

A. Hameurlain et al. (Eds.): Trans. on Large-Scale Data- & Knowl.-Cent. Syst. I, LNCS 5740, pp. 211–242, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evolution of Query Optimization Methods

Abdelkader Hameurlain and Franck Morvan

Institut de Recherche en Informatique de Toulouse IRIT, Paul Sabatier University,
 118, Route de Narbonne, 31062 Toulouse Cedex, France
Ph.: 33 (0) 5 61 55 82 48/74 43, Fax: 33 (0) 5 61 55 62 58

hameur@irit.fr, morvan@irit.fr

Abstract. Query optimization is the most critical phase in query processing. In
this paper, we try to describe synthetically the evolution of query optimization
methods from uniprocessor relational database systems to data Grid systems
through parallel, distributed and data integration systems. We point out a set of
parameters to characterize and compare query optimization methods, mainly: (i)
size of the search space, (ii) type of method (static or dynamic), (iii) modifica-
tion types of execution plans (re-optimization or re-scheduling), (iv) level of
modification (intra-operator and/or inter-operator), (v) type of event
(estimation errors, delay, user preferences), and (vi) nature of decision-
making (centralized or decentralized control).

The major contributions of this paper are: (i) understanding the mechanisms
of query optimization methods with respect to the considered environments and
their constraints (e.g. parallelism, distribution, heterogeneity, large scale,
dynamicity of nodes) (ii) pointing out their main characteristics which allow
comparing them, and (iii) the reasons for which proposed methods become very
sophisticated.

Keywords: Relational Databases, Query Optimization, Parallel and Distributed
Databases, Data Integration, Large Scale, Data Grid Systems.

1 Introduction

At present, most of the relational database application programs are written in high-
level languages integrating a relational language. The relational languages offer gen-
erally a declarative interface (or declarative language like SQL) to access the data
stored in a database. Three steps are involved for query processing: decomposition,
optimization and execution. The first step decomposes a relational query (a SQL
query) using logical schema into an algebraic query. During this step syntactic, se-
mantic and authorization are done. The second step is responsible for generating an
efficient execution plan for the given SQL query from the considered search space.
The third step consists in implementing the efficient execution plan (or operator tree)
[51]. In this paper, we focus only on query optimization methods. We consider multi-
join queries without “group” and “order by” clauses.

Work related to the relational query optimization goes back to the 70s, and began
mainly with the publications of Wong et al. [138] and Selinger et al. [112]. These papers

212 A. Hameurlain and F. Morvan

motivated a large part of the database scientific community to focus their efforts on this
subject. The optimizer’s role is to generate, for a given SQL query, an optimal (or close to
the optimal) execution plan from the considered search space. The optimization goal is to
minimize response time and maximize throughput while minimizing optimization costs.

The general problem of the query optimization can be expressed as follows [41]:
let a query q, a space of the execution plans E, and a cost function cost (q) associated
to the execution of p ∈E, find the execution plan calculating q such as the cost (q) is
minimum. An optimizer can be decomposed into three elements [41]: a search space
[85] corresponding to the virtual set of all possible execution plans corresponding to a
given query, a search strategy generating an optimal (or close to the optimal) execu-
tion plan, and a cost model allowing to annotate operators' trees in the considered
search space.

Because of the importance, and the complexity of the query optimization problem [21,
75, 82, 103], the database community made a considerable effort to develop approaches,
methods and techniques of query optimization for various Database Management Sys-
tems DBMS (i.e. relational, deductive, distributed, object, parallel) [7, 9, 21, 26, 47, 52,
61, 62, 79, 82, 103, 125]. The quality of query optimization methods depends strongly on
the accuracy and the efficiency of cost models [1, 42, 43, 66, 99, 141].

There are two types of query optimization approaches [27]: static, and dynamic.
During more than twenty years, most of the DBMSs have used the static optimization
approach which consists of generating an optimal (or close to the optimal) execution
plan, then executing it until the termination. All the methods, using this approach,
suppose that the values of the parameters used (e.g. sizes of temporary relations, se-
lectivity factors, availability of resources) to generate the execution plan are always
valid during its execution. However, this hypothesis is often unwarranted. Indeed, the
values of these parameters can become invalid during the execution due to several
causes [98]:

1. Estimation errors: the estimation on the sizes of the temporary relations and the
relational operator costs of an execution plan can be erroneous because of the ab-
sence, the obsolescence, and the inaccuracy of the statistics describing the data,
or the errors on the hypotheses made by the cost model. For instance, the depend-
ence or the independence between the attributes member of a selective clause
(e.g. town=’Paris’ and country = ‘France’). These estimation errors are propa-
gated in the rest of the execution plan. Moreover, [70] showed that the propaga-
tion of these errors is exponential with the number of joins.

2. Unavailability of resources: at compile-time, the optimizer does not have any
information about the system state when the query will run, in particular, about
the availability of resources to allocate (e.g. available memory, CPU load).

Because of reasons quoted previously, the execution plans generated by a static
optimizer can be sub-optimal. To correct this sub-optimality, some recent researches
suggest improving the accuracy of parameter values used during the choice of the
execution plan. A first solution consists in improving the quality of the statistics on
the data by using the previous executions [1]. This solution was used by [20] to
improve the estimation accuracy of the operator selectivity factors and by [117] to
estimate the correlation between predicates. The second solution proposed by [80]

 Evolution of Query Optimization Methods 213

concentrates on the distributed queries. The optimizer generates an optimal (or close
to the optimal) execution plan, having deduced the data transfer costs and the cardi-
nalities of temporary relations. In this solution, the query operators are executed on a
tuple subset of the operands to estimate the data transfer costs and the cardinalities of
temporary relations. In both solutions, the selected execution plan is executed until
the termination, whatever are the changes in execution environment.

As far as the dynamic optimization approach, it consists in modifying the sub-
optimal execution plans at run-time. The main motivations to introduce ‘dynamicity’
into query optimization [27], particularly during the resource allocation process, are
based on: (i) willing to use information concerning the availability of resources, (ii)
the exploitation of the relative quasi-exactness of parameter values, and (iii) the re-
laxation of certain too drastic and not realistic hypotheses in a dynamic context (e.g.
infinite memory). In this approach, several methods were proposed in different envi-
ronments: uni-processor, distributed, parallel, and large scale [3, 4, 6, 7, 8, 12, 14, 15,
17, 18, 27, 30, 37, 48, 50, 56, 59, 72, 73, 74, 76, 87, 95, 98, 101, 102, 105, 106, 107,
140]. All these methods have the capacity of detecting the sub-optimality of execution
plans and modifying these execution plans to improve their performances. They allow
to the query optimization process to be more robust with respect to estimation errors
and to changes in execution environment.

The rest of this paper is devoted to provide a state of the art concerning the evolu-
tion of query optimization methods in different environments (e.g. uni-processor, par-
allel, distributed, large scale). For each environment, we try to describe synthetically
some methods, and to point out their main characteristics [67, 98], especially, the
nature of decision-making (centralized or decentralized), the type of modification
(re-optimization or re-scheduling), the level of modification (intra-operator and/or
inter-operator), and the type of event (estimation errors, delay, user preferences).

The major contributions of this paper are: (i) understanding the mechanisms of
query optimization methods with respect to considered environments and their con-
straints, (ii) pointing out their main characteristics which allow comparing them, and
(iii) the reasons for which proposed methods become very sophisticated.

This paper is organized as follows: firstly, in section 2, we introduce two main
search strategies (enumerative strategies, random strategies) for uni-processor rela-
tional query optimization. Then, in section 3 we present a synthesis of some methods
in a parallel relational environment by distinguishing the two phase and one phase
approaches. Section 4 provides global optimization methods of distributed queries.
Section 5, describes, in data integration (mediation) systems, both types of dynamic
optimization methods: centralized and decentralized. Section 6 is devoted to give an
overview of query optimization in large scale environments, particularly in data grid
environments. Lastly, before presenting our conclusion, in section 7, we provide a
qualitative analysis of described optimization methods, and point out their main char-
acteristics which allow comparing them.

2 Uni-processor Relational Query Optimization

In the uniprocessor relational systems, the query optimization process consists of two
steps: (i) logical optimization which consists in applying the classic transformation

214 A. Hameurlain and F. Morvan

rules of the algebraic trees to reduce the manipulated data volume, and (ii) physical
optimization which has roles of [90]: (a) determining an appropriate join method for
each join operator by taking into account the size of the relations, the physical organi-
zation of the data, and access paths, and (b) generating the order in which the joins are
performed [69, 84] with respect to a cost model. In this section, we focus on physical
optimization methods. We begin at first, to define, characterize, and estimate the size
of the search space. Then, we present search strategies. These are based either on
enumerative approaches, or random approaches. Finally, we synthesize some analyses
and comparisons stemming from performance evaluations of proposed strategies.

2.1 Search Space

2.1.1 Characteristics
In relational database systems [31, 120, 130], each query execution plan can be repre-
sented by a processing tree where the leaf nodes are the base relations and the internal
nodes represent operations. Different tree shapes have been considered: left-deep tree,
right-deep tree, and bushy tree. The Fig.1 illustrates tree structures of relational opera-
tors associated with the multi-join query R1∞ R2 ∞ R3 ∞ R4 ∞ R4.

R1 R2

R3

R4

join

join

join

result

R4 R3

R2

R1

join

join

join

result

Left-deep tree

(((R1 R2) R3) R4)

Right-deep tree

(R1 (R2 (R3 R4)))

R1 R2

join

R4 R3

join

join

result

Bushy tree

((R1 R2) (R3 R4))

Fig. 1. Tree shape

A search space can be restricted according to the nature of the execution plans and
the applied search strategy. The nature of execution plans is determined according to
two criteria: the shape of the tree structures (i.e. left-deep tree, right-deep tree and
bushy tree) and the consideration of plans with Cartesian products.

The queries with a large number of join predicates make the difficulty to manage
associated search space which becomes too large. That is the reason why some au-
thors [122, 123] chose to eliminate bushy trees. This reduced space is called valid
space. This choice is due to the fact that this valid space represents a significant por-
tion of the search space, which is the optimal solution. However, this assertion was
never validated. Others, such as [100], think that these methods decrease the chances
to obtain optimal solutions. Several examples [100] show the importance of the im-
pact of this restrictive choice.

 Evolution of Query Optimization Methods 215

2.1.2 Search Space Size
The importance of the query shape1 (i.e. linear, star or clique) and of the nature of the
execution plans is due to their incidence on the size of the search space. If we have N
relations in a multi-join query, the question is to know how many execution plans
being able to be built, taking into account the nature of the search space. The size of
this space also varies according to the shape of the query. In this case, [85, 124] pro-
posed a table illustrating the lower and superior boundary markers of the search space
by taking into account the nature of this one and characteristics of the queries which
are: the type of a query (i.e. repetitive, ad-hoc), the query shape, and the size of a
query (i.e. simple, medium, complex).

The results presented in [85, 124] point out the exponential growth of the number
of execution plans according to the number of relations. This shows the difficulty to
manage a solution set which is sometimes very large. Therefore, this brings the neces-
sity of adapting the search strategy to the query characteristics.

2.2 Search Strategies

In the literature, we distinguish, generally, two classes of strategies allowing to solve
the problem of the join scheduling for the query optimization:

- Enumerative strategies
- Random strategies.

The description of the principles of search strategies leans on the generic search algo-
rithms described in [84] and on the comparative study between the random algorithms
proposed by [69, 70, 86, 122, 123].

2.2.1 Enumerative Strategies
These strategies are based on the generative approach. They use the principle of dy-
namic programming (e.g. optimizer of System R). For a given query, the set of all
possible execution plans is enumerated. This can lead to manage a search space too
large in case of complex queries. They build execution plans from sub-plans already
optimized by starting with all or part of base relations of a query. In the whole of gen-
erated solutions, only the optimal execution plan is returned for the execution. How-
ever, the exponential complexity of such strategies has led many authors to propose
more efficient strategies. So enumerative strategies allow to discard bad states by in-
troducing heuristics (e.g. depth- first search with different heuristics [123]). Several
strategies are described in [84].

2.2.2 Random Strategies
The enumerative strategies are inadequate in optimizing complex queries because the
number of execution plans quickly becomes too large [85, 124]. To resolve this prob-
lem, random strategies are used. The transformational approach characterizes this kind
of strategies. Several rules of transformation (e.g.; Swap, 3Cycle, Join commutativity/
associativity) were proposed [69, 70, 122] where the validity depends on the nature of
the considered search space [86].

1

 The query shape indicates the way where the relations are joined by means of predicates, as
well as the number of referenced relations.

216 A. Hameurlain and F. Morvan

The random strategies start generally with an initial execution plan which is itera-
tively improved by the application of a set of transformation rules. The start plan(s)
can be obtained through an enumerative strategy like Augmented Heuristics. Two
optimization techniques were abundantly already studied and compared: the Iterative
Improvement and the Simulated Annealing [68, 69, 70, 84, 122, 123].

The performance evaluation of these strategies is very hard because of strong in-
fluence, at the same time, of random parameters and factors. The main difficulty lies
in the choice of these parameters (e.g local / global minimum detection, algorithm
termination criterion, initial temperature, termination criterion of inner iteration). In-
deed, the quality of execution and the optimization cost depend on the quality of
choice. After the tuning of the parameters, the comparison of the algorithms will al-
low to determine the most efficient random algorithm for the optimization problem of
complex queries. However, the results obtained by [122] and by [69] differ radically
because, for [122], the Iterative Improvement algorithm is better than the Simulated
Annealing, while for [69], we have the opposite (even if for these last ones, their con-
clusion remains more moderate). The parameters were determined thanks to experi-
ments with various alternatives, in the case of [69], or by applying the methodology
of the factorial experiments [122]. An example of the use of these factorial experi-
ments is given in [121].

2.3 Discussion

In [69, 70, 122, 123], the authors concentrated their efforts on the performance
evaluation of the random algorithms for Iterative Improvement and the Simulated
Annealing. However, the difference of their results underlines the difficulty of such
evaluation. Indeed, for Swami and Gupta [122, 123], the Simulated Annealing algo-
rithm is never superior to the Iterative Improvement whatever the time dedicated to
the optimization is, while for Ioannidis and Cha Kong [69, 70], it is better than the
Iterative Improvement algorithm after some optimization time.

In [69, 70], the authors try to explain this difference. First, the considered search
space is restricted to the left-deep trees in the case of Swami and Gupta [122, 123],
while Ioannidis and Cha Kong [69, 70] study the search space in its totality. In [70],
the authors spread their works on the study of the shape of the cost function by stress-
ing the analysis of the linear and bushy spaces, and take into account only results
waited in this restricted portion by the search space in order to keep the comparison
coherent. The second difference concerns the join method. Swami and Gupta choose
the hash join method, while Ioannidis and Kong [69, 70] use two join methods: nested
loop and sort merge join. They choose even integrating the hash join method to show
that their results do not depend on the method chosen. Another variant in the cost
evaluation of the execution plan (CPU time for the first ones and I/O time for the sec-
ond) has, either, no significant incidence on the difference of the results. On the other
hand, they intuitively think that the number of nearest plans, the determination of the
local minimum in the case of the Iterative Improvement algorithm and the definition
of the transformation rules to be applied are important elements in the explanation of
this difference. For example, if the number of nearest plans is not rather large, we can
discard potential local minima and even indicate it as such, while they are not in real-
ity. In that case, the results are skewed. The transformation rules applied by Swami

 Evolution of Query Optimization Methods 217

and Gupta [122, 123] generates nearest execution plans with a significant difference
in cost [69]. Hence, the Simulated Annealing algorithm has no more the possibility of
crossing a long moment in this zone of low-cost plans and offers then insufficient
improvement. However, the algorithm of the Iterative Improvement can easily reach a
local minimum.

The termination criterion of the Simulated Annealing defined in [122] does not
give the time to the probability to decrease sufficiently. Indeed, when the time limit is
reached, the probability to accept execution plans with high cost is still too high and
the produced optimal plan has a still too expensive.

3 Parallel Relational Query Optimization

Parallel relational query optimization methods [57] can be seen as an extension of
relational query optimization methods developed for the centralized systems, by inte-
grating the parallelism dimension. Indeed, the generation of an optimal parallel execu-
tion plan (or close to optimal), is based on either a two-phase approach [60, 63], or on
a one-phase approach [24, 86, 111, 142]. A two-phase approach consists in two se-
quential steps: (i) generation of an optimal sequential execution plan (i.e. logical op-
timization followed by a physical optimization), and (ii) resource allocation to this
plan. The last step consists, at first, in extracting the various sources of parallelism,
then, to assign the resources to the operations of the execution plan by trying to meet
the allocation constraints (i.e. data locality, and various sources of parallelism). As far
as the one-phase approach, the steps (i) and (ii) are packed into one integrated com-
ponent [90]. The fundamental distinction between both approaches is based on the
query characteristics and the shape of the search space [57].

In the proposals concerning parallel relational query optimization few authors [55,
61, 79] proposed a synthesis dedicated to parallel relational query optimization meth-
ods. Hasan et al [61] have briefly introduced what they consider the major issues to be
addressed in parallel query optimization. The issues that are tackled in [79] include,
mainly, the placement of data in the memory, concurrent access to data and some al-
gorithms for parallel query processing. These algorithms are restricted to parallel
joins. As far as proposals [55], the authors describe, in a very synthetic way, data
placement, static and dynamic query optimization methods, and accuracy of the cost
model. Nevertheless, the authors do not show how we can compare the two optimiza-
tion approaches, and how we can choose the appropriate optimization approach. Last
year, Taniar et al. [126] provide the latest principles, methods and techniques of paral-
lel query processing in their book.

The rest of the section is devoted to provide an overview of some static and dy-
namic query optimization methods in a parallel relational environment by distinguish-
ing the two phase and one phase approaches [57].

3.1 Static Parallel Query Optimization Methods

In this sub-section, we describe some one-phase and two-phase optimization strate-
gies of parallel queries in a static context.

218 A. Hameurlain and F. Morvan

3.1.1 One-Phase Optimization
In a one-phase approach, Schneider et al. [111] propose a parallel algorithm to proc-
ess a query compound of N joins for each search space shape (i.e. left-deep tree, right-
deep tree and bushy tree, Cf. Fig. 1). The authors consider two methods of hash join:
the simple hash join and the hybrid hash join. [111] reports for each search space
shape, the need in memory size, the potential scheduling, and the capacity to exploit
the different forms of parallelism. The study includes the case where the memory re-
source is unlimited and the more realistic case where the memory is limited. In the
first case, the right deep tree is the most adapted to best exploit the parallelism. But,
this structure is no longer the best when the memory is limited. Indeed, there are sev-
eral strategies allowing to exploit the capabilities of the right deep trees when the
memory is limited. The strategy, named "Static Right Deep Scheduling" [111], con-
sists in cutting the right deep tree in several separate sub-trees in a way that the sum
of the sizes of all the hash tables of a sub-tree can fit in memory. The temporary re-
sults of the execution of sub-trees T1, T2 …Tn will be stored in disks. The drawback
of this strategy is that the number of sub-trees increases with the number of base rela-
tions which are not held stored in memory. Hence, this method reduces the pipeline
chain and increases the response time. Two methods were proposed, one is based on
segmented right-deep trees [24], and the other one is based on zigzag trees [142]. The
objective of these two methods is to avoid the investigation of the bushy tree search
space and then simplifying the optimization process.

3.1.2 Two-Phase Optimization
In the two-phase approach, Hasan et al. [23, 60] propose several scheduling strategies of
pipelined operators. To improve the response time, they develop an execution model
ensuring the best trade-off between parallel execution and communication overhead.
Several scheduling algorithms (i.e. processor allocation) are then proposed. They are
inspired by the heuristic LPT (Largest Processing Time). These algorithms exploit pipe-
line and intra-operation (partitioned) parallelisms. Indeed, the authors firstly propose
scheduling algorithms exploiting only the pipeline parallelism (POT Pipelined Operator
Tree Scheduling), then they show how to extend these algorithms to take into account
the intra-operation parallelism and the communication costs. The scheduling principle
of the POT is decomposed into several steps [23]: (i) generation of operators' monoto-
nous tree [60] from operators' tree, (ii) fragmentation of the monotonous tree which
consists in cutting the monotonous tree in a set of fragments, and (iii) scheduling which
consists in assigning processors to fragments. The main difficulty lies in the determina-
tion of the number of fragments and the size of each fragment by insuring the best
tradeoff between parallel execution - communication overhead.

As for the works of Garofalakis et al. [44, 45], they can be seen as an elegant exten-
sion of the propositions of [23, 41, 60]. Indeed, the works of [44, 45] take into account
the fact that the parallel query execution requires the allocation of several resource
types. They also introduce an original way to resolve this resource allocation by a simul-
taneous scheduling (e.g. parallelism extraction) and mapping method. First, [44] present
a scheduling and mapping static strategy on a shared nothing parallel architecture, con-
sidering the allocation of several “preemptive” resources (e.g. processors). Next, the
authors extend their own works in [45] for hybrid multi-processor architecture. This

 Evolution of Query Optimization Methods 219

extension consists, mainly, in taking into account the "no preemptive" resource (e.g.
memory) in their scheduling and mapping method.

3.2 Dynamic Parallel Query Optimization Methods

The main motivations to introduce ‘dynamicity’ into query optimization [27], in par-
ticular in the resource allocation strategies, are based on: (i) the will to use,, informa-
tion concerning the availability of the resources to allocate, (ii) the exploitation of the
relative quasi-exactness of the metrics, and (iii) the relaxation of certain too drastic
and not realistic hypotheses in a dynamic context. This sub-section describes in a syn-
thetic way some one-phase and two phase parallel query optimization strategies. It
should be pointed out that the proposed resource allocation methods become very
complex and sophisticated in such a dynamic context.

3.2.1 One-Phase Optimization
In this approach, the majority of work point out the importance of the determination
of the join operation parallelism degree and the resource allocation method (e.g. proc-
essors and memory). Thus, it becomes interesting to synthesize some methods pro-
posed in the literature, mainly [19, 81, 96, 107].

In their most recent work Brunie et al. [18, 19, 81] are not only interested in a
multi-join process in a multi-user context, but also consider the current system state in
terms of multi-resource contention. [18] studied, more generally, the relational query
optimization on shared nothing architecture. The optimizer MPO (Modular Parallel
query Optimizers) [81] determines dynamically the intra-operation parallelism degree
of the join operators of a bushy tree. The authors suggest a dynamic heuristic to re-
source allocation in four steps applied in the following order: (i) Preservation of the
data locality (or “data localization”), (ii) Size of the memory, (iii) I/O Reduction, and
(iv) Operation serialization of a bushy tree:

The proposals of Mehta et al. [96] and Rahm et al. [107] were developed inde-
pendently of one-phase and two-phase approaches. Furthermore, their proposals are
very representative and describe relevant and original solutions with respect to the
problems identified above (i.e. determination of the parallelism degree and the re-
source allocation methods), we chose to include them in the one-phase approach.

Mehta et al. [96] propose four algorithms (Maximum, MinDp, MaxDp, and Rate-
Match) to determine the join parallelism degree independently of the initial data
placement. The originality of the algorithm Rate tries to make correspond the produc-
tion rate of the result tuples of an operator with the consumption rate of next operator
tuples. Then, the authors describe six alternative methods of processor allocation in
the clones of a unique join operator. They are based on heuristics such as the random
or round-robin strategies, and on a model taking into account the effect of the re-
source contention.

As for the proposals of Rahm et al. [107], who extend the works of [95], they
tackle the problem of the dynamic workload balancing of several queries compounded
in a single hash join on a shared nothing architecture. The intra-operation parallelism
of a join as well as the choice of the execution processors of the join are determined in
a “integrated” way (.i.e. in a single step) by considering the current system state. This
state is characterized by using the resources “bottlenecks”: CPU, memory, and disk.

220 A. Hameurlain and F. Morvan

3.2.2 Two-Phase Optimization
XPRS adapting scheduling method
In the system XPRS (eXtended Postgres one Raid and Sprite) [118], implanted on
shared memory parallel architecture, Hong [63] proposes an adaptive scheduling
method of fragments stemming from the best sequential execution plan represented by
a bushy tree. Fragments are used as unity of parallel execution and they will also be
called tasks in this sub-section. The adaptive scheduling algorithm is based on the
following three elements: (i) classification of the “IO-bound” and “CPU-bound”
tasks, (ii) computing method of the IO-CPU balance point of two tasks, and (iii)
mechanism of dynamic adaptation of the parallelism degree of a task.

The proposed strategy by [63] consists in finding task scheduling which maximizes
the use of the resources (i.e. processors and disks), and thus minimizes the response
time. For that purpose, [63] defines two types of tasks: the IO-bound tasks (limited by
Input / Output) and the CPU-bound tasks (limited by the number of processors). To
maximize the resource utilization (e.g. when one of both tasks ends, a part of re-
sources remains unused), [63] proposes a dynamic adaptation method of the parallel-
ism degree of a task according to the implemented distribution methods (i.e. round-
robin, interval). This method is used in the adaptive scheduling so that the system
always works on the IO-CPU balance point.

Dynamic re-optimization methods of sub-optimal execution plans
In Kabra et al. [77], where the idea is close Brunie and al. [18], the authors propose a
dynamic re-optimization algorithm which detects and corrects sub-optimality of the
execution plan produced by the optimizer at compile time. This algorithm is im-
planted in the system Paradise [33] which is based on the static optimizer OPT++
[78]. The authors show that sub-optimality of an execution plan can result: (i) in a
poor join scheduling, (ii) in the inappropriate choice of the join algorithms, or (iii) in a
poor resources allocation (CPU and memory). These three problems would be caused
by erroneous or obsolete cost estimations, or another lack of information necessary
for the static optimization, concerning to the system state. The basic idea of this algo-
rithm is founded on the collection of the statistics in some key-points during the query
execution. The collected statistics correspond to the real values (observed during the
execution), where the estimation is subject to error at compile time (e.g. size of a
temporary relation). These statistics are used to improve the resource allocation or by
changing the execution plan of the remainder of the query (i.e. the part of the query,
which is not executed yet).

As for the re-optimization process, it will be engaged only in case of estimation er-
rors really bringing sub-optimality besides of the execution plan. Indeed, on the basis
of these new improved estimations, if they are different in a significant way from
those supplied by the static optimizer a new execution plan of the remainder of the
query is generated in the case where it brings a minimum benefit.

4 Distributed Query Optimization

The main motivation of the distributed databases is to present data which are distrib-
uted on networks of type LAN (Local Area Network) or of type WAN (Wide Area

 Evolution of Query Optimization Methods 221

Network) in an integrated way to a user. One of the objectives is to make data distri-
bution transparent to the user. In this environment, the main steps of the evaluation
process of a distributed query are data localization and optimization. The optimization
process [82, 103] takes into account network particularities. Indeed, contrary to the
interconnection network of a multi-processor, networks have a lower bandwidth and a
more important latency. For example, with a satellite connection the latency exceeds
the half-second. These particularities are significant in cost of a distributed execution
plan that authors [10, 103] are focused. They suppose that the communication cost is
widely superior to those of the I/O and the CPU. So, many works focus on the com-
munication cost to the detriment of CPU and I/O costs. At present, with the improve-
ment of network performance, the cost functions used by the optimization process
take into account the processing (i.e. CPU and I/O) and communication time together.

The optimization process of a distributed query is composed of two steps [103]: a
global optimization step and a local optimization step. The global optimization con-
sists of: (i) determining the best execution site for each local sub-query considering
data replication, (ii) finding the best inter-site operator scheduling, and (iii) placing
these last ones. As for local optimization, it optimizes the local sub-queries on each
site which are involved to the query evaluation. The inter-site operator scheduling and
their placement are very important in a distributed environment because they allow to
reduce the data volumes exchanged on the network and consequently to reduce the
communication costs. Hence, the estimation accuracy of the temporary relation sizes
that must be transferred from a site to another one is important. In the rest of this sec-
tion, we present global optimization methods of distributed queries. They differ by the
objective function used by the optimization process and by the type of approach:
static or dynamic.

4.1 Static Distributed Query Optimization

In distributed environments, various research works concerning the static query opti-
mization are focused mainly on the optimization of inter-site communication costs.
The idea is to minimize the data volume transferred between sites. In this perspective,
there are two methods to process inter-site joins [103]: (i) the direct join by moving
one relation or both relations, and (ii) the join based on semi-join. This alternative
consists in replacing a join, whatever the class of algorithm implanting this join is, by
the combination of a projection, and a semi-join ended by a join [25]. The cost of the
projection can be minimized by encoding the result [133]. The benefit of a join based
on semi-join with respect to a direct joint is proportional in the join operator selectiv-
ity [134]. According to the relation profiles (e.g. relation size), the optimizer will
choose the approach which minimizes the data volume transferred between sites. For
example, the SDD-1 system [10] often uses the join based on semi-join. However,
System R* [113] avoids to use it. Indeed, the use of a join based on semi-join can
increase the query processing time. Mackert and Lohman [91] showed the impor-
tance of the local processing cost in the performance of a distributed query. Further-
more, its consideration by the optimizer significantly increases the size of the search
space. Indeed, in a query, there are several possibilities of join based on semi-join for
a given relation. The number of join based on semi-join is an exponential function

222 A. Hameurlain and F. Morvan

which depends of the number of temporary relations resulting from local sub-queries
[103]. This explains why many optimizers do not use this alternative.

The quality of a distributed execution plan which is generated by the global opti-
mization process depends on the accuracy of the used estimations. However, it is dif-
ficult to estimate the parameters (e.g. relation profile, resource availability) used by
the optimizer. Generally, the used cost models made the assumption of processor and
network uniformity. These cost models assume that all processors and network
connections have the same speed and bandwidth, like in a parallel environment. Fur-
thermore, they do not take into account the workload of processors nor that of the
network. Based on these observations, several works [80, 119] try to improve the ac-
curacy of these parameters. In this objective the Mariposa distributed DBMS [119]
leans on an economic model in which querying servers buy data from data server.
Each query Q, which is decomposed into several sub-queries Q1, Q2,…, QN, is ad-
ministered by a broker. A broker obtains bids for a sub-query Qi from various sites.
After choosing the better bid, the broker notifies the winning site. The advantage of
this method is that it leans on the local cost models of every DBMS which can par-
ticipate in the query evaluation. So, it considers the processor heterogeneity and takes
into account their workload.

[80] propose that the optimizer generates an optimal (or close to the optimal)
execution plan, having deduced the data transfer costs and the cardinalities of tem-
porary relations. In this solution, the operators of a query are executed on a tuple
subset of the operands to estimate the data transfer costs and the cardinalities of
temporary relations. After deduced the cost of these parameters, an optimal execu-
tion plan is generated and executed until the termination, whatever the changes in
execution environment are.

4.2 Dynamic Distributed Query Optimization

A solution to correct the sub-optimality of an execution plan consists in changing the
operation scheduling at run-time. In the multi-database MIND system, Ozcan et al.
[102] proposed strategies for dynamic re-scheduling of inter-site operators (e.g., join,
union) to react to the inaccuracies of estimations. The inter-site operators can be exe-
cuted as soon as two sub-queries which are executed on different sites produced their
results. These strategies use the partial results available at run-time to define the
scheduling of the executions between the inter-site operators. The query processing is
done in two steps [37]:

1. Compilation. During this step, a global query is decomposed into local sub-
queries. The sub-queries are sent to different sites to be executed in parallel.

2. Dynamic scheduling. This step defines a dynamic scheduling between the opera-
tions consuming the results of sub-queries sent on sites. When a sub-query pro-
duces its result, a threshold is associated to the result. This threshold is used to
determine if the result must be consumed immediately to execute a join with an-
other result already available, or if the consumption of this result will be delayed
while waiting for another result, which is unavailable in this moment. The
threshold associated with a result is calculated according to the costs and selectiv-
ity factors of all joins connected to this result.

 Evolution of Query Optimization Methods 223

This scheduling strategy reduces the uncertainty of estimations since it is based on the
execution times of local sub-queries. Moreover, it avoids the needs to know the cost
models of the various databases.

5 Query Optimization in Data Integration Systems

Data integration systems extend [22, 53, 88, 127, 128, 136] the distributed database
approach to multiple, autonomous, and heterogeneous data sources by providing uni-
form access (same query interface in read only to all sources). We use the term data
source to refer any data collection which his owner wishes to share with other users.
The main differences of a distributed database approach are the number of data
sources and the heterogeneity of the data sources. The distributed database approach
addresses about tens of distributed databases while data integration system approach
can scale up to hundreds of data sources [104]. In addition to the material heterogeneity
(i.e. CPU, I/O, network) due to the environment, the data sources are heterogeneous by
their data structure (e.g. relational or object). Moreover, the software infrastructures
allowing the access to data sources have different capabilities for processing queries.
For example, a phone book service which requires the name of a person to return a
phone number is a data source where the access is restricted. In this context, we need
new operators in order to access to data sources and to, for instance, join two
relations. Consider an execution plan that needs a relational join between Employee
(empId, name) and Phone (name, phoneNumber) tables on their name attribute. In a
standard join both of the following fragments: Join (Employee, Phone) and Join
(Phone, Employee) are valid since join is a commutative operator. However, with
restricted sources, the second fragment Join (Phone, Employee) on name attribute is
not valid, since Phone requires the value of the name attribute in order to return the
value of the phoneNumber. In consequence, we need a new join operator which is
asymmetric in nature, also known as dependent join Djoin [46]. The asymmetry of
this operator causes the search space to be restricted and raises the issue of capturing
valid (feasible) execution plans [92, 93, 139].

In an environment with hundreds of data sources connected on Internet it is even
more difficult to estimate, at compile time, the availability of the resources like net-
work, CPU or memory. Hence, many authors propose dynamic optimization strategies
to correct the sub-optimality of execution plans at runtime. Initially, proposed meth-
ods are centralized [3, 4, 7, 14, 15, 32, 74, 109]. A dynamic optimization method is
said to be centralised if there is a unique process, generally the optimiser, which is
charged to supervise, control and modify the execution plans. This process can be
based on other modules ensuring the production of necessary information for the
modifications and the control of an execution plan. On other hand, in this environ-
ment, two phenomena that occur frequently are significant: initial delays before data
start arriving and bursty arrivals data thereafter [72]. In order to react to these unpre-
dictable data arrival rate, several authors propose to decentralize the control inside the
operator [72, 131, 132]. The idea is to produce most quickly as possible a part of the
result with the already arrived tuples during the waiting of operand tuples.

224 A. Hameurlain and F. Morvan

In the rest of the section, we present the specific operators to the data integration,
at first, then we describe both types of dynamic optimization methods: centralized and
decentralized.

5.1 Operators for Restricted Source Access

Consider the execution plan presented previously that needs a relational join between
Employee (empId, name) and Phone (name, phoneNumber) tables. The tables can be
modeled with the concept of ‘binding patterns’ as introduced in [108]. Binding pat-
terns can be attached to the relational table to describe its access restrictions due to the
reasons of confidentiality or performance issues. A binding pattern for a table R(X1,
X2, . . . , Xn) is a partial mapping from {X1, X2, . . . , Xn} to the alphabet {b, f} [93].
For those attributes mapped to ‘b’, the values should be supplied in order to get in-
formation from R while the attributes mapping to ‘f’ do not require any input in order
to return tuples from R. If all the attributes of R are mapped to ‘f’ then it is possible to
get all the tuples of R without any restriction (e.g. with a relational scan operator).
The binding patterns of the tables of our example are as follows: Employee (empIdf,
namef), and Phone (nameb, phoneNumberf). It means that the Employee table is ready
to return the values of the empId, and the name while the Phone table can give the
phoneNumber only if the value of the name attribute is known. Regular set of rela-
tional operators are insufficient in order to answer queries in the presence of restricted
sources.

Although we can model the restricted sources with formalization of ‘binding pat-
terns’, due to the access restrictions of the sources, we cannot use the query process-
ing operators, like relational scan and relational join. In the example, in order to get
the phoneNumber we have to give the values of the name attribute. So we need a new
scan operator which is able to deal with the restricted sources. We quote this operator
DAccess as D indicates its dependency on the values of the input attribute(s). While
the relational scan operator always returns the same result set, this new operator DAc-
cess returns different sets depending on its input set. Formal semantics of DAccess is
as follows: Consider a table R(Xb, Yf) and χ be a set of values for X. Then, DAc-
cess(R(Xb, Yf))χ =σ X∈χ(R(X, Y)) [93].

We noticed that to make the join between Employee (empIdf, namef), and Phone

(nameb, phoneNumberf) we need a new join operator known as dependent join [46],

represented by the symbol . The representation of the dependent join is

T←Scan(R1(Uf, Vf)) V=X DAccess(R2(Xb, Yf)). The hash dependent join consists

in building a hash table from R1 and at the same time the distinct values of the attrib-

ute(s) V are retrieved and stored them into a table P. P is given to the DAccess opera-

tor to compute R2’ = σ X∈P (R2(X, Y)). Then the hash table is probed with R2’ to

compute the result.

5.2 Centralized Dynamic Optimization Methods in Data Integration Systems

In this sub-section, we present some dynamic optimization methods and techniques
where the type of decision-making is centralized. We classify these methods according

 Evolution of Query Optimization Methods 225

to the modification level of execution plans. This modification can be taken either on
the intra-operator level, or on the inter-operator level.

5.2.1 Modification of Execution Plans on the Intra-operator Level
The sub-optimality of execution plans can be modified during the execution of an
operator (intra-operator). With this objective, two approaches were proposed: the first
one is based on the routing of tuples named Eddy [7], and the second one is based on
the dynamic partitioning of data [74].

Avnur and Hellerstein [7] proposed a mechanism named Eddy for query process-
ing which updates continuously the execution schedule of operators in order to adapt
to the changes in execution environment. Eddy can be considered as a router of tuples
positioned between a number of data sources and a set of operators. Each operator
must have one or two input queues to receive the tuples sent by Eddy and an output
queue to return the result tuples to Eddy. The tuples received by an Eddy are redi-
rected towards the operators in different orders. Thus, the scheduling of operators is
encapsulated by the dynamic routing of tuples.

The key point in Eddy is the routing of tuples. Thus, the policy of the tuple routing
must be efficient and intelligent in order to minimize the query response time. For that
purpose, several authors [32, 109] suggest to extend Eddy's mechanism to improve
the quality of the routing.

Dynamic data partitioning was proposed by Ives et al. [74]. It corrects the sub-
optimality of execution plans relying on dynamic data partitioning. In this method, a
set of execution plans is associated to each query which will be executed either in
parallel or in sequence on separate data partitions. The execution plan of a query is
constantly supervised at runtime, and it can be replaced by a new plan in the case
where the current plan is considered to be sub-optimal. The tuples which are proc-
essed by each used plan represent a data partitioning. When an execution plan is re-
placed, a new data partitioning is produced. Each used execution plan produces a part
of the total result from the associated data partitioning during the query execution.
The union of the tuples produced by the various used execution plans provides only
part of the total result. Thus, to calculate the final result of the query, it must also cal-
culate the results of all the combinations of various data partitioning.

This method is similar to that of Eddy [7]. But contrary to Eddy which uses a local
decision routing, this method is based on more total information to generate the new
plans. The main difference is that the decision to suspend or replace an execution plan
by another one is made by the optimizer.

5.2.2 Modification of Execution Plans on the Inter-operator Level
A solution to correct the sub-optimality of execution plans consists in changing the
operation scheduling at runtime. The works of Amsaleg et al. [3] take into account the
delays in data arrival rates. They have identified three types of delays: (i) Initial delay:
that occurs before the arrival of the first tuple, (ii) bursty arrival: the data arrive in
bursts but the arrival of these data is suddenly stopped and followed by a long period
of no arrival, and (iii) slow delivery: the data arrive regularly but slower than normal.
To deal with these delays, two methods were proposed by Amsaleg et al. [4] and by
Bouganim et al. [14, 15].

226 A. Hameurlain and F. Morvan

The technique of query scrambling [3, 4] was proposed to process the blockings
caused by the delays in data arrival rates. It tries to mask these delays by the execu-
tions of other portions of the execution plan until the termination of these delays. The
technique of query scrambling processes the initial delay and the bursty arrival in two
phases [3]:

1. Re-scheduling: as soon as a delay is detected, this phase is invoked. It begins
with the separation of the relational operators of an execution plan in two disjoined
sets: (i) the set of blocked operators that contains all the ancestors of unavailable
operands, and (ii) the set of executable operators that contains the remainder of the
operators that do not belong to the set of blocked operators. Then, a maximum execu-
table sub-tree is extracted from the set of the executable operators. This maximum
sub-tree is executed and its intermediate result is materialized.

2. Synthesis: this phase is invoked if the set of the executable operators is
empty and the set of the blocked operators is not empty. Contrary to the re-scheduling
phase, the synthesis phase can significantly change the execution plan by adding new
operators and/or by removing existing operators. The synthesis phase starts, at first,
by the construction of a graph of the joins which are ready to be executed. Then, a
join is processed and the result is materialized. The synthesis phase is finished if all
delays are finished, or if the graph is reduced to only one node or several nodes with-
out join predicates.

The technique of query scrambling supposes that an execution plan is executed
without taking into account the delays in data arrival rates during plan execution. For
that, Bouganim et al. [14, 15] proposed a strategy where the memory is available and
data arrival rates are constantly supervised. This information is used to produce a new
scheduling between the various fragments of the execution plan or to re-optimize the
remainder of the query.

The paper of Ives et al. [72] described a dynamic optimization method which is
able to deal with the majority of the changes in execution environment (delays, errors
and unavailable memory). This method interweaves the phases of optimization and
execution and it uses specific dynamic operators. In this method, the optimizer trans-
forms a query into an annotated execution plan [77] and generates the associated rules
with Event-Condition-Action type. These rules determine the behavior of the execu-
tion plan according to the changes at runtime. They check certain conditions (e.g.
comparison of the sizes of the current temporary relations with those estimated during
compilation) when events occur (e.g. delay, memory unavailable) they start actions
(e.g. memory re-allocation, re-scheduling or re-optimization).

5.3 Decentralized Dynamic Optimization Methods in Data Integration Systems

The decentralized dynamic optimization methods correct the sub-optimality of execu-
tion plans by decentralizing the control. The conventional hash join [16] algorithm re-
quires the reception of all tuples of the first operand for building the hash table before
beginning the probe step. Thus, the time to produce the first tuple can be long if: (i)
the size of the operands is large, or (ii) when the data arrival rate is irregular. Contrary to
the conventional hash join, the double hash join (DHJ) introduced by Ives et al. [72]
built a hash table for each operand. When a tuple arrives, it is inserted firstly in the asso-
ciated hash table. Then, it is used to probe the other hash table. If the probe step allows

 Evolution of Query Optimization Methods 227

to produce result tuples, then these tuples are immediately delivered. DHJ was proposed
in TUKWILA project [72] to deal with the problems of conventional hash join in the
context of data integration: (i) the production time of the first tuple is minimized, (ii) the
optimizer does not need to know the sizes of the operands in order to choose the oper-
and used in the building of the hash table, and (iii) it masks the slow arrival rate of tu-
ples from an operand by processing the tuples of the other operand.

However, DHJ requires to maintain the two hash tables in memory. This can limit
the use of DHJ with operands having large sizes or with queries constituted of several
joins. To solve this problem, parts of the hash tables residing in the memory are
moved towards a secondary storage space. When the memory becomes saturated, a
partition of one of the two tables is chosen to be moved towards the secondary storage
space.

The DHJ allows reducing the necessary time for the production of the first tuple of
result. Moreover, it makes it possible to continue the production of the result tuples in
spite of the unavailability of any one of the two operands. However, it can lead to bad
performances if the tuple productions of the two operands are blocked. For that, the
Xjoin operator is proposed by Urhan et Franklin [131]. When Xjoin detect the un-
availability of the tuples of each operand, the tuples of a portion resident in the secon-
dary storage space are joined with the tuples of the same partition of second operand
residing in memory.

To accelerate the production of result tuples, it is interesting to define scheduling
mechanisms between the various phases of the Xjoin operator. For that purpose,
Urhan and Franklin [132] proposed a scheduling technique using the notion of
Stream. Stream is the execution unit which consumes and produces tuples. The execu-
tion schedule of Stream is determined at runtime and is changed according to the
variations of the system behaviour (productions of tuples, terminated streams).

6 Query Optimization in Large Scale Environments

6.1 Query Optimization in Large Scale Data Integration Systems

Large scale environment means [58]: (i) high numbers of data sources (e.g. databases,
xml files), users, and computing resources (i.e. CPU, memory, network and I/O band-
width) which are heterogeneous and autonomous, (ii) the network bandwidth presents,
in average, a low bandwidth and strong latency, and (iii) huge volumes of data.

In a large scale distributed environment, performances of previous optimization
methods decrease because: (i) the number of messages relatively important on a net-
work with low bandwidth and strong latency, and (ii) the bottleneck that forms the
optimizer. It becomes thus convenient to make the query execution autonomous and
self-adaptable. In this perspective, two close approaches have been investigated: the
broker approach [28], and the mobile agent approach [6, 76, 101, 110]. The second
approach consists in using a programming model based on mobile agents [40], know-
ing that at present the mobile agent platforms supply only migration mechanisms, but
they do not offer proactive migration decision policy.

The rest of this sub-section is devoted to describe execution models associated to
brokers and mobile agent approaches [6, 28, 66, 76, 98, 101, 110].

228 A. Hameurlain and F. Morvan

Broker Approach
In a large scale mediation system context, Collet and Vu [28] proposed an execution
model based on brokers. The broker, which is the basic unit of the query execution,
supervises the execution of a sub-query. It detects the estimation inaccuracies and
adapts itself according to these inaccuracies. Moreover, it communicates with the
other brokers to take into account the updates of the execution environment. The prin-
cipal components of a broker are: (i) context including the annotations and constraints
necessary for the execution of a sub-query, (ii) operator of the sub-query, (iii) buffer
allowing to synchronize the data exchange between the brokers, and (iv) rules which
define behavior of the broker according to changes of the execution environment.

Mobile Agent Approaches
A mobile agent [40] is an autonomous software entity which can move (code, data,
and execution state) from a site to another in order to carrying out a task. In the tradi-
tional operating system, the decision of migration activity is controlled by another
process. However, in a mobile agent, the decision of the migration activity is made by
the agent itself.

The operators of double hash join and Xjoin improve the local processing cost by
adapting the use of resources CPU, I/O and memory with the changes of the execution
environment (e.g. estimation errors, delays in data arrivals rates) and does not take in
account the network resource. In objective to take into account the network resource,
the work proposed by Arcangeli et al. [6], Hussein et al. [66] and Ozakar et al. [101]
based on mobile agents extend the algorithms of direct join, semi-join based join and
dependent join (in presence of binding patterns). This extension allows them to
change their execution sites proactively. Each mobile agent executing a join chooses
itself its execution site by adapting to the execution environment (e.g. CPU load,
bandwidth) and the estimation accuracies on temporary relation sizes. Hence, the con-
trol which makes the decision of the execution site change is carried out in a decen-
tralized and autonomous way. Furthermore, for dynamic query optimization, Morvan
et al. [97] proposed three cooperation methods between the mobile join agents. These
methods allow to a mobile agent to make its decision to migrate or not according to
the decisions of the other agents communicating with it. These methods minimize the
number of messages exchanged between agents.

As far as work of Jones and Brown [76], they propose, for large scale distributed
queries, an execution model based on mobile agents which react to the estimations inac-
curacies. The mobile agents are charged to execute the local sub-queries of an execution
plan. These agents compare the partial results (e.g. size, execution costs) with the esti-
mations used during compilation in order to detect sub-optimality. By taking into ac-
count the possibility of migration of mobile agents, two strategies were proposed:

1. Decentralized execution without migration: the agents, executing sub-queries,
communicate between them, by broadcasting their partial execution states, in order
to produce an execution plan for the remainder of the query.

2. Decentralized Execution with migration: this strategy extends the previous
strategy while allowing the agents to migrate from one site to another before be-
ginning their executions. The decision of migration can be made in a distributed,
individual or centralized way.

 Evolution of Query Optimization Methods 229

Another method based on mobile agents has been proposed by [110] in order to exe-
cute queries in a web context. In this context, the query result can correspond to a new
query on another server which processes it. For this, two mechanisms were proposed
which are also known as being parts of LDAP (Lightweith Directory Access Protocol)
[64]: (i) referral which consists into return to the user, the new query and server ad-
dress to process it, and (ii) chaining which consists in cooperating with the server
executing the new query to produce the result.

In this approach [110], the mobile agents are used to exploit these two mechanisms
in the query processing. Each query is processed by using a mobile agent which can
choose the best adapted mechanism (referral and chaining).

6.2 Query Optimization in Data Grid Systems

Since more than ten years, the grid systems are very active research topics. The main
objective of grid computing [39] is to provide a powerful and platform which supplies
resources (i.e. computational resources, services, metadata and data sources). The grid
computing is very important for scale distributed systems and applications that require
effective management distributed and heterogeneous resources [58]. Large scale and
dynamicity of nodes (unstable system) characterize the grid systems. Dynamicity of
nodes (system instability) means that a node can join, leave or fail at any time. Today,
the grid computing, intended initially for the intensive computing, open towards the
management of voluminous, heterogeneous, and distributed data on a large-scale en-
vironment. Grid data management [104] raises new problems and presents real chal-
lenges such as resource discovery and selection, query processing and optimization,
autonomic management, security, and benchmarking. To tackle these fundamental
problems [104], several methods have been proposed [5, 30, 48, 49, 65, 94, 129]. A
very good and complete overview addressing the most above fundamental problems is
described in [104]. The authors discuss a set of open problems and new issues related
to Grid data management using, mainly, Peer-to-Peer P2P techniques [104]. More
focused on a specific and very hot problem such as resource discovery, [129] propose
a complete review of the most promising Grid systems that include P2P resource dis-
covery methods by considering the three main classes of P2P systems: unstructured,
structured, and hybrid (super-peer). The advantages and weaknesses of a part of pro-
posed methods are described in [104, 129].

The rest of this sub-section tries to provide an overview of query processing and
optimization in data grid systems.

Several approaches have been proposed for distributed query processing (DQP) in
data grid environments [2, 5, 48, 49, 50, 65, 115, 135]. Smith et al. [115] tackle the
role of DQP within the Grid and determine the impact of using Grid for each step of
DQP (e.g. resource selection). The properties of grid systems such as flexibility and
power make grid systems suitable platforms for DQP [115].

In recent years, convergence between grid technologies and web services leads re-
searchers to develop standardized grid interfaces. Open Grid Services Architecture
OGSA [38] is one of the most well known standards used in grids. Many applications
are developed by using OGSA standards [2, 5, 135]. OGSA-DQP [2] is a high level
data integration tool for service-based Grids. It is built on a Grid middleware named
OGSA-DAI [5] which provides a middleware that assists its users by accessing and

230 A. Hameurlain and F. Morvan

integrating data from separate sources via the Grid. [135] describes the concepts that
provide virtual data sources on the Grid and that implement a Grid data mediation
service which is integrated into OGSA-DAI.

By analyzing the approaches of DQP on the Grid, the research community focused
on the current adaptive query processing approaches [7, 47, 62, 67, 74] and proposed
extensions in grid environments [29, 48, 50]. These studies achieve query optimiza-
tion, by providing efficient resource utilization, without considering parallelization.
Although, they use different techniques, most of the studies profit existing monitoring
systems to determine progress of the queries. In [48], Gounaris et al. highlighted the
importance and challenges of DQP in Grids. They mentioned the necessity of grids by
emphasizing increasing demand for computation in the distributed databases. They
also explained the challenges in developing adaptive query processing systems by
expressing the weaknesses of existing studies and key points for the solutions. After
giving the challenges, Gounaris et al. [50] proposed an adaptive query processing
algorithm. They introduced an algorithm which provides both a resource discov-
ery/allocation mechanism and a dynamic query processing service. In [114], Slimani
et al. developed a cost model by modeling the network characteristics and heterogene-
ity. By using this cost model, they also introduced a query optimization method on
top of Beowulf clusters [34]. They considered both logical and physical costs and
deployed the distributed query according to the cheapest cost model. In [29], Cybula
et al. introduced a different technique for query optimization which is based on cach-
ing of query results. They developed a query optimizer which stores results of queries
inside the middleware and used the cache registry to identify queries that need not be
reevaluated.

As far as parallelism dimension integration, many authors have re-studied DQP in
order to be efficiently adopted by considering the properties (e.g. heterogeneity) of
grids. Several methods are proposed in this direction [13, 30, 49, 89, 106, 116] which
define different algorithms for parallel query processing in grid environments. The
proposed methods consider different forms of parallelism (e.g. pipelined parallelism),
whereas all of them consider also resource discovery and load balancing. In [13],
Bose et al. examined the problem of efficient resource allocation for query sub-plans.
They developed their algorithm by exploiting the bushy query trees. They incremen-
tally distributed the sub-queries until a stopping condition is satisfied. In [30, 106] the
authors introduced an adaptive parallel query processing middleware for the Grid.
They developed a distributed query optimization strategy which is then integrated
with a grid node scheduling algorithm by considering runtime statistics of the grid
nodes. Gounaris et al. [49] proposed an algorithm which optimizes parallel query
processing in grids by iteratively increasing the number of nodes which execute the
parallelizable sub-plans. In [89], Liu et al. presented a query optimization algorithm
which grades the nodes according to their capacities. They determined serial and par-
allel parts of the queries and proposed an execution sequence in highest ranked nodes.
Soe et al. [116] proposed a parallel query optimization algorithm. In their study, they
considered resource allocation, intra-query parallelism and inter-query parallelism by
analyzing bushy query trees.

 Evolution of Query Optimization Methods 231

7 Discussion

According to the discussion led in the section 2.4, and the results in [122, 123, 68, 69,
70, 84], it is difficult to conclude about the superiority of a search strategy (e.g.
scheduling of the join operators) with regard to the one another . However, each of
them proposes a solution to improve the performances of these algorithms. Ioannidis
and Kong [69, 70] chose to propose a new algorithm, called Two Phase Optimization
[69], which consists in applying, at first, the Iterative Improvement algorithm, and
then, the Simulated Annealing algorithm. As for Swami [123], he chose to experiment
a set of heuristics with the aim of improving the performances of the Iterative Im-
provement and the Simulated Annealing algorithms [123]. The works of Ioannidis
and Kong was able to show that the choice of a join method has no direct influence on
the performances of the search strategies. In a parallel environment, Lanzelotte and al.
[86] showed that the search strategy in breath first is not applicable in a bushy search
space for queries with 9 relations or more. The use of a random algorithm is then in-
dispensable. The authors thus developed a random algorithm called Toured Simulated
Annealing in a context of parallel processing [86].

The search strategies find the optimal solution more or less quickly according to
their capacity to face the various problems. They must be adaptable to queries of
diverse sizes (simple, medium, complex) and in various types of use (i.e. ad-hoc or
repetitive) [54, 83]. A solution to this problem is the parameterization and the exten-
sibility of query optimizers [71, 83] possessing several search strategies, each being
adapted for a type of queries. The major contributions in this domain arise, mainly,
from the Rodin project [83, 84, 85, 86] as well as on the Ioannidis and Kong’s results
[69]. Indeed, one of the main aspects studied by Lanzelotte in [83] concerns the
extensibility of the search strategy for the optimizer, demonstrated by the implemen-
tation of four different strategies: System R, Augmented Heuristic, Iterative Im-
provement and Simulated Annealing. Lanzelotte is especially interested in the query
optimization in new systems such as oriented object and deductive DBMS, and pro-
poses an extensible optimizer OPUS (OPtimizer for Up-to-date database Systems)
[83] for these non conventional DBMS. Recently, Bizarro et al. [11] proposed “Pro-
gressive Parametric Query Optimization” which presents a novel framework to im-
prove the performance of processing parameterized queries.

As far as parallel database systems, a synthesis dedicated to parallel relational
query optimization methods and approaches [57] has been provided in section 3. In a
static context [57], the most advanced works are certainly those of Garofalakis and
Ioannidis [44, 45]. They extend elegantly the propositions of [23, 41, 60] where the
algorithms of parallel query are based on a uni-dimensional cost model. Furthermore,
[45] tackle the scheduling problem (i.e. parallelism extraction) and the resource allo-
cation in a context, which can be multi-query by considering a multidimensional
model of used resources (i.e. preemptive, and non-preemptive). The proposals of [45]
seem to be the richest in terms of categories of considered resources (i.e. multi-
resource allocation), exploited parallelisms, and various allocation constraints. In a
dynamic context, the efforts were mainly centered on the handling of the following
problems: (i) the determination and the dynamic adaptation of the intra-operation
parallelism degree, (ii) the methods of resource allocation, and (iii) the dynamic query
re-optimization. We identified a set of relevant parameters, mainly: search space,

232 A. Hameurlain and F. Morvan

strategy generation of a parallel execution plan, optimization cost for parallel execu-
tion, and cost model. These parameters allow: (i) to compare the two optimization
approaches (i.e. one-phase, two-phase), and (ii) to help in the choice of an optimal
exploitation of parallel optimization approaches according to the query characteristics
and the shape of search space.

In a distributed database environment, static query optimization methods are
focused mainly on the optimization of inter-site communication costs, by reducing
the data volume transferred between sites. Dynamic query optimization methods
are based on dynamic scheduling (or re-scheduling) of inter-site operators to correct
the sub-optimality due to the inaccuracies of estimations and variations of available
resources. The introduction of a new operator, semi-join based join [10, 25], provides
certainly more flexibility to optimizers. However, it increases considerably the size of
search space.

Heterogeneity and autonomy of data sources characterize data integration systems.
Sources might be restricted due to the limitation of their query interfaces or certain
attributes must be hidden due to privacy reasons. To handle the limited query capa-
bilities of data sources, new mechanisms have been introduced [46, 93], such as, De-
pendant Join Operator which is asymmetric in nature. The asymmetry of this operator
causes the search space to be restricted and raises the issue of capturing valid (feasi-
ble) execution plans [92, 93, 139].

As for the optimization methods, the community quickly noticed that the central-
ized optimization methods [4, 7, 14, 15, 72, 73, 74, 77] could not be scaled up for the
reasons which are previously pointed out. So, dynamic optimization methods were
decentralized by leaning, mainly, on the brokers or on the mobile agents which allow
decentralizing the control and scaling up.

However, it is important to observe that the decentralized dynamic methods de-
scribed in sub-section 5.3 build both two hash tables (one for each operand relation).
So, they do not apply to restricted data sources. Indeed, a restricted data source re-
turns a result, only if all attributes which are mapped to ' b ' are given.

In grid environments, which are characterized by large scale and dynamicity of
nodes (system instability), distributed query optimization methods are focused on two
aspects: (i) proposed execution models react to state of resources by using monitoring
services [36, 49, 137] and (ii) considering different forms and types of parallelism
(inter-query parallelism, intra-query parallelism).

Moreover, heterogeneity, autonomy, large scale and dynamicty of nodes raise new
problems and present real challenges to design and develop acceptable cost models [1,
35, 42, 43, 99, 114, 141]. Indeed, for instance, the statistics describing the data stem-
ming from sources and the formulae associated with the operations processed by these
sources cannot be often published [35]. In a large scale environment, whatever the
approach of the used cost model is (i.e. history approach [1], calibration approach [43,
141], generic approach [99]) the statistics stored in the catalog are subject to obsoles-
cence [66], which generates large variations between parameters estimated at compile
time and parameters computed at runtime. In consequence, it is not realistic to repli-
cate a cost model on all sites. This cost model should be distributed and partially rep-
licated [66, 58]. In an execution model based on mobile agents, a part of cost model
should be embedded in mobile agents. This, ensures the autonomy of mobile joins and
avoids distant interactions with the site on which was emitted the query [66].

 Evolution of Query Optimization Methods 233

Finally, from this state of the art, we can point out the following main characteris-
tics of query optimization methods [98]:

− Environment: query optimization methods have designed and implemented in
different environments as uni-processor, parallel, distributed, and large scale.

− Type of method: a query optimization method can be static or dynamic.
− Search Space. this space can be restricted according to the nature of the consid-

ered execution plans, the limited capabilities of data sources, and the applied
search strategy.

− Nature of decision-making: can be centralized or decentralized. The decentralized
dynamic optimization methods correct the sub-optimality of execution plans by
decentralizing the control.

− Type of modification: can be, mainly, re-optimization or re-scheduling. When the
sub-optimality of an execution plan is detected, correction could be made by re-
optimization process or by a re-scheduling process. Re-optimization process:
consists in producing a new execution plan for the remainder of the query [77].
The physical implementation, the scheduling and the tree structure of operators
which are not yet been executed can be updated. As far as re-scheduling process,
the tree structure of the remainder of the execution plan remains unchanged. But,
scheduling between the operators can be modified.

− Level of modification: can occur at intra-operator level or inter-operator level.
The sub-optimal execution plan can be corrected during the execution of an op-
erator and/or at sub-query level.

− Type of event: a dynamic query optimization method can react to following
events: (i) estimation errors, (ii) available memory, (iii) delays in data arrival
rates, and (iv) user preferences.

These parameters allow comparing proposed optimization methods, and pointing out
their advantages and weaknesses. A comparison study of dynamic optimization
methods is described in detail in [98]. Furthermore, in a large scale environment, the
benefits of mobile agents depending on estimation errors of temporary relation sizes,
network bandwidth, and processor frequency, seem to be very promising due to their
autonomy and proactive behavior.

8 Conclusion

Researches related to relational query optimization goes back to the 70s, and began
with the publication of two papers [112, 138]. These papers and relevant applications
requirements motivated a large part of the database community to focus their efforts
and energies on this topic. Because of the importance and the complexity of the query
optimization problem, the database community has proposed approaches, methods
and techniques in different environments (uni-processor, parallel, distributed, large
scale).

In this paper, we wanted to provide a survey related to evolution of query optimi-
zation methods from centralized relational database systems to data grid systems
through parallel and distributed database systems and data integration (mediation)

234 A. Hameurlain and F. Morvan

systems. For each environment, we described some query optimization methods, and
pointed out their main characteristics which allow comparing them.

Acknowledgement

We would like to warmly thank Professor Roland Wagner for his kind invitation to
write this paper.

Permissions

57. Hameurlain, A., Morvan, F.: Parallel query optimization methods and ap-
proaches: a survey. Journal of Computers Systems Science & Engineer-
ing 19(5), 95–114 (2004)

58. Hameurlain, A., Morvan, F., El Samad, M.: Large Scale Data management in
Grid Systems: a Survey. In: IEEE Intl. Conf. on Information and Communi-
cation Technologies: from Theory to Applications, pp. 1–6. IEEE CS, Los
Alamitos (2008)

98. Morvan, F., Hameurlain, A.: Dynamic Query Optimization: Towards Decen-
tralized Methods. Intl. Jour. of Intelligent Information and Database Systems
(to appear, 2009)

Section 1 contains materials from [98] with kind permissions from Inderscience.
Section 3 contains materials from [57] with kind permissions from CRL Publishing.
Section 5 contains materials from [98] with kind permissions from Inderscience.
Section 6 and 7 contain materials from [58, 98] with kind permissions from IEEE and
Inderscience.

References

1. Adali, S., Candan, K.S., Papakonstantinou, Y., Subrahmanian, V.S.: Query Caching and
Optimization in Distributed Mediator Systems. In: Proc. of ACM SIGMOD Intl. Conf. on
Management of Data, pp. 137–148. ACM Press, New York (1996)

2. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakel-
lariou, R., Watson, P., Li, P.: Using OGSA-DQP to support scientific applications for the
grid. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS, vol. 3458, pp. 13–
24. Springer, Heidelberg (2005)

3. Amsaleg, L., Franklin, M.J., Tomasic, A., Urhan, T.: Scrambling query plans to cope
with unexpected delays. In: Proc. of the Fourth Intl. Conf. on Parallel and Distributed In-
formation Systems, pp. 208–219. IEEE CS, Los Alamitos (1996)

4. Amsaleg, L., Franklin, M., Tomasic, A.: Dynamic query operator scheduling for wide-
area remote access. Distributed and Parallel Databases 6(3), 217–246 (1998)

5. Antonioletti, M., et al.: The design and implementation of Grid database services in
OGSA-DAI. In: Concurrency and Computation: Practice & Experience, vol. 17, pp. 357–
376. Wiley InterScience, Hoboken (2005)

 Evolution of Query Optimization Methods 235

6. Arcangeli, J.-P., Hameurlain, A., Migeon, F., Morvan, F.: Mobile Agent Based Self-
Adaptive Join for Wide-Area Distributed Query Processing. Jour. of Database Manage-
ment 15(4), 25–44 (2004)

7. Avnur, R., Hellerstein, J.-M.: Eddies: Continuously Adaptive Query Processing. In: Proc.
of the ACM SIGMOD Intl. Conf. on Management of Data, vol. 29, pp. 261–272. ACM
Press, New York (2000)

8. Babu, S., Bizarro, P., De Witt, D.J.: Proactive re-optimization. In: Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pp. 107–118. ACM Press, New York
(2005)

9. Bancilhon, F., Ramakrishnan, R.: An Amateur’s Introduction to Recursive Query Proc-
essing Strategies. In: Proc. of the 1986 ACM SIGMOD Conf. on Management of Data,
vol. 15, pp. 16–52. ACM Press, New York (1986)

10. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., Rothnie Jr.: Query Processing in a
System for Distributed Databases (SDD-1). ACM Trans. Database Systems 6(4), 602–
625 (1981)

11. Bizarro, P., Bruno, N., De Witt, D.J.: Progressive Parametric Query Optimization. IEEE
Transactions on Knowledge and Data Engineering 21(4), 582–594 (2009)

12. Bonneau, S., Hameurlain, A.: Hybrid Simultaneous Scheduling and Mapping in SQL
Multi-query Parallelization. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA
1999. LNCS, vol. 1677, pp. 88–99. Springer, Heidelberg (1999)

13. Bose, S.K., Krishnamoorthy, S., Ranade, N.: Allocating Resources to Parallel Query
Plans in Data Grids. In: Proc. of the 6th Intl. Conf. on Grid and Cooperative Computing,
pp. 210–220. IEEE CS, Los Alamitos (2007)

14. Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: A dynamic query processing archi-
tecture for data integration systems. Journal of IEEE Data Engineering Bulletin 23(2),
42–48 (2000)

15. Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: Dynamic query scheduling in data in-
tegration systems. In: Proc. of the 16th Intl. Conf. on Data Engineering, pp. 425–434.
IEEE CS, Los Alamitos (2000)

16. Bratbergsengen, K.: Hashing Methods and Relational Algebra Operations. In: Proc. of
10th Intl. Conf. on VLDB, pp. 323–333. Morgan Kaufmann, San Francisco (1984)

17. Brunie, L., Kosch, H.: Control Strategies for Complex Relational Query Processing in
Shared Nothing Systems. SIGMOD Record 25(3), 34–39 (1996)

18. Brunie, L., Kosch, H.: Intégration d’heuristiques d’ordonnancement dans l’optimisation
parallèle de requêtes relationnelles. Revue Calculateurs Parallèles, numéro spécial: Bases
de données Parallèles et Distribuées 9(3), 327–346 (1997); Ed. Hermès

19. Brunie, L., Kosch, H., Wohner, W.: From the modeling of parallel relational query proc-
essing to query optimization and simulation. Parallel Processing Letters 8, 2–24 (1998)

20. Bruno, N., Chaudhuri, S.: Efficient Creation of Statistics over Query Expressions. In:
Proc. of the 19th Intl. Conf. on Data Engineering, Bangalore, India, pp. 201–212. IEEE
CS, Los Alamitos (2003)

21. Chaudhuri, S.: An Overview of Query Optimization in Relational Systems. In: Sympo-
sium in Principles of Database Systems PODS 1998, pp. 34–43. ACM Press, New York
(1998)

22. Chawathe, S.S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ull-
man, J.D., Widom, J.: The TSIMMIS Project: Integration of Heterogeneous Information
Sources. In: Proc. of the 10th Meeting of the Information Processing Society of Japan, pp.
7–18 (1994)

236 A. Hameurlain and F. Morvan

23. Chekuri, C., Hassan, W.: Scheduling Problem in Parallel Query Optimization. In: Sym-
posium in Principles of Database Systems PODS 1995, pp. 255–265. ACM Press, New
York (1995)

24. Chen, M.S., Lo, M., Yu, P.S., Young, H.S.: Using Segmented Right-Deep Trees for the
Execution of Pipelined Hash Joins. In: Proc. of the 18th VLDB Conf., pp. 15–26. Morgan
Kaufmann, San Francisco (1992)

25. Chiu, D.M., Ho, Y.C.: A Methodology for Interpreting Tree Queries Into Optimal Semi-
Join Expressions. In: Proc. of the 1980 ACM SIGMOD, pp. 169–178. ACM Press, New
York (1980)

26. Christophides, V., Cluet, S., Moerkotte, G.: Evaluating Queries with Generalized Path
Expression. In: Proc. of the 1996 ACM SIGMOD, vol. 25, pp. 413–422. ACM Press,
New York (1996)

27. Cole, R.L., Graefe, G.: Optimization of dynamic query evaluation plans. In: Proc. of the
1994 ACM SIGMOD, vol. 24, pp. 150–160. ACM Press, New York (1994)

28. Collet, C., Vu, T.-T.: QBF: A Query Broker Framework for Adaptable Query Evaluation.
In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004. LNCS,
vol. 3055, pp. 362–375. Springer, Heidelberg (2004)

29. Cybula, P., Kozankiewicz, H., Stencel, K., Subieta, K.: Optimization of Distributed Que-
ries in Grid Via Caching. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005.
LNCS, vol. 3762, pp. 387–396. Springer, Heidelberg (2005)

30. Da Silva, V.F.V., Dutra, M.L., Porto, F., Schulze, B., Barbosa, A.C., de Oliveira, J.C.: An
adaptive parallel query processing middleware for the Grid. In: Concurrence and Compu-
tation: Pratique and Experience, vol. 18, pp. 621–634. Wiley InterScience, Hoboken
(2006)

31. Date, C.J.: An Introduction to Database Systems, 6th edn. Addison-Wesley, Reading
(1995)

32. Deshpande, A., Hellerstein, J.-M.: Lifting the Burden of History from Adaptive Query
Processing. In: Proc. of the 13th Intl. Conf. on VLDB, pp. 948–959. Morgan Kaufmann,
San Francisco (2004)

33. De Witt, D.J., Kabra, N., Luo, J., Patel, J.M., Yu, J.B.: Client-Server Paradise. In: Proc.
of the 20th VLDB Conf., pp. 558–569. Morgan Kaufmann, San Francisco (1994)

34. Dinquel, J.: Network Architectures for Cluster Computing. Technical Report 572, CECS,
California State University (2000)

35. Du, W., Krishnamurthy, R., Shan, M.-C.: Query Optimization in a Heterogeneous
DBMS. In: Proc. of the 18th Intl. Conf. on VLDB, pp. 277–291. Morgan Kaufmann, San
Francisco (1992)

36. El Samad, M., Gossa, J., Morvan, F., Hameurlain, A., Pierson, J.-M., Brunie, L.: A moni-
toring service for large-scale dynamic query optimisation in a grid environment. Intl.
Jour. of Web and Grid Services 4(2), 222–246 (2008)

37. Evrendilek, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase Query Optimization. Jour-
nal of Distributed and Parallel Databases 5(1), 77–113 (1997)

38. Foster, I.: The Grid: A New Infrastructure for 21st Century Science. Physics Today 55(2),
42–56 (2002)

39. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, San Francisco (2004)

40. Fuggetta, A., Picco, G.-P., Vigna, G.: Understanding Code Mobility. IEEE Transactions
on Software Engineering 24(5), 342–361 (1998)

 Evolution of Query Optimization Methods 237

41. Ganguly, S., Hasan, W., Krishnamurthy, R.: Query Optimization for Parallel Execution.
In: Proc. of the 1992 ACM SIGMOD int’l. Conf. on Management of Data, vol. 21, pp. 9–
18. ACM Press, San Diego (1992)

42. Ganguly, S., Goel, A., Silberschatz, A.: Efficient and Accurate Cost Models for Parallel
Query Optimization. In: Symposium in Principles of Database Systems PODS 1996, pp.
172–182. ACM Press, New York (1996)

43. Gardarin, G., Sha, F., Tang, Z.-H.: Calibrating the Query Optimizer Cost Model of IRO-
DB, an Object-Oriented Federated Database System. In: Proc. of 22nd Intl. Conf. on
VLDB, pp. 378–389. Morgan Kaufmann, San Francisco (1996)

44. Garofalakis, M.N., Ioannidis, Y.E.: Multi-dimensional Resource Scheduling for Parallel
Queries. In: Proc. of the 1996 ACM SIGMOD intl. Conf. on Management of Data,
vol. 25, pp. 365–376. ACM Press, New York (1996)

45. Garofalakis, M.N., Ioannidis, Y.E.: Parallel Query Scheduling and Optimization with
Time- and Space - Shared Resources. In: Proc. of the 23rd VLDB Conf., pp. 296–305.
Morgan Kaufmann, San Francisco (1997)

46. Goldman, R., Widom, J.: WSQ/DSQ: A practical approach for combined querying of da-
tabases and the web. In: Proc. of ACM SIGMOD Conf., pp. 285–296. ACM Press, New
York (2000)

47. Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Adaptive Query Process-
ing: A Survey. In: Eaglestone, B., North, S.C., Poulovassilis, A. (eds.) BNCOD 2002.
LNCS, vol. 2405, pp. 11–25. Springer, Heidelberg (2002)

48. Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Adaptive Query Process-
ing and the Grid: Opportunities and Challenges. In: Proc. of the 15th Intl. Dexa Workhop,
pp. 506–510. IEEE CS, Los Alamitos (2004)

49. Gounaris, A., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: Resource Scheduling for
Parallel Query Processing on Computational Grids. In: Proc. of the 5th IEEE/ACM Intl.
Workshop on Grid Computing, pp. 396–401 (2004)

50. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson, P.:
Adapting to Changing Resource Performance in Grid Query. In: Pierson, J.-M. (ed.)
VLDB DMG 2005. LNCS, vol. 3836, pp. 30–44. Springer, Heidelberg (2006)

51. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Computing Sur-
vey 25(2), 73–170 (1993)

52. Graefe, G.: Volcano - An Extensible and Parallel Query Evaluation System. IEEE Trans.
Knowl. Data Eng. 6(1), 120–135 (1994)

53. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing Queries Across Diverse
Data Sources. In: Proc. of 23rd Intl. Conf. on VLDB, pp. 276–285. Morgan Kaufmann,
San Francisco (1997)

54. Hameurlain, A., Bazex, P., Morvan, F.: Traitement parallèle dans les bases de données re-
lationnelles: concepts, méthodes et applications. Cépaduès Editions (1996)

55. Hameurlain, A., Morvan, F.: An Overview of Parallel Query Optimization in Relational
Systems. In: 11th Intl Worshop on Database and Expert Systems Applications, pp. 629–
634. IEEE CS, Los Alamitos (2000)

56. Hameurlain, A., Morvan, F.: CPU and incremental memory allocation in dynamic paral-
lelization of SQL queries. Journal of Parallel Computing 28(4), 525–556 (2002)

57. Hameurlain, A., Morvan, F.: Parallel query optimization methods and approaches: a sur-
vey. Journal of Computers Systems Science & Engineering 19(5), 95–114 (2004)

58. Hameurlain, A., Morvan, F., El Samad, M.: Large Scale Data management in Grid Sys-
tems: a Survey. In: IEEE Intl. Conf. on Information and Communication Technologies:
from Theory to Applications, pp. 1–6. IEEE CS, Los Alamitos (2008)

238 A. Hameurlain and F. Morvan

59. Han, W.-S., Ng, J., Markl, V., Kache, H., Kandil, M.: Progressive optimization in a
shared-nothing parallel database. In: Proc.of the ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pp. 809–820 (2007)

60. Hasan, W., Motwani, R.: Optimization Algorithms for Exploiting the Parallelism - Com-
munication Tradeoff in Pipelined Parallelism. In: Proc. of the 20th int’l. Conf. on VLDB,
pp. 36–47. Morgan Kaufmann, San Francisco (1994)

61. Hasan, W., Florescu, D., Valduriez, P.: Open Issues in Parallel Query Optimization. SIG-
MOD Record 25(3), 28–33 (1996)

62. Hellerstein, J.M., Franklin, M.J.: Adaptive Query Processing: Technology in Evolution.
Bulletin of Technical Committee on Data Engineering 23(2), 7–18 (2000)

63. Hong, W.: Exploiting Inter-Operation Parallelism in XPRS. In: Proc. ACM SIGMOD
Conf. on Management of Data, pp. 19–28. ACM Press, New York (1992)

64. Howes, T., Smith, M.C., Good, G.S., Howes, T.A., Smith, M.: Understanding and De-
ploying LDAP Directory Services. MacMillan, Basingstoke (1999)

65. Hu, N., Wang, Y., Zhao, L.: Dynamic Optimization of Sub query Processing in Grid Da-
tabase, Natural Computation. In: Proc of the 3rd Intl Conf. on Natural Computation,
vol. 5, pp. 8–13. IEEE CS, Los Alamitos (2007)

66. Hussein, M., Morvan, F., Hameurlain, A.: Embedded Cost Model in Mobile Agents for
Large Scale Query Optimization. In: Proc. of the 4th Intl. Symposium on Parallel and
Distributed Computing, pp. 199–206. IEEE CS, Los Alamitos (2005)

67. Hussein, M., Morvan, F., Hameurlain, A.: Dynamic Query Optimization: from Central-
ized to Decentralized. In: 19th Intl. Conf. on Parallel and Distributed Computing Sys-
tems, ISCA, pp. 273–279 (2006)

68. Ioannidis, Y.E., Wong, E.: Query Optimization by Simulated Annealing. In: Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pp. 9–22. ACM Press, New York
(1987)

69. Ioannidis, Y.E., Kang, Y.C.: Randomized Algorithms for Optimizing Large Join Queries.
In: Proc of the 1990 ACM SIGMOD Conf. on the Manag. of Data, vol. 19, pp. 312–321
(1990)

70. Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of Errors in the Size of Join Re-
sults. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 268–277.
ACM Press, New York (1991)

71. Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric Query Optimization. In: 18th
Intl. Conf. on VLDB, pp. 103–114. Morgan Kaufmann, San Francisco (1992)

72. Ives, Z.-G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive query exe-
cution system for data integration. In: Proc. of the ACM SIGMOD Intl. Conf. on Man-
agement of Data, pp. 299–310. ACM Press, New York (1999)

73. Ives, Z.-G., Levy, A.Y., Weld, D.S., Florescu, D., Friedman, M.: Adaptive query process-
ing for internet applications. Journal of IEEE Data Engineering Bulletin 23(2), 19–26
(2000)

74. Ives, Z.-G., Halevy, A.-Y., Weld, D.-S.: Adapting to Source Properties in Processing
Data Integration Queries. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, pp. 395–406. ACM Press, New York (2004)

75. Jarke, M., Koch, J.: Query Optimization in Database Systems. ACM Comput.
Surv. 16(2), 111–152 (1984)

76. Jones, R., Brown, J.: Distributed query processing via mobile agents (1997),
http://www.cs.umd.edu/~rjones/paper.html

 Evolution of Query Optimization Methods 239

77. Kabra, N., Dewitt, D.J.: Efficient Mid - Query Re-Optimization of Sub-Optimal Query
Execution Plans. In: Proc. of the ACM SIGMOD intl. Conf. on Management of Data,
vol. 27, pp. 106–117. ACM Press, New York (1998)

78. Kabra, N., De Witt, D.J.: OPT++: An Object-Oriented Implementation for Extensible Da-
tabase Query Optimization. VLDB Journal 8, 55–78 (1999)

79. Khan, M.F., Paul, R., Ahmed, I., Ghafoor, A.: Intensive Data Management in Parallel
Systems: A Survey. Distributed and Parallel Databases 7, 383–414 (1999)

80. Khan, L., Mcleod, D., Shahabi, C.: An Adaptive Probe-Based Technique to Optimize
Join Queries in Distributed Internet Databases. Journal of Database Management 12(4),
3–14 (2001)

81. Kosch, H.: Managing the operator ordering problem in parallel databases. Future Genera-
tion Computer Systems 16(6), 665–676 (2000)

82. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Computing
Surveys 32(4), 422–469 (2000)

83. Lanzelotte, R.S.G.: OPUS: an extensible Optimizer for Up-to-date database Systems. Ph-
D Thesis, Computer Science, PUC-RIO, available at INRIA, Rocquencourt, n° TU-127
(1990)

84. Lanzelotte, R.S.G., Valduriez, P.: Extending the Search Strategy in a Query Optimizer.
In: Proc. of the Int’l Conf. on VLDB, pp. 363–373. Morgan Kaufmann, San Francisco
(1991)

85. Lanzelotte, R.S.G., Zaït, M., Gelder, A.V.: Measuring the effectiveness of optimization.
Search Strategies. In: BDA 1992, Trégastel, pp. 162–181 (1992)

86. Lanzelotte, R.S.G., Valduriez, P., Zaït, M.: On the Effectiveness of Optimization Search
Strategies for Parallel Execution Spaces. In: Proc. of the Intl Conf. on VLDB, pp. 493–
504. Morgan Kaufmann, San Francisco (1993)

87. Lazaridis, I., Mehrotra, S.: Optimization of multi-version expensive predicates. In: Proc.
of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 797–808. ACM Press,
New York (2007)

88. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information Sources
Using Source Descriptions. In: Proc. of the Intl. Conf. on VLDB, pp. 251–262. Morgan
Kaufmann, San Francisco (1996)

89. Liu, S., Karimi, H.A.: Grid query optimizer to improve query processing in grids. Future
Generation Computer Systems 24(5), 342–353 (2008)

90. Lu, H., Ooi, B.C., Tan, K.-L.: Query Processing in Parallel Relational Database Systems.
IEEE CS Press, Los Alamitos (1994)

91. Mackert, L.F., Lohman, G.M.: R* Optimizer Validation and Performance Evaluation for
Distributed Queries. In: Proc. of the 12th Intl. Conf. on VLDB, pp. 149–159 (1986)

92. Manolescu, I.: Techniques d’optimisation pour l’interrogation des sources de données
hétérogènes et distribuées, Ph-D Thesis, Université de Versailles Saint-Quentin-en-
Yvlenies, France (2001)

93. Manolescu, I., Bouganim, L., Fabret, F., Simon, E.: Efficient querying of distributed re-
sources in mediator systems. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA
2002, and ODBASE 2002. LNCS, vol. 2519, pp. 468–485. Springer, Heidelberg (2002)

94. Marzolla, M., Mordacchini, M., Orlando, S.: Peer-to-Peer for Discovering resources in a
Dynamic Grid. Jour. of Parallel Computing 33(4-5), 339–358 (2007)

95. Mehta, M., Dewitt, D.J.: Managing Intra-Operator Parallelism in Parallel Database Sys-
tems. In: Proc. of the 21th Intl. Conf. on VLDB, pp. 382–394 (1995)

96. Mehta, M., Dewitt, D.J.: Data Placement in Shared-Nothing Parallel Database Systems.
The VLDB Journal 6, 53–72 (1997)

240 A. Hameurlain and F. Morvan

97. Morvan, F., Hussein, M., Hameurlain, A.: Mobile Agent Cooperation Methods for Large
Scale Distributed Dynamic Query Optimization. In: Proc. of the 14th Intl. Workshop on
Database and Expert Systems Applications, pp. 542–547. IEEE CS, Los Alamitos (2003)

98. Morvan, F., Hameurlain, A.: Dynamic Query Optimization: Towards Decentralized
Methods. Intl. Jour. of Intelligent Information and Database Systems (to appear, 2009)

99. Naacke, H., Gardarin, G., Tomasic, A.: Leveraging Mediator Cost Models with Hetero-
geneous Data Sources. In: Proc. of the 14th Intl. Conf. on Data Engineering, pp. 351–360.
IEEE CS, Los Alamitos (1998)

100. Ono, K., Lohman, G.M.: Measuring the Complexity of Join Enumeration in Query Opti-
mization. In: Proc. of the Int’l Conf. on VLDB, pp. 314–325. Morgan Kaufmann, San
Francisco (1990)

101. Ozakar, B., Morvan, F., Hameurlain, A.: Mobile Join Operators for Restricted Sources.
Mobile Information Systems: An International Journal 1(3), 167–184 (2005)

102. Ozcan, F., Nural, S., Koksal, P., Evrendilek, C., Dogac, A.: Dynamic query optimization
in multidatabases. Data Engineering Bulletin CS 20(3), 38–45 (1997)

103. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice-
Hall, Englewood Cliffs (1999)

104. Pacitti, E., Valduriez, P., Mattoso, M.: Grid Data Management: Open Problems and News
Issues. Intl. Journal of Grid Computing 5(3), 273–281 (2007)

105. Paton, N.W., Chávez, J.B., Chen, M., Raman, V., Swart, G., Narang, I., Yellin, D.M.,
Fernandes, A.A.A.: Autonomic query parallelization using non-dedicated computers: an
evaluation of adaptivity options. VLDB Journal 18(1), 119–140 (2009)

106. Porto, F., da Silva, V.F.V., Dutra, M.L., Schulze, B.: An Adaptive Distributed Query
Processing Grid Service. In: Pierson, J.-M. (ed.) VLDB DMG 2005. LNCS, vol. 3836,
pp. 45–57. Springer, Heidelberg (2006)

107. Rahm, E., Marek, R.: Dynamic Multi-Resource Load Balancing in Parallel Database Sys-
tems. In: Proc. of the 21st VLDB Conf., pp. 395–406 (1995)

108. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with binding
patterns. In: The Proc. of ACM PODS, pp. 105–112. ACM Press, New York (1995)

109. Raman, V., Deshpande, A., Hellerstein, J.-M.: Using State Modules for Adaptive Query
Processing. In: Proc. of the 19th Intl. Conf. on Data Engineering, pp. 353–362. IEEE CS,
Los Alamitos (2003)

110. Sahuguet, A., Pierce, B., Tannen, V.: Distributed Query Optimization: Can Mobile
Agents Help? (2000),
http://www.seas.upenn.edu/~gkarvoun/dragon/publications/
sahuguet/

111. Schneider, D., Dewitt, D.J.: Tradeoffs in Processing Complex Join Queries via Hashing
in Multiprocessor Database Machines. In: Proc. of the 16th VLDB Conf., pp. 469–480.
Morgan Kaufmann, San Francisco (1990)

112. Selinger, P.G., Astrashan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path Selection
in a Relational Database Management System. In: Proc. of the 1979 ACM SIGMOD
Conf. on Management of Data, pp. 23–34. ACM Press, New York (1979)

113. Selinger, P.G., Adiba, M.E.: Access Path Selection in Distributed Database Management
Systems. In: Proc. Intl. Conf. on Data Bases, pp. 204–215 (1980)

114. Slimani, Y., Najjar, F., Mami, N.: An Adaptable Cost Model for Distributed Query Opti-
mization on the Grid. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM-WS 2004.
LNCS, vol. 3292, pp. 79–87. Springer, Heidelberg (2004)

 Evolution of Query Optimization Methods 241

115. Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.:
Distributed Query Processing on the Grid. In: Parashar, M. (ed.) GRID 2002. LNCS,
vol. 2536, pp. 279–290. Springer, Heidelberg (2002)

116. Soe, K.M., New, A.A., Aung, T.N., Naing, T.T., Thein, N.L.: Efficient Scheduling of Re-
sources for Parallel Query Processing on Grid-based Architecture. In: Proc. of the 6th
Asia-Pacific Symposium, pp. 276–281. IEEE CS, Los Alamitos (2005)

117. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning Optimizer.
In: Proc.of 27th Intl. Conf. on Very Large Data Bases, pp. 19–28. Morgan Kaufmann,
San Francisco (2001)

118. Stonebraker, M., Katz, R.H., Paterson, D.A., Ousterhout, J.K.: The Design of XPRS. In:
Proc. of the 4th VLDB Conf., pp. 318–330. Morgan Kaufmann, San Francisco (1988)

119. Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C., Yu,
A.: Mariposa: A Wide-Area Distributed Database System. VLDB Jour. 5(1), 48–63
(1996)

120. Stonebraker, M., Hellerstein, J.M.: Readings in Database Systems, 3rd edn. Morgan
Kaufmann, San Francisco (1998)

121. Swami, A.: Optimization of large join queries. Technical report, Software Techonology
Laboratory, H-P Laboratories, Report STL-87-15 (1987)

122. Swami, A.N., Gupta, A.: Optimization of Large Join Queries. In: Proc. of the ACM SIG-
MOD Intl. Conf. on Management of Data, pp. 8–17. ACM Press, New York (1988)

123. Swami, A.N.: Optimization of Large Join Queries: Combining Heuristic and Combinato-
rial Techniques. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp.
367–376 (1989)

124. Tan, K.L., Lu, H.: A Note on the Strategy Space of Multiway Join Query Optimization
Problem in Parallel Systems. SIGMOD Record 20(4), 81–82 (1991)

125. Taniar, D., Leung, C.H.C.: Query execution scheduling in parallel object-oriented data-
bases. Information & Software Technology 41(3), 163–178 (1999)

126. Taniar, D., Leung, C.H.C., Rahayu, J.W., Goel, S.: High Performance Parallel Database
Processing and Grid Databases. John Wiley & Sons, Chichester (2008)

127. Tomasic, A., Raschid, L., Valduriez, P.: Scaling Heterogeneous Databases and the De-
sign of Disco. In: Proc. of the 16th Intl. Conf. on Distributed Computing Systems, pp.
449–457. IEEE CS, Los Alamitos (1996)

128. Tomasic, A., Raschid, L., Valduriez, P.: Scaling Access to Heterogeneous Data Sources
with DISCO. IEEE Trans. Knowl. Data Eng. 10(5), 808–823 (1998)

129. Trunfio, P., et al.: Peer-to-Peer resource discovery in Grids: Models and systems. Future
Generation Computer Systems 23(7), 864–878 (2007)

130. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Computer
Science Press (1988)

131. Urhan, T., Franklin, M.: XJoin: A reactively-scheduled pipelined join operator. IEEE
Data Engineering Bulletin 23(2), 27–33 (2000)

132. Urhan, T., Franklin, M.: Dynamic pipeline scheduling for improving interactive query
performance. In: Proc.of 27th Intl. Conf. on VLDB, pp. 501–510. Morgan Kaufmann,
San Francisco (2001)

133. Valduriez, P.: Semi-Join Algorithms for Distributed Database Machines. In: Proc. of the
2nd Intl. Symposium on Distributed Data Bases, pp. 22–37. North-Holland Publishing
Company, Amsterdam (1982)

134. Valduriez, P., Gardarin, G.: Join and Semijoin Algorithms for a Multiprocessor Database
Machine. ACM Trans. Database Syst. 9(1), 133–216 (1984)

242 A. Hameurlain and F. Morvan

135. Wohrer, A., Brezany, P., Tjoa, A.M.: Novel mediator architectures for Grid information
systems. Future Generation Computer Systems, 107–114 (2005)

136. Wiederhold, G.: Mediators in the Architecture of Future Information Systems. Journal of
IEEE Computer 25(3), 38–49 (1992)

137. Wolski, R., Spring, N.T., Hayes, J.: The Network Weather Service: A Distributed Re-
source Performance Forecasting Service for Metacomputing. Journal of Future Genera-
tion Computing Systems 15(5-6), 757–768 (1999)

138. Wong, E., Youssefi, K.: Decomposition: A Strategy for Query Processing. ACM Trans-
actions on Database Systems 1, 223–241 (1976)

139. Yerneni, R., Li, C., Ullman, J.D., Garcia-Molina, H.: Optimizing Large Join Queries in
Mediation Systems. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
348–364. Springer, Heidelberg (1998)

140. Zhou, Y., Ooi, B.C., Tan, K.-L., Tok, W.H.: An adaptable distributed query processing
architecture. Data & Knowledge Engineering 53(3), 283–309 (2005)

141. Zhu, Q., Motheramgari, S., Sun, Y.: Cost Estimation for Queries Experiencing Multiple
Contention States in Dynamic Multidatabase Environments. Journal of Knowledge and
Information Systems Publishers 5(1), 26–49 (2003)

142. Ziane, M., Zait, M., Borlat-Salamet, P.: Parallel Query Processing in DBS3. In: Proc of
the 2nd Intl. Conf. on Parallel and Distributed Information Systems, pp. 93–102. IEEE
CS, Los Alamitos (1993)

	Evolution of Query Optimization Methods
	Introduction
	Uni-processor Relational Query Optimization
	Search Space
	Search Strategies
	Discussion

	Parallel Relational Query Optimization
	Static Parallel Query Optimization Methods
	Dynamic Parallel Query Optimization Methods

	Distributed Query Optimization
	Static Distributed Query Optimization
	Dynamic Distributed Query Optimization

	Query Optimization in Data Integration Systems
	Operators for Restricted Source Access
	Centralized Dynamic Optimization Methods in Data Integration Systems
	Decentralized Dynamic Optimization Methods in Data Integration Systems

	Query Optimization in Large Scale Environments
	Query Optimization in Large Scale Data Integration Systems
	Query Optimization in Data Grid Systems

	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

