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ABSTRACT 

Based on seven assumptions, the following 
comparison factors are used to compare the performance 
of linear hashing with extendible hashing: 1. storage 
utilization; 2. average unsuccessful search cost; 3. average 
successful search cost; 4. split cost; 5. insertion cost; 6. 
number of overflow buckets. The simulation is conducted 
with the bucket sizes of IO, 20, and 50 for both hashing 
techniques. In order to observe their average behavior, 
the simulation uses 50,000 keys which have been 
generated randomly. 

According to our simulation results, extendible 
hashing has an advantage of 5% over linear hashing in 
terms of storage utilization. Successful search, 
unsuccessful search, and insertions are less costly in linear 
hashing, However, linear hashing requires a large 
overflow space to handle the overflow records. 
Simulation shows that approximately 10% of the sapce 
should be marked as overflow space in linear hashing. 

Directory size is a serious bottleneck in extendible 
hashing. Based on the simulation results, the authors 
recommend linear hashing when main memory is at a 
premium. 

I. INTRODUCTION 

A number of file structures and access methods, e.g. 
B+ tree [Knu73]. inverted file &nu73], heap war771, 
grid file [N&34:] [Chu89], BANG file [Fre871 lLia891, 
AVL data structure with persistent technique [Ver87], and 
hashing are widely used in current database design. 
Among those techniques, hashing is a well-known 
technique for organizing direct access files. The method 
is simple: Retrieval, insertion, and deletion of records is 
very fast. In traditional hashing, the size of the file must 
be estimated in advance, and storage space must be 
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allocated for the entire file. To overcome these 
drawbacks, several dynamic hashing schemes were 
developed in late seventies and early eighties. 

The dynamic hashing scheme [Lar78] and the 
dynamic hashing scheme with deferred splitting [Sch81] 
both keep an index in main memory. In these schemes, 
the random access cost is high. A spiral storage scheme 
[Mu1851 seeks to provide a uniform performance 
regardless of the file size. This scheme involves a very 
complex address computation to determine the appropriate 
buckets. Also, the expansion process is both slow and 
complex. 

To overcome the shortcomings of the spiral storage 
scheme, W. Litwin bit801 and Fagin et al. [Fag791 
presented hashing schemes called linear hashing and 
extendible hashing respectively. Later, Ellis applied 
concurrent operations to extendible hashing in a distributed 
database environment lEIl821. The address computation 
and expansion prcesses in both linear hashing and 
extendible hashing is easy and efficient [Lar82] bar851 
IBra861. 

Both Litwin [Lit801 and Fagin et al. Fag’W 
claimed their respective hashing techniques to be efficient. 
However, no comparison results of the two techniques 
were reported. Hence, the objective of this paper is to 
compare both linear hashing and extendible hashing. 

Section II of this paper briefly reviews linear hashing 
and extendible hashing. Section III discusses the 
simulation setup for comparison and section IV presents 
the simulation results and conclusions (Mathematical 
derivations have been shown regarding search costs, 
insertion cost etc. They are omitted here due to space 
limitations). 

II. LINEAR HASHING AND EXTENDIBLE 
HASHING 

The linear hashing scheme, referred to as LINHASH 
hereafter, is a directory-less scheme which allows a 
smooth growth of the hash table [Ram82]. The following 
example is due to Larson [Lar88]. Consider a hash table 
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consisting of N buckets with addresses O,l,..,N-1. 
LINHASH splits the buckets in predetermined order; i.e., 
the first bucket has address 0, then bucket 1, and so on, 
up to and including bucket N-l. In figure l(a), the table 
size N is 3 and the next bucket to be split is bucket 0. 
Pointer p always indicates the bucket to be split next. 
Figure l(b) shows the status after bucket 0 has been split. 
Notice that pointer p has moved to bucket 1. Next, 
bucket 1 is split into bucket 1 and bucket 4. The current 
expansion is considered complete when the last bucket of 
the tabIe is split. After the split, pointer p is reset to 
bucket 0. In our example, the expansion will be complete 
when bucket 3 is split, as shown in figure l(d). 

The extendible hashing technique, referred to as 
EXHASH hereafter, was developed by Fagin et al. 
[Fag79]. This scheme uses the leading (or trailing) bits, 
denote by d, of the key to index into the directory. 
Global depth, d, and local depth, d’, imply the depth of 
the directory and the depth of a bucket, respectively. 
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Figure 1: Expansion Process in Linear Hashing 
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Figure 3: Hash Table Doubled After Splitting Bucket 2 of Figure 2(b) 

There are 2**d directory entries. Often more than one 
directory entry points to the same bucket. Figure 2 
expands this discussion. Upon expansion of the table, the 
local depth of the 2 buckets involved is increased by 1. 
If d’ of any bucket is greater than d, then the directory 
size is doubled (shown in figure 3), and the global depth 
is increased by 1. 

(a) : Exrendible Hash Table Before Split (b) : After Splitting Bucket 3 of Figure 2(a) 

Figure 2: An Example of Extendible Hash Table 

179 



III. SIMULATION PREPARATION 

The performance comparison factors for simulation 
are based on the following assumptions. 

1. Assumptions 

(1) The keys are distributed uniformly, so each key has 
equal access probability. 
(2) Records are of fixed length. 
(3) The bucket capacity is fixed in terms of the number 
of records that it can hold. 
(4) Expansion takes place as soon as a bucket overflows. 
(5) Enough main memory is available to handle the 
expansion. 
(6) EXHASH: (a) The most significant bits are extracted 
from the key to find the directory entry. 04 -f’he 
overflow bucket is split at most once. In other words, a 
second split is not attempted even though the first split 
may fail to release the overflow bucket. (c) Main 
memory can hold a maximum of 1024 directory entries. 
The rest of the directory must reside on the secondary 
storage. 
(7) LINHASH: A simple division method with modulo 
arithmetic is used to find the relevent bucket. 

According to assumption (l), we use a random 
function that broadly satisfies the properties of a minimal 
random function. Given a minimal random function “f(z) 
= az mod m”, the value of “a” should pass the three tests 
as defined in [Par881 such that f(z) should (i) be a full 
period generating function; (ii) be random for all the 
sequences generated; and (iii) be implemented efficiently 
with 32-bit arithmetic. Further, the hash functions used in 
the simulation also satisfy the basic properties listed by 
Carter and Knuth in [Car791 [Knu73]. 

2. Comparison Factors 

Following notations are used to define the comparison 
factors: 

N : 

B : 

b : 

bs : 

bu : 

s : 

u : 
* . 

I : 

The number of records in the current hash table 

The number of buckets in the current hash table 

Bucket capacity 

The number of buckets accessed for successful 
search + 1 if the directory entry is not in 
main memory. (only in EXHASH). 

Number of buckets accessed for unsuccessful search 
+ 1 if the directory entry is not found in main 
memory (only in EXHASH). 

Number of successful searches 

Number of unsuccessful searches 

Arithmetic multiplication symbol 
Arithmetic division symbol 

Following factors have been considered to analyze the 
relative performance of LINHASH and EXHASH: 

(1) Storage utilization : N /(B*b) 

(2) Average unsuccessful search cost : bu / u 

(3) Average successful search cost: bs / s 

(4) Split cost (expansion cost): In LINHASH, a split 
bucket is usually different from the bucket where insertion 
took place. Hence additional accesses are needed to read 
the split bucket chain. 

LINHASH: 1 access to read the primary bucket 
+ k accesses to read k overflow buckets 
+ 1 access to write old bucket 
+ extra accesses to write the overflow 

buckets attached to old and new buckets 
EXHASH: 1 access to write old bucket 

+ 1 access to write new bucket 
+ extra accesses to write the overflow 

buckets attached to old and new buckets 
+ accesses needed to update the 

directory pointers if the directory 
resides on the secondary storage 

(5) Insertion cost: Unsuccessful search cost + Split cost 

(6) Number of overflow buckets 

The above factors have been simulated with the 
bucket sizes of 10, 20, and 50 for both EXHASH and 
LINHASH. In order to observe their average behavior, 
the simulation uses 50,000 keys which have been 
generated randomly. 

IV. RESULTS & CONCLUSION 

1. Simulation Results 

For all bucket sizes, EXHASH produces consistently 
better storage utilization than LINHASH. LINHASH gives 
cyclic storage utilization since the buckets are split linearly 
regardless of their load. In both EXHASH and 
LINHASH, as the bucket size rises, the storage utilization 
becomes more fluctuating (see figures 4,5,6). EXHASH 
has an advantage of approximately 5% over LINHASH in 
storage utilization. Such a performance is wholly 
attributable to the way the buckets are split under the two 
schemes. The corollary is that LINHASH requires more 
buckets to hold the same number of records than 
EXHASH does. 
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LINHASH performs better for all the bucket sizes 
with an unsuccessful search becomes less costly as the 
bucket size rises. On an average, an unsuccessful search 
cost stays close to 1 for all the bucket sizes in LINHASH 
(see figures 7,8,9). Similar observations hold true for the 
cost of a successful search (see figures 10,11,12). The 
successful search and the unsuccessful search are equally 
costly in EXHASH. This is due to the fact that the 
overflow buckets are almost non-existent in EXHASH. 
Overflow buckets are mandatory in LINHASH. In 
EXHASH, the search cost can be kept to 1 regardless of 
the bucket size when the entire directory can be kept in 
the main memory. 

The splitting of a bucket is costlier in LINHASH. 
This is due to the fact that an extra read access is needed 
to read the bucket to be split (see figures 13,14,15). The 
insertion cost is slightly higher in EXHASH for the bucket 
sizes 10 and 20. However, for the bucket size 50, this 
cost is slightly less in EXHASH (see figures 16,17,18). 

As expected, LINHASH performed poorly with 
respect to the number of overflow buckets. The number 
of overflow buckets decreases as the bucket size increases. 
The simulation shows that a maximum of 10% of the total 
space should be marked as an overflow area in 
LINHASH. Overflow buckets are almost non-existent in 
EXHASH (see figures 19,20,21). 

2. Conclusion 

Based on simulation results, the linear hashing 
technique is recommended when main storage is at a 
premium since it requires no directory. This scheme is 
particularly useful in a small computer environment. 
However, this scheme is not devoid of its pitfalls. Since 
there is no control over the length of an overflow chain, 
the search cost may become high. However, the 
simulation has shown that the maximum search cost is 2 
for all the bucket sizes in linear hashing. Extendible 
hashing could be useful if sufficient main memory is 
available to hold the directory. Doubling and halving the 
directory size is expensive. In both the schemes, the 
bucket size does not affect the performance significantly. 
However, a bucket size of 20 seems to be a good choice 
since it gives fairly reasonable storage utilization and 
search times. 
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