
10. An Overview of Cache Optimization

Techniques and Cache-Aware Numerical
Algorithms∗

Markus Kowarschik and Christian Weiß

10.1 Introduction

In order to mitigate the impact of the growing gap between CPU speed and
main memory performance, today’s computer architectures implement hier-
archical memory structures. The idea behind this approach is to hide both
the low main memory bandwidth and the latency of main memory accesses
which is slow in contrast to the floating-point performance of the CPUs. Usu-
ally, there is a small and expensive high speed memory sitting on top of the
hierarchy which is usually integrated within the processor chip to provide
data with low latency and high bandwidth; i.e., the CPU registers. Moving
further away from the CPU, the layers of memory successively become larger
and slower. The memory components which are located between the proces-
sor core and main memory are called cache memories or caches. They are
intended to contain copies of main memory blocks to speed up accesses to
frequently needed data [378, 392]. The next lower level of the memory hier-
archy is the main memory which is large but also comparatively slow. While
external memory such as hard disk drives or remote memory components in a
distributed computing environment represent the lower end of any common
hierarchical memory design, this paper focuses on optimization techniques
for enhancing cache performance.

The levels of the memory hierarchy usually subset one another so that
data residing within a smaller memory are also stored within the larger mem-
ories. A typical memory hierarchy is shown in Fig. 10.1.

Efficient program execution can only be expected if the codes respect the
underlying hierarchical memory design. Unfortunately, today’s compilers can-
not introduce highly sophisticated cache-based transformations and, conse-
quently, much of this optimization effort is left to the programmer [335, 517].

This is particularly true for numerically intensive codes, which our pa-
per concentrates on. Such codes occur in almost all science and engineering
disciplines; e.g., computational fluid dynamics, computational physics, and
mechanical engineering. They are characterized both by a large portion of
floating-point (FP) operations as well as by the fact that most of their ex-
ecution time is spent in small computational kernels based on loop nests.
∗ This research is being supported in part by the Deutsche Forschungsgemeinschaft

(German Science Foundation), projects Ru 422/7–1,2,3.

U. Meyer et al. (Eds.): Algorithms for Memory Hierarchies, LNCS 2625, pp. 213-232, 2003.
 Springer-Verlag Berlin Heidelberg 2003



214 Markus Kowarschik and Christian Weiß

CPU

L1 Data Cache L1 Inst Cache

L2 Cache

Registers

L3
 C

ac
he

M
ai

n 
M

em
or

y

Fig. 10.1. A typical memory hierarchy containing two on-chip L1 caches, one
on-chip L2 cache, and a third level of off-chip cache. The thickness of the intercon-
nections illustrates the bandwidths between the memory hierarchy levels.

Thus, instruction cache misses have no significant impact on execution per-
formance. However, the underlying data sets are typically by far too large to
be kept in a higher level of the memory hierarchy; i.e., in cache.

Due to data access latencies and memory bandwidth issues, the number
of arithmetic operations alone is no longer an adequate means of describing
the computational complexity of numerical computations. Efficient codes in
scientific computing must necessarily combine both computationally optimal
algorithms and memory hierarchy optimizations. Multigrid methods [731],
for example, are among the most efficient algorithms for the solution of large
systems of linear equations. The performance of such codes on cache-based
computer systems, however, is only acceptable if memory hierarchy optimiza-
tions are applied [762].

This paper is structured as follows. In Section 10.2, we will introduce
some fundamental cache characteristics, including a brief discussion of cache
performance analysis tools. Section 10.3 contains a general description of
elementary cache optimization techniques. In Section 10.4, we will illustrate
how such techniques can be employed to develop cache-aware algorithms. We
will particularly focus on algorithms of numerical linear algebra. Section 10.5
concludes the paper.

10.2 Architecture and Performance Evaluation of
Caches

10.2.1 Organization of Cache Memories

Typically, a memory hierarchy contains a rather small number of registers
on the chip which are accessible without delay. Furthermore, a small cache
— usually called level one (L1) cache — is placed on the chip to ensure low
latency and high bandwidth. The L1 cache is often split into two separate



10. Cache Optimization and Cache-Aware Numerical Algorithms 215

parts; one only keeps data, the other instructions. The latency of on-chip
caches is commonly one or two cycles. The chip designers, however, already
face the problem that large on-chip caches of new microprocessors running at
high clock rates cannot deliver data within one cycle since the signal delays
are too long. Therefore, the size of on-chip L1 caches is limited to 64 Kbyte or
even less for many chip designs. However, larger cache sizes with accordingly
higher access latencies start to appear.

The L1 caches are usually backed up by a level two (L2) cache. A few years
ago, architectures typically implemented the L2 cache on the motherboard,
using SRAM chip technology. Currently, L2 cache memories are typically
located on-chip as well; e.g., in the case of Intel’s Itanium CPU. Off-chip
caches are much bigger, but also provide data with lower bandwidth and
higher access latency. On-chip L2 caches are usually smaller than 512 Kbyte
and deliver data with a latency of approximately 5 to 10 cycles. If the L2
caches are implemented on-chip, an off-chip level three (L3) cache may be
added to the hierarchy. Off-chip cache sizes vary from 1 Mbyte to 16 Mbyte.
They provide data with a latency of about 10 to 20 CPU cycles.

10.2.2 Locality of References

Because of their limited size, caches can only hold copies of recently used
data or code. Typically, when new data are loaded into the cache, other data
have to be replaced. Caches improve performance only if cache blocks which
have already been loaded are reused before being replaced by others. The
reason why caches can substantially reduce program execution time is the
principle of locality of references [392] which states that recently used data
are very likely to be reused in the near future. Locality can be subdivided
into temporal locality and spatial locality. A sequence of references exhibits
temporal locality if recently accessed data are likely to be accessed again
in the near future. A sequence of references exposes spatial locality if data
located close together in address space tend to be referenced close together
in time.

10.2.3 Aspects of Cache Architectures

In this section, we briefly review the basic aspects of cache architectures.
We refer to Chapter 8 for a more detailed presentation of hardware issues
concerning cache memories as well as translation lookaside buffers (TLBs).

Data within the cache are stored in cache lines. A cache line holds the
contents of a contiguous block of main memory. If data requested by the
processor are found in a cache line, it is called a cache hit. Otherwise, a cache
miss occurs. The contents of the memory block containing the requested word
are then fetched from a lower memory layer and copied into a cache line. For
this purpose, another data item must typically be replaced. Therefore, in



216 Markus Kowarschik and Christian Weiß

order to guarantee low access latency, the question into which cache line the
data should be loaded and how to retrieve them henceforth must be handled
efficiently.

In respect of hardware complexity, the cheapest approach to implement
block placement is direct mapping; the contents of a memory block can be
placed into exactly one cache line. Direct mapped caches have been among
the most popular cache architectures in the past and are still very common
for off-chip caches.

However, computer architects have recently focused on increasing the set
associativity of on-chip caches. An a-way set-associative cache is characterized
by a higher hardware complexity, but usually implies higher hit rates. The
cache lines of an a-way set-associative cache are grouped into sets of size a.
The contents of any memory block can be placed into any cache line of the
corresponding set.

Finally, a cache is called fully associative if the contents of a memory
block can be placed into any cache line. Usually, fully associative caches are
only implemented as small special-purpose caches; e.g., TLBs [392]. Direct
mapped and fully associative caches can be seen as special cases of a-way
set-associative caches; a direct mapped cache is a 1-way set-associative cache,
whereas a fully associative cache is C-way set-associative, provided that C is
the number of cache lines.

In a fully associative cache and in a k-way set-associative cache, a mem-
ory block can be placed into several alternative cache lines. The question
into which cache line a memory block is copied and which block thus has
to be replaced is decided by a (block) replacement strategy. The most com-
monly used strategies for today’s microprocessor caches are random and least
recently used (LRU). The random replacement strategy chooses a random
cache line to be replaced. The LRU strategy replaces the block which has
not been accessed for the longest time interval. According to the principle of
locality, it is more likely that a data item which has been accessed recently
will be accessed again in the near future.

Less common strategies are least frequently used (LFU) and first in, first
out (FIFO). The former replaces the memory block in the cache line which
has been used least frequently, whereas the latter replaces the data which
have been residing in cache for the longest time.

Eventually, the optimal replacement strategy replaces the memory block
which will not be accessed for the longest time. It is impossible to implement
this strategy in a real cache, since it requires information about future cache
references. Thus, the strategy is only of theoretical value; for any possible
sequence of references, a fully associative cache with optimal replacement
strategy will produce the minimum number of cache misses among all types
of caches of the same size [717].



10. Cache Optimization and Cache-Aware Numerical Algorithms 217

10.2.4 Measuring and Simulating Cache Behavior

In general, profiling tools are used in order to determine if a code runs effi-
ciently, to identify performance bottlenecks, and to guide code optimization
[335]. One fundamental concept of any memory hierarchy, however, is to hide
the existence of caches. This generally complicates data locality optimiza-
tions; a speedup in execution time only indicates an enhancement of locality
behavior, but it is no evidence.

To allow performance profiling regardless of this fact, many microproces-
sor manufacturers add dedicated registers to their CPUs in order to count
certain events. These special-purpose registers are called hardware perfor-
mance counters. The information which can be gathered by the hardware
performance counters varies from platform to platform. Typical quantities
which can be measured include cache misses and cache hits for various cache
levels, pipeline stalls, processor cycles, instruction issues, and branch mis-
predictions. Some prominent examples of profiling tools based on hardware
performance counters are the Performance Counter Library (PCL) [117], the
Performance Application Programming Interface (PAPI) [162], and the Digi-
tal Continuous Profiling Infrastructure (DCPI) (Alpha-based Compaq Tru64
UNIX only) [44].

Another approach towards evaluating code performance is based on in-
strumentation. Profiling tools such as GNU prof [293] and ATOM [282] in-
sert calls to a monitoring library into the program to gather information
for small code regions. The library routines may either include complex pro-
grams themselves (e.g., simulators) or only modify counters. Instrumentation
is used, for example, to determine the fraction of the CPU time spent in a
certain subroutine. Since the cache is not visible to the instrumented code
the information concerning the memory behavior is limited to address traces
and timing information.

Eventually, cache performance information can be obtained by cache mod-
eling and simulation [329, 383, 710] or by machine simulation [636]. Simula-
tion is typically very time-consuming compared to regular program execution.
Thus, the cache models and the machine models often need to be simplified
in order to reduce simulation time. Consequently, the results are often not
precise enough to be useful.

10.3 Basic Techniques for Improving Cache Efficiency

10.3.1 Data Access Optimizations

Data access optimizations are code transformations which change the order
in which iterations in a loop nest are executed. The goal of these transforma-
tions is mainly to improve temporal locality. Moreover, they can also expose
parallelism and make loop iterations vectorizable. Note that the data access



218 Markus Kowarschik and Christian Weiß

optimizations we present in this section maintain all data dependencies and
do not change the results of the numerical computations1.

Usually, it is difficult to decide which combination of transformations must
be applied in order to achieve a maximum performance gain. Compilers typ-
ically use heuristics to determine whether a transformation will be effective
or not. Loop transformation theory and algorithms found in the literature
typically focus on transformations for perfectly nested loops [19]; i.e., nested
loops where all assignment statements are contained in the innermost loop.
However, loop nests in scientific codes are not perfectly nested in general.
Hence, initial enabling transformations like loop skewing, loop unrolling, and
loop peeling are required. Descriptions of these transformations can be found
in the compiler literature [30, 80, 561, 769].

In the following, a set of loop transformations will be described which
focus on improving data locality for one level of the memory hierarchy; typ-
ically a cache. As we have already mentioned in Section 10.1, instruction
cache misses have no severe impact on the performance of numerically inten-
sive codes since these programs typically execute small computational kernels
over and over again. Nevertheless, some of the transformations we present in
this section can be used to improve instruction locality as well.

loop

interchange

stride−8 access stride−1 access

Fig. 10.2. Access patterns for interchanged loop nests.

Loop Interchange. This transformation reverses the order of two adjacent
loops in a loop nest [30, 769]. Generally speaking, loop interchange can be
applied if the order of the loop execution is unimportant. Loop interchange
can be generalized to loop permutation by allowing more than two loops to
be moved at once and by not requiring them to be adjacent.

Loop interchange can improve locality by reducing the stride of an array-
based computation. The stride is the distance of array elements in memory
accessed within consecutive loop iterations. Upon a memory reference, several
1 However, these transformations may trigger an aggressively optimizing compiler

to reorder FP operations. Due to the properties of finite precision arithmetic,
this may cause different numerical results.



10. Cache Optimization and Cache-Aware Numerical Algorithms 219

words of an array are loaded into a cache line. If the array is larger than the
cache, accesses with large stride only use one word per cache line. The other
words which are loaded into the cache line are evicted before they can be
reused.

Loop interchange can also be used to enable and improve vectorization
and parallelism, and to improve register reuse. The different targets may
be conflicting. For example, increasing parallelism requires loops with no
dependencies to be moved outward, whereas vectorization requires them to
be moved inward.

Algorithm 10.3.1 Loop interchange
1: double sum;
2: double a[n, n];
3: // Original loop nest:
4: for j = 1 to n do
5: for i = 1 to n do
6: sum+ = a[i, j];
7: end for
8: end for

1: double sum;
2: double a[n, n];
3: // Interchanged loop nest:
4: for i = 1 to n do
5: for j = 1 to n do
6: sum+ = a[i, j];
7: end for
8: end for

The effect of loop interchange is illustrated in Fig. 10.2. We assume that
the (6, 8) array is stored in memory in row major order; i.e., two array el-
ements are stored adjacent in memory if their second indices are consecu-
tive numbers. The code corresponding to the left part of Fig. 10.2, how-
ever, accesses the array elements in a column-wise manner. Consequently, the
preloaded data in the cache line marked with grey color will not be reused
if the array is too large to fit entirely in cache. However, after interchanging
the loop nest as demonstrated in Algorithm 10.3.1, the array is no longer ac-
cessed using stride-8, but stride-1. Consequently, all words in the cache line
are now used by successive loop iterations. This is illustrated by the right
part of Fig. 10.2.

Loop Fusion. Loop fusion is a transformation which takes two adjacent loops
that have the same iteration space traversal and combines their bodies into
a single loop [238]. Loop fusion — sometimes also called loop jamming — is
the inverse transformation of loop distribution or loop fission which breaks a
single loop into multiple loops with the same iteration space. Loop fusion is
legal as long as no flow, anti, or output dependencies in the fused loop exist
for which instructions from the first loop depend on instructions from the
second loop [30].

Fusing two loops results in a single loop which contains more instructions
in its body and therefore offers increased instruction level parallelism. Fur-
thermore, only one loop is executed, thus reducing the total loop overhead
by approximately a factor of two.



220 Markus Kowarschik and Christian Weiß

Algorithm 10.3.2 Loop fusion
1: // Original code:
2: for i = 1 to n do
3: b[i] = a[i] + 1.0;
4: end for
5: for i = 1 to n do
6: c[i] = b[i] ∗ 4.0;
7: end for

1: // After loop fusion:
2: for i = 1 to n do
3: b[i] = a[i] + 1.0;
4: c[i] = b[i] ∗ 4.0;
5: end for

Loop fusion also improves data locality. Assume that two consecutive
loops perform global sweeps through an array as in the code shown in Algo-
rithm 10.3.2, and that the data of the array are too large to fit completely in
cache. The data of array b which are loaded into the cache by the first loop
will not completely remain in cache, and the second loop will have to reload
the same data from main memory. If, however, the two loops are combined
with loop fusion only one global sweep through the array b will be performed.
Consequently, fewer cache misses will occur.

Loop Blocking. Loop blocking (also called loop tiling) is a loop transformation
which increases the depth of a loop nest with depth n by adding additional
loops to the loop nest. The depth of the resulting loop nest will be anything
from n + 1 to 2n. Loop blocking is primarily used to improve data locality
by enhancing the reuse of data in cache [30, 705, 768].

Algorithm 10.3.3 Loop blocking for matrix transposition
1: // Original code:
2: for i = 1 to n do
3: for j = 1 to n do
4: a[i, j] = b[j, i];
5: end for
6: end for

1: // Loop blocked code:
2: for ii = 1 to n by B do
3: for jj = 1 to n by B do
4: for i = ii to min(ii + B − 1, n) do
5: for j = jj to min(jj + B − 1, n) do
6: a[i, j] = b[j, i];
7: end for
8: end for
9: end for

10: end for

The need for loop blocking is illustrated in Algorithm 10.3.3. Assume that
the code reads an array a with stride-1, whereas the access to array b is of
stride-n. Interchanging the loops will not help in this case since it would cause
the array a to be accessed with stride-n instead.

Tiling a single loop replaces it by a pair of loops. The inner loop of the
new loop nest traverses a block of the original iteration space with the same
increment as the original loop. The outer loop traverses the original iteration
space with an increment equal to the size of the block which is traversed by
the inner loop. Thus, the outer loop feeds blocks of the whole iteration space
to the inner loop which then executes them step by step. The change in the



10. Cache Optimization and Cache-Aware Numerical Algorithms 221

iteration space traversal of the blocked loop in Algorithm 10.3.3 is shown in
Fig. 10.3.

1

2

3

4

i

1

2

3

4

i

4321
j

4321
j

loop

blocking

Fig. 10.3. Iteration space traversal for original and blocked code.

A very prominent example for the impact of the loop blocking transfor-
mation on data locality is matrix multiplication [127, 461, 492, 764], see also
Section 10.4.2. In particular, the case of sparse matrices is considered in [577].
Data Prefetching. The loop transformations discussed so far aim at reducing
the capacity misses which occur in the course of a computation. Misses which
are introduced by first-time accesses are not addressed by these optimizations.
Prefetching allows the microprocessor to issue a data request before the com-
putation actually requires the data [747]. If the data are requested early
enough the penalty of cold (compulsory) misses as well as capacity misses
not covered by loop transformations can be hidden2.

Many modern microprocessors implement a prefetch instruction which is
issued as a regular instruction. The prefetch instruction is similar to a load,
with the exception that the data are not forwarded to the CPU after they
have been cached. The prefetch instruction is often handled as a hint for the
processor to load a certain data item, but the actual execution of the prefetch
is not guaranteed by the CPU.

Prefetch instructions can be inserted into the code manually by the pro-
grammer or automatically by a compiler [558]. In both cases, prefetching
involves overhead. The prefetch instructions themselves have to be executed;
i.e., pipeline slots will be filled with prefetch instructions instead of other
instructions ready to be executed. Furthermore, the memory addresses of the
prefetched data must be calculated and will be calculated again when the
load operation is executed which actually fetches the data from the memory
hierarchy into the CPU.

Besides software-based prefetching, hardware schemes have been proposed
and implemented which add prefetching capability to a system without the
2 For a classification of cache misses we refer to Chapter 8.



222 Markus Kowarschik and Christian Weiß

need of prefetch instructions. One of the simplest hardware-based prefetching
schemes is sequential prefetching [702]; whenever a memory block is accessed,
the next and possibly some subsequent memory blocks are prefetched. More
sophisticated prefetch schemes have been invented [187], but most micropro-
cessors still only implement stride-1 stream detection or even no prefetching
at all.

In general, prefetching will only be successful if the data stream is pre-
dicted correctly either by the hardware or by the compiler and if there is
enough space left in cache to keep the prefetched data together with memory
references that are still active. If the prefetched data replace data which are
still needed this will increase bus utilization, the overall miss rates, as well
as memory latencies [166].

10.3.2 Data Layout Optimizations

Data access optimizations have proven to be able to improve the data lo-
cality of applications by reordering the computation, as we have shown in
the previous section. However, for many applications, loop transformations
alone may not be sufficient for achieving reasonable data locality. Especially
for computations with a high degree of conflict misses3, loop transformations
are not effective in improving performance [632].

Data layout optimizations modify how data structures and variables are
arranged in memory. These transformations aim at avoiding effects like cache
conflict misses and false sharing [392], see Chapter 16. They are further in-
tended to improve the spatial locality of a code.

Data layout optimizations include changing base addresses of variables,
modifying array sizes, transposing array dimensions, and merging arrays.
These techniques are usually applied at compile time, although some opti-
mizations can also be applied at runtime.

Array Padding. If two arrays are accessed in an alternating manner as in
Algorithm 10.3.4 and the data structures happen to be mapped to the same
cache lines, a high number of conflict misses are introduced.

In the example, reading the first element of array a will load a cache
line containing this array element and possibly subsequent array elements for
further use. Provided that the first array element of array b is mapped to the
same cache line as the first element of array a, a read of the former element
will trigger the cache to replace the elements of array a which have just been
loaded. The following access to the next element of array a will no longer be
satisfied by the cache, thus force the cache to reload the data and in turn to
replace the data of array b. Hence, the array b elements must be reloaded,
and so on. Although both arrays are referenced sequentially with stride-1, no
reuse of data which have been preloaded into the cache will occur since the
data are evicted immediately by elements of the other array, after they have
3 See again Chapter 8.



10. Cache Optimization and Cache-Aware Numerical Algorithms 223

been loaded. This phenomenon is called cross interference of array references
[492].

Algorithm 10.3.4 Inter-array padding.
1: // Original code:
2: double a[1024];
3: double b[1024];
4: for i = 0 to 1023 do
5: sum+ = a[i] ∗ b[i];
6: end for

1: // Code after applying inter-array padding:
2: double a[1024];
3: double pad[x];
4: double b[1024];
5: for i = 1 to 1023 do
6: sum+ = a[i] ∗ b[i];
7: end for

A similar problem — called self interference — can occur if several rows
of a multidimensional array are mapped to the same set of cache lines and
the rows are accessed in an alternating fashion.

For both cases of interference, array padding [727, 632] provides a means
to reduce the number of conflict misses. Inter-array padding inserts unused
variables (pads) between two arrays in order to avoid cross interference. In-
troducing pads modifies the offset of the second array such that both arrays
are then mapped to different parts of the cache.

Intra-array padding, on the other hand, inserts unused array elements be-
tween rows of a multidimensional array by increasing the leading dimension
of the array; i.e., the dimension running fastest in memory is increased by
a small number of extra elements. Which dimension runs fastest in memory
depends on the programming language. For example, in Fortran77 the left-
most dimension is the leading dimension, whereas in C/C++ the rightmost
dimension runs fastest.

The sizes of the pads depend on the mapping scheme of the cache, the
cache size, the cache line size, its set associativity, and the data access pat-
tern of the code. Typical padding sizes are multiples of the cache line size,
but different sizes may be used as well. Array padding is usually applied at
compile time. Intra-array padding can, in principle, be introduced at runtime.
However, knowledge of the cache architecture is indispensable, and informa-
tion about the access pattern of the program will improve the quality of the
selected padding size [632, 633]. The disadvantage of array padding is that
extra memory is required for pads.

Array Merging. This layout optimization technique can be used to improve
the spatial locality between elements of different arrays or other data struc-
tures. Furthermore, array merging can reduce the number of cross interference
misses for scenarios with large arrays and alternating access patterns, as we
have introduced in the previous paragraph. The array merging technique is
also known as group-and-transpose [429].

Array merging is best applied if elements of different arrays are located
far apart in memory but usually accessed together. Transforming the data



224 Markus Kowarschik and Christian Weiß

Algorithm 10.3.5 Array merging.
1: // Original data structure:
2: double a[1024];
3: double b[1024];

1: // array merging using multidimensional arrays:
2: double ab[1024][2];

1: // array merging using structures:
2: struct{
3: double a;
4: double b;
5: } ab[1024];

structures as shown in Algorithm 10.3.5 will change the data layout such that
the elements become contiguous in memory.

Array Transpose. This technique permutes the dimensions within multi-
dimensional arrays and eventually reorders the array as shown in Algo-
rithm 10.3.6 [202]. This transformation has a similar effect as loop inter-
change, see Section 10.3.1.

Algorithm 10.3.6 Array transpose.
1: // Original data structure:
2: double a[N ][M ];

1: // Data structure after transposing:
2: double a[M ][N ];

Data Copying. In Section 10.3.1, loop blocking has been introduced as a
technique to reduce the number of capacity misses. Research has shown [301,
768] that blocked codes suffer from a high degree of conflict misses introduced
by self interference. This effect is demonstrated by means of Fig. 10.4. The
figure shows a part (block) of a big array which is to be reused by a blocked
algorithm. Suppose that a direct mapped cache is used, and that the two
words marked with x are mapped to the same cache location. Due to the
regularity of the cache mapping, the shaded words in the upper part of the
block will be mapped to the same cache lines as the shaded words in the
lower part of the block. Consequently, if the block is accessed repeatedly, the
data in the upper left corner will replace the data in the lower right corner
and vice versa, thus reducing the reusable part of the block.

Therefore, researchers have proposed a data copying technique to guaran-
tee high cache utilization for blocked algorithms [768]. With this approach,
non-contiguous data from a block are copied into a contiguous area of mem-
ory. Hence, each word of the block will be mapped to its own cache location,
effectively avoiding self interference within the block.

The technique, however, involves a copy operation which increases the
total cost of the algorithm. In many cases the additional cost will outweigh



10. Cache Optimization and Cache-Aware Numerical Algorithms 225

x

i

j

x

Fig. 10.4. Self interference in blocked code.

the benefits from copying the data. Hence a compile time strategy has been
introduced in order to determine when to copy data [719]. This technique is
based on an analysis of cache conflicts.

10.4 Cache-Aware Algorithms of Numerical Linear
Algebra

10.4.1 Overview: The Software Libraries BLAS and LAPACK

The optimization of numerical algorithms is a large and multifaceted field of
ongoing research. In this survey, we focus on algorithms of numerical linear
algebra which play an essential role in numerical mathematics as well as in
computational science. Partial differential equations (PDEs) which arise in
almost all scientific and engineering applications, for example, are typically
discretized using finite differences, finite elements, or finite volumes. This step
usually yields large systems of linear equations the solution of which is only
one fundamental issue of algorithms of numerical linear algebra.

These algorithms are often based on elementary kernel routines which are
provided by highly optimized underlying software libraries; e.g. BLAS4 and
LAPACK5.

BLAS provides building blocks for performing elementary vector and ma-
trix operations [255]. In the following, we use α and β to represent scalar
values, whereas x and y denote vectors, and A, B, and C represent matrices.
4 BLAS: Basic Linear Algebra Subprograms, see http://www.netlib.org/blas.
5 LAPACK: Linear Algebra PACKage, see http://www.netlib.org/lapack.



226 Markus Kowarschik and Christian Weiß

The BLAS library is divided into three levels. Level 1 BLAS do vector-vector
operations; e.g., so-called AXPY computations such as y ← αx + y and dot
products such as α← β+xT y. Level 2 BLAS do matrix-vector operations; e.g.,
y ← αop(A)x + βy, where op(A) = A, AT , or AH . Eventually, Level 3 BLAS
do matrix-matrix operations such as C ← αop(A)op(B) + βC. Dedicated
routines are provided for special cases such as symmetric and Hermitian ma-
trices. BLAS provides similar functionality for real and complex data types,
in both single and double precision.

LAPACK is another software library which is often used by numerical
applications [43]. LAPACK is based on the BLAS and implements routines
for solving systems of linear equations, computing least-squares solutions of
linear systems, and solving eigenvalue as well as singular value problems.
The associated routines for factorizing matrices are also provided; e.g., LU,
Cholesky, and QR decomposition. LAPACK handles dense and banded ma-
trices, see Section 10.4.4 below for a discussion of iterative solvers for sparse
linear systems. In analogy to the BLAS library, LAPACK implements sim-
ilar functionality for real and complex matrices, in both single and double
precision.

10.4.2 Enhancing the Cache Performance of the BLAS Library

Our presentation closely follows the research efforts of the ATLAS 6 project
[764]. This project concentrates on the automatic application of empirical
code optimization techniques for the generation of highly optimized platform-
specific BLAS libraries. The basic idea is to successively introduce source-to-
source transformations and evaluate the resulting performance, thus generat-
ing the most efficient implementation of BLAS. It is important to note that
ATLAS still depends on an optimizing compiler for applying architecture-
dependent optimizations and generating efficient machine code. A similar
tuning approach has guided the research in the FFTW project [320].

ATLAS mainly targets the optimizations of Level 2 and Level 3 BLAS
while relying on the underlying compiler to generate efficient Level 1 BLAS.
This is due to the fact that Level 1 BLAS basically contains no memory reuse
and high level source code transformations only yield marginal speedups.

On the contrary, the potential for data reuse is high in Level 2 and even
higher in Level 3 BLAS due to the occurrence of at least one matrix operand.
Concerning the optimization of Level 2 BLAS, ATLAS implements both reg-
ister blocking7 and loop blocking. In order to illustrate the application of
these techniques it is sufficient to consider the update operation y ← Ax+ y,
where A is an n× n matrix and x, y are vectors of length n. This operation
can also be written as
6 ATLAS: Automatically Tuned Linear Algebra Software. More details are provided

on http://math-atlas.sourceforge.net.
7 The developers of ATLAS refer to the term register blocking as a technique to

explicitly enforce the reuse of CPU registers by introducing temporary variables.



10. Cache Optimization and Cache-Aware Numerical Algorithms 227

yi ←
n∑

j=1

ai,jxj + yi, 1 ≤ i ≤ n ,

see [764]. By keeping the current value yi in a CPU register (i.e., by applying
register blocking), the number of read/write accesses to y can be reduced
from O(n2) to O(n). Furthermore, unrolling the outermost loop and hence
updating k components of the vector y simultaneously can reduce the number
of accesses to x by a factor of 1/k to n2/k. This is due to the fact that each xj

contributes to each yi. In addition, loop blocking can be introduced in order
to reduce the number of main memory accesses to the components of the
vector x from O(n2) to O(n) [764], see Section 10.3 for details. This means
that loop blocking can be applied in order to load x only once into the cache.

While Level 2 BLAS routines require O(n2) data accesses in order to per-
form O(n2) FP operations, Level 3 BLAS routines need O(n2) data accesses
to execute O(n3) FP operations, thus containing a higher potential for data
reuse. Consequently, the most significant speedups are obtained by tuning
the cache performance of Level 3 BLAS; particularly the matrix multiply.
This is achieved by implementing an L1 cache-contained matrix multiply
and partitioning the original problem into subproblems which can be com-
puted in cache [764]. In other words, the optimized code results from blocking
each of the three loops of a standard matrix multiply algorithm, see again
Section 10.3, and calling the L1 cache-contained matrix multiply code from
within the innermost loop. Fig. 10.5 illustrates the blocked algorithm. In or-
der to compute the shaded block of the product C, the corresponding blocks
of its factors A and B have to be multiplied and added.

M M

NN

K

K

Matrix C Matrix A

Matrix B

Fig. 10.5. Blocked matrix multiply algorithm.

In order to further enhance the cache performance of the matrix multiply
routine, ATLAS introduces additional blocking for either L2 or L3 cache.
This is achieved by tiling the loop which moves the current matrix blocks
horizontally through the first factor A and vertically through the second
factor B, respectively. The resulting performance gains depend on various



228 Markus Kowarschik and Christian Weiß

parameters; e.g., hardware characteristics, operating system features, and
compiler capabilities [764].

It is important to note that fast matrix multiply algorithms which require
O(nω), ω < 3, FP operations have been developed; e.g., Winograd’s method
and Strassen’s method. These algorithms are based on the idea of recursively
partitioning the factors into blocks and reusing intermediate results. However,
error analysis reveals that these fast algorithms have different properties in
terms of numerical stability, see [395] for a detailed analysis.

10.4.3 Block Algorithms in LAPACK

In order to leverage the speedups which are obtained by optimizing the cache
utilization of Level 3 BLAS, LAPACK provides implementations of block
algorithms in addition to the standard versions of various routines only based
on Level 1 and Level 2 BLAS. For example, LAPACK implements block
LU, block Cholesky, and block QR factorizations [43]. The idea behind these
algorithms is to split the original matrices into submatrices (blocks) and
process them using highly efficient Level 3 BLAS, see Section 10.4.2.

In order to illustrate the design of block algorithms in LAPACK we com-
pare the standard LU factorization of a non-singular n × n matrix A to the
corresponding block LU factorization. In order to simplify the presentation,
we initially leave pivoting issues aside. Each of these algorithms determines a
lower unit triangular n×n matrix8 L and an upper triangular n×n matrix U
such that A = LU . The idea of this (unique) factorization is that any linear
system Ax = b can then be solved easily by first solving Ly = b using a for-
ward substitution step, and subsequently solving Ux = y using a backward
substitution step [339, 395].

Computing the triangular matrices L and U essentially corresponds to
performing Gaussian elimination on A in order to obtain an upper triangular
matrix. In the course of this computation, all elimination factors li,j are
stored. These factors li,j become the subdiagonal entries of the unit triangular
matrix L, while the resulting upper triangular matrix defines the factor U .
This elimination process is mainly based on Level 2 BLAS; it repeatedly
requires rows of A to be added to multiples of different rows of A.

The block LU algorithm works as follows. The matrix A is partitioned
into four submatrices A1,1, A1,2, A2,1, and A2,2. The factorization A = LU
can then be written as[

A1,1 A1,2

A2,1 A2,2

]
=

[
L1,1 0

L2,1 L2,2

] [
U1,1 U1,2

0 U2,2

]
, (10.1)

where the corresponding blocks are equally sized, and A1,1, L1,1, and U1,1 are
square submatrices. Hence, we obtain the following equations:
8 A unit triangular matrix is characterized by having only 1’s on its main diagonal.



10. Cache Optimization and Cache-Aware Numerical Algorithms 229

A1,1 = L1,1U1,1 , (10.2)
A1,2 = L1,1U1,2 , (10.3)
A2,1 = L2,1U1,1 , (10.4)
A2,2 = L2,1U1,2 + L2,2U2,2 . (10.5)

According to Equation (10.2), L1,1 and U1,1 are computed using the stan-
dard LU factorization routine. Afterwards, U1,2 and L2,1 are determined
from Equations (10.3) and (10.4), respectively, using Level 3 BLAS solvers
for triangular systems. Eventually, L2,2 and U2,2 are computed as the re-
sult of recursively applying the block LU decomposition routine to Ã2,2 =
A2,2−L2,1U1,2. This final step follows immediately from Equation (10.5). The
computation of Ã can again be accomplished by leveraging Level 3 BLAS.

It is important to point out that the block algorithm can yield different nu-
merical results than the standard version as soon as pivoting is introduced;
i.e., as soon as a decomposition PA = LU is computed, where P denotes
a suitable permutation matrix [339]. While the search for appropriate pivots
may cover the whole matrix A in the case of the standard algorithm, the block
algorithm restricts this search to the current block A1,1 to be decomposed
into triangular factors. The choice of different pivots during the decomposi-
tion process may lead to different round-off behavior due to finite precision
arithmetic.

Further cache performance optimizations for LAPACK have been devel-
oped. The application of recursively packed matrix storage formats is an
example of how to combine both data layout as well as data access opti-
mizations [42]. A memory-efficient LU decomposition algorithm with partial
pivoting is presented in [726]. It is based on recursively partitioning the input
matrix.

10.4.4 Cache-Aware Iterative Algorithms

Iterative algorithms form another class of numerical solution methods for
systems of linear equations [339, 371, 748]. LAPACK does not provide imple-
mentations of iterative methods. A typical example of the use of these meth-
ods is the solution of large sparse systems which arise from the discretization
of PDEs. Iterative methods covers basic techniques such as Jacobi’s method,
Jacobi overrelaxation (JOR), the method of Gauss-Seidel, and the method of
successive overrelaxation (SOR) [339, 371, 748] as well as advanced techniques
such as multigrid algorithms. Generally speaking, the idea behind multigrid
algorithms is to accelerate convergence by uniformly eliminating error com-
ponents over the entire frequency domain. This is accomplished by solving a
recursive sequence of several instances of the original problem simultaneously,
each of them on a different scale, and combining the results to form the re-
quired solution [147, 370, 731]. Typically, Krylov subspace methods such as the
method of conjugate gradients (CG) and the method of generalized minimal



230 Markus Kowarschik and Christian Weiß

residuals (GMRES) are considered iterative, too. Although their maximum
number of computational steps is theoretically limited by the dimension of
the linear system to be solved, this is of no practical relevance in the case of
systems with millions of unknowns [339, 371].

In this paper, we focus on the discussion of cache-aware variants of ba-
sic iterative schemes; particularly the method of Gauss-Seidel. On the one
hand, such methods are used as linear solvers themselves. On the other hand,
they are commonly employed as smoothers to eliminate the highly oscillating
Fourier components of the error in multigrid settings [147, 370, 731] and as
preconditioners in the context of Krylov subspace methods [339, 371].

Given an initial approximation x(0) to the exact solution x of the linear
system Ax = b of order n, the method of Gauss-Seidel successively computes
a new approximation x(k+1) from the previous approximation x(k) as follows:

x
(k+1)
i = a−1

i,i


bi −

∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j


 , 1 ≤ i ≤ n . (10.6)

If used as a linear solver by itself, the iteration typically runs until some
convergence criterion is fulfilled; e.g., until the Euclidean norm of the residual
r(k) = b−Ax(k) falls below some given tolerance.

For the discussion of optimization techniques we concentrate on the case
of a block tridiagonal matrix which typically results from the 5-point dis-
cretization of a PDE on a two-dimensional rectangular grid using finite dif-
ferences. We further assume a grid-based implementation9 of the method of
Gauss-Seidel using a red/black ordering of the unknowns.

For the sake of optimizing the cache performance of such algorithms, both
data layout optimizations as well as data access optimizations have been pro-
posed. Data layout optimizations comprise the application of array padding
in order to minimize the numbers of conflict misses caused by the stencil-
based computation [632] as well as array merging techniques to enhance the
spatial locality of the code [256, 479]. These array merging techniques are
based on the observation that, for each update, all entries ai,j of any matrix
row i as well as the corresponding right-hand side bi are always needed si-
multaneously, see Equation (10.6). Data access optimizations for red/black
Gauss-Seidel comprise loop fusion as well as loop blocking techniques. As we
have mentioned in Section 10.3, these optimizations aim at reusing data as
long as they reside in cache, thus enhancing temporal locality. Loop fusion
merges two successive passes through the grid into a single one, integrating
the update steps for the red and the black nodes. On top of loop fusion, loop
blocking can be applied. For instance, blocking the outermost loop means
beginning with the computation of x(k+2) from x(k+1) before the computa-
tion of x(k+1) from x(k) has been completed, reusing the matrix entries ai,j ,
9 Instead of using data structures to store the computational grids which cover

the geometric domains, these methods can also be implemented by employing
matrix and vector data structures.



10. Cache Optimization and Cache-Aware Numerical Algorithms 231

the values bi of the right-hand side, and the approximations x
(k+1)
i which are

still in cache.
Again, the performance of the optimized codes depends on a variety of ma-

chine, operating system, and compiler parameters. Depending on the problem
size, speedups of up to 500% can be obtained, see [682, 762, 763] for details. It
is important to point out that these optimizing data access transformations
maintain all data dependencies of the original algorithm and therefore do not
influence the numerical results of the computation.

Similar research has been done for Jacobi’s method [94], which succes-
sively computes a new approximation x(k+1) from the previous approximation
x(k) as follows:

x
(k+1)
i = a−1

i,i


bi −

∑
j �=i

ai,jx
(k)
j


 , 1 ≤ i ≤ n . (10.7)

It is obvious that this method requires the handling of an extra array since
the updates cannot be done in place; in order to compute the (k+1)-th iterate
for unknown xi, the k-th iterates of all neighboring unknowns are required,
see Equation (10.7), although there may already be more recent values for
some of them from the current (k + 1)-th update step.

Moreover, the optimization of iterative methods on unstructured grids
has also been addressed [257]. These techniques are based on partitioning
the computational domain into blocks which are adapted to the size of the
cache. The iteration then performs as much work as possible on the current
cache block and revisits previous cache blocks in order to complete the update
process. The investigation of corresponding cache optimizations for three-
dimensional problems has revealed that TLB misses become more relevant
than in the two-dimensional case [478, 633].

More advanced research on hierarchical memory optimization addresses
the design of new iterative numerical algorithms. Such methods cover do-
main decomposition approaches with domain sizes which are adapted to the
cache capacity [36, 358] as well as approaches based on runtime-controlled
adaptivity which concentrates the computational work on those parts of the
domain where the errors are still large and need to be further reduced by
smoothing and coarse grid correction in a multigrid context [642, 518]. Other
research address the development of grid structures for PDE solvers based on
highly regular building blocks, see [160, 418] for example. On the one hand
these meshes can be used to approximate complex geometries, on the other
hand they permit the application of a variety of optimization techniques to
enhance cache utilization, see Section 10.3 for details.



232 Markus Kowarschik and Christian Weiß

10.5 Conclusions

Cache performance optimizations can yield significant execution speedups,
particularly when applied to numerically intensive codes. The investigation
of such techniques has led to a variety of new numerical algorithms, some of
which have been outlined in this paper. While several of the basic optimiza-
tion techniques can automatically be introduced by optimizing compilers,
most of the tuning effort is left to the programmer. This is especially true,
if the resulting algorithms have different numerical properties; e.g., concern-
ing stability, robustness, or convergence behavior. In order to simplify the
development of portable (cache-)efficient numerical applications in science
and engineering, optimized routines are often provided by machine-specific
software libraries.

Future computer architecture trends further motivate research efforts fo-
cusing on memory hierarchy optimizations. Forecasts predict the number of
transistors on chip increasing beyond one billion. Computer architects have
announced that most of the transistors will be used for larger on-chip caches
and on-chip memory. Most of the forecast systems will be equipped with
memory structures similar to the memory hierarchies currently in use.

While those future caches will be bigger and smarter, the data structures
presently used in real-world scientific codes already exceed the maximum
capacity of forecast cache memories by several orders of magnitude. Today’s
applications in scientific computing typically require several Megabytes up to
hundreds of Gigabytes of memory.

Consequently, due to the similar structure of present and future mem-
ory architectures, data locality optimizations for numerically intensive codes
will further on be essential for all computer architectures which employ the
concept of hierarchical memory.


	10.1 Introduction
	10.2 Architecture and Performance Evaluation of Caches
	10.3 Basic Techniques for Improving Cache Efficiency
	10.4 Cache-Aware Algorithms of Numerical Linear Algebra
	10.5 Conclusions

