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Abstract

Recent developments in database technology� such as deductive database

systems� have given rise to the demand for new� cost
e�ective optimization

techniques for join expressions� In this paper many di�erent algorithms
that compute approximate solutions for optimizing join orders are stud


ied since traditional dynamic programming techniques are not appropriate

for complex problems� First� two possible solution spaces� the space of

left
deep and bushy processing trees� respectively� are evaluated from a

statistical point of view� The result is that the common limitation to left


deep processing trees is only advisable for certain join graph types� Ba


sically� optimizers from three classes are analysed heuristic� randomized

and genetic algorithms� Each one is extensively scrutinized with respect

to its working principle and its �tness for the desired application� It turns

out that randomized and genetic algorithms are well suited for optimizing

join expressions� They generate solutions of high quality within a reason

able running time� The bene�ts of heuristic optimizers� namely the short

running time� are often outweighed by merely moderate optimization per


formance�

� Introduction

In recent years� relational database systems have become the standard in a va�
riety of commercial and scienti�c applications� Because queries are stated in a
non�procedural manner� the need for optimizers arises that transform the straight�
forward translation of a query into a cost�e�ective evaluation plan� Due to their
high evaluation costs� joins are a primary target of query optimizers� If queries
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are stated interactively� there are generally only few relations involved� The op�
timization of these expressions can be carried out by exhaustive search� possibly
enhanced by pruning techniques that exclude unlikely candidates for good solu�
tions� For instance� in System R �SAC���	� a dynamic programming algorithm is
employed for the optimization of joins� This approach works well as long as only
few relations are to be joined� but if the join expression consists of more than
about �ve or six relations� dynamic programming techniques become quickly pro�
hibitively expensive� Queries of this kind are encountered in recent developments
such as deductive database systems� where join expressions may consist of a large
number of relations� Another source for such queries are query�generating data�
base system frontends and complex views� In both cases� very complex queries
may be issued without the end user being aware of that fact� Even in object�
oriented database systems �KM�
	� complex join expressions may be encountered�
while forward traversal of object references are usually very well supported by
specialized access mechanisms and would not be treated as ordinary join oper�
ations� this is not true for backward traversal� This would require appropriate
index structures such as Access Support Relations �KM��	� processing of which�
in turn� involves handling of potentially very complex join expressions for both
initial materialization and maintenance�

Hence� there is a demand for optimization techniques that can cope with
such complex queries in a cost�e�ective manner� In this paper� we shall examine
approaches for the solution of this problem and assess their advantages and dis�
advantages� The rest of the article is organized as follows� In Section � we shall
give an exact de�nition of the problem and of the terms� and we present several
cost models we shall be using later on in our analysis� Section  deals with the
problem of di�erent solution spaces for evaluation strategies� In Section 
 we de�
scribe common optimization strategies with varying working principle� which are
subject to a quantitative analysis in Section �� Section � concludes the paper�

� Problem Description

The problem of determining good evaluation strategies for join expressions has
been addressed from the development of the �rst relational database systems
�WY��� YW��� SAC���	� The work in this area can be divided into two major
streams� First� the development of e�cient algorithms for performing the join
itself� and second� algorithms that determine the nesting order in which the joins
are to be performed� In this article� we shall be concentrating on the generation of
low�cost join nesting orders while disregarding the speci�cs of join computing�
�ME��	 provides a good overview on this subject�

In relational database systems where queries are stated interactively� join ex�
pressions that involve more than about �ve or six relations are rarely encountered�
Therefore� the computation of an optimal join order with lowest evaluation cost
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by exhaustive search is perfectly feasible�it takes but a few seconds CPU time�
But if more than about eight relations are to be joined� the generally NP�hard
problem of determining the optimal order �IK�
	 cannot be solved exactly any�
more� We have to rely on algorithms that compute �hopefully� good approximate
solutions� Those algorithms fall into two classes� �rst� augmentation heuristics
that build an evaluation plan step by step according to certain criteria� and sec�
ond� randomized algorithms that perform some kind of �random walk� through
the space of all possible solutions seeking a solution with minimal evaluation cost�

��� De�nition of Terms

The input of the optimization problem is given as the query graph �or� join graph��
consisting of all relations that are to be joined as its nodes and all joins speci�ed
as its edges� The edges are labelled with the join predicate and the join selectivity�
The join predicate maps tuples from the cartesian product of the adjacent nodes
to ffalse� trueg� depending on whether the tuple is to be included in the result or
not� The join selectivity is the ratio �number of tuples in the result�number of
tuples in the cartesian product�� As a special case� the cartesian product can be
considered a join operation with join predicate � true and a join selectivity of ��

The search space �or� solution space� is the set of all evaluation plans that
compute the same result� A point in the solution space is one particular plan�
i�e�� solution for the problem� A solution is described by the processing tree
for evaluating the join expression� Every point of the solution space has a cost
associated with it� a cost function maps processing trees to their respective costs�

The processing tree itself is a binary tree that consists of base relations as its
leaves and join operations as its inner nodes� edges denote the �ow of data that
takes place from the leaves of the tree to the root�

The goal of the optimization is to �nd the point in the solution space with
lowest possible cost �global minimum�� As the combinatorial explosion makes
exhaustive enumeration of all possible solutions infeasible and the NP�hard char�
acteristic of the problem implies that there �presumably� cannot exist a faster
algorithm� we have to rely on heuristics that compute approximate results�

��� Cost Models

Our investigations are based on the cost models discussed in this subsection�
Each of these cost models measures cost as the number of pages that have to
be read from or written to secondary memory� The execution environment is
not distributed� The database is assumed to be much larger than available main
memory� so all costs besides I�O can be neglected without introducing too large
an error� All cost models are based on parameters listed in Table �� The join
operations themselves are equijoins� A common term for each of the cost formulae
below is the cost for writing the result of the join operation to secondary memory�





Parameter Meaning

jRj Cardinality �number of tuples� of relation R

tsR Tuple size of relation R �in bytes�

bs Size of a disk block �in bytes�

ps Size of a tuple reference �tuple identi�er� TID�

ms Main memory size �in bs units�

��� Join selectivity for join R� �R�

�
��� �

jR��R�j
jR��R�j

�
bR Number of blocks occupied by relation R

fo Fanout of an internal B��tree node �fo � b���� � bs��ks � pr�c�
�ks � key size� pr � size of a page reference�

xR Height of a B��tree index on the join attribute of R minus one�
xR �

l
logfo bR

m
� �� assuming ps � ks � pr

�
sR Selection cardinality of R�s join attribute �average number of

tuples with the same value of the join attribute�

Table �� Cost Model Parameters

This cost is

Cwrite�R� �R�� �
��� � jR�j � jR�j

bs�tsR��

����� Nested Loop Join

The cost for performing a nested loop join �depending on the presence of index
structures� is �EN�
	�

�� Without index support

Cnl�R� �R�� � bR���z�
read R�

�

��
bR�

ms � �

�
� bR�

�
� �z �
read R� and perform join

�� Primary B��tree index on the join attribute of R�

Cnl�R� �R�� � bR���z�
read R�

� jR�j � �xR�
� ��� �z �

use index to �nd matching tuple in R�

� Secondary B��tree index on the join attribute of R�

Cnl�R� �R�� � bR���z�
read R�

� jR�j � �xR�
� sR�

�� �z �
use index to �nd matching tuple in R�







� Hash index on the join attribute of R�

Cnl�R� �R�� � bR���z�
read R�

� jR�j � h� �z �
use index to �nd matching tuple in R�

h is the average number of page accesses necessary to retrieve a tuple from
R� with a given key� We use the value h � ��� for a primary hash index�
and h � ��� for a secondary hash index�

����� Sort�Merge Join

The cost for performing a sort�merge join operation is �EN�
	�

Csm�R� �R�� � CR�
� CR�

where CR�
�resp� CR�

� is computed according to the following cases�

�� The relation is sorted on the join attribute �or there is a primary B��tree
index on the join attribute�

CRx
� bRx

i�e�� there is only the cost for reading the relation�

�� There is a secondary B��tree index on the join attribute

CRx
�

	
jRxj �

ps

���� � bs



� bRx

i�e�� the leaf nodes of the index tree �assumed to be ��� full� have to be
scanned for pointers to the tuples of the relation� and the blocks containing
the tuples itself must be read at least once�

� No sort order on the join attribute� explicit sorting is required

CRx
� bRx

logms bRx
� bRx

We assume the merge�sort algorithm is applied� where the number of merge
passes depends on the amount of main memory available�

����� Hash Join

We assume that a �Hybrid Hash Join� is carried out� This algorithm performs
very well over a large range of available main memory� The cost is �Sha��	�

bR�
� bR�

� � � �bR�
� bR�

� � ��� q�

where q denotes the fraction of R� whose hash table �ts into main memory� It is
computed as�

q �
ms �

l
����bR��ms

ms��

m
bR�

The constant ��
 accounts for the hash table�s load factor of about ����
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Figure �� Computation of processing tree costs

����� Cost of an Entire Processing Tree

In order to estimate the cost for evaluating an entire processing tree� the cost for
each node is computed recursively �bottom�up� right�to�left� as the sum of the
cost for obtaining the two son nodes and the cost for joining them in order to get
the �nal result�

If the outer relation �R� in the cost formulae� is not a base relation� and the
join algorithm is a nested loop join� we assume that pipelining is possible� which
saves the costs for writing an intermediate result to disk and to read it back into
main memory� For instance� the processing tree in Figure � �where all join nodes
are supposed to be nested loop joins� is evaluated as follows�

�� The join operation R� �R� �node �� is performed� Because both operands
are base relations� the cost for reading both R� and R� is included in the
estimate� Furthermore� the result of this operation has to be written to
disk as intermediate relation�

�� The join operation R� � R� �node �� is performed� Again� both operands
are base relations� so the cost for scanning them has to be counted� But in
contrast to node �� no intermediate result has to be written to disk� because
the tuples can be pipelined to node � the root of the processing tree�

� In node � both intermediate results R��R� and R��R� are joined together
in order to compute the �nal result� While R� � R� does not need to be
read from disk due to the pipeline from node �� R��R� must be read back
in� and the �nal result must be written to disk�

We note that the boxed join nodes� results �Figure �� must be written to sec�
ondary memory� These considerations are valid if �and only if� the two processing
nodes in question are both nested loop joins� If either node � or node  in the
example tree in Figure � were anything else but nested loop joins� the cost for
writing the intermediate result to disk and reading it back into memory would
have to be charged�
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� Solution Space for the Join Ordering Problem

Generally� the solution space is de�ned as the set of all processing trees that
compute the result of the join expression and that contain each base relation
exactly once� The leaves of the processing trees consist of the base relations�
whereas the inner nodes correspond to join results of the appropriate sons� As
the join operation is commutative and associative� the number of possible pro�
cessing trees increases quickly with increasing number of relations involved in
the join expression in question� Traditionally� a subset of the complete space�
the set of so�called left�deep processing trees� has been of special interest to re�
searchers �SAC���� SG��� Swa��	� We shall now study the characteristics of
both the complete solution space and the subset of left�deep trees as the most
interesting special cases� although other tree shapes might be contemplated� e�g��
right�deep trees or zig�zag trees� which are mainly of interest in distributed com�
puting environments �cf�� e�g�� �LVZ�	��

��� Left�Deep Trees

This subset consists of all processing trees where the inner relation of each join is
a base relation� For a �xed number of base relations� the speci�cation �left�deep�
does not leave any degrees of freedom concerning the shape of the tree� but there
are n� ways to allocate n base relations to the tree�s leaves� It has been argued
that good solutions are likely to exist among these trees� because such trees are
capable of exploiting the cost�reducing pipelining technique on each of its join
processing nodes� In case a processing tree consists solely of nested loop joins
�either with or without index support�� not a single intermediate result has to be
materialized on secondary memory�

��� Bushy Trees

In this solution space� we also permit join nodes where both operands are �com�
posites� �i�e�� no base relations�� Thus� the solutions in this space are in no way
restricted� Consequently� this solution space includes left�deep as well as other
special tree shapes as �strict� subsets� Because the shape of possible processing
trees can be arbitrary� the cardinality of this set is much higher than the car�
dinality of the left�deep space� For n base relations� there are

�
��n���
n��

�
�n � ���

di�erent solutions� However� although the degrees of freedom in constructing
bushy trees are much higher� the capability of exploiting the pipelining technique
is restricted to a subset of the tree�s join processing nodes� The more the shape
of the tree tends toward right�deep �i�e�� the join nodes� left operands are base
relations�� the smaller is the size of this subset� For a right�deep tree� none of its
join processing nodes is capable of pipelining�

�



In �OL��	� an adaptable plan enumeration strategy for linear �chain� and
star�shaped join graphs is proposed that reduces the number of plans whose
costs have to be evaluated considerably� If n denotes the number of relations in
the join graph� there are �n� � n��� �bushy tree solution space� resp� �n � ���

�left deep tree solution space� feasible joins for linear graphs� For star graphs�
there are �n � �� � �n�� �bushy tree solution space� feasible joins� However� this
approach requires an especially tailored �join plan enumerator� for every class
of join graphs that might be encountered� and for arbitrary join graphs still the
entire solution space must be considered in order to guarantee that the optimal
solution cannot be missed�

� Join Ordering Strategies

The problem of �nding a good nesting order for n�relational joins can be tackled
in several di�erent ways�

�� Deterministic Algorithms
Every algorithm in this class constructs a solution step by step in a deter�
ministic manner� either by applying a heuristic or by exhaustive search�

�� Randomized Algorithms
Algorithms in this class pursue a completely di�erent approach� �rst� a set
of moves is de�ned� These moves constitute edges between the di�erent
solutions of the solution space� two solutions are connected by an edge if
�and only if� they can be transformed into one another by exactly one move�
Each of the algorithms performs a random walk along the edges according
to certain rules� terminating as soon as no more applicable moves exist or
a time limit is exceeded� The best solution encountered so far is the result�

� Genetic Algorithms
Genetic algorithms make use of a randomized search strategy very similar to
biological evolution in their search for good problem solutions� Although in
this aspect genetic algorithms resemble randomized algorithms as discussed
above� the approach shows enough di�erences to warrant a consideration of
its own� The basic idea is to start with a random population and generate
o�spring by random crossover and mutation� The ��ttest� members of the
population �according to the cost function� survive the subsequent selection�
the next generation is based on these� The algorithm terminates as soon
as there is no further improvement or after a predetermined number of
generations� The �ttest member of the last population is the solution�


� Hybrid algorithms
Hybrid algorithms combine the strategies of pure deterministic and pure
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randomized algorithms� solutions obtained by deterministic algorithms are
used as starting points for randomized algorithms or as initial population
members for genetic algorithms�

��� Deterministic Algorithms

The algorithms discussed in this section either employ heuristics or a �pruned�
search of the solution space in order to optimize the given join expression� We
shall take a closer look at four di�erent algorithms of this class with varying
complexity and performance�

����� Dynamic Programming

This is the classical algorithm that has been used for join order optimization in
System�R �SAC���	� It searches the solution space of left�deep processing trees�
First� the set of partial solutions is initialized with all possible scan nodes for
all relation attributes that participate in the query� For instance� if there is an
index on attribute R�A� then both the index scan and the ordinary �le scan
are considered feasible partial processing trees� In the next step� every element
with a cheaper� equivalent alternative is pruned from the set of possible partial
solutions� where an alternative is considered �equivalent� if it joins the same set of
relations and the sort order of the partial result is the same� In the following loop�
the algorithm constructs in the kth iteration a set of k�relation partial solutions
from a set of �k � ���relation partial solutions� When this loop terminates� the
set partialsolutions consists of at least one� possibly several equivalent� optimal
solutions�

A pseudo code rendering of this algorithm is shown in Figure �� Apart from
the removal of all equivalent alternatives but the cheapest one� the original al�
gorithm according to the cited reference performs further pruning of the search
tree� it defers the introduction of cartesian products into partial solutions as long
as possible� thus removing unlikely candidates for the optimal solution� How�
ever� although this strategy reduces the computational complexity� the result is
no longer guaranteed to be optimal�

A major disadvantage of this algorithm is the high memory consumption
for storing partial solutions� That �and the exponential running time� makes
its application for queries that involve more than about ten to �fteen relations
prohibitively expensive�

In a very recent work� Vance and Maier �VM��	 devised a very e�cient� so�
called light�weight implementation of dynamic programming for bushy�tree join
optimization� Their method allows to optimize join queries with up to about ��
relations�albeit with a rather simpli�ed cost model�
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function DynProg

inputs Rels �Set of relations to be joined�
outputs pt �Processing Tree�

partialsolutions �� fAll scans for all attributes involvedg

�Remove all elements from partialsolutions with equiv�
alent� lower�cost alternative�

for i �� � to jRelsj
for all pt in partialsolutions
for all R in Rels such that R not in pt

pt �� �
� J

J

pt
�
�
�
�R

�

end

end

�Remove all elements from partialsolutions with equiv�
alent� lower�cost alternative�

end

return �Arbitrary element from partialsolutions�

Figure �� Algorithm �Dynamic Programming�

����� Minimum Selectivity

Good solutions are generally characterized by intermediate results with small
cardinality� The minimum selectivity heuristic builds a left�deep processing tree
step by step while trying to keep intermediate relations as small as possible�
In this regard� this resembles Ingres� decomposition strategy �WY��	� however�
unlike the decomposion strategy� which considers only the operands� cardinalities�
the minimum selectivity heuristic makes use of the selectivity factor � of the
join R��R� to achieve small intermediate results� First� the set of relations to be
joined is divided into two subsets� the set of relations already incorporated into
the intermediate result� denoted as Rused �which is initially empty�� and the set
of relations still to be joined with the intermediate result� denoted as Rremaining

�which initially consists of the set of all relations�� Then� in each step of the
algorithm� the relation Ri � Rremaining with the lowest selectivity factor

�i ��

�����Ri �

�
�

Ru�Rused

Ru

������
jRij �

����� �Ru�Rused

Ru

�����
��



function MinSel

inputs rels �List of relations to be joined�
outputs pt �Processing Tree�

pt �� NIL

do

if pt � NIL then
Ri �� �Relation with smallest cardinality�

pt ��
�
�
�
�Ri

else

Ri �� �Relation from rels with smallest selectivity factor for
the join with pt�

pt �� �
� J

J

pt
�
�
�
�Ri

�

end

rels �� rels n �Ri	

while rels �� � 	

return pt�

Figure � Algorithm �Minimum Selectivity�

is joined with the �so far� intermediate result and moved fromRremaining to Rused �
Figure  shows the complete algorithm for left�deep processing trees�

����� Krishnamurthy�Boral�Zaniolo Algorithm

On the foundation of �Law��	 and �MS��	� Ibaraki and Kameda showed in �IK�
	
that it is possible to compute the optimal nesting order in polynomial time�
provided the query graph forms a tree �i�e�� no cycles� and the cost function is
a member of a certain class� Based on this result� Krishnamurthy� Boral and
Zaniolo developed in �KBZ��	 an algorithm �from now on called KBZ algorithm�
that computes the optimal solution for a tree query in O�n�� time� where n is the
number of joins�

In the �rst step� every relation plays� in turn� the role of the root of the query
tree� For all roots� the tree is linearized by means of a ranking function that
establishes the optimal evaluation order for that particular root� The linearized
tree obeys the tree�s order� in other words� a parent node is always placed before
the son nodes� The evaluation order with lowest cost is the result of the algorithm�
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By transforming the query tree into a rooted tree� a parent node for every
node can be uniquely identi�ed� Thus� the selectivity of a join� basically an edge
attribute of the query graph� can be assigned to the nodes as well� If the cost
function C can be expressed as C�Ri�Rj� � jRij �g�jRjj� where g is an arbitrary
function� the join cost can be assigned to a particular node� too� This is� in
principle� possible for nested loop join algorithms� but not for merge join or hash
join algorithms� The cost can be computed recursively as follows � denotes the
empty sequence� and l� and l� partial sequences��

C� � � �

C�Ri� �

�
jRij if Ri is the root node

g�jRij� else

C�l�l�� � C�l�� � T �l��C�l��

The auxiliary function T �l� is de�ned as�

T �l� �

�
� if l �  �empty sequence�Q

Rk�l �kjRkj else

�k denotes the selectivity of the join of Rk with its parent node�
The algorithm is based on the so�called �Adjacent Sequence Interchange Prop�

erty� �IK�
	 for cost functions that can be expressed as C�Ri�Rj� � jRij�g�jRjj��
If the join graph J is a rooted tree and A� B� U and V are sequences of J �s nodes
�U and V non�null�� such that the partial order de�ned by J is not violated
by AV UB and AUV B� then

C�AV UB� � C�AUV B�� rank�U� � rank�V �

The rank of a non�null sequence S is de�ned as

rank�S� ��
T �S�� �

C�S�

Thus� the cost can be minimized by sorting according to the ranking function
rank�S�� provided the partial order de�ned by the tree is preserved�

The algorithm for computing the minimum cost processing tree consists of the
auxiliary function �linearize� and the main function �KBZ�� First� the join tree
is linearized according to the function linearize in Figure 
� where a bottom�up
merging of sequences according to the ranking function is performed� In the last
step� the root node becomes the head of the sequence thus derived� However�
it is possible that the root node has a higher rank than its sons� therefore a
normalization of the sequence has to be carried out� That means that the �rst
relation in the sequence �the root node� is joined with its successor� If necessary�
this step has to be repeated until the order of the sequence is correct� The cost
of the sequence is computed with the recursive cost function C�
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function Linearize

inputs root �Root of a �partial� tree�
outputs chain �Optimal join order for the tree�shaped join graph with

root !root� �

chain �� � 	
for all succ in Sons�root�
lin �� Linearize�succ�
�Merge lin into chain according to ranks�

end

chain �� root � chain
�Normalize the root node !root� �cf� text��

return chain�

Figure 
� Auxiliary Function �linearize�

function KBZ

inputs joingraph
outputs minorder �join order�

tree �� �Minimum spanning tree of joingraph�
mincost ���

forall node in tree
lin �� Linearize�node�
�Undo normalization�

cost �� Cost�lin�
if cost � mincost then
minorder �� lin
mincost �� cost

end

end

return minorder�

Figure �� KBZ�Algorithm
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In the main function KBZ �Figure ��� this procedure is carried out for each
relation of the join graph acting as the root node� The sequence with lowest total
cost is the result of the optimization�

The algorithm can be extended to general �cyclic� join graphs in a straight�
forward way� namely by reducing the query graph to its minimal spanning tree
using Kruskal�s algorithm �Kru��	� The weight of the join graph�s edges is deter�
mined by the selectivity of the appropriate join� and the minimal spanning tree
is determined as the tree with the lowest product of edge weights� rather than
the sum of the edges� weights� as usual in other applications of Kruskal�s algo�
rithm� This extension has been suggested in �KBZ��	� However� if the join graph
is cyclic� the result is no longer guaranteed to be optimal�it is but a heuristic
approximation� When we speak of the �KBZ algorithm� in later sections� we
refer to this extension with the computation of the minimal spanning tree of the
join graph�

Due to its working principle� the KBZ algorithm requires the assignment
of join algorithms to join graph edges before the optimization is carried out�
This requirement and the restrictions concerning the cost model are the main
drawbacks of the KBZ algorithm� The more sophisticated and detailed the cost
model is� the more likely it is that KBZ�s optimal result based on a �almost
inevitably crude� approximation is di�erent from the real optimum� Furthermore�
separating the two tasks of join order optimization and join method assignment
invalidates the main advantage of the KBZ algorithm� namely to yield the optimal
solution in O�n�� time� In the following section� an algorithm is discussed that
tries to remedy this situation�

����� AB Algorithm

The AB algorithm has been developed by Swami and Iyer �SI�	� It is based on
the KBZ algorithm with various enhancements� trying to remove the restrictions
that are imposed on the join method placement� The algorithm permits the use
of two di�erent join methods� namely nested loop and sort�merge� The sort�
merge cost model has been simpli�ed by Swami and Iyer such that it conforms
to the requirements of the KBZ algorithm �C�R� �R�� � jR�j � g�jR�j� for some
function g� cf� Section 
����� The algorithm runs as follows �cf� Figure ���

�� In randomize methods� each join in the join graph is assigned a randomly
selected join method� If the join graph is cyclic� a random spanning tree is
selected �rst�

�� The resulting tree query is optimized by the KBZ algorithm �apply KBZ ��

� change order attempts to further reduce the cost by swapping relations
such that �interesting orders� can be exploited�
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function AB

inputs joingraph
outputs minorder �join order�

while number of iterations � N� do
begin

randomize methods�
while number of iterations � N� do
begin

apply KBZ�
change order�
change methods�

end�
end�
post process�

return minorder�

Figure �� AB�Algorithm


� The next step comprises a single scan through the join order achieved so
far� For each join� an attempt is made to reduce the total cost by changing
the join method employed �change method��

�� Steps � to 
 are iterated until no further improvement is possible or N�

iterations are performed �N � number of joins in the join graph��

�� Steps � to � are repeated as long as the total number of iterations of the
inner loop does not exceed N��

�� In a post�processing step �post process�� once more the order of the relations
is changed in an attempt to reduce the cost�

The AB algorithm comprises elements of heuristic and randomized optimizers�
The inner loop searches heuristically for a local minimum� whereas in the outer
loop several random starting points are generated in the manner of the Iterative
Improvement algorithm �cf� Section 
������ However� without ignoring the con�
tribution of the KBZ algorithm� even with the AB extension it is hardly possible
to make use of a sophisticated cost model�

��� Randomized Algorithms

Randomized algorithms view solutions as points in a solution space and connect
these points by edges that are de�ned by a set ofmoves� The algorithms discussed
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Figure �� Moves for Bushy�Tree Solution Space Traversal

below perform some kind of random walk through the solution space along the
edges de�ned by the moves� The kind of moves that are considered depend
on the solution space� if left�deep processing trees are desired� each solution
can be represented uniquely by an ordered list of relations participating in the
join� Two di�erent moves are proposed in �SG��� Swa��	 for modifying these
solutions� �Swap� and �Cycle�� �Swap� exchanges the positions of two arbitrary
relations in the list� and �Cycle� performs a cyclic rotation of three arbitrary
relations in the list� For instance� if R�R�R�R�R� was a point in the solution
space� application of �Swap� might lead to R�R�R�R�R�� whereas �Cycle� could
yield R�R�R�R�R��

If the complete solution space with arbitrarily shaped �bushy� processing trees
is considered� the moves depicted in Figure � �introduced in �IK��	� are used for
traversal of the solution space�

����� Iterative Improvement

If the solution space of the join optimization problem did contain but one global
cost minimum without any local minima� we could use a simple hill�climbing
algorithm for �nding this minimum� However� because the solution space does
contain local minima� hill�climbing would almost certainly yield one of them�
The Iterative Improvement Algorithm �SG��� Swa��� IK��	 tries to overcome
this problem in the following way �Figure ��� After selecting a random starting
point� the algorithm seeks a minimum cost point using a strategy similar to hill�
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function IterativeImprovement

outputs minstate �Optimized processing tree�

mincost ���
do

state �� �Random starting point�
cost �� Cost�state�

do

newstate �� �state after random move�
newcost �� Cost�newstate�
if newcost � cost then
state �� newstate
cost �� newcost

end

while �Local minimum not reached�

if cost � mincost then
minstate �� state
mincost �� cost

end

while �Time limit not exceeded�

return minstate�

Figure �� Iterative Improvement

climbing� Beginning at the starting point� a random neighbour �i�e�� a point that
can be reached by exactly one move� is selected� If the cost associated with
the neighbouring point is lower than the cost of the current point� the move
is carried out and a new neighbour with lower cost is sought� This strategy is
insofar di�erent from genuine hill�climbing� as no attempt is made to determine
the neighbour with lowest cost� The reason for this behaviour is the generally very
high number of neighbours that would have to be checked� The same holds for the
check whether a given point is a local minimum or not� Instead of systematically
enumerating all possible neighbours and checking each one individually� a point
is assumed to be a local minimum if no lower�cost neighbour can be found in a
certain number of tries�

This procedure is repeated until a predetermined number of starting points
are processed or a time limit is exceeded� The lowest local minimum encountered
is the result�
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function SimulatedAnnealing

inputs state �Random starting point�
outputs minstate �Optimized processing tree�

minstate �� state� cost �� Cost�state�� mincost �� cost
temp �� �Starting temperature�
do

do

newstate �� �state after random move�
newcost �� Cost�newstate�
if newcost � cost then
state �� newstate
cost �� newcost

else �With probability e
newcost�cost

temp �
state �� newstate
cost �� newcost

end

if cost � mincost then
minstate �� state
mincost �� cost

end

while �Equilibrium not reached�
�Reduce Temperature�

while �Not frozen�

return minstate�

Figure �� Simulated Annealing

����� Simulated Annealing

Iterative Improvement su�ers from a major drawback� Because moves are ac�
cepted only if they improve the result obtained so far� it is possible that even
with a high number of starting points the �nal result is still unacceptable� This
is the case especially when the solution space contains a large number of high�
cost local minima� In this case� the algorithm gets easily �trapped� in one of the
high�cost local minima�

Simulated Annealing �Figure �� is a variant on Iterative Improvement that
removes this restriction �IW��� SG��	� In Simulated Annealing� a move may be
carried out even if the neighbouring point is of higher cost� Therefore� the algo�
rithm does not get trapped in local minima as easily as Iterative Improvement�
As the name �Simulated Annealing� suggests� the algorithm tries to simulate
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Figure ��� Iterative Improvement vs� Simulated Annealing

the annealing process of crystals� In this natural process� the system eventually
reaches a state of minimum energy� The slower the temperature reduction is
carried out� the lower the energy of the �nal state �one large crystal is of lower
energy than several smaller ones combined�� Figure �� illustrates this behaviour�
one iteration of Iterative Improvement stops in the �rst local minimum� whereas
Simulated Annealing overcomes the high�cost barrier that separates it from the
global minimum� because the SA algorithm always accepts moves that lead to
a lower cost state� but also accepts moves that increase costs with a probability
that depends on the temperature and the di�erence between the actual and the
new state�s cost�

Of course� the exact behaviour is determined by parameters like starting tem�
perature� temperature reduction and stopping condition� Several variants have
been proposed in the literature�we shall present the detailed parameters in the
next section where we analyse and compare those SA variants�

����� Two�Phase Optimization

The basic idea for this variant is the combination of Iterative Improvement and
Simulated Annealing in order to combine the advantages of both �IK��	� Iterative
Improvement� if applied repeatedly� is capable of covering a large part of the
solution space and descends rapidly into a local minimum� whereas Simulated
Annealing is very well suited for thoroughly covering the neighbourhood of a given
point in the solution space� Thus� Two�Phase Optimization works as follows�
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�� for a number of randomly selected starting points� local minima are sought
by way of Iterative Improvement �Figure ��� and

�� from the lowest of these local minima� the Simulated Annealing algorithm
�Figure �� is started in order to search the neighbourhood for better solu�
tions�

Because only the close proximity of the local minimum needs to be covered� the
initial temperature for the Simulated Annealing pass is set lower than it would
be for the Simulated Annealing algorithm run by itself�

����� Toured Simulated Annealing

An approach similar to Two�Phase Optimization has been proposed in �LVZ�	
in the context of a distributed computing environment� In Toured Simulated
Annealing� several Simulated Annealing �tours� with di�erent starting points are
performed� Each starting point is derived from a deterministic algorithm that
greedily builds processing trees using some augmentation heuristic� For instance�
the Minimum Selectivity heuristic discussed in Section 
���� could be used to
provide these starting points�

Similarly to Two�Phase Optimization� the main bene�t of Toured Simulated
Annealing is the reduced running time� The starting temperature for the di�erent
tours is set much lower ���� times the initial plan�s cost� than for Simulated
Annealing with a random starting point� so the annealing process does not spend
much time accepting moves that do not improve the current solution�

����� Random Sampling

In �GLPK�
	� a radically di�erent idea is pursued� All randomized algorithms
discussed so far are based on transformations that attempt to reduce a given
solution�s evaluation cost according to a set of rules until no further improvement
can be achieved� However� an analysis of the cost distribution in the solution
space reveals that a signi�cant fraction of solutions is rather close to the optimum�
An algorithm that draws a truly random sample of solutions should therefore
contain the same fraction of good solutions as the entire space� however� designing
such an algorithm that selects each processing tree with equal probability is not
trivial� In the above mentioned work� such an algorithm �designed for acyclic
join graphs� is presented� its application is most appropriate� when a reasonably
good �evaluation cost of less than two times the minimum cost� evaluation plan
has to be identi�ed quickly� as the experimental results in �GLPK�
	 indicate�

��� Genetic Algorithms

Genetic algorithms are designed to simulate the natural evolution process� As in
nature� where the �ttest members of a population are most likely to survive and
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propagate their features to their o�spring� genetic algorithms propagate solutions
for a given problem from generation to generation� combining them to achieve
further improvement� We provide a brief overview of the terminology and the
working principles of genetic algorithms� For a comprehensive introduction� the
reader is referred to� e�g�� �Gol��	�

����� Terminology

Because genetic algorithms are designed to simulate biological evolution� much
of the terminology used to describe them is borrowed from biology� One of the
most important characteristics of genetic algorithms is that they do not work on
a single solution� but on a set of solutions� the population� A single solution is
sometimes called phenotype� Solutions are always represented as strings �chro�
mosomes�� composed of characters �genes� that can take one of several di�erent
values �alleles�� The locus of a gene corresponds to the position of a character in
a string� Each problem that is to be solved by genetic algorithms� must have its
solutions represented as character strings by an appropriate encoding�

The ��tness� of a solution is measured according to an objective function
that has to be maximized or minimized� Generally� in a well�designed genetic
algorithm both the average �tness and the �tness of the best solution increases
with every new generation�

����� Basic Algorithm

The working principle of the genetic algorithm that we use to optimize join ex�
pressions is the same as the generic algorithm described below�

First� a population of random character strings is generated� This is the �zero�
generation of solutions� Then� each next generation is determined as follows�


 A certain fraction of the �ttest members of the population is propagated
into the next generation �Selection��


 A certain fraction of the �ttest members of the population is combined
yielding o�spring �Crossover��


 And a certain fraction of the population �not necessarily the �ttest� is
altered randomly �Mutation��

This loop is iterated until the best solution in the population has reached the de�
sired quality� a certain� predetermined number of generations has been produced
or no improvement has been observed for a certain number of generations� In the
next section� we shall examine how this generic algorithm can be adapted to the
problem of optimizing join expressions�
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����� Genetic Algorithm for Optimizing Join Expressions

Because genetic algorithms were not nearly studied as intensively for join order
optimization as other randomized algorithms� we shall discuss the questions asso�
ciated with the employment of genetic algorithms for optimizing join expressions
in more detail� In particular� we will not merely provide the techniques that
we �nally implemented� but some of the alternatives we considered �and tested�
as well� Even if the basic algorithm remains unmodi�ed� many variations for
solution encoding� selection� crossover and mutation may be contemplated�

Encoding Before a genetic algorithm can be applied to solve a problem� an
appropriate encoding for the solution and an objective function has to be chosen�
For join optimization� the solutions are processing trees� either left�deep or bushy�
and the objective function is the evaluation cost of the processing tree that is to be
minimized� For encoding processing trees� we considered two di�erent schemes�

�� Ordered list

�a� Left�deep trees�
Solutions are represented as an ordered list of leaves� For instance� the
processing tree ����R� �R���R���R���R�� is encoded as ��
����

�b� Bushy trees�
Bushy trees without cartesian products are encoded as an ordered list
of join graph edges� This scheme has been proposed in �BFI��	� As
an example of this encoding scheme� we represent the processing tree
depicted in Figure ��b as a character string� In a preliminary step�
every edge of the join graph is labelled by an arbitrary number� such
as in Figure ��a� Then� the processing tree is encoded bottom�up and
left�to�right� just the way as it would be evaluated� So� the �rst join
of the tree joins relations R� and R�� that is edge � of the join graph�
In the next steps� R�� and R� are joined� then R� and R�� and �nally
R��� and R��� contributing edges �� 
 and � respectively� Thus� the
�nal encoding for our sample processing tree is ���
� �Figure ��c��

�� Ordinal number encoding

�a� Left�deep trees�
A chromosome consists of a sequence of ordinal numbers of the pro�
cessing tree�s list of leaves� For instance� the processing tree ����R� �

R�� �R�� �R�� �R�� is encoded as follows�


 An ordered list L of all participating relations is made �for in�
stance� based on their indices�� such as L � �R�� R�� R�� R�� R�	�
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Figure ��� Encoding of Bushy Processing Trees


 The �rst relation in the processing tree� R�� is also the �rst relation
in our list L� so its index ��� is the �rst gene of the chromosome�
R� is then removed from the list L� so L �� �R�� R�� R�� R�	�


 The second relation in the processing tree� R�� is the third relation
in the list L� so �� becomes the second gene of the chromosome�
After removal of R�� L becomes �R�� R�� R�	�


 This process is repeated until the list L is exhausted� In our
example� the �nal encoding for the processing tree is �������

�b� Bushy trees�
For bushy trees� the ordinal numbers in the chromosome denote join
nodes similar to the ordered list of join edges described above� But
instead of specifying the join node by the corresponding join graph
edge� the join�s operands are used for that purpose� For instance� the
processing tree in Figure ��b is encoded as follows�


 An ordered list of all participating relations is made exactly as for
left�deep tree encoding� L �� �R�� R�� R�� R�� R�	�


 The �rst join node in the processing tree is R��R�� which involves
R� and R� with index ��� and ���� respectively� so ���� becomes
the �rst gene of the chromosome� R� and R� are replaced by R���
so L �� �R��� R�� R�� R�	�


 The next node in the processing tree joins relation R� with the
result R� � R� �index � and ��� yielding gene ���� and L ��
�R���� R�� R�	�


 Repeating this process �nally leads to the complete chromosome
��� �� � ����

In the actual implementation� the chromosome�s genes carry additional infor�
mation� namely operand order �encoding ��b�� and join algorithm �all encoding
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Figure ��� Selection

schemes��

Selection The selection operator is used to separate good and bad solutions
in the population� The motivation is to remove bad solutions and to increase
the share of good solutions� Mimicking nature� selection is realized as shown
in Figure ��� The sample population consists of four solutions� the objective
function� cost� has to be minimized� The cost value for each of the solutions
is listed in the table in Figure ��� Each solution is assigned a sector of size
inverse proportional to its cost value on a biased roulette wheel� Four spins of
the wheel might yield the result in the second table� where Solution 
 has not
been selected�it �became extinct due to lack of adaptation��

This selection scheme is based on the �tness ratio of the members of the
population� The better a member satis�es the objective function� the more it
dominates the wheel� so one �relative� �super� population member may cause
the premature convergence to a mediocre solution� because of the disappearance
of other members� features� Those features may be valuable� even if the solution
as a whole is not of high quality� To avoid this� we use ranking based selection�
That means that not the value of the objective function itself but only its rank
is used for biasing the selection wheel� In Figure ��� for instance� not the cost
values would determine the fraction of the wheel a solution is assigned to� but
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just its rank value� i�e�� 
 for Solution ��  for Solution �� � for Solution  and �
for Solution 
�

General experience shows that ranking based selection usually makes the evo�
lution process advance more slowly� but the risk of untimely losing important
information contained in weaker solutions is much lower�

Another variant is to keep the best solution in any case� This strategy �some�
times referred to as �elitist�� helps speeding up the convergence to the �near�
optimal solution� because the risk of losing an already very good solution is elim�
inated�

Crossover The crossover operator is a means of combining partially good solu�
tions in order to obtain a superior result� The realization of a crossover operator
depends heavily on the chosen encoding� For instance� the crossover operator
has to make sure that the characteristics of the particular encoding are not vi�
olated� Such a characteristic is the uniqueness of each character in the string
for the Ordered List Encoding scheme� The crossover operator and the encod�
ing scheme are tightly coupled� because often the implementation of a particular
crossover operator is facilitated �or even made possible at all� if a particular en�
coding scheme is used� Basically� we considered two di�erent crossover operators�
namely Subsequence Exchange and Subset Exchange� They work as follows�

�� Subsequence Exchange �Ordered List Encoding�
An example of the application of this operator is shown in Figure �� It
assumes the �ordered list� encoding scheme� In each of the two o�spring
chromosomes� a random subsequence is permuted according to the genes�
order of appearance in the other parent� For instance� in Figure �� the
subsequence ���� is selected from the string �
����� The �rst gene of its
o�spring remains the same as in the parent �
�� The second gene is taken
from the �rst gene of the other parent ��� The second gene of the other
parent ��� cannot be used� because it is already present� so the third gene
of the o�spring is taken from the third gene of the other parent� Continuing
this process yields at last the o�spring chromosome �
����� Determining
the second o�spring is carried out similarly�

��



� �� �� � �� ��

��
���HHHHj

� �� �� � �� ��

�Parents� �O�spring�

Figure �
� Crossover � " Subsequence Exchange for Ordinal Number Encoding

����� �����

��
���HHHHj

�� ��� �� ���

�Parents� �O�spring�

Figure ��� Crossover  " Subset Exchange

�� Subsequence Exchange �Ordinal Number Encoding�
This operator is a slight variation of the above� It is intended for use in
conjunction with the Ordinal Number Encoding� In contrast to the �rst
version of the sequence exchange operator� the two subsequences that are
selected in the two parents must be of equal length� These subsequences
are then simply swapped� This is only feasible with the Ordinal Number
Encoding� because we do not have to worry about duplicated characters�
Figure �
 shows a sample application of this operator�

� Subset Exchange �Ordered List Encoding�
The basic idea for this operator is to avoid any potential problems with du�
plicated characters by simply selecting two random subsequences with equal
length in both parents that consist of the same set of characters� These two
sequences are then simply swapped between the two parents in order to
create two o�spring� Figure �� depicts an example of the application of
this crossover operator�

Mutation The mutation operator is needed for introducing features that are
not present in any member of the population� Mutation is carried out by random
alteration of a randomly selected chromosome� If the operator must not introduce
duplicate characters� as in ordered list chromosomes� two random genes are simply
swapped in order to carry out the mutation� with Ordinal Number Encoding� a
random gene of the chromosome is assigned a new� random value�

Due to the character of mutation as the �spice� of the evolution process� it
must not be applied too liberally lest the process may be severely disrupted�
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Figure ��� Join Graphs

Usually� only a few mutations are performed in one generation�
If the �elitist� variant of the selection operator is used� one might also consider

to except the best solution in the population from being mutated� The reasons
for doing so are explained in the paragraph above describing the selection oper�
ator�

� Quantitative Analysis

Preliminaries The generation of queries for the benchmarks permits indepen�
dent setting of the following parameters�


 Class of the join graph


 Distribution of relation cardinalities


 Attribute domains

The shape of the join graph can be chosen from the following four classes� chain�
star� cycle and grid �cf� Figure ��a"d� respectively��

Relation cardinalities and domain sizes fall into four categories� S� M� L� XL
as speci�ed in Table �� for instance� �� of all relations comprise between ����
and ������ tuples� These �gures were chosen such that join results and cost
values are neither too small �because of the error that would be introduced due
to the page granularity of the cost model� nor too large �loss of accuracy due to
limited �oating point arithmetic resolution��

The query itself is speci�ed such that all relations from a particular join
graph are to be joined� the selectivities that are associated with the graph�s edges
are computed according to the estimate used in System�R �SAC���	� i�e�� � �
��min�dom�attribute��� dom�attribute���� Index structures �either hash tables or
B��trees� facilitate read access on twenty percent of all relation attributes� While
constructing a join graph� relation cardinalities and attribute domain sizes are
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Class Relation Cardinality Percentage

S ������ ���

M �������� ���

L ���������� ���

XL ������������ ���

����

Class Domain Size Percentage

S ���� ��

M ������ ���

L ������� ���

XL �������� ���

����

�a� �b�

Relation Cardinalities Domain Sizes

Table �� Relation Cardinalities and Domain Sizes

drawn independently� however� various �sanity checks� ensure that� for instance�
a relation�s cardinality cannot exceed the product of its attribute domain sizes�

Each point in the following diagrams represents the average of at least thirty
optimized queries� which proved to be a good compromise between the con�icting
goals �avoidance of spurious results� �due to atypical behaviour of single runs�
and �running time�� as preliminary tests showed�

From the optimization strategies discussed in Section 
� we implemented
the following algorithms� The System�R Algorithm� The Minimum Selectivity
Heuristic and the KBZ Algorithm from the class of deterministic optimizers� and
Simulated Annealing� Iterative Improvement and Genetic �all three in several
variants� from the class of randomized�genetic optimizers� All deterministic al�
gorithms yield solutions in the subspace of left�deep processing trees� whereas
some of the randomized�genetic algorithms operate in the entire solution space
�bushy trees��

All cost �gures are scaled with respect to the best solution available apart from
System�R �because the System�R Algorithm could not be run for all parameter
settings due to its high running time�� For instance� a solution with a scaled
cost of two is twice as expensive to evaluate as the best plan computed by any
algorithm for that particular query� However� a curve for the algorithm that
actually did compute the best solution is not necessarily shown in every plot� In
other words� the set of algorithms that compete for the best solution is always
the same� regardless of the subset that is depicted in a particular plot�

Solution Spaces Before presenting the benchmark results� we will take a closer
look at the two solution spaces� The left�deep tree space is a subset of the bushy
tree space� so we can expect lower running times of optimizers that operate in the
left�deep space� On the other hand� there is the danger of missing good solutions
that are not left�deep trees�

In order to get some insight into the advantages of using one solution space
instead of the other� we determined both the �left�deep optimal� and �bushy op�
timal� solutions for one hundred randomly selected queries with six participating
relations� The histograms for the four di�erent join graph types in Figure ��a"d
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Figure ��� Left�Deep vs� Bushy Processing Tress

show the percentage of cases where the left�deep tree optimum and bushy tree
optimum is of equal cost �i�e�� the optimal solution is in fact a left�deep tree�
labelled �L�B��� Following from left to right� the percentages of cases where the
bushy tree optimum has less than two percent� between two and �ve percent�
etc�� lower cost than the left�deep tree optimum�

Considering those histograms� it becomes apparent that the shape of the join
graph makes a big di�erence� for chain and cycle� we can �nd in half of all
cases a better solution in the bushy tree solution space� for cycle� about one �fth
even more than ��� cheaper than the best left�deep tree solution� Consequently�
the investment in searching the bushy tree solution space should be pro�table�
On the other hand� for star join graphs in most of the cases the optima are
left�deep trees anyway� because other tree shapes necessarily comprise cartesian
products� Finally� for the grid join graph� the situation is not as clear as for the
other three� ��� of the optima are left�deep trees� but a non�neglectable fraction
of the bushy tree optima are far cheaper than their left�deep counterparts� A
choice in favour of the bushy tree solution space would depend heavily on the
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Figure ��� Deterministic Algorithms� Chain Join Graph

optimization algorithms� capability to locate these solutions �cf� �IK��	�� In the
remainder of this section� we will investigate whether the bushy tree optimizers
can exploit the potential of good solutions in the bushy tree solution space�

Benchmark Results for Deterministic Algorithms In the �rst series of
benchmarks� we shall examine deterministic algorithms� Figures �� to �� show
the results for the System�R Algorithm �Section 
������ the Minimum Selectivity
Heuristic �Section 
������ and the KBZ algorithm �Section 
����� Because none of
the cost formulae in Section ��� ful�ls the KBZ algorithm�s requirement� we used
a simple approximation that counts the processed tuples for a nested�loop join
�without considering index structures� in order to be able to run the algorithm�
The cost of a complete evaluation plan thus derived� however� was computed
according to the exact formulae�

On each of the diagrams� the scaled cost �cost of the optimized evaluation
plan divided by the cost of the best plan derived by any of the optimization algo�
rithms discussed in this section except System�R� is plotted against the number
of relations participating in the query� the join graph type is noted in the respec�
tive caption� Please note the smaller scale in the y�axis for the star join graph�
All deterministic algorithms yield left�deep processing trees� in addition� the best
join method is determined locally for each join node� i�e�� proceeding bottom�up
and selecting the least costly join method for each node� The results for the
System�R optimization are plotted for �ve to ten participating relations in order
to provide some �absolute� basis for comparison purposes�
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Figure ��� Deterministic Algorithms� Star Join Graph
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Figure ��� Deterministic Algorithms� Cycle Join Graph
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Figure ��� Deterministic Algorithms� Grid Join Graph

Despite the simple cost approximation for running the KBZ algorithm� this
optimizer turns out to be the best of the two �heuristic� deterministic optimizers
for the chain� star and cycle join graphs� Especially the solutions for the star join
graph can hardly be improved by any of the other algorithms we tested�be it
deterministic� randomized or genetic� For cycle and grid� the results are not quite
as competitive� because these join graphs are cyclic and a spanning tree must be
selected prior to the application of the KBZ algorithm� This e�ect becomes espe�
cially apparent for the grid join graph� where the Minimum Selectivity Heuristic
performs best� The System�R Algorithm� which computes the optimal left�deep
processing tree without cartesian products� achieves on the average a cost factor
slightly above one� even though some solutions have cost factors below one� i�e��
better than any of the approximate solutions� The reason why this cost factor
is often higher than one is due to the limitation of the System�R Algorithm to
left�deep processing trees without cartesian products�

To summarize the results for heuristics optimizers� we can note the following
points� �rst� both of the discussed optimizers have a very short running time�
the KBZ algorithm managed to compute the results for the thirty�relation star
queries in less than two CPU�seconds each� the Minimum Selectivity Heuristic in
less than a tenth of a second for each one of the same queries� Second� the perfor�
mance in terms of quality is�except for star join graphs�only for small queries
competitive� where KBZ performs best for the join graphs with low connectivity
and Minimum Selectivity for the grid join graph� However� for small queries�
one would probably not want to rely on heuristic algorithms� but compute the
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optimal solution using some kind of search strategy�

Benchmark Results for Randomized and Genetic Algorithms The next
set of benchmarks is carried out with randomized algorithms �cf� Section 
��� and
genetic algorithms �cf� Section 
��� We will compare three variants of Iterative
Improvement �called IIJ� IIH �SG��	� IIIO �IK��	�� and Simulated Annealing
�called SAJ� SAH �SG��	� SAIO �IK��	� and two variants of genetic algorithms
�Genetic� BushyGenetic�� Furthermore� the results of the System�R optimization
are shown as well for �ve to ten participating relations� The parameters for each
algorithm are derived from the cited references �II� SA� or they were determined
in preliminary tests �Genetic� BushyGenetic�� In addition� for all algorithms
generating left�deep trees� a search proceeding from the leaves of the tree to the
root is performed for all trial solutions in order to determine the most appropriate
join method on each join node�

Exactly as in the �rst set of benchmarks with the heuristic algorithms� the
scaled cost is plotted against the number of relations participating in the join�
please note the di�erent scale in Figure �� The parameters of the algorithms
mentioned above are as follows�

�� SAJ


 A move is either a �Swap� or a �Cycle�� i�e�� only left�deep processing
trees are considered�


 The starting temperature is chosen such that at least 
�� of all moves
are accepted�


 The number of iterations of the inner loop is the same as the number
of joins in the query�


 After every iteration of the inner loop� the temperature is reduced to
����� of its old value�


 The system is considered frozen when the best solution encountered so
far could not be improved in �ve subsequent outer loop iterations �i�e��
temperature reductions� and less than two percent of the generated
moves were accepted�

�� SAH


 A move is either a �Swap� or a �Cycle�� i�e�� only left�deep processing
trees are considered�


 The starting temperature is determined as follows� the standard de�
viation � for the cost is estimated from a set of sample solutions and
multiplied by a constant value �����






 The inner loop is performed until the cost distribution of the generated
solutions is su�ciently stable �for details cf� �SG��	��


 After every iteration of the inner loop� the temperature is multiplied
by max����� e�

�t

� � �� � ���� � see above��


 The system is considered frozen when the di�erence between the min�
imum and maximum costs among the accepted states at the current
temperature equals the maximum change in cost in any accepted move
at the current temperature�

� SAIO


 Moves are chosen from �Join Method Change�� �Commutativity��
�Associativity�� �Left Join Exchange� and �Right Join Exchange��
The entire solution space �bushy processing trees� is considered�


 The starting temperature is twice the cost of the �randomly selected�
starting state�


 The number of iterations of the inner loop is sixteen times the number
of joins in the query�


 After every iteration of the inner loop� the temperature is reduced to
��� of its old value�


 The system is considered frozen when the best solution encountered
so far could not be improved in four subsequent outer loop iterations
�i�e�� temperature reductions� and the temperature has fallen below
one�


� Iterative Improvement �IIH� IIJ� IIIO�


 All starting points are chosen randomly�


 For an algorithm IIx � moves are chosen from the same set as the cor�
responding SAx algorithm�


 Local minima are determined according to �SG��	 �IIH� IIJ� and �IK��	
�IIIO�� i�e�� a solution is considered a local minimum if k randomly
selected neighbours fail to improve the result� k is the number of join
graph edges for IIH and IIJ� for IIIO� k is the number of neighbouring
states�


 In order to perform a �fair� comparison between Iterative Improve�
ment and Simulated Annealing� the total number of solutions consid�
ered is approximately the same for both the corresponding IIx and SAx
algorithms�

�� Two�Phase Optimization �IIIO�SAIO�
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Figure ��� Randomized Algorithms� Left�Deep Tree Solution Space�
Chain Join Graph


 Ten random starting points for the II phase�


 SA phase starts with the minimum from the II phase and the starting
temperature is ��� times its cost�

�� Genetic Algorithms �Genetic�BushyGenetic�


 Solution space� Left�deep processing trees�
Bushy processing trees


 Encoding� Ordered list of leaves�
Ordinal Number Encoding


 Ranking�based selection operator


 Sequence exchange crossover operator


 Population� ���


 Crossover rate ��� ���� of all members of the population participate
in crossover�


 Mutation rate �� ��� of all solutions are subject to random mutation�


 Termination condition� � generations without improvement�
�� generations without improvement

In Figures �� to ��� the results for the left�deep tree optimizers are depicted�
Although the parameter setting for SAH�SAJ and IIH�IIJ is similar� we note
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Figure �� Randomized Algorithms� Left�Deep Tree Solution Space�
Star Join Graph

that the �J� variants perform poorly for all but one of the join graph types� SAH
and IIH perform much better� where� in turn� SAH is superior to IIH� In all
cases� SAH and the genetic algorithm computed the best evaluation plans among
the left�deep tree optimizers� with a slight superiority of the genetic algorithm�
Apparently� the sophisticated equilibrium�freezing condition for SAH is the main
reason for its good results� A closer look at the benchmark data revealed that
indeed SAJ visited much less solution alternatives than SAH� The Iterative
Improvement variants that were designed to consider about as many di�erent
solutions as the respective Simulated Annealing algorithms re�ect this fact� IIH
achieves better results than IIJ� Apart from the quality of the derived results�
another important criterion for selecting an optimizers is its running time� which
we will investigate later� In the meantime� we will look at the performance of
those optimizers that operate in the bushy tree solution space�

These optimizers� namely SAIO� IIIO� �PO and a genetic algorithm �Bushy�
Genetic� are being compared in Figures �� to ��� In addition� the best two
left�deep optimizers� curves �SAH and Genetic� are included as well in order to
facilitate direct comparison� It turns out that� in terms of quality� none of the
implemented algorithms performed better than the Two�Phase Optimization al�
gorithm ��PO��regardless of the join graph type� although the gap between Sim�
ulated Annealing� Iterative Improvement and Two�Phase Optimization is quite
narrow� In contrast to the left�deep case� where the genetic algorithm showed
a slight superiority over the Simulated Annealing results� this is not the case in

�



1

10

100

5 10 15 20 25 30

S
ca

le
d 

C
os

t

Number of Relations

Genetic
SAH

IIH
SAJ

IIJ
System R

Figure �
� Randomized Algorithms� Left�Deep Tree Solution Space�
Cycle Join Graph
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Figure ��� Randomized Algorithms� Left�Deep Tree Solution Space�
Grid Join Graph
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Figure ��� Randomized Algorithms� Bushy Tree Solution Space�
Chain Join Graph

the bushy tree solution space� Although the genetic algorithm does not perform
particularly poor� it cannot quite equal the quality of Simulated Annealing or
Two�Phase Optimization�

Only for star queries� all algorithms exhibit a very similar behaviour �diver�
gence just about one percent�� so the algorithms� running time would be the
decisive factor in this case� For all other join graphs� every bushy tree optimizer
easily outperforms even the best implemented left�deep tree optimizer� which con�
�rms that these algorithms are indeed capable of locating the superior solutions
of the bushy tree solution space�

Let us now look at the running times for the di�erent optimizers� Although
the quality of the generated solutions is a very important characteristic� the run�
ning time of an algorithm has a considerable impact on the �nal choice� The
intended application area determines how much time can be spent on the opti�
mization� queries that are stated interactively and run only once do not warrant
the same amount of optimization than compiled queries that are repeated hun�
dreds or thousands of times� In Figure �� average running times for Genetic�
SAH� BushyGenetic� SAIO� IIIO� �PO and System�R are plotted against the num�
ber of relations participating in the queries ��chain� join graph�� The running
times for the various algorithms were determined on a SPARCstation ������MP
and denote CPU time�

From the six randomized�genetic algorithms� SAIO has the longest running
times with up to ���� CPU�seconds for thirty relation queries� Although the
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Figure ��� Randomized Algorithms� Bushy Tree Solution Space�
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Figure ��� Randomized Algorithms� Bushy Tree Solution Space�
Cycle Join Graph
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Figure �� Approach to the �nal solution

Two�Phase Optimization algorithm ��PO� yields slightly better solutions� it re�
quires a running time of about ��� CPU seconds� only half of SAIO�s time� As
expected� left�deep tree optimizers �SAH� Genetic� run faster than bushy tree
optimizers� but the gain of speed must be paid by loss of quality� Surprisingly�
the BushyGenetic algorithm runs even faster than both the left�deep optimizers�
even though it yields solutions that are at least as good as theirs� it can handle
the thirty relation queries on the average in just about ��� seconds� In contrast
to the randomized�genetic algorithms� the computation of the optimal left�deep
tree without cartesian products is in our implementation only for queries involv�
ing up to twelve relations feasible� for instance� thirteen�relation queries already
require on the average an optimization time of more than one hour�

In Figure �� for the same six algorithms the approach to their respective
�nal solutions is shown� Each time the currently best solution is improved� the
gain in absolute cost units is noted �y�axis� together with the time of its oc�
currence �x�axis�� Because only a single optimization run for a twenty relation
query �chain join graph� is plotted� we cannot draw any far reaching conclusions�
but nevertheless the curves re�ect the algorithms� typical behaviour we observed
quite well� Both Simulated Annealing algorithms� SAIO as well as SAH� spend
a good deal of the total running time investigating high�cost processing trees�
SAIO required more than ��� seconds to reach a cost level of less than ten times
the cost of the �nal solution� SAH ran faster� but it still took a very long time
for the approach to its �nal solution� On the other hand� both Two�Phase Op�
timization ��PO� as well as Iterative Improvement �IIIO� achieved a very good
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result within less than one resp� three seconds running time� For the genetic
algorithms� especially BushyGenetic can reach acceptable solutions very quickly�
Even the initial population consisted of at least one member with an evaluation
cost that is as low as SAIO�s after running more than a hundred times as long�
Although the drawing of the initial population is not guaranteed to be unbiased
in our implementation� we can note that genetic algorithms nicely supplement
the approach in �GLPK�
	 �Section 
������ in a �rst step� a random sample could
be drawn using the algorithm presented in �GLPK�
	� which can be used in a
second step as the initial population for the genetic algorithm�

Summary Comparing the performance of the various optimization algorithms�
we can draw the following conclusions�

Algorithms that perform an exhaustive or near exhaustive enumeration of the
solution space� such as dynamic programming� can compute the optimal result�
but the high running time makes their application only feasible for queries that
are not too complex �i�e�� less than about ten to �fteen relations for left�deep
processing trees�� For the same reason� searching the bushy tree solution space
can be carried out only for very simple queries� �in our experiments� about six to
seven relations�� so the advantages of this solution space can hardly be exploited�

Heuristic optimizers avoid the high time complexity of exhaustive enumera�
tion� but the results are� especially for complex queries with many participating
relations� rarely acceptable� The KBZ algorithm� although yielding the optimal
left�deep solution under certain circumstances� is di�cult to apply in practice�
the need for cost model approximations and problems concerning join method
assignment limits its usefulness� We found that only for star queries the KBZ al�
gorithm is competitive� its short running time compared to alternative algorithms
�especially randomized�genetic� makes it the solution of choice�

Finally� randomized and genetic algorithms operating in the bushy tree so�
lution space are the most appropriate optimizers in the general case provided
the problems are too complex to be tackled by exhaustive enumeration� Which
one of the discussed algorithms is the most adequate depends on the particu�
lar application area� namely whether short running time or best optimization
performance is the primary goal� If good solutions are of highest importance�
Two�Phase Optimization� the algorithm that performed best in our experiments�
is a very good choice� other Simulated Annealing variants� for instance Toured
Simulated Annealing �TSA� �LVZ�	�� that we did not implement� are likely to
achieve quite similar results� The �pure� Simulated Annealing algorithm has a
much higher running time without yielding signi�cantly better solutions� If short
running time is more important� Iterative Improvement �IIIO�� the genetic algo�
rithm �BushyGenetic�� and� to a lesser extent� Two�Phase Optimization ��PO�
are feasible alternatives� Especially the �rst two degrade gracefully if they are
preempted� in the example run in Figure �� they achieved acceptable results
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in less than a second� Moreover� as mentioned above� genetic algorithms can be
combined very well with the transformationless approach in �GLPK�
	�

� Conclusion

We have studied several algorithms for the optimization of join expressions� Due
to new database applications� the complexity of the optimization task has in�
creased� more relations participate in join expressions than in traditional re�
lational database queries� Enumeration of all possible evaluation plans is no
longer feasible� Algorithms that compute approximate solutions� namely heuris�
tic� randomized and genetic algorithms� show di�erent capabilities for solving
the optimization task� Heuristic algorithms compute solutions very quickly� but
the evaluation plans are in many cases far from the optimum� Randomized and
genetic algorithms are much better suited for join optimizations� although they
require a longer running time� the results are far better�

For the question of the adequate solution space� we have found that� with
the exception of the star join graph� the bushy tree solution space is preferable
in spite of the fact that �pipelining� �avoiding to write intermediate results to
secondary memory� can be carried out mainly by left�deep processing trees�

Another consideration is the extensibility of randomized and genetic algo�
rithms� both can be designed to optimize not merely pure join expressions� but
complete relational queries� In addition� some of them �namely Iterative Im�
provement and genetic algorithms� can be easily modi�ed to make use of parallel
computer architectures�
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