
RESEARCH CONTRff3UTlONS

Algorithms and
Data Structures Dynamic Hash Tables
Daniel! Sleator
Editor

Pedke Larson

ABSTRACT: Linear hashing and spiral storage are two
dynamic hashing schemes originally designed for external
files. This paper shows how to adapt these two methods for
hash tables stored in main memo y. The necessa y data
structures and algorithms are described, the expected
performance is analyzed mathematically, and actual
execution times are obtained and compared with alternative
techniques. Linear hashing is found to be both faster and
easier to implement than spiral storage. Two alternative
techniques are considered: a simple unbalanced bina y tree
and double hashing with periodic rehashing into a larger
table. The retrieval time of linear hashing is similar to
double hashing and substantially faster than a binary tree,
except for ve y small trees. The loading times of double
hashing (with periodic reorganization), a bina y tree, and
linear hashing are similar. Overall, linear hashing is a
simple and efficient technique for applications where the
cardinality of the key set is not known in advance.

1. INTRODUCTION
Several dynamic hashing schemes for external files
have been developed over the last few years [2, 4, 9, lo].
These schemes allow the file size to grow and shrink
gracefully according to the number of records actually
stored i.n the file. Any one of the schemes can be used
for internal hash tables as well. However, the two
methods best suited for internal tables seem to be lin-
ear hashing [9] and spiral storage [lo]: they are easy to
implement and use little extra storage. This paper
shows how to adapt these two methods to internal hash
tables, mathematically analyzes their expected per-
formance, and reports experimental performance re-
sults. The performance is also compared with that of
more traditional solutions for handling dynamic key
sets. Both methods are found to be efficient techniques
for applications where the cardinality of the key set is
not known in advance. Of the two, linear hashing is
faster a:nd also easier to implement.

0 1088 AC:M OOOl-0782/88/0400-0446 $1.50

An inherent characteristic of hashing techniques is
that a higher load on the table increases the cost of all
basic operations: insertion, retrieval and deletion. If the
performance of a hash table is to remain within accept-
able limits when the number of records increases, addi-
tional storage must somehow be allocated to -the table.
The traditional solution is to create a new, la.rger hash
table and rehash all the records into the new table. The
details of how and when this is done can vary. Linear
hashing and spiral storage allow a smooth growth. As
the number of records increases, the table grows gradu-
ally, one bucket at a time. When a new bucket is added
to the address space, a limited local reorganization is
performed. There is never any total reorganization of
the table.

2. LINEAR HASHING
Linear hashing was developed by W. Litwin in 1980 [9].
The original scheme is intended for external files. Sev-
eral improved versions of linear hashing have been pro-
posed [5, 7, 13, 141. However, for internal hash tables
their more complicated address calculation is likely to
outweigh their benefits.

Consider a hash table consisting of N buckets with
addresses 0, 1, . . . , N - 1. Linear hashing increases the
address space gradually by splitting the buckets in a
predetermined order: first bucket 0, then bucket 1, and
so on, up to and including bucket N - 1. Splitting a
bucket involves moving approximately half of the rec-
ords from the bucket to a new bucket at the end of the
table. The splitting process is illustrated in Figure 1 for
an example file with N = 5. A pointer p keeps track of
the next bucket to be split. When all N buckets have
been split and the table size has doubled to 2N, the
pointer is reset to zero and the splitting process starts
over again. This time the pointer travels from 0 to
2N - 1, doubling the table size to 4N. This expansion
process can continue as long as required.

Figure 2 illustrates the splitting of bucket 0 for an
example table with N = 5. Each entry in the hash table
contains a single pointer, which is the head of a linked

446 Communications of the ACM April 1988 Volume 31 Number 4

Research Contributions

list containing all the records hashing to that address.
When the table is of size 5, all records are hashed by
ho(K) = K mod 5. When the table size has doubled to 10,
all records will be addressed by hi(K) = K mod 10.
However, instead of doubling the table size immedi-
ately, we expand the table one bucket at a time as
required. Consider the keys hashing to bucket 0 under
ho(K) = K mod 5. To hash to 0 under ho(K) = K mod 5,
the last digit of the key must be either 0 or 5. Under the
hashing function h,(K) = K mod 10, keys with a last
digit of 0 still hash to bucket 0, while those with a last
digit of 5 hash to bucket 5. Note that none of the keys
hashing to buckets 1, 2, 3 or 4 under ho can possibly
hash to bucket 5 under h,. Hence, to expand the table,
we allocate a new bucket (with address 5) at the end of
the table, increase the pointer p by one, and scan
through the records of bucket 0, relocating to the new
bucket those hashing to 5 under h,(K) = K mod 10.

addresses in some interval [0, M]. M should be suffi-
ciently large, say M > 2”. To compute the address of
a record we use the following sequence of hashing
functions:

h,(K) =g(K)mod[N X 2j), j = 0, 1, . . .

where N is the minimum size of the hash table. If N is
of the form 2 k, the modulo operation reduces to extract-
ing the last k + j bits of g(K). The hashing function g(K)
can also be implemented in several ways. Functions of
the type

g(K) = (cK)mod M,

The current address of a record can be found as
follows. Given a key K, we first compute ho(K). If ho(K)
is less than the current value of p, the corresponding
bucket has already been split, otherwise not. If the
bucket has been split, the correct address of the record
is given by hi(K). Note that when all the original buck-
ets (buckets 0-4) have been split and the table size has
increased to 10, all records are addressed by hl.

where c is a constant and M is a large prime have
experimentally been found to perform well [12]. Differ-
ent hashing functions are easily obtained by choosing
different values for c and M, thus providing a “tuning”
capability. By choosing c = 1, the classical division-
remainder function is obtained. There is also some the-
oretical justification for using this class of functions. As
shown in [l], it comes within a factor of two of being
univers&.

We must also keep track of the current state of the
hash table. This can be done by two variables:

Returning to the general case, the address computa- L number of times the table size has doubled (from
tion can be implemented in several ways. For internal its minimum size N), L 2 0.
hash tables the following solution appears to be the P pointer to the next bucket to be split, 0 5 p C

simplest. Let g be a normal hashing function producing Nx 2’.

(a)
I...

r”

1 2 3 4 .5:
. . . . , ,

new

P
%

I 1 **.*..
64 0 1 2 3 4

t

IO 5 f6:
. ...*.

new

P
‘12

I 1
(c) 0 1 2 3 4 5 6 7 8;9:

t

..*...

new

P
%

I 1
03 ; 1 2 3 4 5 6 7 8 9 fl0;

. . . . * .
new

P

FIGURE 1. Illustration of the Expansion Process of Linear Hashing

April 1988 Volume 32 Number 4 Communications of the ACM 447

Research Contributions

(4

@I

I;0 1 2 3 4

o;, 2 3 4
I I I I I I

1 761 1

Hash functions: h,(K) = K mod 5
h,(K) = K mod 10

FIGURE 2. An Example of Splitting a Bucket

When the table is expanded by one bucket, these vari-
ables are updated as follows:

p:=pt-1;
if p = N X 2L then begin

I, := I, + 1;
p := 0;

end;

Given a key K, the current address of the corresponding
record can be computed simply as

addr := hL(K);
if addr Q: p then addr := h=+,(K);

Contracting the table by one bucket is exactly the in-
verse OF expanding it by one bucket. First the state
variables are updated as follows:

p := p - 1;
if p < 0 then begin

L:=L-1;

p := N x zL - 1:
end;

Then all the records of the last bucket are moved to the
bucket pointed to by p, and the last bucket can be
freed.

So far we have only discussed how to expand or con-
tract the table but not when to do so. The key idea is to
keep the overall load factor bounded. The overall load
factor is defined as the number of records in the table
divided by the (current) number of buckets. In our case,
the overall load factor equals the average chain length.

We fix a lower and an upper bound on the overall load
factor and expand (contract) the table whenever the
overall load factor goes above (below) the upper (lower)
bound. This requires that we keep track of the current
number of records in the table, in addition to the state
variables L and p.

2.1 Data Structure and Algorithms
The basic data structure required is an expanding and
contracting pointer array. However, few programming
languages directly support dynamically growing arrays.
The simplest way to implement such an array is to use
a two-level data structure, as illustrated in Figure 3.
The array is divided into segments of fixed size. When
the array grows, new segments are allocated as needed.
When the array shrinks and a segment becomes super-
fluous, it can be freed. A directory keeps track of the
start address of each segment in use.

Directory

El---=!

Ifi=
Segment 1

--l

Segment 2
I

I
FIGURE 3. Data Structure Implementing a Dynamiic Array

The only statically allocated structure is the direc-
tory. It is most convenient to let the minimum table
size correspond to one segment. If the directory size
and the segment size are both a power of two, the offset
within the directory and the offset within a segment
can be computed from the bucket address by masking
and shifting. A directory size and segment size of 256
gives a maximum address space of 256 X 256 = 64k
buckets. As we shall see, an overall load factor of 5 is
quite reasonable. This allows storage of over 300,000
records in the table, which seems adequate for most
applications.

Pascal type declarations for a linear hash table using
the proposed two-level data structure are given below.
The directory is simply an array of pointers to segments
and each segment is an array of pointers to a linked
list of elements. Each element contains a record and a
pointer to the next element. Some computation is saved
by keeping track of the value N x 2L instead of the
value of L. The field maxp is used for this purpose. The
use of other fields should be clear from the field names.

448 Communications of the ACh4 April 1988 Volume 31 Number 4

Research Contributions

keylength, segmentsize, and directorysize are assumed to
be globally declared constants.

elementptr = felement;
element =

record
key: keytype ;
(Insert definitions of additional fields here]
next: elementptr ;

end ;
segment =

array [0 . segmentsize - l] of elementptr ;
segmentptr = tsegment ;
hashtable =

record
p: integer ;

(Next bucket to be split)
maxp: integer ;

{Upper bound on p during this expansion]
keycount: integer ;

(Number of records in the table}
currentsize: integer ;

(Current number of buckets]
minloadfctr,

{Lower and)
maxloadfctr: real ;

(upper bound on the load factor)
directory:

array [0 . directorysize - l] of segmentptr ;
end;

A Pascal implementation of the hashing function is
given below. If the keys are alphanumeric, the key
value must first be converted into an integer. The func-
tion convertkey is assumed to perform this conversion.
The hashing function g discussed above is implemented
as g(K) = K mod 1048583. This implementation of g(K)
was used in the experiments reported in Section 4.

function hash
(K: keytype ; T: hashtable]: integer ;

const prime = 1048583 ;
var h, address: integer ;

begin
h := convertkey mod prime ;
address := h mod T.maxp ;
if address < T.p

then address := h mod(z*T.maxp) ;
hash := address ;

end;

Given the address computation algorithm, retrieval
and insertion of an element is straightforward. The first
element on the chain to which a record with key value
K belongs can be located as follows:

address := hash (K, T);
currentsegment := T.directory[address div segmentsize];
segmentindex := address mod segmentsize;
firstonchain := currentsegmentf[segmentindex];

The procedure below expands the table by one bucket,
creating a new segment when needed. It consists of
three main parts. The first part locates the bucket to be
split and the new bucket. The second part adjusts the

state variables. The third part is a loop scanning down
the chain of the “old” bucket, and moving records to
the new bucket as necessary.

procedure expandtable (var T: hashtable) ;

var newaddress, oldsegmentindex, newsegmentindex: integer ;
oldsegment, newsegment: segmentptr ;
current, previous: elementptr ;

(for scanning down the old chain]
lastofnew: elementptr ;

(points to the last element of the new chain]
begin
with T do

{Reached maximum size of address space?)
if maxp + p < directorysize * segmentsize then begin

(Locate the bucket to be split)
oldsegment := directory [p div segmentsize] ;
oldsegmentindex := p mod segmentsize ;

{Expand address space, if necessary create a new segment)
newaddress := maxp + p ;
if newaddress mod segmentsize = 0

then new (directory [newaddress div segmentsize]) ;
newsegment := directory[newaddress div segmentsize] ;
newsegmentindex := newaddress mod segmentsize ;

(Adjust the state variables)
p:=p+1;
if p = maxp then begin

maxp := 2 * maxp ;
p:=o;

end ;
currentsize := currentsize + 1 ;

(Relocate records to the new bucket}
current := oldsegmentf[oldsegmentindex] ;
previous := nil ;
lastofnew := nil ;
newsegmentf[newsegmentindex] := nil ;

while current c > nil do
if hash(currentf.key, T) = newaddress
then begin (attach it to the end of the new chain)

if lastofnew = nil
then newsegmentf[newsegmentindex] := current
else lastofnewfnext := current ;

if previous = nil
then oldsegmentf[oldsegmentindex] := currentf.next
else previousf.next := currentT.next ;

lastofnew := current ;
current := currentf.next ;
lastofnewfnext := nil ;

end
else begin (leave it on the old chain}

previous := current ;
current := currentfnext ;

end ;
end ;

end ;

2.2 Analysis
In this section we analyze the expected performance of
a growing linear hash table under the assumption that
the table is expanded as soon as the overall load factor
exceeds LY, LY > 0. For a large table, the overall load
factor will be (almost) constant and equal to (Y. It is also
assumed that there are no deletions. The analysis is
asymptotic and similar to the analysis in [6].

April 1988 Volume 31 Number 4 Communications of the ACM 449

Research Contributions

The expected cost of retrieval and insertion depends
on what fraction of the buckets has already been split
during the current expansion. The performance is best
at the end of an expansion because the load is uniform
over the whole table. The performance varies cyclically
where a cycle corresponds to a doubling of the table.
Hence each cycle is twice as long as the previous cycle.

A linear hash table can be viewed as consisting of
two traditional hash tables: (1) the buckets that have
not yet been split during the current expansion, and
(2) the buckets that have been split plus the new buck-
ets created during the current expansion. Within each
part, the expected load is the same for every bucket.
During an expansion the relative sizes of the two parts
change. Consider a traditional hash table with load fac-
tory, where records are stored using chaining as ex-
plained in the previous section. The expected number
of key comparisons for a successful search and an un-
successful search in such a table are given by [3]

S(Y) = 1 + Y/2

U(Y) = y.

Let x, o 5 x 5 1, denote the fraction of buckets that
have been split during the current expansion and z, the
expected number of records in an unsplit bucket. The
expected number of records in a split or new bucket is
then z/Z. For the overall load factor to be equal to 01,
the following relationship between z and x must hold:

2x2/2 + (1 - x)2 = a(2x + 1 - x).

The left-hand side represents the expected number of
records in a group, where a group consists of either one
unsplit bucket (with load z) or one unsplit bucket plus
one new bucket (each with load z/2). The expression
2x + 1 - x represents the number of bucket addresses
allocated to a group. Solving for z gives the relationship

z=a(l +x).

In other words, the expected number of records in an
unsplit bucket grows linearly from 01 to 2a. Let S((Y, x)
denote the expected number of key comparisons for a
successful search when a fraction x of the buckets have
been split. With probability x we hit a split group, in
which case the expected search length is ~(a(1 + x)/2).
With probablity 1 - x we hit an unsplit group, in which
case the expected search length is s((~(1 + x)). Hence,
we have

S(a, x) = xs
a(1 + x)

(>
-j-- + (1 - x)s((Y(l + x))

= 1 + f (2 + x - x”).

Similarly, the expected length of an unsuccessful
search is obtained as

L&x, x) = xu
a(1 + x)

(>
--y- + (1 - x)u(a(l + x))

= ; (2 + x - x2).

The minimum expected search lengths occu:r when the
load is uniform over the whole table, that is, when
x=Oorx=l.Inthiscasewehave

S(a, 0) = 1 + 4

U((Y, 0) = a.

The maximum expected search lengths occur when
x = %. For x = % we have

1
s a,- (1 2

Cl+;;

u e,f =a;.
(1

The average search cost over a cycle can be computed
by integrating the expected search length over an ex-
pansion cycle, which results in

s

1

S(a) =
0

S(a,x)dx=l+;;

1
ii =

s 0
U(a,x)dx=n;.

An insertion consists of two parts: the actual insertion
of the new record at the end of a chain and, for some
insertions, an expansion of the table. The cost of the
actual insertion is the same as the cost of an unsuccess-
ful search plus the cost of connecting the new record
to the end of the chain. A fraction l/a of the insertions
trigger an expansion. An expansion involves Bean-
ning down a chain of records belonging to an unsplit
bucket. The expected number of records on the chain is
(~(1 + x), and for each record we must compute a hash
address and update a few pointers. The expec:ted num-
ber of extra hash address computations per record in-
serted is then given by

A(a,~)=~a(1+~)=1+x
a

1
Ti(a) =

s
A@, x) dx = 1.5.

0

3. SPIRAL STORAGE
When using linear hashing the expected cost of retriev-
ing, inserting or deleting a record varies cyclically. Spi-
ral storage [lo] overcomes this undesirable feature and
exhibits uniform performance regardless of the table
size. In other words, the table may grow or shrink by
any factor but the expected performance alwalys re-
mains the same. Spiral storage intentionally distributes
the records unevenly over the table. The load is high at
the beginning of the (active) address space and tapers
off towards the end as illustrated in Figure 4. ‘To ex-
pand the table additional space is allocated at the end
of the address space, and at the same time a smaller
amount of space is freed at the beginning. The records
stored in the bucket that disappears are distributed
over the new buckets.

450 Communications of the ACM April 1988 Volume 31 Number 4

Research Contributions

Address space

FIGURE 4. Illustrating the Load Distribution and the Expansion
Process of Spiral Storage

The address computation of spiral storage is illus-
trated in Figure 5. The key value is first mapped into a
real number x in the interval [S, S + 1). The x-value is
the mapped into an address y by the function y = Ld”.l,
where d > 1 is a constant called the growth factor. The
function d” is called the expansion (or growth) function.
The currently active address space extends from LdSJ to
Ids+‘1 - 1. This equals approximately ds(d - 1) active
addresses. Spiral storage requires a hashing function
that maps keys uniformly into [0, l), that is, 0 5
h(K) < 1. The value h(K) is then mapped into a value x
in [S, S + 1). This value is uniquely determined by
requiring that its fractional part must agree with h(K). It
is most easily computed as x = IS - h(K)1 + h(K). The
final address is computed as y = Ld”J. Hence every key
is mapped into an address in the active address space.

To increase the active address space we simply in-
crease S to S’, see Figure 5. The keys that previously
mapped into the range [S, S’) now map into the range
[S + 1, S’ + 1). The new address range corresponding to
[S + 1, S’ + 1) is approximately d times the old address

s S’ x s+1 s+1

Hash Value (adjusted)

Choosing d = 2 gives the simplest scheme; every
expansion creates two new buckets and deletes one
bucket. From now on it is assumed that d = 2. The most
expensive part of the address calculation is the compu-
tation of 2’. A function of this type is normally com-
puted by approximating it with a polynomial of a fairly
high degree. Fortunately, most programming languages
have built-in library routines for this type of computa-
tion, thus hiding the complexity from a “normal” user.

FIGURE 5. The Address Computation of Spiral Storage However, it is still a fairly expensive operation, To

range corresponding to [S, S’). The records stored in the
bucket(s) that disappears are relocated to the new buck-
ets and the expansion is complete. The value S’ is nor-
mally chosen so that exactly one bucket disappears.

Let us illustrate the above discussion by a small ex-
ample, see Table I. We start from an active address
space of 5 addresses. The growth factor is d = 2, which
is the most convenient value for internal hash tables.
The value of S required to give 5 active addresses can
be determined from the equation z’+’ - 2’ = 5, which
gives S = log25 = 2.3219. The first active address is then
y=LZ. 232’gJ = 5 and the last one, y = 123.32191 - 1 = 9.
In this situation all keys with 0.3219 5 h(K) < 0.5849
are stored in bucket 5, all those with 0.5849 % h(K) <
0.8074 in bucket 6, . . . , and all those with 0.1699 5
h(K) < 0.3219 in bucket 9. For example, if h(K) = 0.75,
the x-value is x = f2.3219 - 0.751 + 0.75 = 2.75, which
gives the address y = L22.75J = 6. The resulting load
distribution is given in column three of Table I. Bucket
5 is expected to receive 26.3 percent of the records,
bucket 6, 22.2 percent, and so on.

TABLE I. Address mapping for a small table, d = 2

Acwrahr Haehlntenfnl Relative load

5 [0.3219,0.5849) 0.253
8 [0.5649,0.8074) 0.222
7 [0.8074,1 .OOOO) 0.193
8 [O.OOOO, 0.1899) 0.170
9 [0.1899, 0.3219) 0.152

10 [0.3219,0.4594) 0.137
11 [O&%4,0.5849) 0.126

To increase the active address space by one, S is
increased to S’ = log26 = 2.5849. The last active ad-
dress is now 123.58491 - 1 = 11, that is, addresses 10 and
11 are now taken into use. All records in bucket 5 are
relocated to the two new buckets. All records in bucket
5 with h(K) < 0.4594 are moved to bucket 10, and all
those with h(K) 2 0.4594 are moved to bucket 11.

Note that the active address space slides to the right
as it increases. Addresses up to LdSJ - 1 are unused.
There is a rather simple way of mapping the “logical”
addresses of spiral storage into “physical” addresses so
that the “physical” address space always begins from
address zero [lo, 111. However, the cost of computing
the “physical” address grows with the table size. If this
mapping is used, the performance would therefore de-
pend on the table size. By using the same two-level
data structure as for linear hashing we can avoid this
extra cost.

April 1988 Volume 31 Number 4 Communications of the ACM 451

Research Contributions

reduce the cost we can approximate 2% by some other
function that is faster to compute. Let f(x) be a function
that approximates ZX in the interval 0 5 x 5 1. Then
2’ can be approximated in the interval n 5 x 5 n + 1
(integer n) by the function 27(x - n). Note that n is just
the integer part of x and x - n is the fractional part.
Hence the problem is reduced to approximating 2’ for
0 I x 5 1. Martin [lo] suggested using a function of the
form.

f(x)=+x+c, 05x51.

The values of the parameters a, b and c can be deter-
mined by fixing the value of f(x) at three points. To
guarantee that the function 27(x - n) is continuous,
the function values at the two end points must be ex-
act. This gives two conditions: f(0) = 1 and f(1) = 2. The
third point can be any point in [0, 11. Some numerical
experimentation showed that choosing x = 0.5 gives a
good approximation. The maximum error is approxi-
mately 0.0023. This gives the condition f(0.5) = 2°.5.
From these three conditions we get the following
parameter values:

b= (2 -x&)/(3 -2x&)-3.4142136

a=b(b -1)~ 8.2426407

c=2-b =-1.4142136.

The inverse of the function y = a/(b - x) + c is needed
to compute the new value for S after an expansion. The
inverse is

x=b-a/(y-c),

Instead of using the function above we could use a
second degree polynomial. However, evaluation of
a second degree polynomial requires four floating
point operations while the function above requires
only three.

It should be emphasized that there are many possible
expansion functions. The expansion function 2’ has the
property that the expansion rate is constant; one old
bucket is always replaced by two new buckets. The
expected performance is also constant. Other expansion
functions do not necessarily have this property. The
function 27(x - n) where f(x) = a/(b - x) + c should
therefore be seen as a different expansion function, not
as an approximation of 2’. However, the resulting per-
formance is very close to the performance obtained
when using 2’. The expansion rate is almost, but not
exad.ly, constant. Most of the time an expansion cre-
ates two new buckets, but occasionally either one or
three buckets are created.

3.1 Date Structure and Algorithms
The two-level data structure proposed for linear hash
tables is also appropriate for spiral storage. Two minor
modifications are required because the active address
space moves to the right as the table size increases.
When expanding the table, we can occasionally delete
a segment and free a slot in the directory. When reach-

ing the end of the directory, there will therefore be free
slots in the beginning of the directory. To rnake use of
these, we just “wrap around” and continue until all
slots are in use.

The required type declarations are given below. The
constants a, b, and c are assumed to be globally de-
clared. Elements and segments are exactly the same as
for linear hashing. There are two changes in the decla-
ration of hashtable. The fields lowaddr and highaddr re-
place the field currentsize. The fields y0 and x0 replace
p and maxp. Their use is explained in connection with
the address computation algorithm.

(Type definitions for elements and segments a.re the same as
for linear hashing)

hashtable =
record

y0: integer ;
(See the text for an explanation)

x0: real ;
(of the use of these fields]

lowaddr,
{First address and)

highaddr: integer ;
(last address in current address space)

keycount: integer
(Number of records stored)

minloadfctr,
(Lower and)

maxloadfctr: real ;
(upper bound on the load factor)

directory:
array [0 . . directorysize - l] of segmenl.ptr ;

end ;

Recall from the discussion of address computation that
the beginning (and the size) of the active address space
is determined by the state variable S. Let f(x) denote
the expansion function and I the desired (or current)
lowest address. Then the following equality must hold:
I = f(S), that is, S = f-‘(Z). Using the proposed expansion
function we obtain

1= ZLs’(a/(b - (S)) + c)

where (S) denotes the fractional part of S. From the
way this function was constructed we also know that
the following inequality must be satisfied at all times:

1 I a/(b - (S)) + c 5 2.

This gives the following inequalities:

In other words, the integer part of S, 1.9, is just the
highest integer value such that 2”’ 5 1. Having deter-
mined LSJ we can then compute the fractional part
from the equation.

(S) = b - a/(l/2’s’ - c).

The field x0 stores the fractional part of S, (S). The field
y0 is used for storing the value 2”‘. Storing 2”’ directly,

452 Communications of the ACM April 1988 Volume .31 Number 4

Research Contributions

instead of storing LSJ and then computing 2”‘, speeds
up the address calculation slightly.

The full address computation algorithm is given be-
low. The statement “if h < T.xO then . . .” requires
some explanation. Recall that the x-value used in the
address computation is computed as

x = rs - h(q1 + h(~).

Rewriting it in the form

x = TLSJ + (S) - h(K)1 + h(K)

it is easy to see that there are two cases:

if {S) - h(K) 5 0 then x = LSJ + h(K)
if (S] - h(K) > 0 then x = LSJ + 1 + h(K).

In both cases the fractional part is the same and equal
to h(K). Thus the value a/(b - h(K)) + c is also the same
in both cases. The only difference is whether this value
is multiplied by 2”’ or 2”‘+l. If h(K) < (S], the value is
multiplied by 2”‘+l, i.e., 2 * T.xO, otherwise by ZLs’,
i.e., T.xO.

The logical address space of spiral storage starts from
one. The mapping of addresses onto directory entries
and segment entries is slightly easier if the address
space starts from zero. Hence, the subtraction of one in
the last statement. The fields lowaddr and highaddr are
assumed to keep track of “physical” addresses, that is,
addresses offset by one. This algorithm was used in the
experiments reported in section 4, where the reasons
for multiplying by a “scrambling” constant are also
discussed.

function hash(K: keytype ; T: hashtable): integer ;

const
cnst = 314159 ; (scrambling constant)
prime = 1048583 ;

var
h, address: real ;
temp: integer ;

begin
temp := convertkey ;
temp := abs(temp*cnst)mod prime ;
h := temp/prime ;

address := T.yO*(a/(b - h) + c) ;
if h < T.xO

then address := address * 2.0 ;
hash := trunc(address) - 1 ;

end ;

The algorithms for retrieving or inserting a record are
the same as for linear hashing. However, because of the
wrap-around, finding the correct segment requires a
statement like the following:

currentsegment := directory[(address

div segmentsize)mod directorysize];

A full expansion algorithm can be found in [8]. The
algorithm is quite straightforward and consists of four
main parts: (1) locate and free the first bucket of the
active address space, (2) update the state variables,
(3) create the required new buckets at the end of the

address space, and (4) redistribute the records from the
deleted buckets. The expansion function explained
above causes a slight complication: most expansions
create two new buckets, but occasionally either one or
three new buckets are created. This can be handled, for
example, by first distributing the records over three
auxiliary lists and then connecting each one to the
chain of the appropriate bucket. A program fragment
showing how to update the state variables is included
below.

lowaddr := lowaddr + 1;
if lowaddr + 1 > 2*yO then y0 := 2*yO;
x0 := b - a/((lowaddr+l)/yO - c);

{Note that lowaddr is offset by one]
newhighaddr := ceil(Z*yO+(a/(b-xo)+c) - 1) - 1;

3.2 Analysis
In this section we analyze the expected performance of
spiral storage. In the same way as for linear hashing, it
is assumed that the overall load factor is kept constant
and equal to cu, cy > 0, and that there are no deletions.
The analysis is asymptotic. The expected load on a
bucket varies over the active address space. We derive
the load distribution assuming that the expansion func-
tion 2’ is used. The load distribution resulting from the
expansion function 2’S’(a/(b - h) + c) is, for all practical
purposes, the same.

Without loss of generality we can consider only the
normalized address range [l, 2). For any value of S, the
active address range [2”, 2’+‘) can be normalized to the
range [I, 2) by multiplying all addresses by the factor
2-‘. Consider an infinitesimal interval [y, y + dy) C [l, 2)
and let p(y) denote the probability that a key hashes to
a (normalized) address in this interval. Under the as-
sumption that the hashing function used distributes the
keys uniformly over [0, I), we obtain

P(Y) = bz(y + dyl - bs4y)

Over the normalized address range [l, z), the insertion
probability density function is thus l/(y In 2). The ex-
pected load factor of a bucket at address y is propor-
tional to the insertion probability at y. The load factor,
X(y), is therefore given by

WA = MY ln 21

where c1 is a normalizing constant. Because the average
load factor must equal LY, the value of cl can be deter-
mined from the equation

s ’ cldy
1 yIna

from which we find that c1 = CL The highest load factor
is at y = 1, X(1) = a/in 2, and the lowest at y = 2, X(2) =
cu/(2 In 2).

Under the assumption that each record is equally
likely to be retrieved, the probability of a successful
search hitting a bucket is proportional to the load factor

April 1988 Volume 31 Number 4 Communications of the ACM 453

Research Contributions

of the bucket. Hence, the probability of hitting a bucket
with an address in [y, y + dy] is c,ady/(y In 2) = c,dy/y.
The (constant cJ is determined by the fact that the prob-
ability of a search hitting some bucket is one. Hence,
t.he value of c3 can be determined from the equation

S ’ c3 dy ---=I
1 Y ’

whic.h gives cg = l/In 2. If a successful search hits
a bucket with a load factor of h, the expected cost is
s(X) =: 1 + X/2. The expected cost of a successful search
is then

S(cY) = S dy W(y ln 2)) - 1 y In 2

=i’i)

2

1+L - dy
2y In 2 y In 2

(Y 1

=1+22(ln=
1 + ; 1.0407.

Note that, not only is the cost of searching a bucket
with a high load factor higher, we are also more likely
to hit such a bucket. However, the net effect of the
non-uniform distribution is rather small. The number
of extra probes, beyond the one minimally required,
is only 4 percent higher than for a uniform load dis-
tribut ion.

The probability that an unsuccessful search hits the
(normalized) address interval [y, y + dy] is p(y). If the
search hits a bucket in this address range, the search
is done in a bucket whose expected load factor is
a/(y In 2). Recall that the expected cost of an unsuc-
cessful search in a bucket with load factor X is u(X) = X.
This gives the expected cost of an unsuccessful search
as

S
2 = a 4 --

I (In 2)’ y2

a
= - = a 10407

2(ln 2)’ ’ *

The non-uniform load distribution hence increases the
cost of unsuccessful searches by about 4 percent com-
pared with a uniform load distribution.

The additional cost caused by expansions can be
computed as follows. During an expansion all the rec-
ords in the first bucket must be redistributed. The
expected number of records in the first bucket is
X(1) = oc/ln 2. A fraction l/a of the insertions trigger an
expansion. Hence the additional hash address computa-
tions per record inserted is

&x((y) = i & = & = 1.4427.
()

4. EXPERIMENTAL RESULTS
This section summarizes experimental results for linear
hashing and spiral storage. The observed performance
is also compared with that of a (unbalanced) binary tree
and double hashing. All programs were written in C
and run on a VAX 11/780 under UNIX 4.3BSD’. Test
data were obtained from three real-life files:

File A: User names from a large time-sharing installa-
tion, 10000 keys, average key length of 7.1 char-
acters.

File B: Dictionary of English words used by the UNIX
spelling checker, first 20000 keys used, average
key length of 7.2 characters.

File C: Library call numbers, 10000 keys, average key
length of 13.3 characters.

Key conversion for linear hashing, spiral storage, and
double hashing was done using the following algorithm:

convkey := 0;
for i := 1 to keylength do

if K[i] < > ’ ’
then convkey := 3i’+convkey + ord(K[i]);

convkey := abs(convkey);

For linear hashing and spiral storage the experiments
were performed as follows. First all the keys were read
into main memory. This was done to factor out I/O
time from the experiments. Then the keys were in-
serted and the total insertion time was recorded. Each
time a new key was inserted into the table, space for a
new element was allocated by calling the standard
memory allocation routine. The insertion process was
halted every 1000 insertions and 1000 succe:ssful
searches were performed. The search keys were se-
lected from among the keys already in the table using a
random number generator. Each experiment was re-
peated three times, each time using a different seed for
the random number generator. The execution times
reported are averages from the three experiments.
The initial table size was 4 both for linear hashing and
spiral storage. The directory size and segment size were
both 256.

The goal of the first experiments was to te.st the per-
formance of the hashing functions used. Tables II and
III show the expected search lengths and the observed
search lengths from one such experiment. The differ-
ence between the expected and observed values is less
than z percent. Similar results were obtained for unsuc-
cessful searches and for other values of LY. These results
confirmed that the hashing functions performed as ex-
pected.

In one experiment the “scrambling” constant in the
hashing function for spiral storage was omitted. This
significantly increased the observed search lengths,
especially for File A. After some investigation, it was
found that omitting the constant caused short keys

’ The programs were first written in Pascal but found to be surprisingly slow.
Switching to C (without changing the algorithms) speeded them up by a factor
between 3 and 4.

454 Communications of the ACM April 1988 Volume 31 Number 4

Research Contributions

TABLE II. Theoretically expected and observed average
number of comparisons for a successful search

in a linear hash table (a = 5)

TABLE Ill. Theoretically expected and obsenred average
number of comparisons for a successful search

using spiral storage (a = 5)

‘2000 ,3.61 3.55 3.60 3.60
4ooo ~.I31 3.57 3.66 3.89

’ so00 3.81 3,61 S.!% 3.60
6000 3.61 3.58 3.59 3.59

10000 3.61 3.57 3.80 3.58

(3-4 characters) to cluster together near zero (after
being hashed into the interval [0, 1)). Multiplication by
a “scrambling” constant breaks up such clusters, and is
therefore recommended whenever the key set contains
a significant fraction of short keys.

The observed execution times for linear hashing and
spiral storage are listed in Tables IV and V. The general
trend is clear: spiral storage is consistently slower than
linear hashing both for loading and searching. The
main factor is the more expensive address calculation
of spiral storage (approximately 0.16 ms/key for linear
hashing and 0.24 ms/key for spiral storage). The expan-
sion procedure of spiral storage is also more complex

TABLE IV. Average CPU-time in milliseconds/key for loading
and searching in a linear hash table

Teitd&

File A
File .B
FiteC

‘--Ml

uhl ‘a*$ rval0 arl a=5 aslO

0.88 0.97 1.15 0.34 0.41 0.50
0.04 1.02 1.28 0.36 0.44 0.53
1.06 1.23 1.53 0.41 0.53 0.69

TABLE V. Average CPU-time in milliseconds/key for loading
and searching in a hash table organized by spiral storage

Loedlyl’ sserddns

?wbq a=1 ,&x5 arIO. a?* @7’5, P&q

File A 1.25 1.17 1.34 0.41 0.48. 0.57
File B 1.26 1.20 1.37 0.42 0.49 0.59
File. C 1.40 1.43 1.71 0.47 0.59 0.75

and somewhat slower. (For File A and (Y = 5, the cost
was approximately 1.41 ms per expansion for linear
hashing and 2.19 ms for spiral storage.) The higher load
and search times of File C are caused by the substan-
tially longer keys. Longer keys increase the cost of key
conversions and key comparisons.

For spiral storage, the loading cost per key is higher
when (Y = 1 than when (Y = 5. This may appear surpris-
ing at first. The explanation is as follows. The cost of
carrying out an expansion is of the form C1 + &a. The
constant C1 accounts for the overhead incurred in per-
forming an expansion, that is, the cost incurred inde-
pendently of the number of records in the bucket. The
constant Cz accounts for the cost of processing and relo-
cating a record in the bucket being split. An expansion
is triggered every (Y insertion. Hence, the cost of expan-
sions per record inserted is Cl/a + Cz. As cr increases the
effect of the first term (expansion overhead) decreases
rapidly, but for small (Y it is a significant component of
the cost. The cost of inserting a record (without the cost
of expansions) is of the form C3 + &(Y. The total cost of
an insertion is therefore Cl/a + Cz + C3 + C,cu. For
small values of (Y the first term will dominate the cost

TABLE VI. Average CPU-time in milliseconds/key for loading
and searching in an unbalanced binary tree

.,_,
),

,, ; : W’, :

Treeslxi ,‘.’ FIfeA* @I&&, WC’ ’

loql‘ Q.45 o..@’ :0.30 Q&l 0.58, 0.66
2ooo ., o.f39 0.70’:. .g#3 .0.66 0.72 0.66
3qcHX. 6.84. O,+!- ‘.. r- th86 8.72 0.78 0.94
4000 0.88
SOix,~ 693

0,87‘* ~XhBS ’ 0.82 0.00
o,Q2 ‘6, ~%.~

: 6176
a 0,79 0.85 1.02

6000 0.97 0.96 &I@ 0.82 0.87 1.06
7000; l.O@ 0.99 .l,dl: 9% 0.89 1.08
8ogc. 1.03 1.01 J.1‘9 6;$6 0.01 1.12
eooo. 1.05 1,03 l.t8 ,p,@6 0.63 1.11

10000 1.07 1.05 1.21. 0.87 .0.95 1.13
2OOclO 1.18 1.04

and for large values of OL the last term will dominate.
This formula holds for both linear hashing and spiral
storage, only the constants differ. (For File A and (Y =
0.5 the loading cost of linear hashing was 0.99 ms per
key.1

A simple, unbalanced binary search tree is a straight-
forward and generally efficient way of handling key
sets of unknown cardinality. It was therefore decided to
compare the performance of the new methods with that
of a binary search tree. The experiments were orga-
nized as follows. First all records were read into main
storage. The keys were then inserted into a binary tree.
The insertion order was determined by a random num-
ber generator. The insertion process was again halted
every 1000 insertions, the insertion time was recorded,
1000 random, successful searches were performed and
the search time recorded. This loading-and-searching

April 1988 Volume 31 Number 4 Communications of the ACM 455

:/I Con,tributions

process was repeated 10 times for each input file and TABLE VIII. Average CPU-time in milliseconds/key for loading
averages computed. a pseudo-dynamic hash table based on double hashing

Table VI shows the results obtained. The figures for
loading give the total CPU-time required to build a tree
of the indicated size. For example, to build a tree con-
tain:ing 5000 keys took, on average, 0.98 milliseconds/
key for File A, 0.92 for File B, and 1.02 for File C. The
corr’esponding figures for searching give the average
CPU-time for searching in a tree of the indicated size.
For (example, locating a key in a tree of size 5000, re-
quired 0.79 milliseconds for File A, 0.85 milliseconds
for File B, and 1.02 milliseconds for File C. The higher
load and search costs for File C are again caused by the
longer keys.

Comparing the results with those of Tables IV and V,
we see that, for small key sets, building a binary tree is
faster than loading a linear hash table. For key sets of
6000-10000 keys, the loading costs per key are approxi-
mately the same for a binary tree and a linear hash
table with (Y = 5. However, unless the key set is very
small, searching in a binary tree is significantly slower
than searching in a hash table.

loading costs of the three test files are shown in Table
VIII. The exact cost varies with the three parameters
mentioned above but the main trend is clear: the load-
ing cost of linear hashing is either lower or only slightly
higher than that of double hashing with periodic reor-
ganization In addition, the insertion behavior of linear
hashing and spiral storage is consistent; there are no
long delays while the table is being reorgamzed. The
delay can be substantial; total rehashing of 20000 rec-
ords was observed to take over 11 seconds of CPU-time.

TABLE VII. Average CPU-time in milliseconds/key for loading
and searching using double hashing with a fixed-size fable

a

0.611

0.70
0.80
0.90
O.S!i

The next comparison was with a traditional (fixed-
size) hash table, where overflow records were handled
by double hashing [3]. The results are summarized in
Table VII. The search performance of a linear hash ta-
ble with a! = 1 is approximately the same as that of
double hashing with (Y = 0.8. Even with the overall
load factor as high as 10, the search performance of
linear hashing is only 50 percent higher than that of
double hashing with (Y = 0.8. Not surprisingly, the cost
of loading is substantially higher (2 to 3 times) for linear
hashing and spiral storage than for double hashing.
However, comparing the loading costs of a dynamic
scheme and a traditional scheme with a fixed-size table
is obviously not entirely fair.

As mentioned earlier, any traditional hashing scheme
can be made pseudo-dynamic by rehashing all the keys
into a larger table when the current table becomes too
heavily loaded. The total loading cost of such a scheme
depends on (1) the initial table size, (2) the maximal
load factor, and (3) the expansion factor. The maximal
load factor is the load factor at which the table is reor-
ganized. The expansion factor is the relative size of the
new table compared to the size of the old table. The
double hashing implementation was modified to in-
clude this type of periodic reorganization. The resulting

None of the methods above require an inordinate
amount of overhead space. If the table for double hash-
ing is also implemented as a pointer array, the over-
head space consists solely of pointers for all. methods.
The space overhead typically ranges from one to two
pointers per record. A binary tree always requires 2
pointers per record. For double hashing the number of
pointers is l/Zf where If is the load factor. This ranges
from 2 for If = 0.5 to 1.11 for If = 0.9. For linear hashing
and spiral storage the number of pointers per record is
approximately 1 + l/a, which ranges from 2 for (Y = 1
to 1.1 for (Y = 10. The exact formula for the total num-
ber of pointers is n + rn/(a x seg)lseg + dir, where n is
the number of records, and seg and dir denote the seg-
ment size and directory size, respectively.

From the experimental results presented above the
following overall conclusions can be drawn. For appli-
cations where the cardinality of the key set is known in
advance, the best performance is obtained by a tradi-
tional fixed-size hash table. For applications where the
cardinality of the key set is not known in advance,
linear hashing gives the best overall performance. The
average load factor can be set as high as 5 without
seriously affecting the performance. Spiral storage is
consistently slower than linear hashing. The expected
loading cost of a binary tree is lower than that of linear
hashing, but searching is slower (except for very small
trees). Using a traditional hashing scheme with periodic
reorganization does not seem to offer any advantages
over using linear hashing.

REFERENCES
Carter, L.J. and Wegman, M.L. Universal Classes of Hash Functions,
~oumnl of Computer and System Sciences 18, 1 (1979). 1,43-154.
Fagin. R., Nievergelt, J.. Pippenger, N., and Strong, H. R. Extendible
hashing-a fast access method for dynamic files. ACM Trans.
Database Syst. 4, 3 (1979), 315-344.
Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting and
Searching. Addison-Wesley. Reading, Mass.. 1973.
Larson, P.-A. Dynamic hashing. BIT 18, 2 (1978). 184--201.

466 Communications of the ACM April 1988 Volume 31 Number 4

Research Contributions

5. Larson, P.-A. Linear hashing with partial expansions. In Proceedings
of the 6th Conference on Very Large Databases, (New York, 1980),
224-232. 224-232.

6. Larson, P.-A. Performance analysis of linear hashing with partial 6. Larson, P.-A. Performance analysis of linear hashing with partial
expansions, ACM Trans. Database Syst. 7, 4 (1982), 566-587. expansions, ACM Trans. Database Syst. 7, 4 (1982), 566-587.

7. Larson, P.-A. Linear hashing with overflow-handling by linear prob- 7. Larson, P.-A. Linear hashing with overflow-handling by linear prob-
ing. ACM Tyans. Databnse Syst. IO, 1 (1985), 75-89.

8. Larson, P.-A. Dynamic Hash Tables, Technical Report CS-86-21,
University of Waterloo, 1986.

9. Litwin, W. Linear hashing: A new tool for file and table addressing.
In Proceedings of the 6th Conference on Very Large Databases, (New
York, 1980), 212-223.

10. Martin, G. N. N. Spiral storage: Incrementally augmentable hash
addressed storage. Theory of Computation Rep. 27, Univ. of War-
wick, England, 1979.

11. Mullin, J. K. Spiral storage: Efficient dynamic hashing with constant
performance. ?omput. J. 28, 3 (1985), 330-334.

12. Ramakrishna, M.V. Perfect Hashing for External Files, Technical
Report CS-86-25, University of Waterloo, 1986.

13. Ramamohanarao, K. and Lloyd, J, K. Dynamic hashing schemes.
Cornput. 1. 25, 4 (1982), 478-485.

14. Ramamohanarao, K. and Sacks-Davis, R. Recursive linear hashing,
ACM Trans. Datnbase Syst. 9, 3 (1984), 369-391.

CR Categories and Subject Descriptors: E.l Data Structures [Tables];
E.2 Data Storage Representations [Hash Table Representations]; F.2.2
Analysis of Algorithms and Problem Complexity [Non-numerical Algo-
rithms and Problems-sorting and searching]

General Terms: Algorithms. Design, Experimentation, Performance
Additional Key Words and Phrases: Hashing, dynamic hashing,

hashing functions, linear hashing, spiral storage

Received 6/86; accepted 4/87

Author’s Present Address: Per-Ake Larson, Dept. of Computer Science,
University of Waterloo, Waterloo, Ontario N2.L 3G1, Canada.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

ACM SPECIAL INTEREST GROUPS
ARE YOUR TECHNICAL

INTERESTS HERE?

The ACM Special Interest Groups further the ad-
vancementofcomputerscienceandpracticein
many speciaized areas. Members of each SIG
receiveascneoftheirbenefitsaperi&dex-
dusively devoted to the special interest. The fd-
lowing are the publications that are available-
through membership or special subsaiption.

SICACT NEWS (Automata and
Computability Theory)

SIGCPR Newsletter (Computer Personnel
Research)

SIGAde Letters (Ada)
SIGCSE Bulletin (Computer Science

Education)

SIGAPL Quote Quad (APL) SJGCJJE Bulletin (Computer Uses in
Education)

SIGARCH Computer Architecture News
(Architecture of Computer Systems) SIGDA Newsletter (Design Automation)

SIGART Newsletter (Artificial SIGDOC Asterisk (Systems
Intelligence) Documentation)

SIGBDP DATABASE (Business Data
Processing)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGBIO Newsletter (Biomedical
Computing)

SIGIR Forum (Information Retrieval)

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Edition

SIGMETRICS Performance Evaluation
Review (Measurement and
Evaluation)

SIGCAPH Newsletter, Cassette Edition

SIGCAPH Newsletter, Print and Cassette
Editions

SIGCAS Newsletter (Computers and
Society)

SIGCHI Bulletin (Computer and Human
Interaction)

SIGCOMM Computer Communication
Review (Data Communication)

SIGMICRO Newsletter
(Microprogramming)

SIGMOD Record (Management of Data)

SIGNUM Newsletter (Numerical
Mathematics)

SIGOIS Newsletter (Office Information
Systems)

SIGOPS Operating Systems Review
(Operating Systems)

SIGPLAN Notices (Programming
Languages)

SIGPLAN FORTRAN FORUM (FORTRAN)

SIGSAC Newsletter (Security, Audit.
and Control)

SIGSAM Bulletin (Symbolic and Algebraic
Manipulation)

SIGSJM Simuletter (Simulation and
Modeling)

SIGSMALL/PC Newsletter (Small and
Personal Computing Systems and
Applications)

SJGSOFT Software Engineering Notes
(Software Engineering)

SJGUCCS Newsletter (University and
College Computing Services)

April 1988 Volume 31 Number 4 Communications of the ACM 457

