
6. External Memory Computational Geometry

Revisited

Christian Breimann and Jan Vahrenhold∗

6.1 Introduction

Computational Geometry is an area in Computer Science basically concerned
with the design and analysis of algorithms and data structures for problems
involving geometric objects. This field started in the 1970’s and has evolved
into a discipline reaching out to areas such as Complexity Theory, Discrete
and Combinatorial Geometry, or Algorithm Engineering. Geometric problems
occur in a variety of applications, e.g., Computer Graphics, Databases, Geo-
sciences, or Medical Imaging, and there are several textbooks presenting (in-
ternal memory) geometric algorithms [239, 275, 342, 541, 566, 596, 614, 647].
The systematic investigation of geometric algorithms specifically designed for
massive data sets started in the early 1990’s, most noticeably after Goodrich
et al. presented their pioneering paper “External Memory Computational
Geometry” [345].

In our survey, we intend to give an overview of results that have been
obtained during the last decade and try to relate these results to internal
memory algorithms as well. We will review algorithms and data structures
for geometric problems involving massive data sets. Our focus will be both on
theoretical results and on practical applications. Due to this double focus, this
chapter contains not only an overview of fundamental geometric problems and
corresponding specialized algorithms and data structures developed in the
areas of Computational Geometry and Spatial Databases, but we also discuss
how general-purpose index structures already implemented in commercial
database systems can be used for solving geometric problems.

As a prominent application area involving massive data sets, spatial
database systems have attracted increasing interest both in research com-
munities and among professional users. In addition to the growing number of
applications, the increasing availability of spatial data in form of digital maps
and images is one of the main reasons for this trend, and tightly coupled to
this, applications demand sophisticated computations and complex analyses
of such data. In this area, it is not uncommon to use sub-optimal algorithms
(in terms of their asymptotic complexity) if they lead to better performance
in practice.
∗ Part of this work was done while on leave at the University for Health Informatics

and Technology Tyrol, 6020 Innsbruck, Austria.

U. Meyer et al. (Eds.): Algorithms for Memory Hierarchies, LNCS 2625, pp. 110-148, 2003.
 Springer-Verlag Berlin Heidelberg 2003

6. External Memory Computational Geometry Revisited 111

The geometric problems described in the remainder of this survey are
grouped according to the kind of objects for which the problem is defined.
In Section 6.3, we describe problems involving sets of points (Problems 6.1–
6.11), in Section 6.4, we present a discussion of problems involving sets of
segments (Problems 6.12–6.20), and in Section 6.5, we conclude by survey-
ing problems involving sets of polygons (Problem 6.21 and Problem 6.22).
Table 6.1 contains an overview of all problems covered in this chapter.

Table 6.1. Geometric problems surveyed in this chapter.

No. Problem name No. Problem Name

1 Convex Hull 12 Segment Stabbing

2 Halfspace Intersection 13 Segment Sorting

3 Closest Pair 14 Endpoint Dominance

4 K-Bichromatic Closest Pairs 15 Trapezoidal Decomposition

5 Nearest Neighbor 16 Polygon Triangulation

6 All Nearest Neighbors 17 Vertical Ray-Shooting

7 Reverse Nearest Neighbors 18 Planar Point Location

8 K-Nearest Neighbors 19 Bichromatic Segment Intersec-
tion

9 Halfspace Range Searching 20 Segment Intersection

10 Orthogonal Range Searching 21 Rectangle Intersection

11 Voronoi Diagram 22 Polygon Intersection

Whenever appropriate, we will sub-classify problems according to the ex-
tent to which the sets may be updated:

Static Setting: All data items are fixed prior to running an algorithm or
building a data structure, and no changes to the data items may occur
afterwards.

Dynamic Setting: The set of items that forms the problem instance can be
updated by insertions as well as deletions.

Semidynamic Setting: The set of items that forms the problem instance can
be updated by either insertions or deletions, but not both.

The dynamic and semidynamic setting can also be considered in a batched
variant, that is, all updates have to be known in advance. For problems that
involve answering queries, we additionally distinguish between two kinds of
queries:

Single-Shot Queries: Each query has to be answered independent of other
queries and before the next query may be posed.

Batched Queries: The user specifies a collection of queries, and the only re-
quirement is that all queries are answered by the end of the algorithm.

112 Christian Breimann and Jan Vahrenhold

Before surveying geometric problems and corresponding solutions, we will
briefly review the model of computation and introduce three general tech-
niques for solving large-scale geometric problems.

6.2 General Methods for Solving Geometric Problems

External memory algorithms are investigated analytically in the parallel disk
model introduced by Aggarwal and Vitter [17] and later refined by Vitter and
Shriver [755]. The parallel disk model, which is based on blocked transfers,
uses the following parameters:

N = Number of objects in the problem instance
M = Number of objects that fit simultaneously into main memory
B = Number of objects that fit into one disk block
D = Number of independent disks
P = Number of parallel processors

In this survey, however, we will restrict ourselves to algorithms for single-
disk/single-processor settings, that is, we assume D = 1 and P = 1. For
algorithms involving multiple queries, we consider two additional parameters:

Q = Number of queries
Z = Number of objects in the answer set

This model allows computations only on elements that are in main mem-
ory, and whenever additional elements are needed in main memory, they have
to be read from disk. The measures of performance for an external memory
algorithm are the number of I/Os performed during its execution and the
amount of disk space occupied (in terms of disk blocks).

In the remainder of this section, we present some general methods which
are often used to solve geometric problems. First of all, we briefly discuss
the implications of solving a problem by reducing it to a problem for which
an efficient algorithm is known and present the concept of duality which
sometimes can be used for this purpose (Section 6.2.1). In Section 6.2.2,
we describe the general distribution sweeping paradigm, an external version
of the well-known plane sweeping. Section 6.2.3 covers the R-tree, a spatial
index structure frequently used in spatial database systems, and some of its
variants.

6.2.1 Reduction of Problems

A common technique for proving lower bounds for (geometric) problems is to
reduce the problem to some fundamental problem for which a lower bound is
known. Among these fundamental problems is the Element Uniqueness prob-
lem which is, given a collection of N objects, to determine whether any two

6. External Memory Computational Geometry Revisited 113

are identical. The lower bound for this problem is Ω((N/B) logM/B(N/B))
[59], and—looking at the reduction from the opposite direction—a matching
upper bound for the Element Uniqueness problem for points can be obtained
by solving what is called the Closest Pair problem (see Problem 6.3). For a
given collection of points, this problem consists of computing a pair with min-
imal distance. This distance is non-zero if and only if the collection does not
contain duplicates, that is if and only if the answer to the Element Uniqueness
problem is negative.

(a) Concept of transformation. (b) Transformation of bounds.

Fig. 6.1. Reduction of problems.

A more general view is given by Figure 6.1. It shows that reducing (trans-
forming) a problem A to a problem B means transforming the input of A first,
then solving problem B, and transforming its solution back afterwards (see
Figure 6.1 (a)). Such a transformation is said to be a τ(N)-transformation
if and only if transforming both the input and the solution can be done in
O(τ(N)) time. If an algorithm for solving the problem B has an asymptotic
complexity of O(fB(N)), the problem A can be solved in O(fB(N) + τ(N))
time. In addition, if the intrinsic complexity of the problem A is Ω(fA(N))
and if τ(N) ∈ o(fA(N)), then B also has a lower bound of Ω(fA(N)) (see Fig-
ure 6.1 (b) and, e.g., the textbook by Preparata and Shamos [614, Chap. 1.4]).

Reduction via Duality In Section 6.3, which is entitled “Problems Involv-
ing Sets of Points”, we will discuss the following problem (Problem 6.2):

“Given a set S of N halfspaces in IRd, compute the common inter-
section of these halfspaces.”

At first, it seems surprising that this problem should be discussed in
a section devoted to problems involving set of points. Using the concept
of geometric duality, however, points and halfspaces can be identified in a
consistent way: A duality transform maps points in IRd into the set Gd of
non-vertical hyperplanes in IRd and vice versa. The classical duality transform
between points and hyperplanes is defined as follows:

D :

{
Gd → IRd : xd = ad +

∑d−1
i=1 aixi �→ (a1, . . . , ad)

IRd → Gd : (b1, . . . , bd) �→ xd = bd −
∑d−1

i=1 bixi

114 Christian Breimann and Jan Vahrenhold

Another well-known transform D that is used, e.g., in the context of the
Convex Hull problem (Problem 6.1), maps a point p on the unit parabola to
the unique hyperplane that is tangent to the parabola in p. For the sake of
simplicity, this duality transform is stated for d = 2.

D :
{
G2 → IR2 : y = 2ax− b �→ (a, b)
IR2 → G2 : (a, b) �→ y = 2ax− b

An important property of these transforms is that they are their own in-
verses and that they preserve the “above-below” relation: a point p lies above
(below) the hyperplane � with respect to the d-th dimension if and only if the
line D(p) lies above (below) the point D(�) with respect to the d-th dimension.
This property is exploited in several algorithms for, e.g., the Range Search-
ing problem, the Convex Hull problem, the K-Nearest Neighbors problem,
or the Voronoi Diagram problem. These algorithms first reduce the original
problem to a problem stated for the duals of the original objects, solve the
problem in the dual setting, and finally employ the same duality transform
to obtain the solution to the original problem. We refer the interested reader
to textbooks on Computational Geometry (e.g. [275, 541, 596]) for a more
detailed treatment of these duality transforms.

6.2.2 Distribution Sweeping

A large number of internal memory algorithms is based upon plane sweeping,
a general technique for turning a static (d + 1)-dimensional problem into a
(finite) collection of instances of a dynamic d-dimensional problem. Although
the general approach is independent of the dimension d, it is most efficient
when the (original) problem is two-dimensional, and therefore we will restrict
the following description to this setting.

The characterizing feature of the plane sweeping technique is an (imag-
inary) line (or, in the general setting, a hyperplane) that is swept over the
entire data set. For sake of simplicity, this sweep-line is usually assumed to
be perpendicular to the x-axis of the coordinate system and to move from
left to right. Any object intersected by the sweep-line at x = t is called active
at time t, and only active objects are involved in geometric computations at
that time. In the situation depicted in Figure 6.2(a), the sweep-line is drawn
in bold, and the active objects, i.e., the objects intersected by the sweep-line,
are the line segments A and B.

To guarantee the correctness of a plane-sweep algorithm, one has to take
care of restating the original problem in such a way that operations involving
only active objects are sufficient to determine the proper solution to the
problem, e.g., Graf [350] summarized several formulations of plane-sweep
algorithms.

All objects active at a given time are usually stored in a dictionary called
sweep-line structure. The status of the sweep-line structure is updated as soon

6. External Memory Computational Geometry Revisited 115

(a) Internal plane sweeping. (b) External distribution sweeping.

Fig. 6.2. The plane sweeping and distribution sweeping techniques.

as the sweep-line moves to a point where the topology of the active objects
changes discontinuously: for example, an object must be inserted into the
sweep-line structure as soon as the sweep-line hits its leftmost point, and it
must be removed after the sweep-line has passed its rightmost point. The
sweep-line structure can be maintained in logarithmic time per update if the
objects can be ordered linearly, e.g., by the y-value of their intersection with
the sweep line.

For a finite set of objects, there are only finitely many points where the
topology of the active objects changes discontinuously, e.g., when objects are
inserted into or deleted from the sweep-line structure; these points are called
events and are stored in increasing order of their x-coordinates, e.g, in a
priority queue. Depending on the problem to be solved, there may exist ad-
ditional event types apart from insert and delete events. The data structure
for storing the events is called event queue, and maintaining it as a prior-
ity queue under insertions and deletions can be accomplished in logarithmic
time per update. That is, if the active objects can be ordered linearly, each
event can be processed in logarithmic time (excluding the time needed for
operations involving active objects). As a consequence, the plane sweeping
technique often leads to optimal algorithms, e.g., the Closest Pair problem
can be solved in optimal time O(N log2N) [398].

The straightforward approach for externalizing the plane sweeping tech-
nique would be to replace the (internal) sweep-line structure by a corre-
sponding external data structure, e.g., a B-tree [96]. A plane-sweep algo-
rithm with an internal memory time complexity of O(N log2N) then spends
O(N logB N) I/Os. For problems with an external memory lower bound of
Ω((N/B) logM/B(N/B)), however, the latter bound is at least a factor of
B away from optimal.1 The key to an efficient external sweeping technique
is to combine sweeping with ideas similar to divide-and-conquer, that is, to
subdivide the plane prior to sweeping. To aid imagination, consider the plane
subdivided into Θ(M/B) parallel (vertical) strips, each containing the same

1 Often the (realistic) assumption M/B > B is made. In such a situation, an
additional (non-trivial) factor of logB M > 2 is lost.

116 Christian Breimann and Jan Vahrenhold

number of data objects (see Figure 6.2(b)).2 Each of these strips is then
processed using a sweep over the data and eventually by recursion. How-
ever, in contrast to the description of the internal case, the sweep-line is
perpendicular to the y-axis, and sweeping is done from top to bottom. The
motivation behind this modified description is to facilitate the intuition be-
hind the novel ingredient of distribution sweeping, namely the subdivision
into vertical strips.

The subdivision proceeds using a technique originally proposed for distri-
bution sort [17], hence, the resulting external plane sweeping technique has
been christened distribution sweeping [345]. While in the situation of distri-
bution sort all partitioning elements have to be selected using an external
variant of the median find algorithm [133, 307], distribution sweeping can
resort to having an optimal external sorting algorithm at hand. The set of
all x-coordinates is sorted in ascending order, and for each (recursive) sub-
division of a strip, the Θ(M/B) partitioning elements can be selected from
the sorted sequence spending an overall number of O(N/B) I/Os per level of
recursion.

Using this linear partitioning algorithm as a subroutine, the distribution
sweeping technique can be stated as follows: Prior to entering the recursive
procedure, all objects are sorted with respect to the sweeping direction, and
the set of x-coordinates is sorted such that the partitioning elements can be
found efficiently. During each recursive call, the current data set is parti-
tioned into M/B strips. Objects that interact with objects from other strips
are found and processed during a sweep over the strips, while interactions
between objects assigned to the same strip are found recursively. The recur-
sion terminates when the number of objects assigned to a strip falls below M
and the subproblem can be solved in main memory. If the sweep for finding
inter-strip interactions can be performed using only a linear number of I/Os,
i.e., Θ(N/B) I/Os, the overall I/O complexity for distribution sweeping is
O((N/B) logM/B(N/B)).

6.2.3 The R-tree Spatial Index Structure

Many algorithms proposed in the context of spatial databases assume that
the data set is indexed by a hierarchy of bounding boxes. This assumption
is justified by the popularity of the R-tree spatial index structure (and its
variants) in academic and commercial database systems.

The R-tree, originally proposed by Guttman [368], is a height-balanced
multiway tree similar to a B-tree. An R-tree stores d-dimensional data objects
approximated by their axis-parallel minimum bounding boxes. For ease of
2 Non-point objects cannot always be assigned to a unique strip because they

may interact with several strips. In such a situation, objects are assigned to a
maximal contiguous interval of strips they interact with. See the discussion of,
e.g., Problem 6.20 for more details on how to deal with such a situation.

6. External Memory Computational Geometry Revisited 117

presentation, we restrict the following discussion to the situation d = 2 and
assume that each data object itself is an axis-parallel rectangle.

The leaf nodes in an R-tree contain Θ(B) data rectangles each, where B
is the maximum fanout of the tree. Internal nodes contain Θ(B) entries of
the form (Ptr ,R), where Ptr is a pointer to a child node and R the minimum
bounding rectangle covering all rectangles which are stored in the subtree
rooted in that child. Each entry in a leaf stores a data object or, in the
general setting, the bounding rectangle of a data object and a pointer to the
data object itself. Since the bounding rectangles stored within internal nodes
are used to guide the insertion, deletion, and querying processes (see below),
they are referred to as routing rectangles, whereas the bounding rectangles
stored in the leaves are called data rectangles. An R-tree for N rectangles
consists of O(N/B) nodes and has height O(logB N). Figure 6.3 shows an
example of an R-tree for a set of two-dimensional rectangles.

Fig. 6.3. R-tree for data rectangles A, B, C, . . . , I, K, L. The tree in this example
has maximum fanout B = 3.

To insert a new rectangle r into an already existing R-tree with root v,
we select the subtree rooted at v whose bounding rectangle needs least en-
largement to include the new rectangle. The insertion process continues re-
cursively until a leaf is reached, adjusting routing rectangles as necessary.
Since recursion takes place along a single root-to-leaf path, an insertion can
be performed touching only O(logB N) nodes. If a leaf overflows due to an
insertion, a rebalancing process similar to B-tree rebalancing is triggered,
and therefore R-trees also grow and shrink only at the root. The insertion
path depends not only on the heuristic chosen for breaking ties in case of
non-unique subtrees for recursion, but also on the objects already present in
the R-tree. Hence, there is no unique R-tree for a given set of rectangles, and
different orders of insertion for the same set of rectangles usually result in
different R-trees.

During the insertion process, a new rectangle r might overlap the routing
rectangles of several subtrees of the node v currently visited. However, the
rectangle r is routed to exactly one such subtree. Since the routing rectangle

118 Christian Breimann and Jan Vahrenhold

of this subtree might be extended to include r, the routing rectangles stored
within v can overlap. This overlap directly affects the performance of R-tree
query operations: When querying an R-tree to find all rectangles overlapping
a given query rectangle r, we have to branch at each internal node into
all subtrees whose minimum bounding rectangle overlaps r. (Queries for all
rectangles containing a given query point p can be stated in the same way
by regarding p as an infinitesimally small rectangle.) In the worst case, the
search process has to branch at each internal node into all subtrees which
results in O(N/B) nodes being touched—even though the number of reported
overlapping data rectangles might be much smaller. Intuitively, it is thus
desirable that the routing rectangles stored within a node overlap as little as
possible.

Another heuristic is to minimize the area covered by each routing rect-
angle. As a consequence routing rectangles cover less dead space, i. e., space
covered by a routing rectangle which is not covered by any child, such that
unsuccessful searches may terminate earlier. Similar heuristics are used in
several variants of the R-tree including the R+-tree [683], the Hilbert R-
tree [442], and the R*-tree [102], which is widely recognized to be the most
practical R-tree variant. This is especially due to the fact that the heuristics
used in the R*-tree re-insert a certain number of elements if routing rectan-
gles have to be split. This usually results in a re-structured tree with less
overlapping of routing rectangles permitting fast answers for queries. We re-
fer the interested reader also to the Generalized Search Tree [50, 389] and to
more detailed overviews [323, 754].

As mentioned above, overlapping routing rectangles decrease the query
performance of R-trees, and with increasing dimension, this overlap grows
rapidly. Therefore, other data structures, e.g., the X-tree [114], which uses
so-called supernodes permitting a sequential scan of their children, have been
developed. But as the percentage of the data space covered by routing rect-
angles grows quickly with increasing dimensionality, for d > 10, nearly ev-
ery node is accessed when querying the data structure as long as nodes are
split in a balanced way. For many data distributions, a sequential scan can
have better query performance in terms of overall running time than the
random I/Os caused by querying data structures which are based on data-
partitioning [758]. With the Pyramid-Technique [113], points and ranges in
d-dimensional data space are transformed to 1-dimensional values which can
be stored and queried using any 1-dimensional data structure, e.g., a B+-tree.
The authors claim that the Pyramid-Technique using a B+-tree outperforms
not only the data structures presented above but also the sequential scan.

We have presented some hierarchical spatial index structures which are
used to efficiently store and query multi-dimensional data objects. From now
on, whenever we refer to a hierarchical spatial index structure, any of these
structures may be used unless explicitly stated otherwise.

6. External Memory Computational Geometry Revisited 119

6.3 Problems Involving Sets of Points

The first problem we discuss in this section is not only one of the most
fundamental problems studied in Computational Geometry but also one of
the rare problems where finding an optimal external algorithm for the two-
dimensional case is completely straightforward.

(a) Planar convex hull. (b) Intersection of halfspaces in dual space.

Fig. 6.4. Computing the convex hull of a finite point set.

Problem 6.1 (Convex Hull). Given a set S of N points in IRd, find the
smallest (convex) polytope enclosing S (see Figure 6.4(a)).

Among the earliest internal memory algorithms for computing the convex
hull in two dimensions was a sort-and-scan algorithm due to Graham [352].
This algorithm, called Graham’s Scan, is based upon the invariant that when
traversing the boundary of a convex polygon in counterclockwise direction,
any three consecutive points form a left turn. The algorithm first selects
a point p that is known to be interior to the convex hull, e.g., the center of
gravity of the triangle formed by three non-collinear points in S. All points in
S are then sorted by increasing polar angle with respect to p. The convex hull
is constructed by pushing the points onto a stack in sorted order, maintaining
the above invariant. As soon as the next point to be pushed and the topmost
two points on the stack do not form a left turn, points are repeatedly removed
from the stack until only one point is left or the invariant is fulfilled. After all
points have been processed, the stack contains the points lying on the convex
hull in clockwise direction. As each point can be pushed onto (removed from)
the stack only once, Θ(N) stack operations are performed, and the (optimal)
internal memory complexity, dominated by the sorting step, is O(N log2N).

This algorithm is one of the rare cases where externalization is completely
straightforward [345]. Sorting can be done using O((N/B) logM/B(N/B))
I/Os [17], and an external stack can be implemented such that Θ(N) stack
operations require O(N/B) I/Os (see Chapter 2). The external algorithm we
obtain this way has an optimal complexity of O((N/B) logM/B(N/B)).

In general, O(N) points of S can lie on the convex hull, but there are
situations where the number Z of points on the convex hull is (asymptotically)
much smaller. An output-sensitive algorithm for computing the convex hull

120 Christian Breimann and Jan Vahrenhold

in two dimensions has been obtained by Goodrich et al. [345]. Building upon
the concept of marriage-before-conquest [458], the authors combine external
versions of finding the median of an unsorted set [17] and of computing the
convex hull of a partially sorted point set [343] to obtain an optimal output-
sensitive external algorithm with complexity O((N/B) logM/B(Z/B)).

Independent from this particular problem, Hoel and Samet [402] claimed
that accessing disjoint decompositions of data space tends to be faster than
other decompositions for a wide range of hierarchical spatial index struc-
tures. Along these lines, Böhm and Kriegel [138] presented two algorithms
for solving the Convex Hull problem using spatial index structures. One al-
gorithm, computing the minimum and maximum values for each dimension
and traversing the index depth-first, is shown to be optimal in the number of
disk accesses as it reads only the pages containing points not enclosed by the
convex hull once. The second algorithm performs worse in terms of I/O but
needs less CPU time. It is unclear, however, how to extend these algorithms
to higher dimensions.

An approach to the d-dimensional Convex Hull problem is based on the
observation that the convex hull of S ⊂ IRd can be inferred from the inter-
section of halfspaces in the dual space (IRd)∗ [781] (see also Figures 6.4(a)
and (b)). For each point p ∈ S, the corresponding dual halfspace is given by
p∗ := {x ∈ (IRd)∗ |

∑d
i=1 xipi ≤ 1}. At least for d ∈ {2, 3}, the intersection of

halfspaces can be computed I/O-efficiently (see the following Problem 6.2),
and this results in corresponding I/O-efficient algorithms for the Convex Hull
problem in these dimensions.

Problem 6.2 (Halfspace Intersection). Given a set S of N halfspaces in
IRd, compute the common intersection of these halfspaces.

In the context of the Halfspace Intersection problem, efficient external
algorithms are known only for the situation d ≤ 3. The intersection in three
dimensions can be computed by either using an externalization of Reif and
Sen’s parallel algorithm [630] (as proposed by Goodrich et al. [345]) or by an
algorithm that can be derived in the framework of randomized incremental
construction with gradations [228] (see Section 6.4). Both algorithms require
O((N/B) logM/B(N/B)) I/Os (for the first approach, this bound holds with
high probability, while it is the expected complexity for the second approach).

The problem we discuss next has already been mentioned in the context
of solving problems by reduction (Section 6.2.1):

Problem 6.3 (Closest Pair). Given a set S of N points in IRd and a
distance metric d, find a pair (p, q) ∈ S × S, p �= q, for which d(p, q) =
min{d(r, s) | r, s ∈ S, r �= s} (see Figure 6.5(a)).

There is a variety of optimal algorithms in the internal memory setting
that solve the problem either directly or by exploiting reductions to other

6. External Memory Computational Geometry Revisited 121

(a) Closest pair. (b) Nearest neighbor for query point p.

Fig. 6.5. Closest-point problems.

problems (see also the survey by Smid [700]). In the external memory set-
ting, the (static) problem of finding the closest pair in a fixed set S of N
points can be solved by exploiting the reduction to the All Nearest Neighbors
problem (Problem 6.6), where for each point p ∈ S, we wish to determine
its nearest neighbor in S \ {p} (see Problem 6.5). Having computed this list
of N pairs of points, we can easily select two points forming a closest pair
by scanning the list while keeping track of the closest pair seen so far. As
we will discuss below, the complexity of solving the All Nearest Neighbors
is O((N/B) logM/B(N/B)), which gives us an optimal algorithm for solving
the static Closest Pair problem.

Handling the dynamic case is considerably more involved, as an insertion
or a deletion could change a large number of “nearest neighbors”, and con-
sequently, the reduction to the All Nearest Neighbors problem would require
touching at least the same number of objects.

Callahan, Goodrich, and Ramaiyer [168] introduced an external variant
of topology trees [316], and building upon this data structure, they managed
to develop an external version of the dynamic closest pair algorithm by Be-
spamyatnikh [121]. The data structure presented by Callahan et al. can be
used to dynamically maintain the closest pair spending O(logB N) I/Os per
update.

The Closest Pair problem can also be considered in a bichromatic setting,
where each point is labeled with either of two colors, and where we wish to
report a pair with minimal distance among all pairs of points having different
colors [10, 351]. This problem can be generalized to the case of reporting the
K bichromatic closest pairs.

Problem 6.4 (K-Bichromatic Closest Pairs). Given a set S of N points
in IRd with S = S1∪S2 and S1∩S2 = ∅, find K closest pairs (p, q) ∈ S1×S2.

Some efficient internal memory algorithms for solving this problem have
been proposed [10, 451], but it seems that none of them can be externalized
efficiently. In the context of spatial databases, the K-Bichromatic Closest
Pairs problem can be seen as a special instance of a so-called θ-join which
is defined as follows: Given two sets S1 and S2 of objects and a predicate θ :
S1×S2 → IB, compute all pairs (s1, s2) ∈ S1×S2, for which θ(s1, s2) = true.

In his approach to theK-Bichromatic Closest Pairs problem,Henrich [393]
considered the special case |S2| = 1, and assuming that S1 is indexed hier-

122 Christian Breimann and Jan Vahrenhold

archically, he proposed to perform a priority-driven traversal of the spatial
index structure storing S1. Hjaltason and Samet [401] later generalized this
approach and referred to Problem 6.4 as a special instance of a θ-join, namely
the incremental distance join (again assuming that each relation is indexed hi-
erarchically). Their algorithm schedules a priority-driven synchronous traver-
sal of both trees, repeatedly looking at two nodes, one from each tree. The
processing is guided by the distance between the (routing) rectangles corre-
sponding to the nodes, and to each pair this distance is assigned as the pair’s
priority. Initially, the priority queue contains all pairs that can be formed by
grouping the root of one tree and the children of the root of the other tree,
and the first element in the queue always forms the closest pair of objects
stored in the queue. For each removed pair of nodes, the pairs formed by
the children (if any) are inserted into the queue. Whenever a pair of data
objects appears at the front of the queue, its associated distance is minimal
among all unconsidered distances, hence, all K bichromatic closest pairs can
be reported ordered by increasing distance. This algorithm benefits from the
observation that in practical applicationsK
 |S1×S2|, but nevertheless, the
priority queue might contain a large number of pairs. Hjaltason and Samet
described several approaches for how to organize the priority queue such that
only a small portion of it actually resides in main memory. This means that
only the promising candidate pairs are kept in main memory whereas all pairs
having a large distance are off-loaded to external memory. The authors argue
that except for unlikely worst-case configurations, their approaches perform
without accessing the off-loaded data and that worst-case configurations can
be handled gracefully as well. Worst-case optimal external priority queues
are also discussed in Chapter 2 and Chapter 3.

Corral et al. [219] presented a collection of algorithms that improve the
effective running time of the above algorithms for solving the Bichromatic
Closest Pair problem. These improvements include a separate treatment for
the case K = 1 and choosing a heap-based priority queue.

These algorithms for solving Problem 6.4 can be modified to solve (the
monochromatic) Problem 6.3. This modification is not generally possible [219]
for an arbitrary algorithm solving Problem 6.4. A description of modifications
for the latter algorithm has been given by Corral et al. [218]. The authors
claim that these modifications do not seriously affect the performance of their
algorithm.

As mentioned before, spatial index structures try to cluster objects based
upon their spatial location, and consequently, several approaches have been
made to exploit this structural property when dealing with proximity prob-
lems. A fundamental proximity problem is to organize a set of points such
that for each query point the point closest to it can be reported quickly.

Problem 6.5 (Nearest Neighbor). Given a set S of N points in IRd, a
distance metric d, and a query point p in IRd, report a point q ∈ S, for which
d(p, q) = min{d(p, r) | r ∈ S} (see Figure 6.5(b)).

6. External Memory Computational Geometry Revisited 123

Problem 6.5 and its relatives occur in a variety of conventional geographi-
cal applications, e.g., when searching for the closest geometric feature of some
kind relative to some given spatial location. This problem is also referred to
as the Post Office problem [460]3. Since the metric d defining the “closeness”
of two objects is also a parameter in the problem setting, this problem can
be found in new application areas like multimedia database systems. In this
setting, multimedia objects, e.g., text, image, or video objects, are described
by high-dimensional feature vectors which in turn are considered as points in
the feature space. Proximity among these feature vectors implies similarity
between the objects represented, and in combination with carefully chosen
metrics, spatial index structures can be used for efficiently performing simi-
larity search [137, 473, 668, 681].

The Nearest Neighbor problem can also be restated in the context of
Voronoi diagrams (see Problem 6.11), and using techniques by Goodrich
et al. [345], one can obtain a static data structure that answers nearest neigh-
bor queries in O(logB N) I/Os. We will comment on this approach when
discussing algorithms for computing the Voronoi diagram.

(a) Approximate nearest neighbor. (b) All nearest neighbors.

Fig. 6.6. Nearest-neighbor problems.

A variant of the Nearest Neighbor problem is to compute an approximate
nearest neighbor for a given query point. Here, an additional parameter ε
is used to allow for certain slack in the reported “minimum” distance. For
ε > 0, a (1 + ε)-approximate nearest neighbor of a query point p is a point q
that is no further than (1 + ε) times the distance dist to the actual nearest
neighbor of p (see Figure 6.6(a)).

Using external topology trees, Callahan et al. [168] derived an external
version of the data structure by Arya et al. [72] that can be used to maintain
S under insertions and deletions with O(logB N) I/Os per update such that
an approximate nearest neighbor query can be answered spending O(logB N)
I/Os.4 Even in the internal memory setting, it is an open problem to find
an efficient dynamic data structure with O(N logO(1)N) space that can be
used for the exact Nearest Neighbor problem and has O(logO(1)N) update

3 This reference is ascribed to Knuth as he discusses a data structure called post-
office tree which can be used for answering a query of the kind “What is the
nearest city to point x?”, given the value of x [460, page 563].

4 The constants hidden in the “Big-Oh”-notation depend on d and ε.

124 Christian Breimann and Jan Vahrenhold

and query time [700], and not surprisingly, the external memory variant of
this problem is unsolved as well.

Berchtold et al. [112] proposed to use hierarchical spatial index struc-
tures to store the data points. They also introduced a different cost model
and compared the predicted and actual cost of solving the Nearest Neighbor
problem for real-world data using an X-tree [114] and a Hilbert-R-tree [287].
Brin [148] introduced the GNAT index structure which resembles a hierarchi-
cal Voronoi diagram (see Problem 6.11). He also gave empirical evidence that
this structure outperforms most other index structures for high-dimensional
data spaces.

The practical relevance of the nearest neighbor, however, becomes less
significant as the number of dimensions increases. For both real-world and
synthetic data sets in high-dimensional space (d > 10), Weber, Schek, and
Blott [759] as well as Beyer et al. [123] showed that under several distance
metrics the distance to the nearest neighbor is larger than the distance be-
tween the nearest neighbor and the farthest neighbor of the query point.
Their observation raises an additional quality issue: The exact nearest neigh-
bor of a query point might not be relevant at all. As an approach to cope with
this complication, Hinneburg, Aggarwal, and Keim [397] modified the Nearest
Neighbor problem by introducing the notion of important dimensions. They
introduced a quality criterion to determine which dimensions are relevant to
the specific proximity problem in question and examined the data distribu-
tion resulting from projections of the data set to these dimensions. Obviously,
their approach yields improvements over standard techniques only if the num-
ber of “important” dimensions is significantly smaller than the dimension of
the data space.

Problem 6.6 (All Nearest Neighbors). Given a set S of N points in IRd

and a distance metric d, report for each point p ∈ S a point q ∈ S, for which
d(p, q) = min{d(p, r) | r ∈ S, p �= r} (see Figure 6.6(b)).

The All Nearest Neighbors problem, which can also be seen as a special
batched variant of the (single-shot) Nearest Neighbor problem, can be posed,
e.g., in order to find clusters within a point set. Goodrich et al. [345] pro-
posed an algorithm with O((N/B) logM/B(N/B)) I/O-complexity based on
the distribution sweeping paradigm: Their approach is to externalize a par-
allel algorithm by Atallah and Tsay [74] replacing work on each processor by
work within a single memory load. Recall that on each level of distribution
sweeping, only interactions between strips are handled, and that interactions
within a strip are handled recursively. In the situation of finding nearest
neighbors, the algorithm performs a top-down sweep keeping track of each
point whose nearest neighbor above does not lie within the same strip. The
crucial observation by Atallah and Tsay is that there are at most four such
points in each strip, and by choosing the branching factor of distribution
sweeping as M/(5B), the (at most) four blocks per strip containing these

6. External Memory Computational Geometry Revisited 125

points as well as the M/(5B) blocks needed to produce the input for the
recursive steps can be kept in main memory. Nearest neighbors within the
same strip are found recursively, and the result is combined with the result
of a second bottom-up sweep to produce the final answer.

In several applications, it it desirable to compute not only the exact near-
est neighbors but to additionally compute for each point the K points clos-
est to it. An algorithm for this so-called All K-Nearest Neighbors problem
has been presented by Govindarajan et al. [346]. Their approach (which
works for an arbitrary number d of dimensions) builds upon an exter-
nal data structure to efficiently maintain a well-separated pair decomposi-
tion [169]. A well-separated pair decomposition a set S of points is a hi-
erarchical clustering of S such that any two clusters on the same level of
the hierarchy are farther apart than any to points within the same clus-
ter, and several internal memory algorithms have been developed building
upon properties of such a decomposition. The external data structure of
Govindarajan et al. occupies O(KN/B) disk blocks and can be used to
compute all K-nearest neighbors in O((KN/B) logM/B(KN/B)) I/Os. Their
method can also be used to compute the K closest pairs in d dimensions in
O(((N+K)/B) logM/B((N+K)/B)) I/Os using O((N+K)/B) disk blocks.

(a) Reverse nearest neighbors for point p. (b) K-nearest neighbors via lifting.

Fig. 6.7. Non-standard nearest-neighbor problems.

Problem 6.7 (Reverse Nearest Neighbors). Given a set S of N points
in IRd, a distance metric d, and a query point p in IRd, report all points q ∈ S,
for which d(q, p) = min{d(q, r) | r ∈ (S ∪ {p}) \ {q}} (see Figure 6.7(a)).

The Reverse Nearest Neighbors problem has been introduced in the spatial
database setting by Korn and Muthukrishnan [472] who also presented static
and dynamic solutions for the bichromatic an monochromatic problem. For
simplicity, we only discuss the solution to the static monochromatic problem
here, as for their approach only minor modifications are needed to solve
the other three problems. In a preprocessing step, the All Nearest Neighbors
problem is solved for S. Each point q and its nearest neighbor r define a ball
centered at q with radius d(q, r). All N such balls are stored in a spatial
index structure that can be used to report, given a query point p, all balls

126 Christian Breimann and Jan Vahrenhold

containing p. It is easy to verify that the points corresponding to the balls that
contain p are exactly the points having p as their nearest neighbor in S∪{p}.
In the internal memory setting, at least the static version of the Reverse
Nearest Neighbor problem can be solved efficiently [524]. The main problem
when trying to efficiently solve the problem in a dynamic setting is that
updating S essentially involves finding nearest neighbors in a dynamically
changing point set, and—as discussed in the context of Problem 6.5—no
efficient solution with at most polylogarithmic space overhead is known.

Problem 6.8 (K-Nearest Neighbors). Given a set S of N points in IRd,
an integer K with 1 ≤ K ≤ N , and a query point p in IRd, report K points
qi ∈ S closest to p.

Agarwal et al. [6] solved the two-dimensional K-Nearest Neighbors prob-
lem in the dual setting: using a duality transform, they proposed to map each
two-dimensional point (a1, a2) to the hyperplane z = a2

1 + a2
2 − 2a1x − 2a2y

which is tangent to the unit parabola at the (lifted) point (a1, a2, a
2
1 + a2

2).
In this setting, the problem of finding the K nearest neighbors for a point
p = (xp, yp) can be restated as finding the K highest hyperplanes above the
point (xp, yp, 0) (For the sake of simplicity, the corresponding one-dimensional
problem is sketched in Figure 6.7(b). Consider, e.g., point O: The two highest
hyperplanes lying above O are defined by lifting points B and C which are
also the two nearest neighbors of O). Using an external version of Chan’s al-
gorithm for computing (≤ k)-levels of an arrangement [175], Agarwal et al. [6]
developed a data structure for range searching among halfplanes that, after
spending O((N/B) log2N logB N) expected I/Os for preprocessing, occupies
an expected number of O((N/B) log2(N/B)) disk blocks. This data struc-
ture can be used to report the K highest halfplanes above a query point,
and by duality, the K nearest neighbors in the original setting, spending
O(logB N +K/B) expected I/Os per query.

In addition to the quite involved data structure mentioned above, spatial
index structures have been considered to solve the K-Nearest Neighbor prob-
lem [190, 473, 640, 681]. Much attention has been paid to pruning parts of
the candidate set [681] and to removing inefficient heuristics [190]. As men-
tioned above, the performance of most index structures degrades for high
dimensions, and even while the Pyramid-Technique [113] can be used for
uniformly distributed data in high dimensions, its performance degrades for
non-uniformly distributed data. To overcome this deficiency, Yu et al. [774]
presented a new approach called iDistance which is adaptable with respect
to data distribution. They propose to partition the data space according to
its characteristics and, for each partition, to index the distance between con-
tained data points and a reference point using a B+-tree. Their algorithm
can be used to incrementally refine approximate answers such that early dur-
ing the algorithm, approximate results can be output if desired. In contrast,
the VA-file of Weber et al. [758, 759] uses approximated data to produce a

6. External Memory Computational Geometry Revisited 127

set of candidate pairs during nearest neighbor search. It partitions the data
space into cells and stores unique bit strings for these cells in an (option-
ally compressed) array. During a sequential scan of this array, candidates are
determined by using the stored approximations, before these candidates are
further examined to obtain the final result.

Establishing a trade-off between used disk space and obtained query time,
Goldstein and Ranakrishnan [338] presented an approach to reduce query
time by examining some characteristics of the data and storing redundant
information. Following their approach the user can explicitly relate query
performance and disk space, i.e., more redundant information can be stored
to improve query performance and vice versa. With a small percentage of
only approximately correct answers in the final result, this approach leads to
sub-linear query processing for high dimensions.

The description of algorithms for the K-Nearest Neighbors problem con-
cludes our discussion of proximity problems, that is of selecting certain points
according to their proximity to one or more query points. The next two prob-
lems also consist of selecting a subset of the original data, namely the set
contained in a given query range. These problems, however, have been dis-
cussed in detail by recent surveys [11, 56, 754], so we only sketch the main
results in this area.

(a) Halfspace range searching. (b) Orthogonal range searching.

Fig. 6.8. Range searching problems.

Problem 6.9 (Halfspace Range Searching). Given a set S of N points
in IRd and a vector a ∈ IRd, report all Z points x ∈ S, for which xd ≤
ad +

∑d−1
i=1 aixi.

The main source for solutions to the halfspace range searching problem
in the external memory setting is the paper by Agarwal et al. [6]. The au-
thors presented a variety of data structures that can be used for halfspace
range searching classifying their solutions in linear and non-linear space data
structures. All proposed algorithms rely on the following duality transform
and the fact that it preserves the “above-below” relation.

D :

{
Gd → IRd : xd = ad +

∑d−1
i=1 aixi �→ (a1, . . . , ad)

IRd → Gd : (b1, . . . , bd) �→ xd = bd −
∑d−1

i=1 bixi

128 Christian Breimann and Jan Vahrenhold

In the linear space setting, the general problem for d > 3 can be solved
using an external version of a partition tree [535] spending for any fixed ε > 0
O((N/B)1−1/d+ε + Z/B) I/Os per query. The expected preprocessing com-
plexity is O(N log2N) I/Os. For simplex range searching queries, that is for
reporting all points in S lying inside a given query simplex with µ faces of all
dimensions, O((µN/B)1−1/d+ε+Z/B) I/Os are sufficient. For halfspace range
searching and d = 2, the query cost can be reduced to O(logB N+Z/B) I/Os
(using O(N log2N logB N) expected I/Os to preprocess an external version of
a data structure by Chazelle, Guibas, and Lee [184]). Using partial rebuild-
ing, points can also be inserted into/removed from S spending amortized
O(log2(N/B) logB N) I/Os per update.

If one is willing to spend slightly super-linear space, the query cost in the
three-dimensional setting can be reduced to O(logB N+Z/B) I/Os at the ex-
pense of an expected overall space requirement of O((N/B) log2(N/B)) disk
blocks. This data structure externalizes a result of Chan [175] and can be con-
structed spending an expected number of O((N/B) log2(N/B) logB N) I/Os.
Alternatively, Agarwal et al. [6] propose to use external versions of shallow
partition trees [536] that use O((N/B) logB N) space and can answer a query
spending O((N/B)ε+Z/B) I/Os. This approach can also be generalized to an
arbitrary number d of dimensions: a halfspace range searching query can be
answered spending O((N/B)1−1/�d/2�+ε + Z/B) I/Os. The exact complex-
ity of halfspace range searching is unknown—even in the well-investigated
internal memory setting, there exist several machine model/query type com-
binations where no matching upper and lower bounds are known [11].

Problem 6.10 (Orthogonal Range Searching). Given a set S of N
points in IRd and d (possibly unbounded) intervals [li, ri], report all Z points
x ∈ S for which x ∈ [l1, r2]× . . .× [ld, rd].

The more restricted Orthogonal Range Searching problem can obviously
be solved by storing the data points (considered as infinitesimally small rect-
angles) in a spatial index structure and by performing a range query (window
query). The actual query time, however, depends on the heuristic for clus-
tering nodes, and in the worst case, the index structure has to be traversed
completely—even if Z ∈ O(1). Despite this disadvantage, most of these in-
dex structures occupy only linear space and support updates I/O-efficiently.
Occupying only linear space has been recognized as a conceptual advantage
that may cancel the disadvantage of a theoretically high query cost, and the
notion of indexability has been introduced to investigate possible trade-offs
between storage redundancy and access overhead in the context of range
searching [388].

An external data structure that uses linear space and efficiently supports
both updates and queries has been proposed by Grossi and Italiano [360].
The authors externalized their internal memory cross-tree, which can be seen
as a cross-product of d one-dimensional index structures, and obtained a data

6. External Memory Computational Geometry Revisited 129

structure that can be updated in O(logB N) I/Os per update and orthogonal
range queries in O((N/B)1−1/d + Z/B) I/Os per query. The external cross-
tree can be built in O((N/B) logM/B(N/B)) I/Os. In a different model that
excludes threaded data structures like the cross-tree, Kanth and Singh [444]
obtained similar bounds (but with amortized update complexity) by layering
B-trees and k-D-trees. Their paper additionally includes a proof of a matching
lower bound.

The Orthogonal Range Searching problem has also been considered in
the batched setting: Arge et al. [65] and Goodrich et al. [345] showed how
to solve the two-dimensional problem spending O((N/B) logM/B(N/B) +
Z/B) I/Os using linear space. Arge et al. [65] extended this result to higher
dimensions and obtained a complexity of O((N/B) logd−1

M/B(N/B) + Z/B)
I/Os. The one-dimensional batched dynamic problem, i.e., all Q updates are
known in advance, can be solved in O(((N+Q)/B) logM/B(N+Q)/B+Z/B)
I/Os [65], but no corresponding bound is known in higher dimensions.

Problems that are slightly less general than the Orthogonal Range Search-
ing problem are the (two-dimensional) Three-Sided Orthogonal Range Search-
ing and Two-Sided Orthogonal Range Searching problem, where the query
range is unbounded at one or two sides. Both problems have been consid-
ered by several authors [129, 421, 443, 624, 709, 750], most recently by Arge,
Samoladas, and Vitter [67] in the context of indexability [388]—see also more
specific surveys [11, 56, 754].

Another recent development in the area of range searching are algorithms
for range searching among moving objects. In this setting, each object is
assigned a (static) “flight plan” that determines how the position of an object
changes as a (continuous) function of time. Using external versions of partition
trees [535], Agarwal, Arge, and Erickson [5] and Kollios and Tsotras [463]
developed efficient data structures that can be used to answer orthogonal
range queries in one and two dimensions spending O((N/B)1/2+ε + Z/B)
I/Os. These solutions are time-oblivious in the sense that the complexity of
a range query does not depend on how far the point of time of the query
is in the future. Time-responsive solutions that answer queries in the near
future (or past) faster than queries further away in time have been proposed
by Agarwal et al. [5] and by Agarwal, Arge, and Vahrenhold [8].

We conclude this section by discussing the Voronoi diagram and its graph-
theoretic dual, the Delaunay triangulation. Both structures have a variety of
proximity-related applications, e.g., in Geographic Information Systems, and
we refer the interested reader to more specific treatments of how to work with
these structures [76, 275, 336].

Problem 6.11 (Voronoi Diagram). Given a set S of N points in IRd

and a distance metric d, compute for each point p ∈ S its Voronoi region
V (p,S) := {x ∈ IRd | d(x, p) ≤ d(x, q), q ∈ S \ {p}}.

Given the above definition, the Voronoi diagram consists of the union of all
N Voronoi regions which are disjoint except for a possibly shared boundary.

130 Christian Breimann and Jan Vahrenhold

(a) Voronoi diagram via lifting. (b) Delaunay triangulation via lifting.

Fig. 6.9. Computing the Voronoi diagram and the Delaunay triangulation.

An optimal algorithm for computing the Voronoi diagram can be obtained by
a transformation already used for solving the K-Nearest Neighbors problem
(Problem 6.8). The key idea is that a Voronoi region for a point p ∈ S contains
exactly those points in IRd that have p as their nearest neighbor with respect
to S. To compute the Voronoi diagram in d dimensions, each point is lifted to
the (d+ 1)-dimensional unit parabola, and the intersection of the halfspaces
dual to these points is computed (see Figure 6.9(a)). As already mentioned
in the discussion of the K-Nearest Neighbors problem (Problem 6.8), the
highest plane above a d-dimensional point is dual to the lifted version of its
nearest neighbor [275], and consequently, the projection of the intersection
of halfspaces back to d-dimensional space results in the Voronoi diagram. As
the intersection of halfspaces can be computed efficiently in two and three
dimensions (see Problem 6.2), the Voronoi diagram in one and two dimensions
can be constructed using the above transformation. It should be noted that
a similar transformation, namely computing the convex hull (Problem 6.1)
of the lifted points (see Figure 6.9(b)) can be used to compute the graph-
theoretic dual of the Voronoi diagram, the Delaunay triangulation, in two
and three dimensions.

The Voronoi diagram can be used to solve the (static) Nearest Neighbor
problem (Problem 6.5). This is due to the observation that each query point q
that does not lie on a shared boundary of Voronoi regions falls into exactly one
Voronoi region, say the region belonging to some point p ∈ S. By definition,
this region contains all points in the plane that are closer to p than to any
other point of S, that is, all points for which p is the nearest neighbor with
respect to S. In order to find the region containing the query point q, one has
to solve the Point Location problem. An algorithm for solving this problem—
formally defined as Problem 6.18 in Section 6.4—can be used to answer a
Nearest Neighbor query for a static set S in O(logB N) I/Os.

In the internal memory setting, a variety of two-dimensional problems can
be solved by using either the Voronoi diagram or the Delaunay triangulation.
Almost all these solutions require one of these structures to be traversed, and
as both structures are planar graphs, we refer to Chapter 5 for details on the
external memory complexity of such traversals.

6. External Memory Computational Geometry Revisited 131

6.4 Problems Involving Sets of Line Segments

We begin this section by stating a geometric problem that is inherently one-
dimensional even though it is formulated in a two-dimensional setting. This
problem serves also as a vehicle for introducing the interval tree data struc-
ture. The external memory version of this data structure is a building block
for several efficient algorithms and its description can also be used to demon-
strate design techniques for externalizing data structures.

(a) Stabbing a set of segments. (b) Stabbing a set of intervals.

Fig. 6.10. Reducing the Segment Stabbing problem to a one-dimensional setting.

Problem 6.12 (Segment Stabbing). Given a set S of N segments in the
plane and a vertical line � = x, compute all Z segments in S intersected by
� (see Figure 6.10(a)).

The key observation leading towards an optimal algorithm is that the seg-
ments stabbed by � are exactly those segments in S whose projections onto
the x-axis contain the point (x, 0) (see Figure 6.10(b)). In the internal mem-
ory setting, this reduced problem can be solved optimally, that is spending
O(log2N+Z) time and linear space, by using the so-called interval tree [274].
An interval tree is a perfectly balanced binary search tree over the set of x-
coordinates of all endpoints in S (hereafter referred to as “x-coordinates in
S”), and data elements are stored in internal nodes as well as in leaf nodes.
Each node corresponds to the median of (interval of) all x-coordinates in S
stored in the subtree rooted at that node, e.g., the root corresponds to the
median of all x-coordinates in S. The x-coordinate stored at an internal node
v naturally partitions the set stored in the corresponding subtree into two
slabs, and a segment in S is stored in a secondary data structure associated
with v, if and only if it crosses the boundary between these slabs and does
not cross any slab boundary induced by v’s parent. The interval tree stor-
ing S can be updated (that is insertions and deletions can be performed) in
O(log2N) time per update.5

Arge and Vitter [71] obtained an optimal external memory solution for the
Segment Stabbing problem by developing an external version of the interval
5 The insertion bound is amortized if the set of x-coordinates in S is augmented

due to this insertion.

132 Christian Breimann and Jan Vahrenhold

tree. Their data structure occupies linear space and can be used to answer
stabbing queries spendingO(logB N+Z/B) I/Os per query. As in the internal
setting, the data structure can be made dynamic, and the resulting dynamic
data structure supports both insertions and deletions with O(logB N) worst-
case I/O-complexity.

The externalization technique used by Arge and Vitter is of independent
interest, hence, we will present it in a little more detail. In order to obtain a
query complexity ofO(logB N+Z/B) I/Os, the fan-out of the base tree has to
be in O(Bc) for some constant c > 0, and for reasons that will become clear
immediately, this constant is chosen as c = 1/2. As mentioned above, the
boundaries between the children of a node v are stored at v and partition the
interval associated with v into consecutive slabs, and a segment s intersecting
the boundary of such a slab (but of no slab corresponding to a child of v’s
parent) is stored at v. The slabs intersected by s form a contiguous subinterval
[sl, sr] of [s1, s√B]. In the situation of Figure 6.11(a), for example, the segment
s intersects the slabs s1, s2, s3, and s4, hence, l = 1 and r = 4. The indices l
and r induce a partition of s into three (possibly empty) subsegments: a left
subsegment s∩sl, a middle subsegment s∩[sl+1, sr−1], and a right subsegment
s ∩ sr.

Each of the
√
B slabs associated with a node v has a left and right struc-

ture that stores left and right subsegments falling into the slab. In the situa-
tion of the interval tree, these structures are lists ordered by the x-coordinates
of the endpoints that do not lie on the slab boundary. Handling of middle
subsegments is complicated by the fact that a subsegment might span more
that one slab, and storing the segment at each such slab would increase both
space requirement and update time. To resolve this problem, Arge and Vitter
introduced the notion of multislabs: a multislab is a contiguous subinterval
of [s1, s√B], and it is easy to realize that there are Θ(

√
B
√
B) = Θ(B) such

multislabs. Each middle subsegment is stored in a secondary data structure
corresponding to the (unique) maximal multislab it spans, and as there are
only Θ(B) multislabs, the node v can accommodate pointers to all these
structures in O(1) disk blocks.6

As in the internal memory setting, a stabbing query with � = x is answered
by performing a search for x and querying all secondary structures of the
nodes visited along the path. As the tree is of height O(logB N), and as
each left and right structure that contributes Z ′ ≥ 0 elements to the answer
set can be queried in O(1 + Z ′/B) I/Os, the overall query complexity is
O(logB N + Z/B) I/Os.7

6 To ensure that the overall space requirement is O(N/B) disk blocks, multislab
lists containing too few segments are grouped together into a special underflow
structure [71].

7 Note that each multislab structure queried contributes all its elements to the
answer set, hence, the complexity of querying O(

√
B logB N) multislab structures

is O(Z/B).

6. External Memory Computational Geometry Revisited 133

The main problem with making the interval tree dynamic is that the in-
sertion of a new interval might augment the set of x-coordinates in S. As a
consequence, the base tree structure of the interval tree has to be reorganized,
and this in turn might require several segments moved between secondary
structures of different nodes. Using weight-balanced B-trees (see Chapter 2)
and a variant of the global rebuilding technique [599], Arge and Vitter ob-
tained a linear-space dynamic version of the interval tree that answers stab-
bing queries in O(logB N + Z/B) I/Os and can be updated in O(logB N)
I/Os worst-case.

(a) A node in an external interval tree. (b) A diagonal corner query.

Fig. 6.11. Different approaches to the Segment Stabbing problem.

A completely different approach to solving the Segment Stabbing problem
is to regard this problem as a special case of two-sided range searching in two
dimensions, namely as a so-called diagonal corner query. By regarding the
(one-dimensional) interval [xl, xr] as the two-dimensional point (xl, xr) lying
above the main diagonal, a stabbing query for the vertical line � = x corre-
sponds to a two-sided range query with apex at (x, x) (see Figure 6.11(b)).
As diagonal corner queries can be answered by any data structure proposed
for two-dimensional (two-sided, three-sided, or general orthogonal) range
searching, all solutions discussed for the Orthogonal Range Searching problem
(Problem 6.10) can be applied to the Segment Stabbing problem.

We now state a problem that occurs as a preprocessing step in a variety
of other problems.

Problem 6.13 (Segment Sorting). Given a set S of N non-intersecting
segments in the plane, compute the partial order given by the “above-below”
relation and extend this order to a total order on S.

Computing a total order on a set of non-intersecting segments in the
plane has important applications, e.g., for the Vertical Ray-Shooting prob-
lem [69, 613] (see Problem 6.17) or the Bichromatic Segment Intersection
problem [70]. The solution to the Segment Sorting problem makes use of
what is called an extended external segment tree. This data structure has
been proposed for solving the Endpoint Dominance problem which we dis-
cuss next.

134 Christian Breimann and Jan Vahrenhold

(a) Endpoint dominance. (b) Trapezoidal decomposition.

Fig. 6.12. Problems involving multiple query points.

Problem 6.14 (Endpoint Dominance). Given a set S of N non-inter-
secting segments in the plane, find for each endpoint of a segment in S the
segment in S (if any) directly above this endpoint (see Figure 6.12(a)).

Even though it seems that the Endpoint Dominance problem could be
solved by repeatedly querying an external interval tree,8 the main motiva-
tion behind developing a different approach is that the Endpoint Dominance
problem is a batched static problem. For batched static problems, there is no
need to employ a data structure whose I/O-complexity per single operation is
worst-case optimal. Instead, a better overall I/O-complexity can be obtained
by building on certain aspects of lazy data processing as in the buffer tree
data structure (see Chapter 2).

As the interval tree data structure, the segment tree is a data structure for
storing a set of one-dimensional intervals [108, 614]. The main idea again is to
organize the x-coordinates in S as a binary search tree, but this time the x-
coordinates are stored exclusively in the leaves of the tree. For x[1], . . . , x[2N]

denoting the sorted sequence of x-coordinates in S and 1 ≤ i ≤ 2N − 1,
the i-th leaf (in left-to-right order) corresponds to the interval [x[i], x[i+1][
while the 2N -th leaf corresponds to the point x[2N]. An internal node then
corresponds to the union of all intervals stored in the subtree below it. A
segment is stored at each node v, where it (or rather its projection onto the
x-axis) contains the interval corresponding to v, and this implies that each
segment can be stored in up to two nodes per level. This in turn implies
that an external segment tree occupies O((N/B) logM/B(N/B)) blocks, and
consequently each algorithm that relies on a set of segments being sorted
requires the same amount of (temporary) disk space for at least the duration
of the preprocessing step.

An external segment tree as proposed by Arge, Vengroff, and Vitter [70]
can be seen as a hierarchical representation of the slabs visited during an
algorithm based upon distribution sweeping. Corresponding to this intuition,
the tree can be constructed efficiently top-down, distributing middle subseg-
ments to secondary multislab structures. This requires that one block for each
8 In fact, a solution can be obtained using an augmented version of this data

structure (see Problem 6.17).

6. External Memory Computational Geometry Revisited 135

multislab can be held in main memory, and since the number of multislabs is
quadratic in the number of slabs, the number of slabs, that is, the fan-out of
the base tree (and thus of the corresponding distribution sweeping process),
is chosen as Θ(

√
M/B).9

To facilitate finding the segment immediately above another segment’s
endpoint, the segments in the multislab structures have to be sorted accord-
ing to the “above-below” relation. Given that the solution to the Endpoint
Dominance problem will be applied to solve the Segment Sorting problem
(Problem 6.13), this seems a prohibited operation. Exploiting the fact, how-
ever, that the middle subsegments have their endpoints on a set of Θ(

√
M/B)

slab boundaries, Arge et al. [70] demonstrated how these segments can be
sorted in a linear number of I/Os using only a standard (one-dimensional)
sorting algorithm. Extending the external segment tree by keeping left and
right subsegments in sorted order as they are distributed to slabs on the
next level and using a simple counting argument, it can be shown that such
an extended external segment tree can be constructed top-down spending
O((N/B) logM/B(N/B)) I/Os.10

The endpoint dominance queries are then filtered through the tree re-
membering for each query point the lowest dominating segment seen so far.
Filtering is done bottom-up reflecting the fact that the segment tree has
been built top-down. Arge et al. [70] built on the concept of fractional cas-
cading [182] and proposed to use segments sampled from the multislab lists
of a node v to each child (instead of the other way round) as bridges that
help finding the dominating segment in v once the dominating segment in the
nodes below v (if any) has been found. The number of sampled segments is
chosen such that the overall space requirement of the tree does not (asymp-
totically) increase and that, simultaneously for all multislabs of a node v,
all segments between two sampled segments can be held in main memory.
Then, Q queries can be filtered through the extended external segment tree
spending O(((N+Q)/B) logM/B(N/B)) I/Os, and after the filtering process,
all dominating segments are found.

A second approach is based upon the close relationship to the Trape-
zoidal Decomposition problem (Problem 6.15), namely that the solution for
the Endpoint Dominance problem can be derived from the trapezoidal de-
composition spending O(N/B) I/Os. As we will sketch, an algorithm derived
in the framework of Crauser et al. [228] computes the Trapezoidal Decom-
position of N non-intersecting segments spending an expected number of

9 Using a base-tree with
�

M/B fan-out does not asymptotically change the com-
plexity as O((N/B) log√

M/B
(N/B)) = O((N/B) logM/B(N/B)). More precisely,

the smaller fan-out results in a tree with twice as much levels.
10 At present, it is unknown whether an extended external segment tree can be

built efficiently in a multi-disk environment, that is, whether the complexity of
building this structure is O((N/DB) logM/B(N/B)) I/Os for D �∈ O(1) [70].

136 Christian Breimann and Jan Vahrenhold

O((N/B) logM/B(N/B)) I/Os, hence the Endpoint Dominance problem can
be solved spending asymptotically the same number of I/Os.

Arge et al. [70] demonstrate how the Segment Sorting problem (Prob-
lem 6.13) can be solved by reduction to the Endpoint Dominance problem
(Problem 6.14). Just as for computing the trapezoidal decomposition, two in-
stances of the Endpoint Dominance problem are solved, this time augmented
with horizontal segments at y = +∞ and y = −∞. Based upon the solu-
tion of these two instances, a directed graph G is created as follows: each
segment corresponds to a node, and if a segment u is dominated from above
(from below) by a segment v, the edge (u, v) (the edge (v, u)) is added to the
graph. The two additional segments ensure that each of the original segments
is dominated from above and from below, hence, the resulting graph is a pla-
nar (s, t)-graph. Computing the desired total order on S then corresponds
to topologically sorting G. As G is a planar (s, t)-graph of complexity Θ(N),
this can be accomplished spending no more than O((N/B) logM/B(N/B))
I/Os [192].

Problem 6.15 (Trapezoidal Decomposition). Given a set S of N non-
intersecting segments in the plane, compute the planar partition induced by
extending a vertical ray in (+y)- and (−y)-direction from each endpoint p
of each segment until it hits the segment of S (if any) directly above resp.
below p (see Figure 6.12(b)).

While the Trapezoidal Decomposition problem is closely related to the
Endpoint Dominance problem (Problem 6.14) and to the Polygon Triangu-
lation problem (Problem 6.16), it is also of independent interest. In inter-
nal memory, computing the trapezoid decomposition as a preprocessing step
helps solving the Planar Point Location problem [457, 679] (Problem 6.18)
and performing map-overlay [304] (see Problem 6.22).

In the external memory setting, two algorithms are known for solving
the Trapezoidal Decomposition problem. The first approach, proposed by
Arge et al. [70], exploits the simple fact that combining the results of two in-
stances of the Endpoint Dominance problem (one with negated y-coordinates
of all objects) yields the desired decomposition. All vertical extensions can be
computed explicitly by linearly scanning the output of both Endpoint Domi-
nance instances. The resulting extensions are then sorted by the name of the
original segment they lie on (ties are broken by x-coordinates), and during
one scan of the sorted output, all trapezoids can be reported in explicit form.

The second approach can be obtained within the framework of randomized
incremental construction with gradations as proposed by Crauser et al. [228].
Even if the segments in S are not intersection-free but induce Z intersec-
tions, the Trapezoidal Decomposition problem can be solved spending an
expected optimal number of O((N/B) logM/B(N/B) + Z/B) I/Os. The ba-
sic idea behind this framework is to externalize the paradigm of randomized
incremental construction (considering elements from the problem instance

6. External Memory Computational Geometry Revisited 137

one after the other, but in random order). Externalization is facilitated using
gradations (see, e.g., [566]), a concept originating in the design of parallel
algorithms. A gradation is a geometrically increasing random sequence of
subsets ∅ = S0 ⊆ · · · ⊆ S� = S. The randomized incremental construction
with gradations refines the (intermediate) solution for a Si by simultaneously
adding all objects in Si+1\Si (that is, in parallel respectively blockwise). This
framework is both general and powerful enough to yield algorithms with ex-
pected optimal complexity for a variety of geometric problems. As discussing
the sophisticated details and the analysis of the resulting algorithms would be
beyond the scope of this survey, we will only mention these results whenever
appropriate and instead refer the interested reader to the original article [228].

(a) Triangulation of a unimontone polygon. (b) Trapezoidal decomposition.

Fig. 6.13. Polygon triangulation and its relation to trapezoid decomposition.

Problem 6.16 (Polygon Triangulation). Given a simple polygon P in
the plane with N edges, partition the interior of P into N − 2 faces bounded
by three segments each by adding N − 3 non-intersecting line segments con-
necting two vertices of P (see Figure 6.13(a)).

Fornier and Montuno [310] proved that in the internal memory setting
the Polygon Triangulation problem is (linear-time) equivalent to the Trape-
zoidal Decomposition problem (Problem 6.15) applied to the interior of the
polygon (see Figure 6.13(b)). Subsequently, all internal memory algorithms
built upon this fact, culminating in an optimal linear-time algorithm by
Chazelle [180]. The main idea of computing a triangulation from a trape-
zoidal decomposition is to subdivide the original polygon into a collection of
unimonotone polygons. A simple polygon with vertices v1, . . . , vN is called
unimonotone if there are vertices vi and vi+1 such that the projections of
vi+1, . . . , vi+N onto the line supporting the edge (vi, vi+1) (all indices are to
be read modulo N) form a sorted sequence. A unimonotone polygon can then
be triangulated by repeatedly cutting off convex corners during a stack-driven
traversal of the polygon’s boundary (see Figure 6.13(a)).

While the traversal of a polygon’s boundary can be done spending no more
than a linear number of I/Os, explicitly constructing the unimonotone poly-
gons is more involved. The key observation is that all necessary information
for subdividing a polygon into unimonotone polygons can be inferred locally,

138 Christian Breimann and Jan Vahrenhold

Fig. 6.14. Three classes of trapezoids.

i.e., by looking at isolated trapezoids. Each trapezoid is either a triangle or
it is determined by vertical lines originating from two polygon vertices (see
Figure 6.14). Fournier and Montuno [310] showed that by adding a diagonal
between every such pair of vertices that do not already form a polygon edge,
the polygon is partitioned into unimonotone polygons.

Arge et al. [70] built upon this observation and proposed the following al-
gorithm for computing a triangulation of the given polygon. First, the trape-
zoidal decomposition is computed and all resulting trapezoids are scanned to
see whether they induce diagonals as described above. For each vertex deter-
mining a qualifying trapezoid, a pointer to the matching vertex is stored. In
the second phase, the sequence of vertices on the boundary is transformed
into a linked list representing the vertices of the unimonotone subpolygons
as they appear in clockwise order on the respective boundaries.

Applying a list ranking algorithm (see Chapter 3) to this linked list yields
the sequence of vertices for each unimonotone subpolygon in sorted order.
The I/O-complexity of list ranking is O((N/B) logM/B(N/B)) [52, 192]. As
mentioned above, each subpolygon can then be triangulated spending a linear
number of I/Os. Summing up, we obtain an O((N/B) logM/B(N/B)) algo-
rithm for triangulating a simple polygon. As the internal memory complexity
of this problem is Θ(N), a natural question is whether there exists an external
algorithm with matching O(N/B) I/O-complexity. At present, however, it is
unknown whether either the Trapezoidal Decomposition problem or the Poly-
gon Triangulation problem can be solved spending o((N/B) logM/B(N/B))
I/Os.

(a) Vertical ray shooting from point p. (b) Point location query for point p.

Fig. 6.15. Problems involving a single query point.

6. External Memory Computational Geometry Revisited 139

Problem 6.17 (Vertical Ray-Shooting). Given a set S of N non-inter-
secting segments in the plane and a query point p in the plane, find the
segment in S (if any) first hit by a ray emanating from p in (+y)-direction
(see Figure 6.15(a)).

The first approach to external memory vertical ray-shooting has been
proposed by Goodrich et al. [345] for the special case of S forming a mono-
tone11 subdivision. Combining an on-line filtering technique with an ex-
ternal version of a fractional-cascaded data structure [182, 183], they ob-
tained a linear space external data structure that can be used to answer a
vertical ray-shooting query in O(logB N) I/Os. Applying a batch filtering
technique, a batch of Q vertical ray-shooting queries can be answered in
O(((N +Q)/B) logM/B(N/B)) I/Os.

Arge et al. [70] extended this result to a set S forming a general pla-
nar subdivision. Their solution is based upon the observation that each of
the Q query points can be regarded as a (infinitesimally short) segment
and that solving the Endpoint Dominance problem (see Problem 6.14) for
the union of S and these Q segments yields the dominating segment for
each query point. Their solution, using an extended external segment tree,
requires O(((N + Q)/B) logM/B(N/B)) I/Os and O((N/B) logM/B(N/B))
space. Along similar lines, namely by reduction to the Trapezoidal Decompo-
sition problem (Problem 6.15), an algorithm can be derived in the framework
of Crauser et al. [228]. The resulting algorithm then answers a batch of Q
vertical ray-shooting queries in expected O(((N+Q)/B) logM/B(N/B)) I/Os
using linear space.

The Vertical Ray-Shooting problem can be stated in a dynamic version,
in which the set S additionally needs to be maintained under insertions and
deletions of segments. For algorithms building upon the assumption that S
forms a monotone subdivision Π , this implies that Π remains monotone after
each update.

The most successful internal memory approaches [95, 188] to the dynamic
version of the Vertical Ray-Shooting problem are based upon interval trees.
In contrast to the Segment Stabbing problem (Problem 6.12), however, one
cannot afford to report all segments above the query point p (there might
be Θ(N) of them) just to find the one immediately above p. As a conse-
quence, the secondary data structures associated with the nodes of the base
interval tree have to reflect both the horizontal order of the endpoints within
the slab (if applicable) and the vertical ordering of the (left, right, and mid-
dle) segments. These requirements increase the complexity of dynamically
maintaining S under insertions and deletions.

For the left and right structures associated with each slab of a node in
the interval tree, Agarwal et al. [4] built upon ideas due to Cheng and Jar-

11 A polygon is called monotone in direction θ if any line in direction π/2+θ inter-
sects the polygon in a connected interval. A planar subdivision Π is monotone
if all faces of Π are monotone in the same direction.

140 Christian Breimann and Jan Vahrenhold

nadan [188] and described a dynamic data structure for storing ν left and
right subsegments with O(logB ν) update time. Maintenance of the middle
segments is complicated by the fact that not all segments are comparable
according to the above-below relation (Problem 6.13), and that insertion of a
new segment might globally affect the total order induced by this (local) par-
tial order. Using level-balanced B-trees (see Chapter 2) and exploiting special
properties of monotone subdivisions, Agarwal et al. [4] obtained a dynamic
data structure for storing ν middle subsegments with O(log2

B ν) update time.
The global data structure uses linear space and can be used to answer a verti-
cal ray-shooting query in a monotone subdivision spending O(log2

B N) I/Os.
The amortized update complexity is O(log2

B N).
This result was improved by Arge and Vahrenhold [69] who applied the

logarithmic method (see Chapter 2) and an external variant of dynamic frac-
tional cascading [182, 183] to obtain the same update and query complexity
for general subdivisions.12 The analysis is based upon the (realistic) assump-
tion B2 < M . Under the more restrictive assumption 2B < M , the amor-
tized insertion bound becomes O(logB N · logM/B(N/B)) I/Os while all other
bounds remain the same.

A batched semidynamic version, that is, only deletions or only insertions
are allowed, and all updates have to be known in advance, has been proposed
by Arge et al. [65]. Using an external decomposition approach to the problem,
O(Q) point location queries and O(N) updates can be performed in O(((N+
Q)/B) log2

M/B((N +Q)/B)) I/Os using O((N +Q)/B) space.

Problem 6.18 (Planar Point Location). Given a planar partitionΠ with
N edges and a query point P in the plane, find the face of Π containing p
(see Figure 6.15(b)).

Usually, each edge in a planar partition stores the names of the two faces
of Π it separates. Then, algorithms for solving the Vertical Ray-Shooting
problem (Problem 6.17) can be used to answer point location queries with
constant additional work.

Most algorithms for vertical ray-shooting exploit hierarchical decomposi-
tions which can be generalized to a so-called trapezoidal search graph [680].
Using balanced hierarchical decompositions, searching then can be done ef-
ficiently in both the internal and external memory setting. As the query
points and thus the search paths to be followed are not known in advance,
external memory searching in such a graph will most likely result in unpre-
dictable access patterns and random I/O operations. The same is true for
using general-purpose tree-based spatial index structures.

It is well known that disk technologies and operating systems sup-
port sequential I/O operations more efficiently than random I/O opera-
tions [519, 739]. Additionally, for practical applications, it is often desirable
to trade asymptotically optimal performance for simpler structures if there is
12 The deletion bound can be improved to O(logB N) I/Os amortized.

6. External Memory Computational Geometry Revisited 141

hope for comparable or even faster performance in practice. Vahrenhold and
Hinrichs [740] extended the bucketing technique of Edahiro, Kokubo, and
Asano [261] to the external memory setting incorporating both single-shot
and batched queries into a single algorithm. The resulting algorithm relies on
nothing more than sorting and scanning, and as the worst case I/O complex-
ity of O(N/B) I/Os for a single-shot query is obtained for only pathological
situations, the algorithm is both easy to implement and fast in practice [740].

(a) Bichromatic segment intersection. (b) General segment intersection.

Fig. 6.16. Segment intersection problems.

Problem 6.19 (Bichromatic Segment Intersection). Given a set S1 of
non-intersecting “blue” segments in the plane and a set S2 of non-intersecting
“red” segments in the plane with |S1∪S2| ∈ Θ(N), compute all Z “red-blue”
pairs of intersecting segments in S1 × S2 (see Figure 6.16(a)).

To facilitate exposition of the algorithm for the Bichromatic Segment In-
tersection problem, we first describe an algorithm for solving the special case
of Orthogonal Segment Intersection, where we want to report all intersections
between a set S1 of horizontal segments and a set S2 of vertical segments.
To solve this problem, Goodrich et al. [345] described an optimal algorithm
with O((N/B) logM/B(N/B) +Z/B) I/O-complexity that is based upon the
distribution sweeping paradigm. For each slab, a so-called active list Ai is
maintained. If, during the top-down sweep, the upper (lower) endpoint of
a vertical segment is encountered, the segment is added to (removed from)
the active list of the slab it falls into. If a left endpoint of a segment s is
encountered, the intersection with each segment in the active lists of the
slabs spanned by s are reported. Intersections within slabs intersected but
not spanned by s are reported while sweeping at lower levels of recursion.
Using lazy deletions from the active lists and an amortization argument, the
method can be shown to require a linear number of I/Os per level of recur-
sion. As recursion stops as soon as the subproblem can be solved in main
memory, the overall I/O-complexity is O((N/B) logM/B(N/B)+Z/B) [345].

This approach has been refined by Arge et al. [70] to obtain an opti-
mal O((N/B) logM/B(N/B) + Z/B) algorithm for the Bichromatic Segment
Intersection problem. In a preprocessing step, the red segments and the end-
points of the blue segments (regarded as infinitesimal short segments) are
merged into one set and sorted according to the “above-below” relation. The

142 Christian Breimann and Jan Vahrenhold

same process is repeated for the set constructed from the blue segments and
the endpoints of the red segments. We now describe the work done on each
level of recursion during the distribution sweeping.

In the terminology of the description of the external interval tree (see
Problem 6.12), the algorithm first detects intersections between red middle
subsegments and blue left and right subsegments. The key to an efficient
solution is to explicitly construct the endpoints of the blue left and right
subsegments that lie on the slab boundaries and to merge them into the sorted
list of red middle subsegments and the (proper) endpoints of the blue left
and right subsegments. During a top-down sweep over the plane (in segment
order), blue left and right subsegments are then inserted into active lists
of their respective slab as soon as their topmost endpoint is encountered,
and for each red middle subsegment s encountered, the active lists of the
slabs spanned by s are scanned to produce red-blue pairs of intersecting
segments. As soon as a red middle subsegment does not intersect a blue left
or right subsegment, this blue segment cannot be intersected by any other red
segment, hence, it can be removed from the slab’s active list. An amortization
argument shows that all intersections can be reported in a linear number of
I/Os. An analogous scan is performed to report intersections between blue
middle subsegments and red left and right subsegments.

In a second phase, intersections between middle subsegments of different
colors are reported. For each multislab, a multislab list is created, and each
red middle subsegment is then distributed to the list of the maximal multislab
that it spans. An immediate consequence of the red segments being sorted
is that each multislab list is sorted by construction. Using a synchronized
traversal of the sorted list of blue middle subsegments and multislab lists
and repeating the process for the situation of the blue middle subsegments
being distributed, all red-blue pairs of intersecting middle subsegments can be
reported spending a linear number of I/Os. Intersections between non-middle
subsegments of different colors are found by recursion within the slabs. As
in the orthogonal setting, a linear number of I/Os is spent on each level
of recursion, hence, the overall I/O-complexity is O((N/B) logM/B(N/B) +
Z/B).

Since computing the trapezoidal decomposition of a set of segments yields
the Z intersections points without additional work, an algorithm with ex-
pected optimal O((N/B) logM/B(N/B) + Z/B) I/O-complexity can be de-
rived in the framework of Crauser et al. [228].

Problem 6.20 (Segment Intersection). Given a set S of N segments
in the plane, compute all Z pairs of intersecting segments in S × S (see
Figure 6.16(b)).

Even though the general Segment Intersection problem appears consider-
ably more complicated than its bichromatic variant, its intrinsic complexity is
the same [88, 181]. An external algorithm with (suboptimal) I/O-complexity

6. External Memory Computational Geometry Revisited 143

of O(((N +Z)/B) logM/B(N/B)) has been proposed by Arge et al. [70]. The
main idea is to integrate all phases of the deterministic solution described
for the Bichromatic Segment Intersection problem (see Problem 6.19) into
one single phase. The distribution sweeping paradigm is not directly ap-
plicable because there is no total order on a set of intersecting segments.
Arge et al. [70] proposed to construct an extended external segment tree on
the segments and (during the construction of this data structure) to break the
segments stored in the same multislab lists into non-intersecting fragments.
The resulting segment tree can then be used to detect intersections between
segments stored in different multislab lists. For details and the analysis of
this second phase, we refer the reader to the full version of the paper [70].

Since computing the trapezoidal decomposition of a set of segments yields
the Z intersections points without additional work, an algorithm with ex-
pected optimal O((N/B) logM/B(N/B) + Z/B) I/O-complexity can be de-
rived in the framework of Crauser et al. [228]. It remains a open problem,
though, to find a deterministic optimal solution for the Segment Intersection
problem.

Jagadish [426] developed a completely different approach to finding all
line segments that intersect a given line segment. Applying this algorithm
to all segments and removing duplicates, it can also be used to solve Prob-
lem 6.20. This algorithm, which has experimentally shown to perform well
for real-world data sets [426], partitions the d-dimensional data space into
d partitions (one for each axis) and stores a small amount of data for each
line segment in the partition with whose axis this line segment defines the
smallest angle. The data stored is determined by using a modified version of
Hough transform [408]. For simplicity, the planar case is considered here first,
before we show how to generalize it to higher dimensions. In the plane, each
line segment determines a line given by either y = m · x+ b or x = m · y+ b,
and at least one of these lines has a slope in [−1, 1]. This equation is taken
to map m and b to a point in (2-dimensional) transform space by a duality
transform. An intersection test for a given line segment works as follows. The
two endpoints are transformed into lines first. Assuming for simplicity, that
these lines intersect (the approach also works for parallel lines), we know that
these two lines divide the transform space into four regions. Transforming a
third point of the line segment, the two regions between the transformed lines
can be determined easily. The points contained in these regions (or, rather,
the segment supported by their dual lines) are candidates for intersecting
line segments. Whether they really intersect can be tested by comparing the
projections on the partition axis of both segments which have been stored
along with each point in transform space. For d-dimensional data space, only
little changes occur. After determining the partition axis, the projections of
each line segment on the d− 1 planes involving this axis are treated as above
resulting in d−1 lines and a point in (2(d−1))-dimensional transform space.
In addition, the interval of the projection on the partition axis is stored. Note

144 Christian Breimann and Jan Vahrenhold

that this technique needs 2dN space to store the line segments. Unfortunately,
no asymptotic bounds for query time are given, but experiments show that
this approach is more efficient than using spatial index structures or trans-
forming the two d-dimensional endpoints into one point in 2d-dimensional
data space, which are both very common approaches. Some other problems
including finding all line segments passing through or lying in the vicinity of
a specified point can be solved by this technique [426].

The Segment Intersection problem has a natural extension: Given a set
of polygonal objects, report all intersecting pairs of objects. While at first it
seems that this extension is quite straightforward, we will demonstrate in the
next section that only special cases can be solved efficiently.

6.5 Problems Involving Set of Polygonal Objects

In spatial databases that store sets of polygonal objects, combining two planar
partitions (maps) m1 and m2 by map overlay or spatial overlay join is an
important operation. The spatial overlay join of m1 and m2 produces a set
of pairs of polygonal objects (o1, o2) where o1 ∈ m1, o2 ∈ m2, and o1 and o2
intersect. In contrast, the map overlay produces a set of polygonal objects
consisting of the following objects:

– All objects of m1 intersecting no object of m2

– All objects of m2 intersecting no object of m1

– All polygonal objects produced by two intersecting objects of m1 and m2

Usually spatial join operations are performed in two steps [594]:

– In the filter step, a conservative approximation of each spatial object is
used to eliminate objects that cannot be part of the result.

– In the refinement step, each pair of objects passing the filter step is exam-
ined according to the spatial join condition.

In the context of spatial join, the most common approximation for a spa-
tial object is by means of its minimum bounding box (see Section 6.2.3 and
Figure 6.17(a)). Performing the filter step then can be restated as finding
all pairs of intersecting rectangles between two sets of rectangles (see Fig-
ure 6.17(b)). The minimum bounding box is chosen from several possible
approximations as it realizes a good trade-off between approximation qual-
ity and storage requirements. In addition, most spatial index structures are
based on minimum bounding boxes. Nevertheless, some approaches use addi-
tional approximations to further reduce the number of pairs passing the filter
step [150].

Problem 6.21 (Rectangle Intersection). Given a set S of N axis-aligned
rectangles in the plane, compute all Z pairs of intersecting rectangles in S×S.
In our definition, this includes pairs of rectangles where one rectangle is fully
contained in the other rectangle.

6. External Memory Computational Geometry Revisited 145

(a) Bounding boxes of road features (b) Bounding boxes of roads and
(Block Island, RI). hydrography features (Block Island).

Fig. 6.17. Using rectangular bounding boxes for a spatial join operation.

An efficient approach based upon the distribution sweeping paradigm has
been proposed by Goodrich et al. [345] and later restated in the context
of bichromatic decomposable problems by Arge et al. [64, 65]. The main
observation is that, for any pair of intersecting rectangles, there exists a
horizontal line that passes through both rectangles, and thus their projections
onto this line consist of overlapping intervals. In Figure 6.18, three pairs of
intersecting rectangles and their projections onto the sweep-line are shown.

Fig. 6.18. Intersecting rectangles correspond to overlapping intervals.

The proposed algorithm for solving the Rectangle Intersection prob-
lem searches for intersections between active rectangles by exploiting this
rectangle–interval correspondence: As the sweep-line advances over the data,
the algorithm maintains the projections of all active rectangles onto the
sweep-line and checks which of these intervals intersect, thus reducing the
static two-dimensional rectangle intersection problem to the dynamic one-
dimensional interval intersection problem. During the top-down sweep,
Θ(M/B) multislab lists are maintained, and the (projected) intervals are

146 Christian Breimann and Jan Vahrenhold

first used to query the multislab lists for overlap with other intervals be-
fore the middle subsegments are inserted into the multislab lists themselves
(left and right subsegments are treated recursively).13 A middle subsegment
is removed from the multislab lists when the sweep-line passes the lower
boundary of the original rectangle. Making sure that these deletions are per-
formed in a blocked manner, one can show that the overall I/O-complexity
is O((N/B) logM/B(N/B) + Z/B). In the case of rectangles, the reduction
to finding intersection of edges yields an efficient algorithm as the number
of intersecting pairs of objects is asymptotically the same as the number of
intersecting pairs of edges—in the more general case of polygons, this is not
the case (see Problem 6.22).

In the database community, this problem is considered almost exclusively
in the bichromatic case of the filter step of spatial join operations, and several
heuristics implementing the filter step and performing well for real-world
data sets have been proposed during the last decade. Most of the proposed
algorithms [101, 150, 151, 362, 401, 414, 603, 704] need index structures for
both data sets, while others only require one data set to be indexed [63,
365, 511, 527], but also spatial hash joins [512] and other non index-based
algorithms [64, 477, 606] have been presented. Moreover, other conservative
approximation techniques besides minimum bounding boxes—mainly in the
planar case—like convex hull, minimum bounding m-corner (especially m ∈
{4, 5}), smallest enclosing circle, or smallest enclosing ellipse [149, 150] as well
as four-colors raster signature [782] have been considered. Using additional
progressive approximations like maximum enclosed circle or rectangle leads
to fast identification of object pairs which can be reported without testing
the exact geometry [149, 150]. Rotem [639] proposed to transform the idea
of join indices [741] to n-dimensional data space using the grid file [583].

The central idea behind all approaches summarized above is to repeat-
edly reduce the working set by pruning or partitioning until it fits into main
memory where an internal memory algorithm can be used. Most index-based
algorithms exploit the hierarchical representation implicitly given by the in-
dex structures to prune parts of the data sets that cannot contribute to the
output of the join operator. In contrast, algorithms for non-indexed spatial
join try to reduce the working set by either imposing an (artificial) order
and then performing some kind of merging according to this order or by
hashing the data to smaller partitions that can be treated separately. The
overall performance of algorithms for the filter step, however, often depends
on subtle design choices and characteristics of the data set [63], and therefore
discussing these approaches in sufficient detail would be beyond the scope of
this survey.

The refinement step of the spatial join cannot rely on approximations of
the polygonal objects but has to perform computations on the exact repre-
13 In the bichromatic setting, two sets of multislab lists are used, one for each color.

6. External Memory Computational Geometry Revisited 147

sentations of the objects that passed the filter step. In this step, the problem
is to determine all pairs of polygonal objects that fulfill the join predicate.

(a) Two simple polygons may have (b) Two convex polygons may have
Θ(N2) intersecting pairs of edges. Θ(N) intersecting pairs of edges.

Fig. 6.19. Output-sensitivity for intersecting polygons.

Problem 6.22 (Polygon Intersection). Given a set S of polygonal ob-
jects in the plane consisting of N edges in total, compute all Z pairs of
intersecting polygons in S × S. By definition this includes pairs of polygons
where one polygon is fully contained in the other polygon.

The main problem in developing efficient algorithms for the Polygon In-
tersection problem is the notion of output sensitivity. The problem, as stated
above, requires the output to depend on the number of intersecting pairs
of polygons and not on the number of intersecting pairs of polygon edges.
The problem could be easily solved by employing algorithms for the Segment
Intersection problem (Problem 6.20), however, the number of intersecting
pairs of edges can be asymptotically much larger than the number of in-
tersecting pairs of polygons. For simple polygons, each pair of intersecting
polygons can even give rise to a quadratic number of intersecting pairs of
edges (see Figure 6.19(a)). Even for convex polygons, any one pair of inter-
secting polygons can give rise to a linear number of intersecting pairs of edges
(see Figure 6.19(b)), but exploiting the convexity of the polygons, efficient
output-sensitive algorithms have been developed in the internal memory set-
ting [9, 364].

If the Polygon Intersection problem is considered in the context of the
bichromatic map overlay join, the output is no longer the set of intersecting
pairs of polygons, but it additionally includes the planar partition induced by
the overlay. This in turn removes the limitation of not to compute Z pairs of
intersecting segments. In the internal memory setting, an optimal algorithm
for computing the map overlay join of two simply connected planar partitions
in O(N +Z) time and space has been proposed by Finke and Hinrichs [304].
This algorithm heavily relies on a trapezoidal decomposition of the partitions
and on the ability to efficiently traverse a connected planar subdivision, so
unless both problems can be solved optimally in the external memory setting,
there is little hope for an optimal external memory variant.

148 Christian Breimann and Jan Vahrenhold

Some effort has also been made to combine spatial index structures and
internal memory algorithms ([174, 584]) for finding line segment intersec-
tions [100, 480], but these results rely on practical considerations about the
input data. Another approach which is also claimed to be efficient for real
world data sets [149], generates variants of R-trees, namely TR*-trees [671]
for both data sets and uses them to compute the result afterwards.

6.6 Conclusions

In this survey, we have discussed algorithms and data structures that can be
used for solving large-scale geometric problems. While a lot of research has
been done both in the context of spatial databases and in algorithmics, one
of the most challenging problems is to combine the best of these two worlds,
that is algorithmic design techniques and insights gained from experiments for
real-world instances. The field of external memory experimental algorithmics
is still wide open.

Several important issues in large-scale Geographic Information Systems
have not been addressed in the context of external memory algorithms, in-
cluding how to externalize algorithms on triangulated irregular networks or
how to (I/O-efficiently) perform map-overlay on large digital maps. We con-
clude this chapter by stating two prominent open problems for which optimal
algorithms are known only in the internal memory setting:

– Is it possible to triangulate a simple polygon given its vertices in coun-
terclockwise order along its boundary spending only a linear number of
I/Os?

– Is it possible to compute all Z pairs of intersecting line segments in a set of
N line segments in the plane using a deterministic algorithm that spends
only O((N/B) logM/B(N/B) + Z/B) I/Os?

	6.1 Introduction
	6.2 General Methods for Solving Geometric Problems
	6.3 Problems Involving Sets of Points
	6.4 Problems Involving Sets of Line Segments
	6.5 Problems Involving Set of Polygonal Objects
	6.6 Conclusions

