+ and PL-2L, that provide

174

useful guaranteesto application writers. Level PL-2+ is the weakest level that provides consistent
reads to transactions; it allows a transaction T; to commit only if T; has observed a causally-
consistent database state, i.e., if T; observes the updates of another transaction T; directly or
indirectly, it must not observe an older version of an object that was modified by T;. Level PL-2+
is also specified using our graph-based technique. An interesting feature of this level is that it
disalows all phenomena that Snapshot Isolation, an isolation level used in Oracle, was intended
to disallow. Furthermore, since PL-2+ is weaker than Snapshot Isolation, it has the potential of
being implemented more efficiently than Snapshot Isolation, especialy in distributed client-server
systems. Thus, it may desirable to use PL-2+ over Snapshot I solation.

Our second new level, PL-2L, captures useful properties of the PL-2 lock-based implementation
that uses short read-locks and long write-locks. Level PL-2L ensures that a transaction observes
a monotonically increasing prefix of the database history as it executes. This level can be used
for legacy applications that make monotonicity assumptions about the underlying lock-based con-
currency control implementation; when the concurrency control mechanism is changed to (say)
optimism, such applications can continueto work correctly using PL-2L . Level PL-2L hasalso been
defined using a variation on serialization graphs and is similar to Oracle's Read Consistency.

8.2 Weak Consistency Mechanisms

In Chapter 5, we have presented optimistic schemesto support new and existing isolation levelsin
distributed client-server systems. In these systems, servers store persistent objects and client cache
them on their machines for good performance. Our mechanisms are based on an optimistic scheme
called CLocc, which has been shown to perform well in client-caching systems for awide range of
workloads and system parameters.

We devel oped techniques based on multipart timestamps or multistamps for a variety of weak
isolation levels. These multistamps efficiently capture different types of conflicts that are relevant
to a particular isolation level and are used to warn clients about potential consistency violations.
Our protocols are designed to be lazy: a client C sends extra messages to a server only if C does
not have information as indicated by the multistamp. Being lazy helpsin reducing extra messages
that are sent by clients since the relevant consistency information is likely to be present in the client
cache when it is needed. Furthermore, it allows servers to piggyback multistamp information on
existing messages thereby reducing the overheads of our protocols.

A negative aspect of multistamps is that they do not tend to scale with a large number of
clients and servers. We have developed a novel and simple technique called multistamp truncation
that keeps multistamps small by removing old consistency requirements and replacing them with
approximate information; there is little value in propagating old requirements since clients receive
consistency information piggybacked on other messages from servers that enables them to satisfy

175

these requirements. An important aspect of our multistamps is that they contain real clock values
instead of logical clock values. This approach allows us to make time-based judgements and use
the time values to approximate information at various parts of the system, e.g., to determine which
tuples are old in a multistamp. For good performance (not correctness), we assume that clocks
are loosely synchronized within a few milliseconds or tens of milliseconds; this is a reasonable
assumption because protocols such as the Network Time Protocol are able to achieve such levels of
synchronization even across wide area networks.

The multistamp-based mechanismsare used for providing PL-2L, PL-2+ and PL-3U guarantees
to update and read-only transactions as they commit; they are also used for providing the strong
consistency guaranteessuch as EPL -2+ and EPL -3U to running transactions. Read-only transactions
form an important class of transactions and our PL-2+ (or PL-3U) implementation for committing
thesetransactions offers many important advantagesover CLocc while providing strong consistency
guarantees. First, the multistamp-based implementations reduce transaction latency since they
avoid sending a commit message to servers for committing read-only transactions whereas CLocc
requires such communication for every read-only transaction. Second, the system becomes more
scalable since servers perform less work (they do not have to validate read-only transactions).
Update transactions have to be validated only against other update transactionsthereby reducing the
server’sload even more. Finally, update transactions are not aborted due to read-only transactions.

Our mechani smshave been designed to impose low network, processor, and memory overheads.
Most of the consistency information is piggybacked on existing messagesin the system; furthermore,
the increase in the size of network messagesis low since multistamp truncation allows us to keep
small multistamps while adding only afew small messagesto the network. Furthermore, the data
structures required to maintain multistamps impose low memory overheads at servers and clients.

8.3 Experimental Evaluation

This thesis also evaluates the relative performance of implementations of different isolation levels
in distributed client-server systems. Our results are applicableto a data-shipping architecture where
the transaction code is executed at client machines. To our knowledge, this is the first published
study that compares implementations of different isolation levelsin such environments. We used a
simulator to compare various consistency schemesin LAN and WAN environments for a range of
system parameters using workloads with varying amounts of contention.

Wewereinterested in answering three questions. First, what are the performance gainsachieved
by executing update transactions at levels below serializability? Thisis an important issue because
committing update transactions at lower levels has ahigh productivity cost: adatabase programmer
must carefully analyze the application code and ensure that it does not corrupt the database state
when executed at alow isolation level. Second, how expensiveis it to provide strong consistency

176

guaranteesto read-only transactions? Finally, what is the performance penalty of providing consis-
tent views to transactions while they are executing, i.e., what are the space and network overheads
imposed by multistamps and how effective is multistamp truncation?

We derived our multi-server workloads based on workloads used in earlier concurrency control
studies for single-server systems. Transactions in our studies access a few hundred objects and
clients can cache the accessed abjects for the duration of a transaction. Our results show that
providing strong consistency guarantees to update, read-only, and running transactions are not
necessarily expensive. Our experiments revealed the following answers to the questions stated
above:

e The cost of providing stronger consistency guarantees including serializability to update
transactions is very low for low-contention workloads since the CPU and communication
overheads of CLocc and the multistamp-based schemes are low for normal (i.e., successful)
transactions. Thisis an important result since many applications exhibit low-contention and
such workloads are one of the main environments recommended for using weaker isolation
levels.

Evenfor stressful workloads such asHOTREG and HICON, the cost of providing serializabil-
ity to update transactions is approximately 10%. As contention is increased, alarge number
of transactions will abort in any optimistic scheme including CLocc. However, in CLOCC, a
large increase in the abort rate does not result in a corresponding performance degradation
because CLocc has low restart costs (e.g., undo logs at clients help in avoiding some fetches
when atransaction reruns) and invalidation messages prevent excessive wastage of work by
aborting a transaction early during its execution.

Our sensitivity analysisresults show that the relative performance penalty of serializability is
higher compared to PL-2 for update transactions only if the workload has moderate to high
contention and the cost of restarting atransaction is high.

e The cost of providing serializability to read-only transactions compared to PL-2 isrelatively
low (approximately 5%) for low-contention workloadsin LAN environments. For mediumto
high-contention workloads, more contention leads to higher performance degradation; how-
ever, the performance penalty islessthan 10% relative to a system that provides serializability
only for update transactions.

In WAN environments, where message costs are higher, an extra message roundtrip for
committing read-only transactions in CLocc has a higher performance penalty compared
to LANs. As a result, even for a workload such as LOWCON, CLocc has a throughput
degradation of approximately 15% relativeto a PL-2 system that commitstransactionslocally
at client machines; HOTREG and HICON haveoverheadsof 10-15%in thiscase. To dleviate

177

this problem, our multistamp-based techniques for PL-2+ and PL-3U can be used since they
avoid a commit message roundtrip for read-only transactions in most cases (more than 96%
of read-only transactions). Fewer commit message roundtrips for read-only transactions help
inimproving the system throughput for all workloads. For example, the performance penalty
of providing PL-2+ or PL-3U to read-only transactions in LOWCON is approximately 2%
compared to a system that provides PL-2 to such transactions. Providing PL-2+ or PL-3U
instead of serializability to read-only transactions may be acceptablesincetheselevelsprovide
strong consistency guarantees to such transactions; thus, it should still be relatively easy for
programmers to reason about the correctness of the application code.

e Thecost of providing strong consistency guaranteessuch as EPL -2+ and EPL-3U to executing
transactions is low. Our experiments show that the multistamp-based implementations are
efficient and small multistamps (less than 100 bytes) result in very low stall rates for awide
variation of system parameters. Since fewer than 3% of fetches result in a consistency stall
for a system that provides EPL-2+, the throughput impact of multistamps and consistency
stallsis negligible. Thus, with very low overheads, a database system can provide a strong
guarantee that an executing application code will never observe an inconsistent state of the
database.

8.4 FutureWork

There are several directionsin which thiswork can be extended. Our isolation conditions have been
specified in terms of reads and writes. Researchers have developed correctness criteria based on
semantics of operations [Lam76, GM83, Her90, WL 85, SS84] rather than simple reads and writes.
Such conditions allow more concurrency and better performance while ensuring that an application
programmer has aformal model to reason about program correctness. Thus, it will be beneficial to
extend our isolation conditionsfor dealing with complex operations on abstract datatypes. It would
be important to ensure that the new semantic isolation levels be similar to our read/write-based
levels so that application programmers do not have to deal with a diverse set of definitions.

Another important issue is how the interactions of various isolation levels affect the database
state. Such an understanding of isolation level interactions is crucial for a program’s correctness.
Suppose that a transaction T; commits using PL-3 and T; commits using PL-2. To ensure that T;
observes a serializable state of the database, the application writer for T; must “know” that the
databaseis updated in a consistent manner. Thus, when a set of objectsisread by atransaction, itis
difficult to determine the guarantees that are provided to these reads. This problem exists with the
current isolation definitions as well.

A possible approach to handle this problem is to label each object with an isolation level to
indicate that the object has never been directly or indirectly “affected” by a transaction below that

178

level; the notion of affectsis similar to the idea of dependencies and anti-dependencies. When a
transaction commits at (say) PL-2+, we can determineif it hasread only those objectsthat have been
directly or indirectly affected by PL-2+ or higher update transactions. Such an approach was briefly
proposed in [GLPT76] but we are not aware of afull solution developed for that proposal. Labeling
of objectsto control flow of information for privacy and secrecy reasons has been explored for many
years[DD77, Mye99]. It would be interesting to combine those ideas with our isolation definitions.
A problem with labeling objectswith the minimum isolation level transaction that has ever modified
them is that objects may soon get labeled with very low isolation levels. To deal with this problem,
amechanism needsto be provided that allows“lifting” of object isolation levelsif applications have
extra knowledge about these objects and their read/update history. We can borrow ideas from the
information flow control domain since an analogous problem exists there when applications want
to release private data (i.e., declassify information) in a controlled manner. Techniques for safe
declassification have been proposed in the literature for addressing this problem [Mye99] and it
would be interesting to use similar ideas for lifting an object’sisolation level.

Our isolation definitions for committed transactions can be used in mobile systems as well.
However, they need to be extended to handle “ tentatively committed” transactionsin such systems.
In these systems, clients may be disconnected from the servers and may read/write data stored at its
machine or other clients' machines. When atransaction is completes, it is tentatively committed at
its client’s machine [GK L S94, GBH T 96]; when the client reconnects with a server, each tentatively
committed transaction iscommitted if it passesvalidation checks at the server. Treating these trans-
actions as running transactions can be unnecessarily restrictive. For example, EPL-2 specifications
for running transactions disallow reads from other running transactions. When a mobile client is
disconnected, it would like to observe its own updates and may even want to read the updates of
other nearby clients, i.e., running and tentatively committed transactions are allowed to read from
other tentatively committed transactions [TTP*95]. Thus, for mobile systems, we need to divide
the category of running transactionsinto two — transactionsthat have not reached the commit point
and transactionsthat are tentatively committed; our EPL definitions can be used for the former type
of transactions.

Thisthesis presents efficient and scal able optimistic mechanismsfor data-shipping client-server
systems. It is unclear which techniques are the best for other system architectures. An important
direction of future research is to design and evaluate the performance of concurrency control
mechanisms for different types of environments. For example, in a pure function-shipping system,
our optimistic techniques may not be the most appropriate. Our schemes take advantage of the
client’s processing power and offload most of the work from servers to clients; for this reason, the
cost of abortsisnot very highin our implementations. In pure function-shipping systems, the restart
costs can be much higher since an abort would slow down all clientsrather than just the client whose
transaction aborted. However, optimism may be appropriate in systems that use a combination of

179

data and function-shipping. For example, in a hybrid system where the client performs most of
the transaction’s work and short queries are executed at a server, our optimistic mechanisms may
perform well. Similarly, optimism may be a good approach for three-tier systems, in which servers
store persistent objects, clients run applications, and transactions are executed at shared “proxies”’.
These are essentialy hybrid systemsin which proxies fetch data from the servers and functions are
shipped by the clientsto the proxies. In such systems, optimism may be the appropriate concurrency
control mechanism for managing data among the proxies and the server. Locking may be the best
approach to manage the client cache relative to the proxies. In general, hybrid systemsrequire more
investigation since a combination of concurrency control techniques may be appropriate for such
systems.

Thisthesisal so showshow multistamps can be used capture different typesof conflictsefficiently
in distributed client-server systems. It would be interesting to use the ideas presented in this thesis
for devel oping efficient consistency mechanismsfor other environments such asreplicated, mobile,
cooperative caching systems (where clientscommunicatedirectly with each other for servicing cache
misses), and even non-transactional systems. For example, in areplicated system, multistamps may
be used for maintaining weakly-consistent replicas at different consistency levels. Similarly, some
of the existing non-transactional systems that use multistamps for providing causality guarantees
can benefit from our idea of multistamp truncation.

This thesis has shown that the cost of providing serializability in data-shipping client-server
systems is not high. It is possible that serializability is inexpensive for some of the common
workloads in systems with a different architecture, e.g., pure function-shipping systems, hybrid
systems, and three-tier systems. We believe that more studies for evaluating isolation mechanisms
are needed since the productivity cost of programming at lower isolation levels can be significant.
Quantifying the overheads of serializability for different access patternsis valuable to programmers
since they can determineif any significant performance benefit can be achieved for their application
by running transactions at lower isolation levels. Such studies are crucial for system developers
as well: the performance results can provide insights into the overheads of strong consistency
mechani smsthereby allowing database implementorsto optimizethe systemfor better performance.

180

Appendix A

Specifications of Intermediate L evelsfor
Executing Transactions

In Chapter 3, we discussed how different isolation levels for executing transactions can specified
similar to the approach used for committed transactions. For the sake of completeness, we now
give the specifications of intermediate levels for executing transactions. For all these levels, dirty
reads at runtime (phenomenon P1) are disallowed. We only provide guarantees to reads of an
executing transaction T, (recall from Section 3.5 that T,'s predicate-based writes are treated as
predicate-based reads). As discussed in Chapter 3, if an executing transaction T; in history H is
provided level L during its execution, it must be provided a level at least as strong as L when it
commits. We also assume that committed transactions in history H are being provided with (at
least) level L guarantees. It is possible to consider systemsin which execution-time guarantees are
stronger than commit-time guarantees. Consistency conditions for these systems can be devel oped
in amanner similar to the approach used for committed transactionsin mixed systems (Section 3.3).
For simplicity, we only consider systems where the commit-time guarantees are at least as strong
the execution-time guarantees.

| solation L evel EPL -2+

Level EPL-2+ ensuresthat an executing transaction observes a consistent committed database state.

This level is specified using the Direct Transaction Graph or DTG presented in Section 3.5.3.
The DTG isspecified for ahistory H and an executing transaction T; (for which isolation guarantees
are being provided) and is denoted by DTG(H, T;). The DTG is exactly the same as DSG with
the following addition: it also contains a node for T;, and all edges corresponding to T;'s reads.
EPL-2+ disallows P1 and E-single:

E-single: Single Anti-dependency Cyclesat Runtime. A history H and an executing
transaction T; exhibit phenomenon E-single if DTG(H, T;) contains a directed cycle
involving T; with exactly one anti-dependency edge.

181

Disallowing phenomenon E-single is equivalent to the no-depend-misses property with respect to
transaction T;’s reads, i.e., if T; depends on atransaction T, T; does not miss the effects of T;.
This equivalence can be shown in manner similar to Theorem 2+ givenin Section 4.1.1.

| solation Level EPL-3U

Isolation level EPL-3U ensuresthat the reads of an executing transaction T; are serializable with all
update transactions that have committed.

This level disallows phenomena P1 and E-update (the function update-transactions(H) selects
only operations executed by update transactionsin H):

E-update: Single Anti-Dependency Cycles with Update Transactions at Run-
time. A history H and an executing transaction T; exhibit phenomenon E-update if
DTG(update-transactions(H), T;) contains a cycle involving T; that consists of depen-
dency edges and 1 or more anti-dependency edges.

Similar to the casefor G-update, disallowing E-updateis equivalent to the no-update-conflict-misses
property with respect to T;'sreads. Recall that EPL-3 ensuresthat T; observes a seridizable state
of the database. Isolation level EPL-3U provides|ower guaranteesthan EPL-3 sinceit only ensures
that the observed state is serializable with respect to update transactions only, i.e., the addition of a
read-only transaction along with T; in the DTG may result in acycle.

|solation Level EPL-CS

Cursor Stability is an isolation level designed to disallow lost updates. Since this level provides
extra guarantees over PL-2 with respect to a transaction’s modifications and our execution-time
guarantees are provided for reads, we do not need to disallow any phenomenon other than P1 for
level EPL-CS.

| solation Level EPL-2L

Atlevel EPL-2L, arunning transaction observesamonotonically increasing prefix of the committed
history. To define EPL-2L, we use a modified form of the USG called the Unfolded Transaction
Graph or UTG for a history H and an executing transaction T;. The graph UTG is the same as
USG except that the UTG only contains read nodes (and no write nodes) due to T;; since T;'s
predicate-based writes are considered as predicate-based reads, nodes and edges corresponding
to such “reads’ are also added. We define a phenomenon, E-monatonic, that is analogous to
G-monotonic; T; executes at level EPL-2L if phenomena P1 and E-monotonic do not occur:

182

E-monotonic: Moncotonic Readsat Runtime. A history H and an executing transac-
tion T; exhibit phenomenon E-monotonic if thereisacyclein USG(H, T;) containing
exactly one anti-dependency edge from a read node r;(x;) (or r;(P: X;, ...)) to some
transaction node T, (and any humber of order or dependency edges).

| solation Level EPL-SI

At level EPL-SI, an executing transaction observes a snapshot of the committed database state.

To define EPL-SI, we use a variation on the SSG called the Start-ordered Transaction Graph
or the STG. The STG is the same as the SSG with the following change: it also contains a node
for executing transaction T;, and all edges corresponding to T;’sreads (and asin the DTG, we treat
predicate-based writes as predicate-based reads). Like level PL-SI, we define two phenomenathat
are analogous to G-Sla and GSl-b:

E-Sla: Interferenceat Runtime. A history H and an executing transaction T; exhibit
interference E-Slaif STG(H,T;) containsaread-dependency edgefrom T to T; without
there also being a start-dependency edge from T to T;.

E-SIb: Missed Effects at Runtime. A history H and transaction T; exhibits
phenomenon E-Slb if STG(H, T;) contains a directed cycle involving T; with exactly
one anti-dependency edge.

Phenomenon E-S| consists of E-Sla and E-SIb; level EPL-SI disallows P1 and E-Sl.

|solation Level EPL-FCV

At level EPL-FCV, an executing transaction T; observes a consistent state of the database such that
al T; does not miss the effects of any transaction that committed before T;'s start point. Thislevel
disallows phenomena P1 and ESI-b.

| Level | Name | Conditions
EPL-2 Committed Reads P1
EPL-CS Cursor Stability P1
EPL-2L Monotonic View P1, E-monotonic
EPL-MSR || Monotonic Snapshot Reads | P1, E-MSR
EPL-2+ Consistent View P1, E-single
EPL-FCV || Forward Consistent View P1, E-Slb
EPL-SI Snapshot I solation P1, E-SI
EPL-3U Update Serializability P1, E-update
EPL-3 Full Seriaizability P1, E2

Figure A-1: Intermediate isolation levels for running transactions

183

|solation Level EPL-M SR

At thislevel, an executing transaction T;’s actions observe a monotonically increasing snapshot of
the committed state. We use agraph called the Start-ordered Unfolded Transaction Graph (SUTG)
that contains all committed transactions and read operations of transaction T; under consideration
(asintheUTG for EPL-2L, weadd nodesfor T;'s predicate-based writes and treat them as predi cate-
based reads). A phenomenon E-M SR that is similar to G-M SR can be defined on the SUTG and
level EPL-M SR as onethat disallows P1 and E-M SR.

Figure A-1 summarizesthe intermediate isolation levels for executing transactions.

184

Appendix B

Optimistic Mechanismsfor PL-2L,
Causality and PL-3

We now discuss some optimistic schemesthat providedifferent consistency and causality guarantees
to executing and committed transactions in distributed client-server systems. In Section B.1, we
discuss how the PL-2+ scheme can modified to provide PL-2L and EPL-2L. Section B.2 shows
how different causality guarantees can be provided to clients; these schemes are also based on the
multi stamp-constraint mechanism. We also present results that show the cost of providing different
levels of causality. Section B.3 presents a technique that allows clients to efficiently commit
read-only transactions with serializability guarantees.

B.1 Optimistic Schemesfor LevelsPL-2L and EPL-2L

The scheme for EPL-2L is exactly the same as the EPL-2+ technique, with consistency stalls as
described in Chapter 5, except that invalidationsarehandled asin PL-2, i.e., if the current transaction
T; receivesan invalidation for an abject x that it has modified, T; is aborted; if T; hassimply read x,
itisnot aborted. Thereasonisthat EPL-2L simply requiresthat T; does not missatransaction T;’s
effects after it becomes dependent on T ; it is acceptable for T; to have missed T;’s effects earlier.

The above scheme validates T;’s reads as it executes and provides EPL-2L. To provide PL-2L,
T; swrites need to be validate aswell. For this purpose, servers perform the checksin Weak-CLocc
at commit time.

In our PL-2L scheme, a read-only transaction T; can be committed immediately at the client
machine when it finishes execution. Asin PL-2, such transactions are never aborted; invalidations
only abort atransaction if it has modified an obsolete object.

B.2 Causality Guarantees

Causality [Lam78] isaguaranteethat clientsmay find useful. Inthissection, we discussthreelevels
of causality — no causality, local causality and global causality, and present schemes that provide

185

them to clients. These causality guarantees are independent of the consistency guarantees being
provided and can be supported during a transaction’s execution or at commit time.

Local causality guarantees are provided to a transaction T; executing at client C if the system
ensures that T; does not miss the effects of any transaction T; that ran at C before T; and all the
transactions that T; depends on. Local causality is useful for a transaction T; at client C since it
allows C to make decisions based on data observed in transactions that executed at C before T;. If
transaction T; misses the effects of T; or any transaction T; depends on, we say that no causality
guaranteesare provided. Global causality is aproperty such that if aclient C observesthe effects of
transaction T; committed by some other client D, it also observeseffects of all earlier transactions of
client D and the transactions they depended on. Global causality isthe stronger than local causality.
Note that locking provides global causality to all uncommitted transactions running above (and
including) PL-2.

Although it may seem that not providing any causality guaranteesis very weak, such guarantees
may not be needed for applications where a client’s “memory” is not important. For example,
if different users use a computer terminal in a public place to execute their queries, there is no
reason why a subsequent query needs to observe the effects of a transaction that was committed
earlier by the client. Of course, local causality can be useful in many cases. For example, suppose
an employee record E (whose manager is M) is added to an employee database and a manager
database. Suppose that a client reads E's record and then runs another transaction asking for all
employees working for M; we would like to ensure that E is present in the returned result. Local
causality would be required to guarantee this result. Global causality is needed when aclient wants
its transactions to be observed in the order it has committed them. For example, consider a stock
reporting system where aclient C modifiesthe stock price of acompany A andinits next transaction
closes the market. If another client D observes the market to be closed and reads the price of A's
stock, we would like to ensure that D observesthe final stock value; thus, global causality is needed
in this application.

We now discuss how different levels of causality can be supported while transactions are
executing; similar schemes can be used for committed transactions. We build on the scheme that
provides EPL -2+ to running transactions.

Local Causality

Local causality isaready provided by our EPL-2L and higher isolation degree schemesfor running
transactionssincethe REQ array at aclient keepstrack of therequirementsimposed by all previously
committed transactions and the transactions they depended on. For isolation level EPL-2, hereisa
modification to the scheme.

A client C maintains an array called PREVREQ array keepstrack of the requirementsimposed
by al transactions that have previously committed at C. As before, the REQ array keeps track

186

of the regquirements placed by all transactions including the current transaction. Instead of using
REQ, the PREVREQ array is used to perform the read-dependency checks (at commit time or while
running, depending on when the causality guarantees are needed). It isinitialized using the REQ
array at the beginning of atransaction but not updated while the transaction is executing, whereas
the REQ is updated as before. The PREVREQ array ensures that a transaction executing at client
C does not miss the effects of any transaction T; that previously ran at C and the transactions that
T; depends on. However, since this array does not include the constraintsintroduced by the current
transaction, the client is not stalled because of the reads it makesin the current transaction (recall
that local causality simply requiresthe transaction to observe the effects of all transactionsthat have
previously committed at C and the transactions they depend on).

No Causality

Our mechanism for EPL-2 does not provide any causality guarantees. For schemes that provide
EPL-2L or ahigherisolation level, the REQ array at aclient keepstrack of the multistamp constraints
imposed by all transactions that have executed at the client; we need to modify these mechanisms
so that REQ only contains constraints imposed by the current transaction’s reads and not the
reads/writes of previous transactions, i.e., the REQ array should be used just for providing the
consistency guarantees requested by client C.

The client maintains a table SSTAMP that maps servers to multistamps; every time the client
receivesafetch reply from server X, it merges the multistamp in the messageinto SSTAMP[X]. The
array REQ is empty when the transaction starts. The first time the transaction accesses an object
from server X, it uses SSTAMP[X] to update entries for other servers used by the transaction in
REQ and then sends invalidation requests to these other serversif necessary. After commit, REQ
is merged into SSTAMP[X] for all servers X accessed by the current transaction T; (to capture
T;’s dependencies). In this scheme, at any given point, REQ just stores the requirement imposed
by the current transaction; it does not take into account the requirements imposed by a previously
committed transaction T;. Thus, T; can miss the effects of some transactions that T; depended on.
However, notethat T; cannot miss T;’s effects evenin this scheme; if T;’s client uncaches an object
x that was modified by T; and fetchesit again from a server X, X will return the latest version of x
or block T;’sfetchif T; isstill prepared at X.

Global Causality

Global causality is supported by modifying the EPL-2+ scheme in the following way. A client
C keeps track of a multistamp, ALLSTAMP that is obtained by merging the multistamps of all
earlier transactions that have been committed by C. When a transaction T; from C commits, the
coordinator sends T;’s final multistamp to C in the commit reply; C merges the multistamp into

187

Client C Client D
ALLSTAMP
Thresh = 3:01:11 pm
D | Y | 3:02:21 pm

REQ LATEST
3:01:32 pm 3:01:45 pm
3:01:32 pm 3:01:55 pm

Fetch 2
page P

e, <
Updated in the case of global
causality to 3:02:21 pm

Commit T !
(modifies x on page P) 3
Pagereply
+ multistamp

P.mstamp with local causality
|Thresh =3:01:26 pm

P.mstamp with global causality
Thresh = 3:01:26 pm
D | Y | 3:02:21 pm

Server X

Figure B-1: Global causality can result in extra consistency stalls.

ALLSTAMP®. At theend of its next transaction T, client C sends ALLSTAMPto T;’s coordinator
and the server mergesit into T;'s multistamp (i.e., ALLSTAMPisused to “seed” T;’s multistamp);
if any transaction Ty, reads T ;s effects, T, cannot miss the updates of any of the earlier transactions
committed by client C. Asaresult, global causality will be provided to T.

Figure B-1 shows a case where client C commits a transaction T; that has modified object x
on page P. In the case of global causality, we merge C's ALLSTAMP into P's multistamp; for
local causality, this merge is not performed. Since P's multistamp has more constraints for global
causality, when client D fetches page P from server X, REQ[Y] increases beyond LATEST[Y]
causing a consistency stall (assuming D is accessing server Y in the current transaction). In the
case of local causdlity, client D's LATEST array already meets the requirements imposed by P's
multistamp; hence, there is no consistency stall.

Performance Cost of Different Causality Guarantees

In this section, we evaluate the cost of providing different levels of causality to clients using the
3/2+/2+ system (the notation for naming systems has been presented in Section 7.1). We have
chosen the 3/2+/2+ system since it is the cheapest reasonable system that provides strong isolation
guarantees to all types of transactions. We compare the costs of providing different levels of

INote that ALLSTAMP is different from CURRUSTAMP that was presented in Section 5.4.1 since the latter just
contains the multistamps of the update transactions that were committed by aclient.

188

/
S 7, @2 Global causality stalls = é
SR / Local causdlity stalls SEE %
2 % B EPL-2+ stalls o
k: % T
g 21 % © 24 -
8 7/ 8
: 2
o 14 Z P 14
o o

o1 . I l ol I I

LOWCON HOTREG ~ HICON LOWCON HOTREG HICON
LAN WAN

Figure B-2: Breakdown of stall rate for local and global causality.

causality to running transactions for the 3/2+/2+ system; the costs are lower for providing these
guarantees at commit time. Note that CLoccC and the 3/3/2+ system provide stronger consistency
guaranteesthan local causality to committed transactions. However, they do not necessarily provide
causality guarantees to transactions as they run. We evaluated the cost of providing different
causality guaranteesto running transactionsin the 3/3/2+ system; the results are similar to those for
the 3/2+/2+ system.

We observed that theimpact of throughput isnegligiblefor providing different level sof causality.
Thus, we perform astall rate analysis to understand the costs of local and global causality.

The stall ratesfor different levels of causality are givenin Figure B-2. The stall rate goes up by
afactor of two to three when support for local causality is added to the 3/2+/2+ (or 3/3/2+) systems,
and it increases further when support for global causality is added (by lessthan afactor of two). We
now discuss why the stall rate increasesin systemswith local and global causality.

In a system without local or global causality guarantees, single-server transactions cannot stall,
and even in a multi-server transaction, a client’s requirements are due only to the servers used in
that transaction. Thus, the following situation must occur for aclient to stall. Client C fetches page
P at server Sin amulti-server transaction that involves another server R aswell. Furthermore, page
P has been modified recently by amulti-server transaction that also involved server R and caused an
invalidation for C. The likelihood of a multi-server transaction depending on another “temporally
close” multi-server transaction is relatively low because there are 80% single-server transactionsin
the workload (changes in the stall rate as the percentage of multi-server transactionsis varied has
been described in Section 7.5.5).

When local causality is supported, there are more stalls since a transaction can stall due to
requirements generated in an earlier transaction. For example, without any causality guarantees,

single-server transactions never stall but now they can; we observed that with local causality about
half thetotal stallsin HICON and HOTREG were stallsin asingle-server transaction. Furthermore,

189

aclient C's requirements are no longer due to the servers being accessed in C's current transaction
but are dueto all serversthat C has accessed in the past. Since the client’s invalidation requirements
are higher than in a system without local causality, the stall rate is higher.

The default implementations used in Chapter 7 provide local causality to running or committed
transactions. In systems where EPL-2+ or EPL-3U is being provided, the default implementation
provides local causality to running transactions; for systems in which PL-2+ or PL-3U is being
provided, it guaranteeslocal causality for committed transactions.

Global causality further increases the stall rate because clients nhow act as “propagators’ of
multistamps. Without global causality, multistamp information is propagated across servers only
through multi-server transactions. Now when a client “switches’ servers, it propagates the multi-
stamps generated due to its previous commits to the new servers. Thus, faster propagation causes
bigger multistamps resulting in more pruning and hence, a higher number of stalls.

Of course, despite the increase in stalls, the stall rate is still very low and the performance
degradation duetolocal or global causality isminimal. Thus, even global causality can be supported
at alow performance cost.

B.3 Efficient Serializability for Read-only Transactions

We now discuss a simple extension to CLocc that allows read-only transactions to be committed at
client machineswith PL-3 guarantees. In asingle-server system using CLocc (i.e., all datais stored
on one server), a read-only transaction T, can always be committed by a client locally because
invalidation messages are generated in a transaction-consistent manner and the arrival order at the
server can be used as the serialization order (no timestamps are needed). The PL-3U scheme also
uses arrival order, but without coordinating this order across servers. Asaresult, it doesnot provide
seriaizability: two read-only transactions T, and T, that commit at client machines are not ordered
with respect to each other. CLocc avoids this problem by ordering all transactions based on their
timestamp value. We now present a scheme for committing read-only transactionslocally (at client
machines) that also provides serializability based on the timestamp order.

For a read-only transaction T,., suppose that T,.maxread is the highest timestamp of al the
transactions whose effects have been observed by T,.. Transaction T,’sclient can commit T,. locally
if it can determine that T, has observed the effects of all conflicting transactions that have (or
can have) a timestamp less than T,.maxread; T, can be seridized at a time slightly higher than
T,.maxread.

To provide serializability without communicating with the servers, we take advantage of the
fact that CLocc maintains a watermark timestamp (see Section 5.1.1); any transaction that tries
to validate at a server below the watermark is aborted. To commit T, locally, its client ensures
two conditions. First, it checks that it has received the invalidations of al transactions that have

190

committed at all servers accessed by T, with atimestamp lessthan T,..maxread. Second, it ensures
that T,..maxread is below the watermark of the accessed servers. Thesetests are called theread-only
checks. Thefirst condition guaranteesthat T,. has not missed the effects of any transaction that has
committed till now with a timestamp less than T,.maxread and the second condition ensures that
no transaction will commit in the future below T,..maxread at the relevant servers. Thus, T, can be
serialized at atime dlightly higher than T,..maxread. If the read-only checksfail at T,. client, it must
communicate with the serversto validate T,..

To implement the above strategy, a client maintains an array WMARK, where WMARK[X]
stores the last known watermark from server X. In each invalidation message, the server sends
its current watermark as well (if there is a prepared transaction below the watermark, the server
includes its invalidations as well). For each page P, a server maintains a time Pmodts that is the
maximum timestamp of the transactionsthat have modified P; this value is also sent to the client in
afetch reply. At the end of aread-only transaction T,., its client computes T,..maxread by taking
the maximum value of Pmodts, for all pages P accessed by T,.. Optimizations similar to the ones
designed for the PSTAMP table can be used such that Pmodts is only maintained for recently
modified pages at the client and the server.

In this scheme, the likelihood that the read-only check fails for transaction T,. is dependent on
the relative values of T,..maxread and the watermarks of different servers accessed by T,.. A low
value of server watermarks and a high value of T,..maxread can cause the read-only check to fail.
As discussed in Section 5.1.1, the watermark is set at least § below a server’s current time, where
¢ is the network delay. Thus, when § is high (e.g., in a WAN environment) and T, reads from a
recently committed transaction, the read-only check islikely to fail. In LAN environments, where
delays are low, the watermark can be kept reasonably close to the current time and the read-only
check will usually succeed at the client.

Note that reading from arecently committed transaction also implies aworkload with moderate
to high-contention since two transactions are conflicting on the same object close to each other in
real time. Thus, for the common case of low-contention workloads and for LAN environments, the
above scheme may actually suffice. This scheme aso hasthe virtue of being very simple with very
low overheadsin terms of data structures and their manipulation.

The above scheme can be modified for providing EPL -3 to running transactions (a multistamp-
based scheme for EPL -3 was presented in Section 5.4.2. At any given point, the client must ensure
that a running transaction T;.maxread is always greater than the watermark values of the accessed
servers. Of course, since this condition has to be true while T; is executing, the communication
costs may be higher or T; may block at a server more often than in the committed transaction case.

191

Bibliography

[A+76]

[AASO3]

[ABGSS7]

[ABJ97]

[ACD+96]

[ACL+97]

[Ady94]

[AGLMO5]

[AL97]

[ALBLO1]

M. Astrahan et al. System R: Relational Approach to Database Management. ACM
Transactionson Database Systems, 1(2):97—137, June 1976. Also availablein Chapter
1 of Readingsin Database Systems, Third Edition, Morgan Kaufmann, 1998.

D. Agrawal, A. E. Abbadi, and A. K. Singh. Consistency and Orderability: Semantics-
Based Correctness Criteria for Databases. ACM Transactions on Database Systems
(TODS), 18(3):460-486, Sept. 1993.

D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta. Distributed Multi-version
Optimistic Concurrency Control with Reduced Rollback. Distributed Computing,
2(1):45-59, 1987.

V. Atluri, E. Bertino, and S. Jajodia. A Theoretical Framework for Degreesof Isolation
in Databases. Information and Software Technology, 39(1):47-53, 1997.

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rgamony, W. Yu, and
W. Zwaenepodl. TreadMarks. Shared Memory Computing on Networks of Worksta-
tions. IEEE Computer, 29(2):18-28, February 1996.

A. Adya, M. Castro, B. Liskov, U. Maheshwari, and L. Shrira. Fragment Recon-
struction: Providing Global Cache Coherence in a Transactional Storage System. In
Proceedings of the 17th International Conference on Distributed Computing Systems,
Baltimore, MD, May 1997.

A. Adya. Transaction Management for Maobile Objects Using Optimistic Concurrency
Control. Master's thesis, Massachusetts Institute of Technology, Jan. 1994. Also
available as MIT Laboratory for Computer Science Technical Report MIT/LCSTR-
626.

A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Optimistic Concurrency
Control using Loosely Synchronized Clocks. In Proc. of ACM SSGMOD I nter national
Conference on Management of Data, pages 23-34, San Jose, CA, May 1995.

A. Adyaand B. Liskov. Lazy Consistency Using Loosely Synchronized Clocks. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, pages
73-82, Santa Barbara, CA, Aug. 1997.

T. Anderson, H. Levy, B. Bershad, and E. Lazowska. The Interaction of Architecture
and Operating System Design. In Proceedings of the Fourth Inter national Conference
on Architectural Support for Programming Languages and Operating Systems, pages
108-120, Santa Clara, CA, April 1991.

192

[ANK+95]

[ANS92]

[BBG+95]

[BHGS7]

[BK91]

[BK96]

[BOSO1]

[BSSO1]

[CALMO7]

[CDNO93]

[CFZ94]

[CG85]

[CO82]

[CR94]

[CS89]

[Dat90]

M. Ahamad, G. Neiger, P. Kohli, J. Burns, and P. Hutto. Causal Memory: Definitions,
Implementation, and Programming. Distributed Computing, 9(1):37-49, 1995.

ANSl X3.135-1992, American National Standard for Information Systems— Database
Language — SQL, November 1992.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O’'Neil. A Critique of
ANSI SQL Isolation Levels. In Proceedingsof the S GMOD International Conference
on Management of Data, pages 1-10, San Jose, CA, May 1995.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison Wesley, 1987.

N. S. Barghouti and G. E. Kaiser. Concurrency Control in Advanced Database Appli-
cations. Computing Surveys, 23(3):269-317, September 1991.

J. Basu and A. Keller. Degrees of Transaction Isolation in SQL*Cache: A
Predicate-based Client-side Caching System, May 1996. Available at http://www-
db.stanford.edu/pub/keller/.

P. Butterworth, A. Otis, and J. Stein. The GemStone Object Database Management
System. Comm. of the ACM, 34(10):64—77, October 1991.

K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group
Multicast. ACM Transactions on Computer Systems, 9(3):272—314, August 1991.

M. Castro, A. Adya, B. Liskov, and A. Myers. HAC: Hybrid Adaptive Caching
for Distributed Storage Systems. In Proc. 17th ACM Symp. on Operating System
Principles (SOSP), pages 102-115, St. Malo, France, Oct. 1997.

M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 Benchmark. In Proc.
of ACM SGMOD International Conference on Management of Data, pages 12-21,
Washington D.C., May 1993.

M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Grained Sharing in a Page Server
OODBMS. In Proc. of ACM SSGMOD International Conference on Management of
Data, pages 359370, Minneapolis, MN, June 1994.

A. Chan and R. Gray. Implementing Distributed Read-Only Transactions. IEEE
Transactions on Software Engineering, 11(2):205-212, Feb. 1985.

S. Ceri and S. Owicki. On the Use of Optimistic Methods for Concurrency Control in
Distributed Databases. In Proceedings of the 6th Berkeley Workshop on Distributed
Data Management and Computer Networ ks, pages117-129, Asilomar, CA, Feb. 1982.

P. Chrysanthisand K. Ramamritham. Synthesisof Extended Transaction Modelsusing
ACTA. ACM Transactions on Database Systems (TODS), 19(3):450-491, Sept. 1994.

W. W. Chang and H. J. Schek. A Signature Access Method for the Starburst Database
System. In Proceedings of the Fifteenth International Conferenceon Veery Large Data
Bases, pages 145-153, Amsterdam, Netherlands, August 1989.

C. J. Date. AnIntroduction to Database Systems. Addison-Wesley, Fifth edition, 1990.

193

[DD77]

[EGLT76]

[FCABOS]

[FCL97]

[GBH*96]

[Ghe9s]

[GHOS96]

[GKLS94]

[GKM96]

[GLPT76]

[GM83]

[GR93]

[Grug9]

[Gru97]

D. E. Denning and P. J. Denning. Certification of Programs for Secure Information
Flow. Comm. of the ACM, 20(7):504-513, July 1977.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of Consistency
and Predicate Locks in a Database System. Comm. of the ACM, 19(11):624—633,
November 1976. Also published asIBM RJ1487, December, 1974.

L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache: A Scalable Wide-Area
Web Cache Sharing Protocol. In Proceedingsof ACM SGCOMM' 98, pages 254—265,
Vancouver, Canada, Feb. 1998.

M. J. Franklin, M. J. Carey, and M. Livny. Transactional Client-Server Cache Con-
sistency: Alternatives and Performance. ACM Transactions on Database Systems,
22(3):315-363, Sept. 1997.

J. Gray, J. G. Bennett, P. Helland, P. E. O'Neil, and D. Shasha. The Dangers of
Replication and a Solution. In Proc. of the ACM SSGMOD International Conference
on Management of Data, Montreal, Canada, May 1996.

S. Ghemawat. The Modified Object Buffer: A Storage Management Technique for
Object-Oriented Databases. Technical Report MIT/LCSTR-666, MIT Laboratory for
Computer Science, Sept. 1995.

J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers of Replication and a
Solution. In Proceedings of the SGMOD International Conference on Management
of Data, pages 173-182, Montreal, Canada, June 1996.

R. Gruber, F. Kaashoek, B. Liskov, and L. Shrira. Disconnected Operation in the Thor
Object-Oriented Database System. In Proc. of |EEE Workshop on Mobile Computing
Systems and Applications, Dec. 1994.

C. Gerlhof, A. Kemper, and G. Moerkotte. On the Cost of Monitoring and Reorga-
nization of Object Bases for Clustering. SGMOD Record, 25(3):22—27, September
1996.

J. Gray, R. Lorie, G. Putzolu, and |. Traiger. Granularity of Locks and Degrees of
Consistency in a Shared Database. In Modeling in Data Base Management Systems.
Amsterdam: Elsevier North-Holland, 1976. Also availablein Chapter 3 of Readingsin
Database Systems, Second Edition, M. Stonebraker Editor, Morgan Kaufmann, 1994.

H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a Dis-
tributed Database. ACM Transactionson Database Systems, 8(2):186-213, June 1983.

J. N. Gray and A. Reuter. Transaction Processing: Conceptsand Techniques. Morgan
Kaufmann Publishers Inc., 1993.

R. Gruber. Optimistic Concurrency Control for Nested Distributed Transactions. Tech-
nical Report MIT/LCS/TR-453, MIT Laboratory for Computer Science, Cambridge,
MA, 1989.

R. Gruber. Optimismvs. Locking: A Sudy of Concurrency Control for Client-Server
Object-Oriented Databases. PhD thesis, M.I.T., Cambridge, MA, 1997.

194

[GW82]

[Hae84]

[Her90]

[HP86]

[1BM99]

[KCZ92]

[KR81]

[KS91]

[KSS97]

[LAC+96]

[Lam76]

[Lam78]

[LCJS87]

[Lis93]

[LLSG92]

H. Garcia and G. Weiderhold. Read-Only Transactions in a Distributed Database.
ACM Transactions Database Systems, 7(2):209-234, June 1982.

T. Haerder. Observations on Optimistic Concurrency Control Schemes. Information
Systems, 9(2):111-120, June 1984.

M. P. Herlihy. Apologizing Versus Asking Permission: Optimistic Concurrency Con-
trol for Abstract Data Types. ACM Transactions on Database Systems, 15(1):96-124,
March 1990.

R. C. Hansdah and L. M. Patnaik. Update Serializability in Locking. In International
Conference on Database Theory, pages 171-185, Rome, Italy, Sept. 1986.

IBM Corporation. IBM DB2 Version 5.2 Universal Database: Administration Guide,
Chapter 10, 1999.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software
Distributed Shared Memory. In Proc. of 19th Int’l Symp. on Computer Architecture,
pages 13-21, Queensland, Australia, May 1992.

H. T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency Control.
ACM Transactions on Database Systems, 6(2):213-226, June 1981.

J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.
In Thirteenth ACM Symposium on Operating Systems Principles, pages 213-225,
Asilomar Conference Center, Pacific Grove, CA., Oct. 1991.

H. Korth, A. Silberschatz, and S. Sudarshan. Database System Concepts. McGraw
Hill, 1997.

B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A. Myers, and L. Shrira. Safe and Efficient Sharing of Persistent Objects in Thor.
In Proc. of ACM SSIGMOD International Conference on Management of Data, pages
318-329, Montreal, Canada, June 1996.

L. Lamport. Towards a Theory of Correctness for Multi-user Data Base Systems.
Report CA-7610-0712, Mass. Computer Associates, Wakefield, MA, Oct. 1976.

L. Lamport. Time, Clocks, and the Ordering of Eventsin aDistributed System. Comm.
of the ACM, 21(7):558-565, July 1978.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus. In
Proceedings of the 11th Symposiumon Operating Systems Principles, pages 111-122,
Austin, TX, November 1987.

B. Liskov. Practical Uses of Synchronized Clocksin Distributed Systems. Distributed
Computing, 6(4):211-219, Aug. 1993.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High Availability Using
Lazy Replication. ACM Transactions on Computer Systems, 10(4):360-391, Novem-
ber 1992.

195

[LSWW8T7] B. Liskov, R. Scheifler, E. Walker, and W. Weihl. Orphan Detection. Programming

[LW84]

[MH86]

[Mil92]

[Mil96]

[MK94]

[Moh90]

[Mye99]

[Ngu8s]

[0’ N86]

[Orags]

[Ous90)]

[OVU9S]

[Pap79)]

[PSTT97]

Methodology Group Memo 53, Laboratory for Computer Science, MIT, Cambridge,
MA, February 1987.

M.-Y. Lai and W. K. Wilkinson. Distributed Transaction Management in Jasmin. In
Proceedings of the 10th International Conference on Very Large Data Bases, pages
466-470. Singapore, Aug. 1984.

M. McKendry and M. Herlihy. Time-Driven Orphan Elimination. In Proceedings of
the Fifth Symposium on Reliability in Distributed Software and Database Systems,
pages 42-48. |[EEE, January 1986.

D. L. Mills. Network Time Protocol (Version 3) Specification, Implementation and
Analysis. Network Working Report RFC 1305, March 1992.

D. L. Mills. The Network Computer as Precision Timekeeper. In Proc. of Precision
Time and Time Interval (PTTI) Applications and Planning Meeting, pages 96108,
Reston, VA, Dec. 1996. Also available at http://www.eecis.udel.edu/ mills/ntp.htm.

W. J. Mclver and R. King. Self Adaptive, On-Line Reclustering of Complex Object
Data. In Proc. of ACM SSGMOD International Conference on Management of Data,
pages 407-418, Minneapolis, MN, May 1994.

C. Mohan. Commit_LSN: A Novel and Simple Method for Reducing Locking and
Latching in Transaction Processing Systems. In Proceedings of the 16th VLDB Con-
ference, pages 406418, Brisbane, Australia, Aug. 1990.

A. C. Myers. Mostly-Satic Decentralized Information Flow Control. PhD thesis,
Massachusetts I nstitute of Technology, Cambridge, MA, Jan. 1999.

T. Nguyen. Performance Measurement of Orphan Detection in the Argus System.
Master's thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1988.

P. O’'Neil. The Escrow Transactional Method. ACM Transactionson Database Systems
(TODS), 11(4):405-430, Dec. 1986.

Oracle Corporation. Concurrency Control, Transaction |solation and Serializability in
SQL 92 and Oracle7, July 1995.

J. Ousterhout. Why Aren’t Operating Systems Getting Faster as Fast asHardware? In
Proc. of USENIX Summer Conference, pages 247-256, Anaheim, CA, June 1990.

M. T. Ozsu, K. Voruganti, and R. Unrau. An Asynchronous Avoidance-based Cache
Consistency Algorithm for Client Caching DBMSs. In Proceedings of the 24th Inter-
national Conference on Very Large Data Bases, pages 440451, New York, NY, Aug.
1998.

C. H. Papadimitriou. The Serializability of Concurrent Database Updates. Journal of
the ACM, 26(4):631-653, October 1979.

K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible
Update Propagation for Weakly Consistent Replication. In Proc. 17th ACM Symp. on
Operating System Principles (SOSP), St. Malo, France, Oct. 1997.

196

[Ree78]

[Reu82]

[RK SO3]

[RTOO]

[SBCMO5]

[Sea99]
[SS84]

[SS96]

[Sta89]

[SWY93]

[TNO2]

[TPC92]

[TTP+O5]

[VEBBV95]

[Weig7]

D. P. Reed. Naming and Synchronization in a Decentralized Computer System. Tech-
nical Report MIT/LCS/TR-205, Laboratory for Computer Science, MIT, Cambridge,
MA, 1978.

A. Reuter. Concurrency on High-Traffic Data Elements. In Proc. of ACM Sympasium
on Principles of Database Systems, pages 83-92, Los Angeles, CA, Mar. 1982.

R. Rastogi, H. F. Korth, and A. Silberschatz. Strict Historiesin Object-Based Database
Systems. In Proc. of the ACM Symposium on Principles of Database Systems, pages
288-299, Washington, D.C., May 1993.

E. Rahm and A. Thomasian. A New Distributed Optimistic Concurrency Control
M ethod and a Comparison of its Performancewith Two-Phase L ocking. In Proceedings
of Tenth International Conference on Distributed Computing Systems, Paris, France,
May 1990.

G. Samaras, K. Britton, A. Citron, and C. Mohan. Two-Phase Commit Optimiza-
tionsin a Commercial Distributed Environment. Distributed and Parallel Databases,
3(4):325-360, Oct. 1995.

Seagate Technology Inc. Cheetah 9L P disk drive, http://www.seagate.com/, Feb 1999.

P. Schwarz and A. Spector. Synchronizing Shared Abstract Types. ACM Transactions
on Computer Systems, 2(3):223-250, August 1984.

M. Spasojevicand M. Satyanarayanan. An Empirical Study of aWide-AreaDistributed
File System. ACM Transactions on Computer Systems, 14(2):200-222, May 1996.

J. W. Stamos. A Low-Cost Atomic Commit Protocol. Tech. Report RJ7185, IBM
Almaden, CA, December 1989.

H.-J. Schek, G. Weikum, and H. Ye. TowardsaUnified Theory of Concurrency Control
and Recovery. In Proc. of the ACM Symposium on Principles of Database Systems,
pages 300-311, Washington, D.C., May 1993.

M. Tsangarisand J. F. Naughton. On the Performance of Object Clustering Techniques.
In Proc. of ACM SSIGMOD International Conference on Management of Data, pages
144153, San Diego, CA, June 1992.

TPC: Transaction Processing Performance Council. TPC-A Standard Specification,
Revision 1.1, TPC-C Standard Specification, Revision 1.0. http://www.tpc.org, 1992.

D.B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, and M. J. Spreitzer. Managing
Update Conflictsin Bayou, a Weakly Connected Replicated Storage System. In Proc.
15th ACM Symp. on Operating System Principles (SOSP), pages 172-183, Copper
Mountain Resort, CO, Dec. 1995.

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network Inter-
face for Parallel and Distributed Computing. In Proc. 16th ACM Symp. on Operating
System Principles (SOSP), pages 40-53, Copper Mountain Resort, CO, Dec. 1995.

W. E. Weihl. Distributed Version Management for Read-only Actions. IEEE Trans-
actions on Software Engineering, SE-13(1):55-64, January 1987.

197

[WL85]

[YBSO1]

[ZCF97]

W. Weihl and B. Liskov. Implementation of Resilient, Atomic Data Types. ACM
Transactions on Programming Languages and Systems, 7(2):244-269, April 1985.

M. R.Y. Breitbart, D. Georgakopoulosand A. Silberschatz. On Rigorous Transaction
Scheduling. |EEE Transactions on Software Engineering, 17(9):954-960, Sept. 1991.

M. Zaharioudakis, M. J. Carey, and M. J. Franklin. Adaptive, Fine-Grained Sharing
in a Client-Server OODBMS: A Callback-Based Approach. ACM Transactions on
Database Systems, 22(4):570-627, Dec. 1997.

198

