
Chapter 5

Multidimensional Indexes

All the indox structures discussed so far are one dimensional] that is, they
assume a single search key, and they retrieve records that match a given search-
key value. We have imagined that the search key was a single attribute or field.
However, an index whose search key is a combination of fields can still be one-
dimensional. If we want a one-dimensional index whose search key is the fields
( F i , F ~ 2 , . . . , Ffc), then we can take the search-key value to be the concatenation
of values, the first from FI, the second from F2, and so on. We can separate
these values by special markei symbols to make the association between search-
key values and lists of values for the fields F I , . . . , F^ unambiguous.

Example 5.1: If fields F\ and F-2 are a string and an integer, respectively, and
# is a character that cannot appeal in strings, then the combination of values
FI = 'abed' and F2 = 123 can be represented by the string 'abcd#123'. D

In Chapter 4, we took advantage of a one-dimensional key space in several
ways:

• Indexes on sequential files and B-trees both take advantage of having all
keys in a single, sorted order.

• Hash tables require that the search key be completely known for any
lookup. If a key consists of several fields, and even one is unknown, we
cannot apply the hash function, but must instead search all the buckets.

There are a numbci of applications that require us to view data as existing
in a 2-dimensional space, or sometimes in higher dimensions. Some of these ap-
plications can be supported by conventional DBMS's, but there are also some
specialized systems designed for multidimensional applications. One important
way in which these specialized systems distinguish themselves is by using data
structures that support certain kinds of queries that are not common in SQL ap-
plications. Section 5.1 introduces us to the typical queries that benefit from an
index that is designed to support multidimensional data and multidimensional
queries. Then, in Sections 5.2 and 5.3 we discuss the following data structures:
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1. Grid files, a multidimensional extension of one-dimensional hash-tables.

2. Partitioned hash functions, another way that brings hash-table ideas to
multidimensional data.

3. Multiple-key indexes, in which the index on one attribute A leads to in-
dexes on another attribute B for each possible value of A.

4. kd-trees, an approach to generalizing B-trees to sets of points.

5. Quad trees, which are multiway trees in which each child of a node rep-
resents a quadrant of a larger space.

6. R-trees, a B-tree generalization suitable for collections of regions.

Finally, Section 5.4 discusses an index structure called bitmap indexes. These
indexes are succinct codes for the location of records with a given value in
a given field. They are today beginning to appear in the major commercial
DBMS's, and they sometimes are an excellent choice for a one-dimensional in-
dex. However, they also can be a powerful tool for answering certain kinds of
multidimensional queries.

5.1 Applications Needing Multiple Dimensions
We shall consider two general classes of multidimensional applications. One is
geographic in nature, where the data is elements in a two-dimensional world,
or sometimes a three-dimensional world. The second involves more abstract
notions of dimensions. Roughly, every attribute of a relation can be thought of
as a dimension, and all tuples are points in a space defined by those dimensions.

Also in this section is an analysis of how conventional indexes, such as B-
trees, could be used to support multidimensional queries. While in some cases
they are adequate, there are also examples where they are clearly dominated
by more specialized structures.

5.1.1 Geographic Information Systems
A geographic information system stores objects in a (typically) two-dimensional
space. The objects may be points or shapes. Often, these databases are maps,
where the stored objects could represent houses, roads, bridges, pipelines, and
many other physical objects. A suggestion of such a map is in Fig. 5.1.

However, there are many other uses as well. For instance, an integrated-
circuit design is a two-dimensional map of regions, often rectangles, composed
of specific materials, called "layers." Likewise, we can think of the windows
and icons on a screen as a collection of objects in two-dimensional space.

The queries asked of geographic information systems are not typical of SQL
queries, although many can be expressed in SQL with some effort. Examples
of these types of queries are:
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Figure 5.1: Some objects in 2-dimensional space

1. Partial match queries. We specify values for one or more dimensions and
look for all points matching those values in those dimensions.

2. Range queries. We give ranges for one or more of the dimensions, and we
ask for the set of points within those ranges, or if shapes are represented,
then the set of shapes that are partially or wholly within the range. These
queries generalize the one-dimensional range queries that we considered
in Section 4.3.4.

3. Nearest-neighbor queries. We ask for the closest point to a given point.
For instance, if points represent cities, we might want to find the city of
over 100,000 population closest to a given small city.

4. Where-am-I queries. We are given a point and we want to know in which
shape, if any, the point is located. A familiar example is what happens
when you click your mouse, and the system determines which of the dis-
played elements you were clicking.

3.1.2 Data Cubes
<V recent development is a family of DBMS's, sometimes called data cube sys-
tems, that see data as existing in a high-dimensional space. These are discussed
in more detail in Section 11.4, but the following example suggests the main idea.
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Multidimensional data is gathered by many corporations for decision-support
applications, where they analyze information such as sales to better understand
company operations. For example, a chain store may record each sale made,
including:

1. The da> and time.

2. The store at which the sale was made.

3. The item purchased.

4. The color of the item.

5. The size of the item.

and perhaps othei properties of the sale.
It is common to view the data as a relation with an attribute for each

propert)'. These attributes can be seen as dimensions of a multidimensional
space, the "data cube." Each tuple is a point in the space. Analysts then
ask queries that typically group the data along some of the dimensions and
summarize the groups by an aggregation. A typical example would be "give
the sales of pink shirts for each store and each month of 1998.''

5.1.3 Multidimensional Queries in SQL
It is possible to set up each of the applications suggested above as a conventional,
relational database and to issue the suggested queries in SQL. Here are some
examples.

Example 5.2 : Suppose we wish to answer nearest-neighbor queries about a set
of points in two-dimensional space. We may represent the points as a relation
consisting of a pair of reals:

Points(x, y)

That is, there arc two attributes, x and y, representing the x- and ^-coordinates
of the point. Other, unseen, attributes of relation Points may represent prop-
erties of the point.

Suppose we want the nearest point to the point (10.0,20.0). The query
of Fig. 5.2 finds the nearest point, or points if there is a tie. It asks, for
each point p, whether there exists another point q that is closer to (10.0,20.0).
Comparison of distances is carried out by computing the sum of the squares of
the differences in the x- and y-coordinates between the point (10.0,20.0) and
the points in question. Notice that we do not have to take the square roots of
the sums to get the actual distances; comparing the squares of the distances is
the same as comparing the distances themselves, d



5.1. APPLICATIONS NEEDING MULTIPLE DIMENSIONS 191

SELECT *
FROM POINTS p
WHERE NOT EXISTS(

SELECT *
FROM POINTS q
WHERE (q.x-10.0)*(q.x-10.0) + (q.y-20.0)*(q.y-20.0) <

(p.x-10.0)*(p.x-10.0) + (p.y-20.0)*(p.y-20.0)
) ;

Figure 5.2: Finding the points with no point nearer to (10.0,20.0)

Example 5.3: Rectangles are a common form of shape used in geographic
systems. We can represent a rectangle in several ways; a popular one is to give
the coordinates of the lower-left and upper-right corners. We then represent a
collection of rectangles by a relation Rectangles with attributes for a rectangle-
ID, the four coordinates that describe the rectangle, and any other properties
of the rectangle that we wished to record. We shall use the relation

Rectangles(id, xll, yll, xur, yur)

in this example. The attributes are the rectangle's ID, the ^-coordinate of its
lowei-left corner, the y-coordinate of that corner, and the two coordinates of
the upper-right corner, respectively.

Figure 5.3 is a query that asks for the rectanglc(s) enclosing the point
(10.0,20.0). The where-clause condition is straightforward. Foi the rectan-
gle to enclose (10.0,20.0), the lower-left corner must have its ^-coordinate at
or to the left of 10.0, and its j/-coordinate at or below 20.0. The upper right
corner must also be at or to the right of x = 10.0 and at or above y = 20.0. d

SELECT id
FROM Rectangles
WHERE xll <= 10.0 AND yll <= 20.0 AND

xur >= 10.0 AND yur >= 20.0;

Figure 5.3: Finding the rectangles that contain a given point

Example 5.4 : Data suitable for a data-cube system is typically organized into
a fact table, which gives the basic elements being recorded (e.g., each sale), and
dimension tables, which give properties of the values along each dimension. For
instance, if the store at which a sale was made is a dimension, the dimension
table for stores might give the address, phone, and name of the store's manager.
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In this example, we shall deal only with the fact table, which we assume has
the dimensions suggested in Section 5.1.2. That is, the fact table is the relation

Sales(day, store, item, color, size)

The query "summarize the sales of pink shirts by day and store" is shown
in Fig. 5.4. It uses grouping to organize sales by the dimensions day and
store, while summarizing the other dimensions through the COUNT aggregation
operator. We focus on only those points of the data cube that we care about
by using the WHERE-clause to select only the tuples for pink shirts. D

SELECT day, store, COUNTO) AS totalSales
FROM Sales
WHERE item = 'shirt' AND

color = 'pink'
GROUP BY day, store;

Figure 5.4: Summarizing the sales of pink shirts

5.1.4 Executing Range Queries Using Conventional
Indexes

Now, let us consider to what extent the indexes described in Chapter 4 would
help in answering range queries. Suppose for simplicity that there are two
dimensions. We could put a secondary index on each of the dimensions, x and
y. Using a B+ tree for each would make it especially easy to get a range of
values for each dimension.

Given ranges in both dimensions, we could begin by using the B-tree for x
to get pointers to all of the records in the range for x. Next, we use the B-tree
for y to get pointers to the records for all points whose y-coordinate is in the
range for y. Finally, we intersect these pointers using the idea of Section 4.2.3.
If the pointers fit in main memory, then the total number of disk I/0's is the
number of leaf nodes of each B-tree that need to be examined, plus a few I/0's
for finding our way down the B-trees (see Section 4.3.7). To this amount we
must add the disk I/O's needed to retrieve all the matching records, however
many they may be.

Example 5.5: Let us consider a hypothetical set of 1,000,000 points dis-
tributed randomly in a space in which both the x- and ^-coordinates range
from 0 to 1000. Suppose that 100 point records fit on a block, and an average
B-tree leaf has about 200 key-pointer pairs (recall that not all slots of a B-tree
block are necessarily occupied, at any given time). We shall assume there are
B-tree indexes on both x and y.
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Imagine we are given the range query asking for points in the square of
side 100 surrounding the center of the space, that is, 450 < x < 550 and
450 < y < 550. Using the B-tree for x, we can find pointers to all the records
with x in the range; there should be about J 00,000 pointers, and this number of
pointers should fit in main memory. Similarly, we use the B-tree for y to get the
pointers to all the records with y in the desired range; again there are about
100,000 of them. Approximately 10,000 pointers will be in the intersection
of these two sets, and it is the records reached by the 10,000 pointers in the
intersection that form our answer.

Now, let us estimate the number of disk I/O's needed to answer the range
query. First, as we pointed out in Section 4.3.7, it is generally feasible to keep
the root of any B-tree in main memory. Since we are looking for a range of
search-key values in each B-tree, and the pointers at the leaves are sorted by this
search key, all we have to do to access the 100,000 pointers in either dimension is
examine one intermediate-level node and all the leaves that contain the desired
pointers. Since we assumed leaves have about 200 key-pointer pairs each, we
shall have to look at about 500 leaf blocks in each of the B-trees. When we add
in one intermediate node per B-tree, we have a total of 1002 disk I/O's.

Finally, we have to retrieve the blocks containing the 10,000 desired records.
If they are stored randomly, we must expect that they will be on almost 10,000
different blocks. Since the entire file of a million records is assumed stored over
10,000 blocks, packed 100 to a block, we essentially have to look at every block
of the data file anyway. Thus, in this example at least, conventional indexes
have been little if any help in answering the range query. Of course, if the range
were smaller, then constructing the intersection of the two pointer sets would
allow us to limit the search to a fraction of the blocks in the data file. D

5.1.5 Executing Nearest-Neighbor Queries Using
Conventional Indexes

Almost any data structure we use will allow us to answer a nearest-neighbor
query by picking a range in each dimension, asking the range query, and select-
ing the point closest to the target within that range. Unfortunately, there are
two things that could go wrong:

1. There is no point within the selected range.

2. The closest point within the range might not be the closest point overall.

Let us consider each of these problems in the context of the nearest-neighbor
query of Example 5.2, using the hypothetical indexes on dimensions x and y
introduced in Example 5.5. If we had reason to believe that a point within
distance d of (10.0,20.0) existed, we could use the B-tree for x to get pointers
to all the records for points whose x-coordinate is between 10 — d and 10 + d.
We could then use the B-tree for y to get pointers to all the records whose
(/-coordinate is between 20 - d and 20 + d.
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If we have one or more points in the intersection, and we have recorded with
each pointer its x- or y-coordinate (whichever is the search key for the index),
then we have the coordinates of all the points in the intersection. We can thus
determine which of these points is closest to (10.0,20.0) and retrieve only its
record. Unfortunately, we cannot be certain that there are any points within
distance d of the given point, so we may have to repeat the entire process with
a higher value of d.

However, even if there is a point in the range we have searched, there are
some circumstances where the closest point in the range is further than distance
d from the target point, e.g., (10.0,20.0) in our example. The situation is
suggested by Fig. 5.5. If that is the case, then we must expand our range and
search again, to make sure that no closer point exists. If the distance from the
target to the closest point found so far is d', and d' > d, then we must repeat
the search with d' in place of d.

Figure 5.5: The point is in the range, but there could be a closer point outside
the range

Example 5.6: Let us consider the same data and indexes as in Example 5.5.
If we want the nearest neighbor to target point P = (10.0, 20.0), we might pick
d = 1. Then, there will be one point per unit of area on the average, and
with d = 1 we find every point within a square of side 2.0 around the point P,
wherein the expected number of points is 4.

If we examine the B-tree for the x-coordinate with the range query 9.0 <
x < 11.0, then we shall find about 2,000 points, so we need to traverse at least
10 leaves, arid most likely 11 (since the points with x = 9.0 are unlikely to
start just at the beginning of a leaf). As in Example 5.5, we can probably keep
the roots of the B-trees in main memory, so we only need one disk I/O for
an intermediate node and 11 disk I/O's for the leaves. Another 12 disk I/0's
search the B-tree index on the y-coordinate for the points whose y-coordinate
is between 19.0 and 21.0.

If we intersect the approximately 4000 pointers in main memory, we shall
find about four records that are candidates for the nearest neighbor of point
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(10.0,20.0). Assuming there is at least one. we can determine from the associ-
ated x- and ^-coordinates of the pointers which is the nearest neighbor. One
more disk I/O to retrieve the desired record, for a total of 23 disk I/0's, com-
pletes the query. However, if there is no point in the square with d = 1, or the
closest point is more than distance 1 from the target, then we have to repeat
the search with a larger value of d. D

The conclusion to draw from Example 5.6 is that conventional indexes might
not be terrible for a nearest-neighbor query, but they use significantly more disk
I/0's than would be used, say, to find a record given its key and a B-tree index
on that key (which would probably take only two or three disk I/0's). The
methods suggested in this chapter will generally provide better performance
and are used in specialized DBMS's that support multidimensional data.

5.1.6 Other Limitations of Conventional Indexes
The previously mentioned structures fare no better for range queries than for
nearest-neighbor queries. In fact, our approach to solving a nearest-neighbor
query in Example 5.6 was really to convert it to a range-query with a small
range in each dimension and hope the range was sufficient to include at least
one point. Thus, if we were to tackle a range query with larger ranges, and the
data structure were indexes in each dimension, then the number of disk I/0's
necessary to retrieve the pointers to candidate records in each dimension would
be even greater than what we found in Example 5.6.

The multidimensional aggregation of the query in Fig. 5.4 is likewise not well
supported. If we have indexes on item and color, we can find all the records
representing sales of pink shirts and intersect them, as we did in Example 5.6.
However, queries in which other attributes besides item and color were specified
would require indexes on those attributes instead.

Worse, while we can keep the data file sorted on one of the five attributes,
we cannot keep it sorted on two attributes, let alone five. Thus, most queries
of the form suggested by Fig. 5.4 would require that records from all or almost
all of the blocks of the data file be retrieved. These queries of this type would
be extremely expensive to execute if data was in secondary memory.

5.1.7 Overview of Multidimensional Index Structures
Most data structures for supporting queries on multidimensional data fall into
one of two categories:

1. Hash-table-like approaches.

2. Tree-like approaches.

For each of these structures, we give up something that we have in the one-
dimensional structures of Chapter 4.
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• With the hash-bashed schemes — grid files and partitioned hash functions
in Section 5.2 — we no longer have the advantage that the answer to our
query is in exactly one bucket. However, each of these schemes limit our
search to a subset of the buckets.

• With the tree-based schemes, we give up at least one of these important
properties of B-trees:

f . The balance of the tree, where all leaves are at the same level.
2. The correspondence between tree nodes and disk blocks.
3. The speed with which modifications to the data may be performed.

As we shall see in Section 5.3, trees will often be deeper in some parts
than in others; often the deep parts correspond to regions that have many
points. We shall also see that it is common that the information corre-
sponding to a tree node is considerably smaller than what fits in one block.
It is thus necessary to group nodes into blocks in some useful way.

5.1.8 Exercises for Section 5.1
Exercise 5.1.1: Write SQL queries using the relation

Rectangles(id, xll, yll, xur, yur)

from Example 5.3 to answer the following questions:

* a) Find the set of rectangles that intersect the rectangle whose lower-left
corner is at (10.0,20.0) and whose upper-right corner is at (40.0,30.0).

b) Find the pairs of rectangles that intersect.

c) Find the rectangles that completely contain the rectangle mentioned in
(a).

d) Find the rectangles that are completely contained within the rectangle
mentioned in (a).

! e) Find the "rectangles" in the relation Rectangles that are not really rect-
angles; i.e., they cannot exist physically.

For each of these queries, tell what indexes, if any, would help retrieve the
desired tuples.

Exercise 5.1.2: Using the relation

Sales(day, store, item, color, size)

from Example 5.4, write the following queries in SQL:



5.2. HASH-LIKE STRUCTURES FOR MULTIDIMENSIONAL DATA 197

* a) List all colors of shirts and their total sales, provided there are more than
1000 sales for that color.

b) List sales of shirts by store and color.

c) List sales of all items by store and color.

! d) List for each item and color the store with the largest sales and the amount
of those sales.

For each of these queries, tell what indexes, if any, would help retrieve the
desired tuples.

Exercise 5.1.3 : Redo Example 5.5 under the assumption that the range query
asks for a square in the middle that is n x n for some n between 1 and 1000.
How many disk I/O's are needed? For which values of n do indexes help?

* Exercise 5.1.4: Repeat Exercise 5.1.3 if the file of records is sorted on x.

!! Exercise 5.1.5 : Suppose that we have points distributed randomly in a square,
as in Example 5.6, and we want to perform a nearest neighbor query. We choose
a distance d and find all points in the square of side Id with the center at the
taiget point. Our search is successful if we find within this square at least one
point whose distance from the target point is d or less.

* a) If there is on average one point per unit of area, give as a function of d
the probability that we will be successful.

b) If we are unsuccessful, we must repeat the search with a larger d. As-
sume for simplicity that each time we are unsuccessful, we double d and
pay twice as much as we did for the previous search. Again assuming
that there is one point per unit area, what initial value of d gives us the
minimum expected search cost?

5.2 Hash-Like Structures for Multidimensional
Data

In this section we shall consider two data structures that generalize hash tables
built using a single key. In each case, the bucket for a point is a function of
all the attributes or dimensions. One scheme, called the "grid file,'' usually
doesn't "hash" values along the dimensions, but rather partitions the dimen-
sions by sorting the values along that dimension. The other, called "partitioned
hashing," does "hash" the various dimensions, with each dimension contribut-
ing to the bucke^ number.



198 CHAPTER 5. MULTIDIMENSIONAL INDEXES

5.2.1 Grid Files
One of the simplest data structures that often outperforms single-dimension
indexes for queries involving multidimensional data is the gnd file. Think of
the space of points partitioned in a grid. In each dimension, gnd hues partition
the space into stripes. Points that fall on a giid line will be considered to belong
to the stripe for which that grid line is the lower boundary. The number of grid
lines in different dimensions may vary, and there may be different spacings
between adjacent grid lines, even between lines in the same dimension.

Example 5.7: Let us introduce a running example for this chapter: the ques-
tion "who buys gold jewelry?" We shall imagine a database of customers for
gold jewelry that tells us many things about each customer — their name, ad-
dress, and so on. However, to make things simpler, we assume that the only
relevant attributes are the customer's age and salar)'. Our example database
has twelve customers, which we can represent by the following age-salary pairs:

(25,60) (45,60) (50,75) (50,100)
(50,120) (70,110) (85,140) (30,260)
(25,400) (45,350) (50,275) (60,260)

In Fig. 5.6 we see these twelve points located in a 2-dimensional space. We
have also selected some grid lines in each dimension. For this simple example, we
have chosen two lines in each dimension, dividing the space into nine rectangular
regions, but there is no reason why the same number of lines must be used in
each dimension. We have also allowed the spacing between the lines to vary.
For instance, in the age dimension, the three regions into which the two vertical
lines divide the space have width 40, 15, and 45.

In this example, no points are exactly on a grid line. But in general, a
rectangle includes points on its lower and left boundaries, but not on its upper
and right boundaries. For instance, the central rectangle in Fig. 5.6 represents
points with 40 < age < 55 and 90 < salary < 225. D

5.2.2 Lookup in a Grid File
Each of the regions into which a space is partitioned can be thought of as a
bucket of a hash table, and each of the points in that region has its record
placed in a block belonging to that bucket. If needed, overflow blocks can be
used to increase the size of a bucket.

Instead of a one-dimensional array of buckets, as is found in conventional
hash tables, the grid file uses an array whose number of dimensions is the same
as for the data file. To locate the proper bucket for a point, we need to know,
for each dimension, the list of values at which the grid lines occur. Hashing a
point is thus somewhat different from applying a hash function to the values of
its components. Rather, we look at each component of the point and determine
the position of the point in the grid for that dimension. The positions of the
point in each of the dimensions together determine the bucket.
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Figure 5.6: A grid file

Example 5.8: Figure 5.7 shows the data of Fig. 5.6 placed in buckets. Since
the grids in both dimensions divide the space into three regions, the bucket
array is a 3 x 3 matrix. Two of the buckets:

1. Salary between $90K arid $225K and age between 0 and 40, and

2. Salary below $90K and age above 55

are empty, and we do not show a block for that bucket. The other backets are
shown, with the artificially low maximum of two data points per block. In this
simple example, no bucket has more than two members, so no overflow blocks
are needed. D

5.2.3 Insertion Into Grid Files
When we insert a record into a grid file, we follow the procedure for lookup
of the record, and we place the new record in that bucket. If there is room in
the block for the bucket then there is nothing more to do. The problem occurs
when there is no room in the bucket. There are two general approaches:

1. Add overflow blocks to the buckets, as needed. This approach works well
as long as the chains of blocks for a bucket do not get too large. If they
do, then the number of disk I/0's needed for lookup, insertion, or deletion
eventually grows unacceptably large.

2. Reorganize the structure by adding or moving the grid lines. This ap-
proach is similar to the dynamic hashing techniques discussed in Sec-
tion 4.4, but there are additional problems because the contents of buck-
ets are linked across a dimension. That is, adding a grid line splits all the
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Figure 5.7: A grid file representing the points of Fig. 5.6

buckets along that line. As a result, it may not be possible to select a new
grid line that does the best for all buckets. For instance, if one bucket is
too big, we might not be able to choose either the dimension of the split
or the point of the split without making many empty buckets or leaving
several very full ones.

Example 5.9: Suppose someone 52 years old with an income of $200K buys
gold jewelry. This customer belongs in the central rectangle of Fig. 5.6. How-
ever, there are now three records in that bucket. We could simply add an
overflow block. If we want to split the bucket, then we need to choose either
the age or salary dimension, and we need to choose a new grid line to create
the division. There are only three ways to introduce a grid line that will split
the central bucket so two points are on one side and one on the other, which is
the most even possible split in this case.

1. A vertical line, such as age = 51, that separates the two 50's from the
52. This line does nothing to split the buckets above or below, since both
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Accessing Buckets of a Grid File

While finding the proper coordinates for a point in a three-by-three grid
like Fig. 5.7 is easy, we should remember that the grid file may have a
very large number of stripes in each dimension. If so, then we must create
an index for each dimension. The search key for an index is the set of
partition values in that dimension.

Given a value v in some coordinate, we search for the greatest key
value w less than or equal to v. Associated with w in that index will be
the row or column of the matrix into which v falls. Given values in each
dimension, we can find where in the matrix the pointer to the bucket falls.
We may then retrieve the block with that pointer directly.

In extreme cases, the matrix is so big, that most of the buckets are
empty and we cannot afford to store all the empty buckets. Then, we
must treat the matrix as a relation whose attributes are the corners of
the nonempty buckets and a final attribute representing the pointer to the
bucket. Lookup in this relation is itself a multidimensional search, but its
size is smaller than the size of the data file itself.

points of each of the othei buckets for age 40-55 will be to the left of the
line age = 51.

2. A horizontal line that separates the point with salary = 200 from the
other two points in the central bucket. We may as well choose a number
like 130, which will also split the bucket to the right (that for age 55 -100
and salary 90-225).

3. A horizontal line that separates the point with salary = 100 from the
other two points. Again, we would be advised to pick a number like 115
that also splits the bucket to the right.

Choice (1) is probably not advised, since it doesn't split any other bucket;
we are left with more empty buckets and have not reduced the size of any
occupied buckets. Choices (2) and (3) are equally good, although we might
pick (2) because it puts the horizontal grid line at salary = 130, which is closer
to midway between the upper and lower limits of 90 and 225 than we get with
choice (3). The resulting partition into buckets is shown in Fig. 5.8. d

5.2.4 Performance of Grid Files
Let us consider how many disk I/0's a grid file requires on various types of
queries. We have been focusing on the two-dimensional version of grid files,
although they can be used for any number of dimensions. One major problem
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Figmo 5.8: Insertion of the point (52, 200) followed by splitting of buckets

in the high-dimensional case is that the number of buckets grows exponentially
with the dimension. If large portions of a space aie empty, then there will be
many empty buckets. We can envision the problem even in two dimensions.
Suppose that there were a high correlation between age and salary, so all points
in Fig. 5.6 lay along the diagonal, then no matter where we placed the grid
lines, the buckets off the diagonal would have to be empty.

However, if the data is well distributed, and the data file itself is not too
large, then we can choose grid lines so that:

f . Thcio are sufficiently few buckets that we can keep the bucket matrix in
main memory, thus not incurring disk I/O to consult it, or to add rows
01 columns to the matrix when we introduce a new grid line.

2. We can also keep in memory indexes on the values of the grid lines in
each dimension (see the box on "accessing buckets of a grid file"), or we
can avoid the indexes altogether and use main-memory binary search of
the values defining the grid lines in each dimension.

3. The typical bucket does not have more than a few overflow blocks, so we
do not incur too many disk I/O's when we search through a bucket.

Under those assumptions, here is how the grid file behaves on some important
classes of queries.

Lookup of Specific Points

We are directed to the proper bucket, so the only disk I/O is what is necessary
to read the bucket. If we are inserting or deleting, then an additional disk
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write is needed. Inserts that require the creation of an overflow block cause an
additional write.

Partial-Match Queries

Examples of this query would include "find all customers aged 50,'' or "find all
customers with a salary of $200K." Now, we need to look at all the buckets in
a row or column of the bucket matrix. The number of disk I/0's can be quite
high if there are many buckets in these rows or columns.

Range Queries

A range query defines a rectangular region of the grid, and all points found
in the buckets that cover that region will be answers to the query, with the
exception of some of the points in buckets on the border of the search region.
For example, if we want to find all customers aged 35-45 with a salary of 50-
100, then we need to look in the four buckets in the lower left of Fig. 5.6. In this
case, all buckets are on the border, so we may look at a good number of points
that are not answers to the query. However, if the search region involves a large
number of buckets, then most of them must be interior, and all their points are
answers. For range queries, the number of disk I/0's may be large, as we may
be required to examine many buckets. However, since range queries tend to
produce large answer sets, we typically will examine not too many more blocks
than the minimum number of blocks on which the answer could be placed by
any organization whatsoever.

Nearest-Neighbor Queries

Given a point P, we start by searching the bucket in which that point belongs.
If we find at least one point there, we have a candidate Q for the nearest
neighbor. However, it is possible that there are points in adjacent buckets that
are closer to P than Q is; the situation is like that suggested in Fig. 5.5. We
have to consider whether the distance between P and a border of its bucket is
less than the distance from P to Q. If there are such borders, then the adjacent
buckets on the other side of each such border must be searched also. In fact,
if buckets are severely rectangular — much longer in one dimension than the
other — then it may be necessary to search even buckets that are not adjacent
to the one containing point P.

Example 5.10: Suppose we are looking in Fig. 5.6 for the point nearest P =
(45,200). We find that (50,120) is the closest point in the bucket, at a distance
of 80.2. No point in the lower three buckets can be this close to (45,200),
because their salary component is at most 90, so we can omit searching them.
However, the other five buckets must be searched, and we find that there are
actually two equally close points: (30,260) and (60,260), at a distance of 61.8
from P. Generally, the search for a nearest neighbor can be limited to a few
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buckets, and thus a few disk I/0's. However, since the buckets nearest the
point P may be empty, we cannot easily put an upper bound on how costly the
search is. D

5.2.5 Partitioned Hash Functions
Hash functions can take a list of attribute values as an argument, although
typically they hash values from only one attribute. For instance, if a is an
integer-valued attribute and 6 is a character-string-valued attribute, then we
could add the value of a to the value of the ASCII code for each character of b,
divide by the number of buckets, and take the remainder. The result could be
used as the bucket number of a hash table suitable as an index on the pair of
attributes (a, b).

However, such a hash table could only be used in queries that specified
values for both a and b. A preferable option is to design the hash function
so it produces some number of bits, say k. These k bits are divided among n
attributes, so that we produce kt bits of the hash value from the zth attribute,
for i = 1,2, . . . , n , where Y^"=i ^ = &• More precisely, the hash function h
is actually a list of hash functions (hi, hi,..., hn), such that ht applies to a
value for the zth attribute and produces a sequence of fc, bits. The bucket
in which to place a tuple with values (vi,V2,...,vn) in the n attributes that
are involved in the hashing is computed by concatenating the bit sequences
hi(vi)h2(v2)---hn(vn).

Example 5.11: If wo have a hash table with 10-bit bucket numbeis (1024
buckets), we could devote four bits to attribute a and the remaining six bits to
attribute 6. Suppose we have a tuple with a-value A and b-value B, perhaps
with other attributes that are not involved in the hash. We hash A using a
hash function ha associated with attribute a to get four bits, say 0101. We
then hash B, using a hash function hi,, perhaps receiving the six bits 111000.
The bucket number for this tuple is thus 0101111000, the concatenation of the
two bit sequences.

By partitioning the hash function this way, we get some advantage from
knowing values for any one or more of the attributes that contribute to the
hash function. For instance, if we aie given a value A for attribute a, and we
find that ha(A) = 0101, then we know that the only tuples with a-value A
are in the 64 buckets whose numbers arc of the form 0101 • • • , where the • • •
represents any six bits. Similarly, if we are given the 6-value B of a tuple, we
can isolate the possible buckets of the tuple to the 16 buckets whose number
ends in the six bits hi,(B). O

Example 5.12: Suppose we have the "gold jewelry" data of Example 5.7,
which we want to store in a partitioned hash table with eight buckets (i.e.,
three bits for bucket numbers). We assume as before that two records are all
that can fit in one block. We shall devote one bit to the age attribute and the
remaining two bits to the salary attribute.
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Figure 5.9: A partitioned hash table

For the hash function on age, we shall take the age modulo 2; that is, a
record with an even age will hash into a bucket whose number is of the form
Oxy for some bits x and y. A record with an odd age hashes to one of the buckets
with a number of the form Ixy. The hash function for salary will be the salary
(in thousands) modulo 4. For example, a salary that leaves a remainder of 1
when divided by 4, such as 57K, will be in a bucket whose number is zOl for
some bit z.

In Fig. 5.9 we see the data from Example 5.7 placed in this hash table.
Notice that, because we have used mostly ages and salaries divisible by 10, the
hash function does not distribute the points too well. Two of the eight buckets
have four records each and need overflow blocks, while three other buckets are
empty. D

5.2.6 Comparison of Grid Files and Partitioned Hashing
The performance of the two data structures discussed in this section are quite
different. Here are the major points of comparison.

• Partitioned hash tables are actually quite useless for nearest-neighbor
queries or range queries. The problem is that physical distance between
points is not reflected by the closeness of bucket numbers. Of course we
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could design the hash function on some attribute a so the smallest values
were assigned the first bit string (all O's), the next values were assigned the
next bit string (00 • • • 01), and so on. If we do so, then we have reinvented
the grid file.

• A well chosen hash function will randomize the buckets into which points
fall, and thus buckets will tend to be equally occupied. However, grid
files, especially when the number of dimensions is large, will tend to leave
many buckets empty or nearly so. The intuitive reason is that when there
are many attributes, there is likely to be some correlation among at least
some of them, so large regions of the space are left empty. For instance,
we mentioned in Section 5.2.4 that a correlation between age and salary
would cause most points of Fig. 5.6 to lie near the diagonal, with most of
the rectangle empty. As a consequence, we can use fewer buckets, and/or
have fewer overflow blocks in a partitioned hash table than in a grid file.

Thus, if we are only required to support partial match queries, where we
specify some attributes' values and leave the other attributes completely un-
specified, then the partitioned hash function is likely to outperform the grid
file. Conversely, if we need to do nearest-neighbor queries or range queries
frequently, then we would prefer to use a grid file.

Figure 5.10: Some PC's and their characteristics

Exercise 5.2.1: In Fig. 5.10 are specifications for twelve PC's. Suppose we
wish to design an index on speed and hard-disk size only.

* a) Choose five grid lines (total for the two dimensions), so that there are no
more than two points in any bucket.
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Handling Tiny Buckets

We generally think of buckets as containing about one block's worth of
data. However, there are reasons why we might need to create so many
buckets that the average bucket has only a small fraction of the number
of records that will fit in a block. For example, high-dimensional data
will require many buckets if we are to partition significantly along each
dimension. Thus, in the structures of this section and also for the tree-
based schemes of Section 5.3, we might choose to pack several buckets (or
nodes of trees) into one block. If we do so, there are some important points
to remember:

• The block must keep in its header information about where each
record is, and to which bucket it belongs.

• If we insert a record into a bucket, wo may not have room in the
block containing that bucket. If so, we need to split the block in
some way. We must decide which buckets go with each block, find
the records of each bucket and put them in the proper block, and
adjust the bucket table to point to the proper block.

! b) Can you separate the points with at most two per bucket if you use only
four grid lines? Either show how 01 argue that it is not possible.

! c) Suggest a partitioned hash function that will partition these points into
four buckets with at most four points per bucket.

! Exercise 5.2.2: Suppose we wish to place the data of Fig. 5.10 in a three-
dimensional grid file, based on the speed, ram, and hard-disk attributes. Sug-
gest a partition in each dimension that will divide the data well.

Exercise 5.2.3: Choose a partitioned hash function with one bit for each of
the three attributes speed, ram, and hard-disk that divides the data of Fig. 5.10
well.

Exercise 5.2.4: Suppose we place the data of Fig. 5.10 in a grid file with
dimensions for speed and ram only. The partitions are at speeds of 310, 375,
and 425, and at ram of 40 and 75. Suppose also that only two points can fit in
one bucket. Suggest good splits if we insert points at:

* a) Speed = 250 and ram = 48.

b) Speed = 333 and lam = 48.
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Exercise 5.2.5: Suppose we store a relation R(x,y) in a grid file. Both at-
tributes have a range of values from 0 to 1000. The partitions of this grid file
happen to be uniformly spaced; for x there are partitions every 20 units, at 20,
40, 60, and so on, while for y the partitions are every 50 units, at 50, 100, 150,
and so on.

a) How many buckets do we have to examine to answer the range query

SELECT *
FROM R
WHERE 310 < x AND x < 400 AND 520 < y AND y < 730;

*! b) We wish to perform a nearest-neighbor query for the point (110,205).
We begin by searching the bucket with lower-left corner at (100, 200) and
upper-right corner at (120,250), and we find that the closest point in this
bucket is (115,220). What other buckets must be searched to verify that
this point is the closest?

! Exercise 5.2.6 : Suppose we have a grid file with three lines (i.e., four stripes)
in each dimension. However, the points (x, y) happen to have a special property.
Tell the largest possible number of nonempty buckets if:

* a) The points are on a line; i.e., there is are constants a and b such that
y = ax + b for every point (x, y).

b) The points are related quadratically; i.e., there are constants a, b, and c
such that y = ax2 + bx + c for every point (x, y).

Exercise 5.2.7: Suppose we store a relation R(x,y,z) in a partitioned hash
table with 1024 buckets (i.e., 10-bit bucket addresses). Queries about R each
specify exactly one of the attributes, and each of the three attributes is equally
likely to be specified. If the hash function produces 5 bits based only on x, 3
bits based only on y, and 2 bits based only on z, what is the average number
of buckets that need to be searched to answer a query?

!! Exercise 5.2.8: Suppose we have a hash table whose buckets are numbered 0
to 2™ — 1; i.e., bucket addresses are n bits long. We wish to store in the table
a relation with two attributes x and y. A query will either specify a value for
x or y, but never both. With probability p, it is x whose value is specified.

a) Suppose we partition the hash function so that m bits are devoted to x
and the remaining n - m bits to y. As a function of m, n, and p, what
is the expected number of buckets that must be examined to answer a
random query?

b) For what value of m (as a function of n and p) is the expected number of
buckets minimized? Do not worry that this m is unlikely to be an integer.
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*! Exercise 5.2.9: Suppose wo have a relation R(x,y) with 1,000,000 points
randomly distributed. The range of both x and y is 0 to 1000. We can fit 100
tuples of R in a block. We decide to use a grid file with uniformly spaced grid
lines in each dimension, with m as the width of the stripes, we wish to select m
in order to minimize the number of disk I/0's needed to read all the necessary
buckets to ask a range query that is a square 50 units on each side. You may
assume that the sides of this square never align with the grid lines. If we pick
m too large, we shall have a lot of overflow blocks in each bucket, and many of
the points in a bucket will be outside the range of the query. If we pick m too
small, then there will be too many buckets, and blocks will tend not to be full
of data. What is the best value of ml

5.3 Tree-Like Structures for Multidimensional
Data

We shall now consider four more structures that are useful for range queries or
nearest-neighbor queries on multidimensional data. In order, we shall consider:

1. Multiple-key indexes.

2. fcd-trees.

3. Quad trees.

4. R-trees.

The first three are intended for sets of points. The R-tree is commonly used to
represent sets of regions; it is also useful for points.

5.3.1 Multiple-Key Indexes
Suppose we have several attributes representing dimensions of our data points,
and we want to support range queries or nearest-neighbor queries on these
points. A simple tree-like scheme for accessing these points is an index of
indexes, or more generally a tree in which the nodes at each level are indexes
for one attribute.

The idea is suggested in Fig. 5.11 for the case of two attributes. The "root
of the tree" is an index for the first of the two attributes. This index could
be any type of conventional index, such as a B-tree or a hash table. The
index associates with each of its search-key values — i.e., values for the first
attribute — a pointer to another index. If V is a value of the first attribute,
then the index we reach by following key V and its pointer is an index into the
set of points that have V for their value in the first attribute and any value for
the second attribute.
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Indexes on
second attribute

Figure 5.11: Using nested indexes on different keys

Example 5.13 : Figure 5.12 shows a multiple-key index for our running "gold
jewelry" example, where the first attribute is age, and the second attribute is
salary. The root index, on age, is suggested at the left of Fig. 5.12. We have
not indicated how the index works. For example, the key-pointer pairs forming
the seven rows of that index might be spread among the leaves of a B-tree.
However, what is important is that the only keys present are the ages for which
there is one or more data point, and the index makes it easy to find the pointer
associated with a given key value.

At the right of Fig. 5.12 are seven indexes that provide access to the points
themselves. For example, if we follow the pointer associated with age 50 in the
root index, we get to a smaller index where salary is the key, and the four key
values in the index are the four salaries associated with points that have age 50.
Again, we have not indicated in the figure how the index is implemented, just
the key-pointer associations it makes. When we follow the pointers associated
with each of these values (75, 100, 120, and 275), we get to the record for the
individual represented. For instance, following the pointer associated with 100,
we find the person whose age is 50 and whose salary is $100K. D

In a multiple-key index, some of the second or higher rank indexes may be
very small. For example, Fig 5.12 has foui second-rank indexes with but a
single pair. Thus, it may be appropriate to implement these indexes as simple
tables that are packed several to a block, in the manner suggested by the box
"Handling Tiny Buckets'' in Section 5.2.5.
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Figure 5.12: Multilevel indexes for age/salary data

5.3.2 Performance of Multiple-Key Indexes
Let us consider how a multiple key index performs on various kinds of multidi-
mensional queries. We shall concentrate on the case of two attributes, although
the generalization to more than two attributes is unsurprising.

Partial-Match Queries

If the first attribute is specified, then the access is quite efficient, e use the root
index to find the one subindex that leads to the points we want. For example,
if the root is a B-tree index, then we shall do two or three disk I/0's to get to
the proper subindex, and then use whatever I/O's arc needed to access all of
that index and the points of the data file itself. On the other hand, if the first
attribute does not have a specified value, then we must search every subindex,
a potentially time-consuming process.

Range Queries

The multiple-key index works quite well for a range query, provided the individ-
ual indexes themselves support range queries on their attribute (e.g.. if they are
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B-tree indexes). To answer a range query, we use the root index and the range
of the first attribute to find all of the subindexes that might contain answer
points. We then search each of these subindexes, using the range specified for
the second attribute.

Example 5.14: Suppose we have the multiple-key index of Fig. 5.12 and we
are asked the range query 35 < age < 55 and 100 < salary < 200. When we
examine the root index, we find that the keys 45 and 50 are in the range for
age. We follow the associated pointers to two subindexes on salary. The index
for age 45 has no salary in the range 100 to 200, while the index for age 50
has two such salaries: 100 and 120. Thus, the only two points in the range are
(50,100) and (50,120). D

Nearest-Neighbor Queries

The answering of a nearest-neighbor query with a multiple-key index uses the
same strategy as for almost all the data structures of this chapter. To find the
nearest neighbor of point (XQ, yo), we find a distance d such that we can expect
to find several points within distance d of (XQ, yo)- We then ask the range query
XQ — d < x < Xo+d and yo — d<y<yo + d. If there turn out to be no points in
this range, or if there is a point, but distance from ( x o , y o ) of the closest point
is greater than d (and therefore there could be a closer point outside the range,
as was discussed in Section 5.1.5), then we must increase the range and search
again. However, we can order the search so the closest places are searched first.

5.3.3 kd- Trees
A kd-ti'ec (fc-dimensional seaich tree) is a main-memory data structure gener-
alizing the binary search tree to multidimensional data. We shall present the
idea and then discuss how the idea has been adapted to the block model of
storage. A kd-trec is a binary tree in which interior nodes have an associated
attribute a and a value V that splits the data points into two parts: those with
a-value less than V and those with a-value equal to or greater than V. The
attributes at different levels of the tiee are different, with levels rotating among
the attributes of all dimensions.

In the classical Aid-tree, the data points are placed at the nodes, just as in
a binary search tree. However, we shall make two modifications in our initial
presentation of the idea to take some limited advantage of the block model of
storage.

1. Interior nodes will have only an attribute, a dividing value for that at-
tribute, and pointers to left and right children.

2. Leaves will be blocks, with space for as many records as a block can hold.
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Figure 5.13: A fcd-tree

Example 5.15: In Fig. 5.13 is a kd-tree for the twelve points of our running
gold-jewelry example. We use blocks that hold only two records for simplicity;
these blocks and their contents are shown as square leaves. The interior nodes
are ovals with an attribute — either age or salary — and a value. For instance,
the root splits by salary, with all records in the left subtree having a salary less
than $150K, and all records in the right subtree having a salary at least $150K.

At the second level, the split is by age. The left child of the root splits at age
60, so everything in its left subtree will have age less than 60 and salary less than
$150K. Its right subtree will have age at least 60 and salary less than $150K.
Figure 5.14 suggests how the various interior nodes split the space of points
into leaf blocks. For example, the horizontal line at salary = 150 represents the
split at the root. The space below that line is split vertically at age 60, while
the space above is split at age 47, corresponding to the decision at the right
child of the root. D

5.3.4 Operations on kd-Trees
A lookup of a tuple given values for all dimensions proceeds as in a binary
search tree. We make a decision which way to go at each interior node and are
directed to a single leaf, whose block we search.

To perform an insertion, we proceed as for a lookup. We are eventually
directed to a leaf, and if its block has room we put the new data point there.
If there is no room, we split the block into two, and we divide its contents
according to whatever attribute is appropriate at the level of the leaf being
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Figure 5.14: The partitions implied by the tree of Fig. 5.13

split. We create a new interior node whose children are the two new blocks,
and we install at that interior node a splitting value that is appropriate for the
split we have just made.1

Example 5.16: Suppose someone 35 years old with a salary of $500K buys
gold jewelry. Starting at the root, we know the salary is at least $150K, so we
go to the right. There, we compare the age 35 with the age 47 at the node,
which directs us to the left. At the third level, we compare salaries again, and
our salary is greater than the splitting value, $300K. We are thus directed to
a leaf containing the points (25,400) and (45,350), along with the new point
(35,500).

There isn't room for three records in this block, so we must split it. The
fourth level splits on age, so we have to pick some age that divides the records
as evenly as possible. The median value, 35, is a good choice, so we replace the
leaf by an interior node that splits on age = 35. To the left of this interior node
is a leaf block with only the record (25,400), while to the right is a leaf block
with the other two records, as shown in Fig. 5.15. D

The more complex queries discussed in this chapter are also supported by a
kd-tree. Here are the key ideas and synopses of the algorithms:

Partial-Match Queries

If we are given values for some of the attributes, then we can go one way when
we are at a level belonging to an attribute whose value we know. When we don't

1One problem that might arise is a situation where there aie so many points with the same
value in a given dimension that the bucket has only one value in that dimension and cannot
be split. We can try splitting along another dimension, or we can use an overflow block.
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Figure 5.15: Tree after insertion of (35,500)

know the value of the attribute at a node, we must explore both of its children.
For example, if we ask for all points with age = 50 in the tree of Fig. 5.13, we
must look at both children of the root, since the root splits on salary. However,
at the left child of the root, we need go only to the left, and at the right child
of the root we need only explore its right subtree. Suppose, for instance, that
the tree were perfectly balanced, had a large number of levels, and had two
dimensions, of which one was specified in the search. Then we would have to
explore both ways at every other level, ultimately reaching about the square
root of the total number of leaves.

Range Queries

Sometimes, a range will allow us to move to only one child of a node, but if
the range straddles the splitting value at the node then we must explore both
children. For example, given the range of ages 35 to 55 and the range of salaries
from $100K to S200K, we would explore the tree of Fig. 5.13 as follows. The
salary range straddles the $150K at the root, so we must explore both children.
At the left child, the range is entirely to the left, so we move to the node with
salary $80K. Now, the range is entirely to the right, so we reach the leaf with
records (50,100) and (50,120), both of which meet the range query. Returning
to the right child of the root, the splitting value age = 47 tells us to look at both
subtrees. At the node with salary $300K, we can go only to the left, finding
the point (30,260), which is actually outside the range. At the right child of
the node for age = 47, we find two other points, both of which are outside the
range.
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Nothing Lasts Forever

Each of the data structures discussed in this chapter allow insertions and
deletions that make local decisions about how to reorganize the structure.
After many database updates, the effects of these local decisions may make
the structure unbalanced in some way. For instance, a grid file may have
too many empty buckets, or a fcd-tree may be greatly unbalanced.

It is quite usual for any database to be restructured after a while. By
reloading the database, we have the opportunity to create index structures
that, at least for the moment, as as balanced and efficient as is possible
for that type of index. The cost of such restructuring can be amortized
over the large number of updates that led to the imbalance, so the cost
per update is small. However, we do need to be able to "take the database
down"; i.e., make it unavailable for the time it is being reloaded. That
situation may or may not be a problem, depending on the application.
For instance, many databases are taken down overnight, when no one is
accessing them.

Nearest-Neighbor Queries

Use the same approach as was discussed in Section 5.3.2. Treat the problem
as a range query with the appropriate range and repeat with a larger range if
necessary.

5.3.5 Adapting kd-Trees to Secondary Storage
Suppose we store a file in a fc<i-tree with n leaves. Then the average length
of a path from the root to a leaf will be about Iog2 n, as for any binary tree.
If we store each node in a block, then as we traverse a path we must do one
disk I/O per node. For example, if n = 1000, then we shall need about 10 disk
I/0's, much more than the 2 or 3 disk I/O's that would be typical for a B-tree,
even on a much larger file. In addition, since interior nodes of a kd-iree have
relatively little information, most of the block would be wasted space.

We cannot solve the twin problems of long paths and unused space com-
pletely. However, here are two approaches that will make some improvement in
performance.

Multiway Branches at Interior Nodes

Interior nodes of a fcti-tree could look more like B-tree nodes, with many key-
pointer pairs. If we had n keys at a node, we could split values of an attribute a
into n + l ranges. If there were n + I pointers, we could follow the appropriate
one to a subtree that contained only points with attribute a in that range
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Problems enter when we try to reorganize nodes, in order to keep distribution
and balance as we do for a B-tree. For example, suppose we have a node that
splits on age, and we need to merge two of its children, each of which splits on
salary. We cannot simply make one node with all the salary ranges of the two
children, because these ranges will typically overlap. Notice how much easier it
would be if (as in a B-tree) the two children both further refined the range of
ages.

Group Interior Nodes Into Blocks •>

We may, instead, retain the idea that tree nodes have only two children. We
could pack many interior nodes into a single block. In order to minimize the
number of blocks that we must read from disk while traveling down one path,
we are best off including in one block a node and all its descendants for some
number of levels. That way, once we retrieve the block with this node, we are
sure to use some additional nodes on the same block, saving disk I/O's. For
instance, suppose we can pack three interior nodes into one block. Then in the
tree of Fig. 5.13, we would pack the root and its two children into one block.
We could then pack the node for salary = 80 and its left child into another
block, and we are left with the node salary = 300, which belongs on a separate
block; perhaps it could share a block with the latter two nodes, although sharing
requires us to do considerable work when the tree grows or shrinks. Thus, if
we wanted to look up the record (25,60), we would need to traverse only two
blocks, even though we travel through four interior nodes.

5.3.6 Quad Trees
In a quad tree, each interior node corresponds to a square region in two di-
mensions, or to a fc-dirnensional cube in k dimensions. As with the other data
structures in this chapter, we shall consider primarily the two-dimensional case.
If the number of points in a square is no larger than what will fit in a block,
then we can think of this square as a leaf of the tree, and it is represented by
the block that holds its points. If there are too many points to fit in one block,
then we treat the square as an interior node, with children corresponding to its
four quadrants.

Example 5.17: Figure 5.16 shows the gold-jewelry data points organized into
regions that correspond to nodes of a quad tree. For case of calculation, we
have restricted the usual space so salary ranges between 0 and $400K, rather
than up to $500K as in other examples of this chapter. We continue to make
the assumption that only two records can fit in a block.

Figure 5.17 shows the tree explicitly. We use the compass designations for
the quadrants and for the children of a node (e.g., SW stands for the southwest
quadrant — the points to the left and below the center). The order of children
is always as indicated at the root. Each interior node indicates the coordinates
of the center of its region.
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Figure 5.16: Data organized in a quad tree

Since the entire space has 12 points, and only two will fit in one block,
we must split the space into quadrants, which we show by the dashed line in
Fig. 5.16. Two of the resulting quadrants — the southwest and northeast —
have only two points. They can be represented by leaves and need not be split
further.

Figure 5.17: A quad tree

The remaining two quadrants each have more than two points. Both are split
into subquadrants, as suggested by the dotted lines in Fig. 5.16. Each of the
resulting quadrants has two or fewer points, so no more splitting is necessary.
D

Since interior nodes of a quad tree in k dimensions have 2k children, there
is a range of k where nodes fit conveniently into blocks. For instance, if 128, or
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27, pointers can fit in a block, then k = 7 is a convenient number of dimensions.
However, for the 2-dimensional case, the situation is not much better than for
fcd-trees; an interior node has four children. Moreover, while we can choose the
splitting point for a fcd-tree node, we are constrained to pick the center of a
quad-tree region, which may or may not divide the points in that region evenly.
Especially when the number of dimensions is large, we expect to find many null
pointers (corresponding to empty quadrants) in interior nodes. Of course we
can be somewhat clever about how high-dimension nodes are represented, and
keep only the non-null pointers and a designation of which quadrant the pointer
represents, thus saving considerable space.

We shall not go into detail regarding the standard operations that we dis-
cussed in Section 5.3.4 for fed-trees. The algorithms for quad trees resemble
those for fcd-trees.

5.3.7 R-Trees
An R-tree (region tree) is a data structure that captures some of the spirit of
a B-tree for multidimensional data. Recall that a B-tree node has a set of keys
that divide a line into segments. Points along that line belong to only one
segment, as suggested by Fig. 5.18. The B-tree thus makes it easy for us to
find points; if we think the point is somewhere along the line represented by
a B-tree node, we can determine a unique child of that node where the point
could be found.

Figure 5.18: A B-tree node divides keys along a line into disjoint segments

An R-tree, on the othei hand, represents data that consists of 2-dimensional,
or higher-dimensional regions, which we call data regions. An interior node of
an R-tree corresponds to some interior region, or just "region," which is not
normally a data region. In principle, the region can be of any shape, although
in practice it is usually a rectangle or other simple shape. The R-tree node
has, in place of keys, subregions that represent the contents of its children.
Figure 5.19 suggests a node of an R-tree that is associated with the large solid
rectangle. The dotted rectangles represent the subregions associated with four
of its children. Notice that the subregions do not cover the entire region, which
is satisfactory as long as all the data regions that lie within the large region are
wholly contained within one of the small regions. Further, the subregions are
allowed to overlap, although it is desirable to keep the overlap small.

5.3.8 Operations on R-trees
A typical query for which an R-tree is useful is a "where-am-F query, which
specifies a point P and asks for the data region or regions in which the point lies.



220 CHAPTER 5 MULTIDIMENSIONAL INDEXES

Figure 5 19: The region of an R-tree node and subregions of its children

We start at the root, with which the entire region is associated. We examine
the subregions at the root and determine which children of the root correspond
to interior regions that contain point P. Note that there may be zero, one, or
several such regions.

If there are zero regions, then we are done; P is not in any data region. If
there is at least one inteiior region that contains P, then we must recursively
search for P at the child corresponding to each such region. When we reach
one or more leaves, we shall find the actual data regions, along with either the
complete record for each data region or a pointer to that record.

When we insert a new region R into an R-tree, we start at the root and try
to find a subregion into which R fits. If there is more than one such region, then
we pick one, go to its corresponding child, and repeat the process there. If there
is no subregion that contains R, then we have to expand one of the subregions.
Which one to pick may be a difficult decision. Intuitively, we want to expand
regions as little as possible, so we might ask which of the children's subregions
would have their area increased as little as possible, change the boundary of
that region to include R, and recursively insert R at the corresponding child.

Eventually, we reach a leaf, where we insert the region R. However, if there
is no room for R at that leaf, then we must split the leaf. How we split the
leaf is subject to some choice. We generally want the two subregions to be as
small as possible, yet they must, between them, cover all the data regions of
the original leaf. Having split the leaf, we replace the region and pointer for the
original leaf at the node above by a pair of regions and pointers corresponding
to the two new leaves. If there is room at the parent, we are done. Otherwise,
as in a B-tree, we recursively split nodes going up the tree.

Example 5.18: Let us consider the addition of a new region to the map of
Fig. 5 1 Suppose that leaves have room for six regions. Further suppose that
the six regions of Fig. 5.1 are together on one leaf, whose region is represented
by the outer (solid) rectangle in Fig. 5.20.

Now, suppose the local cellular phone company adds a POP (point of pres-
ence, or antenna) at the position shown in Fig. 5.20. Since the seven data
regions do not fit on one leaf, we shall split the leaf, with four in one leaf and
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three in the other. Our options are many; we have picked in Fig. 5.20 the di-
vision (indicated by the inner, dashed rectangles) that minimizes the overlap,
while splitting the leaves as evenly as possible.

Figure 5.22: Extending a region to accommodate new data

We show in Fig. 5.21 how the two new leaves fit into the R-tree. The parent
of these nodes has pointers to both leaves, and associated with the pointers
are the lower-left and upper-right corners of the rectangular regions covered by
each leaf, n

Example 5.19 : Suppose we inserted another house below house2, with lower-
left coordinates (70,5) and upper-right coordinates (80,15). Since this house is
not wholly contained within either of the leaves' regions, we must choose which
region to expand. If we expand the lower subregion, coriesponding to the first
leaf in Fig. 5.21, then we add 1000 square units to the region, since we extend
it 20 units to the right. If we extend the other subregion by lowering its bottom
by 15 units, then we add 1200 square units. We prefer the first, and the new
regions are changed in Fig. 5.22. We also must change the description of the
region in the top node of Fig. 5.21 from ((0,0), (60,50)) to ((0,0), (80,50)).
a

5.3.9 Exercises for Section 5.3
Exercise 5.3.1: Show a multilevel index for the data of Fig. 5.10 if the indexes
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are on:

a) Speed, then ram.

b) Ram then hard-disk.

r) Speed, then ram, then hard-disk.

Exercise 5.3.2 : Place the data of Fig. 5.10 in a fcd-tiee. Assume two records
can fit in one block. At each level, pick a separating value that divides the data
as evenly as possible. For an order of the splitting attributes choose:

a) Speed, then lam, alternating.

b) Speed, then ram, then hard-disk, alternating.

c) Whate\er attribute produces the most even split at each node.

Exercise 5.3.3: Suppose we have a relation R(x,y,z). where the pair of at-
tributes x and y together form the key. Attribute x ranges from 1 to 100, and
y ranges from 1 to 1000. For each x there are records with 100 different values
of y, and for each y there arc records with 10 different values of x. Note that
there are thus 10,000 records in R. We wish to use a multiple-key index that
will help us to answer queries of the form

SELECT z
FROM R
WHERE x = C AND y = D;

where C and D are constants. Assume that blocks can hold ten key-pointer
pairs, and we wish to create dense indexes at each level, peihaps with sparse
higher-level indexes above them, so that each index starts from a single block.
Also assume that initially all index and data blocks are on disk

* a) How many disk I/O's are necessary to answer a query of the above form
if the first index is on xl

b) How many disk I/O's are necessary to answer a query of the above form
if the first index is orr y7

! c) Suppose you were allowed to buffer 11 blocks in memory at all times.
Which blocks would you choose, and would you make x or: y the first
index, if you wanted to minimize the number of additional disk I/O's
needed?

Exercise 5.3.4: For the structure of Exercise 5.3.3(a), how many disk I/O's
are required to answer the rang^ query in which 20 < x < 35 and 200 < y < 350.
Assume data is distributed uniformly; i.e., the expected number of points will
be found within any given range.
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Exercise 5.3.5: In the tree of Fig. 5.13, what new points would be directed
to:

* a) The block with point (30, 260)?

b) The block with points (50,100) and (50,120)?

Exercise 5.3.6 : Show a possible evolution of the tree of Fig. 5.15 if we insert
the points (20,110) and then (40,400).

! Exercise 5.3.7: We mentioned that if a kd-tiee were perfectly balanced, and
we execute a partial-match query in which one of two attributes has a value
specified, then we wind up looking at about \/n out of the n leaves.

a) Explain why.

b) If the tree split alternately in d dimensions, and we specified values for m
of those dimensions, what fraction of the leaves would we expect to have
to search?

c) How does the performance of (b) compare with a partitioned hash table?

Exercise 5.3.8: Place the data of Fig. 5.10 in a quad tree with dimensions
speed and ram. Assume the range for speed is 100 to 500, and for ram it is 0
to 256.

Exercise 5.3.9 : Repeat Exeicise 5.3.8 with the addition of a third dimension,
hard-disk, that ranges from 0 to 32.

*! Exercise 5.3.10 : If we are allowed to put the central point in a quadrant of a
quad tree wherever we want, can we always divide a quadrant into subquadrants
with an equal number of points (or as equal as possible, if the number of points
in the quadrant is not divisible by 4)? Justify your answer.

! Exercise 5.3.11: Suppose we have a database of 1,000,000 regions, which may
overlap. Nodes (blocks) of an R-tree can hold 100 regions and pointers. The
region represented by any node has 100 subregions, and the overlap among
these regions is such that the total area of the 100 subregions is 150% of the
area of the region. If we perform a "where-am-I" query for a given point, how
many blocks do we expect to retrieve?

! Exercise 5.3.12: In the R-tree represented by Fig. 5.22, a new region might
go into the subregion containing the school or the subregion containing houseS
Describe the rectangular regions for which we would prefer to place the new
region in the subregion with the school (i.e., that choice minimizes the increase
in the subregion size).
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5.4 Bitmap Indexes
Let us now turn to a type of index that is rather different from the kinds seen
so far. We begin by imagining that records of a file have permanent numbers,
1 , 2 , . . . , n. Moreover, there is some data structure for the file that lets us find
the ith record easily for any i.

A bitmap index for a field F is a collection of bit-vectors of length n, one
for each possible value that may appear in the field F. The vector for value v
has 1 in position i if the ith record has v in field F, and it has 0 there if not.

Example 5.20 : Suppose a file consists of records with two fields, F and G, of
type integer and string, respectively. The current file has six records, numbered
1 through 6, with the following values in order: (30,foo), (30,bar), (40,baz),
(50,foo), (40,bar), (30,baz).

A bitmap index for the first field, F, would have three bit-vectors, each of
length 6. The first, for value 30, is 110001, because the first, second, and sixth
records have F = 30. The other two, for 40 and 50, respectively, are 001010
and 000100.

A bitmap index for G would also have three bit-vectors, because there are
three different strings appearing there. The three bit-vectors are:

In each case, the 1's indicate in which records the corresponding string appears.
D

5.4.1 Motivation for Bitmap Indexes
It might at first appear that bitmap indexes require much too much space,
especially when there are many different values for a field, since the total number
of bits is the product of the number of records and the number of values. For
example, if the field is a key, and there are n records, then n2 bits are used
among all the bit-vectors for that field. However, compression can be used to
make the number of bits closer to n, independent of the number of different
values, as we shall see in Section 5.4.2.

You might also suspect that there are problems managing the bitmap in-
dexes. For example, they depend on the number of a record remaining the same
throughout time. How do we find the ith record as the file adds and deletes
records? Similarly, values for a field may appear or disappear. How do we find
the bitmap for a value efficiently? These and related questions are discussed in
Section 5.4.4.

The compensating advantage of bitmap indexes is that they allow us to
answer partial-match queries very efficiently in many situations. In a sense they
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offer the advantages of buckets that we discussed in Example 4.16, where we
found the Movie tuples with specified values in several attributes without first
retrieving all the records that matched in each of the attributes. An example
will illustrate the point.

Example 5.21: Recall Example 4.16, where we queried the relation

Movie(title, year, length, studioName)

with the query

SELECT title
FROM Movie
WHERE studioName = 'Disney' AND

year = 1995;

Suppose there are bitmap indexes on both attributes studioName and year.
Then we can intersect the vectors for year = 1995 and studioName = 'Disney';
that is, we take the bitwise AND of these vectors, which will give us a vector
with a 1 in position i if and only if the ith Movie tuple is for a movie made by
Disney in 1995.

If we can retrieve tuples of Movie given their numbers, then we need to
read only those blocks containing one or more of these tuples, just as we did in
Example 4.16. To intersect the bit vectors, we must read them into memory,
which requires a disk I/O for each block occupied by one of the two vectors. As
mentioned, we shall later address both matters: accessing records given their
numbers in Section 5.4.4 and making sure the bit-vectors do not occupy too
much space in Section 5.4.2. D

Bitmap indexes can also help answer range queries. We shall consider an
example next that both illustrates their use for range queries and shows in detail
with short bit-vectors how the bitwise AND and OR of bit-vectors can be used
to discover the answer to a query without looking at any records but the ones
we want.

Example 5.22: Consider the gold jewelry data first introduced in Exam-
ple 5.7. Suppose that the twelve points of that example are records numbered
from 1 to 12 as follows:

1: (25,60) 2: (45,60) 3: (50,75) 4: (50,100)
5: (50,120) 6: (70,110) 7: (85,140) 8: (30,260)
9: (25,400) 10: (45,350) 11: (50,275) 12: (60,260)

For the first component, age, there are seven different values, so the bitmap
index for age consists of the following seven vectors:

25: 100000001000 30: 000000010000 45: 010000000100
50: 001110000010 60: 000000000001 70: 000001000000
85: 000000100000
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For the salary component, there are ten different values, so the salary bitmap
index has the following ten bit-vectors:

60: 110000000000 75: 001000000000 100: 000100000000
110: 000001000000 120: 000010000000 140: 000000100000
260: 000000010001 275: 000000000010 350: 000000000100
400: 000000001000

Suppose we want to find the jewelry buyers with an age in the range 45-55
and a salary in the range 100-200. We first find the bit-vectors for the age
values in this range; in this example there are only two: 010000000100 and
001110000010, for 45 and 50, respectively. If we take their bitwise OR, we have
a new bit-vector with 1 in position i if and only if the ith record has an age in
the desired range. This bit-vector is 011110000110.

Next, we find the bit-vectors for the salaries between 100 and 200 thousand.
There are four, corresponding to salaries 100, 110, 120, arid 140; their bitwise
OR is 000111100000.

The last step is to take the bitwise AND of the two bit-vectors we calculated
by OR. That is:

011110000110 AND 000111100000 = 000110000000

We thus find that only the fourth and fifth records, which are (50,100) and
(50,120), are in the desired range. D

5.4.2 Compressed Bitmaps
Suppose we have a bitmap index on field F of a file with n records, and there
are m different values for field F that appear in the file. Then the number of
bits in all the bit-vectors for this index is mn. If, say, blocks are 4096 bytes
long, then we can fit 32,768 bits in one block, so the number of blocks needed
is mn/32768. That number can be small compared to the number of blocks
needed to hold the file itself, but the larger m is, the more space the bitmap
index takes.

But if m is large, then 1's in a bit-vector will be very rare; precisely, the
probability that any bit is 1 is 1/m. If 1's are rare, then we have an opportunity
to encode bit-vectors so that they take much fewer than n bits on the average.
A common approach is called run-length encoding, where we represent a run,
that is, a sequence of i O's followed by a 1, by some suitable binary encoding
of the integer i. We concatenate the codes for each run together, and that
sequence of bits is the encoding of the entire bit-vector.

We might imagine that we could just represent integer i by expressing i
as a binary number. However, that simple a scheme will not do, because it
is not possible to break a sequence of codes apart to determine uniquely the
lengths of the runs involved (see the box on "Binary Numbers Won't Serve as a
Run-Length Encoding"). Thus, the encoding of integers i that represent a run
length must be more complex than a simple binary representation.
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Binary Numbers Won't Serve as a Run-Length
Encoding

Suppose we represented a run of i O's followed by a 1 with the integer i in
binary. Then the bit-vector 000101 consists of two runs, of lengths 3 and 1,
respectively. The binary representations of these integers are 11 and 1, so
the run-length encoding of 000101 is 111. However, a similar calculation
shows that the bit-vector 010001 is also encoded by 111; bit-vector 010101
is a third vector encoded by 111. Thus, 111 cannot be decoded uniquely
into one bit-vector.

We shall use one of many possible schemes for encoding. There are some
better, more complex schemes that can improve on the amount of compression
achieved here, by almost a factor of 2, but only when typical runs are very long.
In our scheme, we first need to determine how many bits the binary represen-
tation of i has. This number j, which is approximately Iog2 z, is represented in
"unary," by j — 1 1's and a single 0. Then, we can follow with i in binary.2

Example 5.23: If i = 13, then j = 4; that is, we need 4 bits in the binary
representation of i. Thus, the encoding for i begins with 1110. We follow with
i in binary, or 1101. Thus, the encoding for 13 is 11101101.

The encoding for i — 1 is 01, and the encoding for i = 0 is 00. In each
case, j = 1, so we begin with a single 0 and follow that 0 with the one bit that
represents i. D

If we concatenate a sequence of integer codes, we can always recover the
sequence of run lengths and therefore recover the original bit-vector. Suppose
we have scanned some of the encoded bits, and we are now at the beginning of
the sequence of bits that encodes some integer i. We scan forward to the first
0, to determine the value of j. That is, j equals the number of bits we must-
scan until we get to the first 0 (including that 0 in the count of bits). Once we
know j, we look at the next j bits; i is the integer represented there in binary.
Moreover, once we have scanned the bits representing i, we know where the
next code for an integer begins, so we can repeat the process.

Example 5.24: Let us decode the sequence 11101101001011. Starting at the
beginning, we find the first 0 at the 4th bit, so j = 4. The next 4 bits are 1101,
so we determine that the first integer is 13. We are now left with 001011 to
decode.

2Actually, except for the case that j = 1 (i e., i = 0 or i = 1), we can be sure that the
binary representation of i begins with 1. Thus, we can save about one bit per number if we
omit this i and use only the remaining j — 1 bits.
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Since the first bit is 0, we know the next bit represents the next integer by
itself; this integer is 0. Thus, we have decoded the sequence 13, 0, and we must
decode the remaining sequence 1011.

We find the first 0 in the second position, whereupon we conclude that the
final two bits represent the last integer, 3. Our entire sequence of run-lengths
is thus 13, 0, 3. From these numbers, we can reconstruct the actual bit-vector,
0000000000000110001. D

Technically, every bit-vector so decoded will end in a 1, and any trailing O's
will not be recovered. Since we presumably know the number of records in the
file, the additional O's can be added. However, since 0 in a bit-vector indicates
the corresponding record is not in the described set, we don't even have to know
the total number of records, and can ignore the trailing O's.

Example 5.25: Let us convert some of the bit-vectors from Example 5.23
to our run-length code. The vectors for the first three ages, 25, 30, and 45,
are 100000001000, 000000010000, and 010000000100, respectively. The first of
these has the run-length sequence (0, 7). The code for 0 is 00, and the code for
7 is 110111. Thus, the bit-vector for age 25 becomes 00110111.

Similarly, the bit-vector for age 30 has only one run, with seven O's. Thus,
its code is 110111. The bit-vector for age 45 has two runs, (1,7). Since 1 has
the code 01, and we determined that 7 has the code 110111, the code for the
third bit-vector is 01110111. D

The compression in Example 5.25 is not great. However, we cannot see the
true benefits when n, the number of records, is small. To appreciate the value
of the encoding, suppose that m = n, i.e., each value for the field on which the
bitmap index is constructed, has a unique value. Notice that the code for a run
of length i has about 21og2i bits. If each bit-vector has a single 1, then it has
a single run, and the length of that run cannot be longer than n. Thus, 2 Iog2 n
bits is an upper bound on the length of a bit-vector's code in this case.

Since there are n bit-vectors in the index (because m = n), the total number
of bits to represent the index is at most 2nlog2n. Notice that without the
encoding, n2 bits would be required. As long as n > 4, we have 2nlog2 n < n2,
and as n grows, 2nlog2 n becomes arbitrarily smaller than n2.

5.4.3 Operating on Run-Length-Encoded Bit-Vectors
When we need to perform bitwise AND or OR on encoded bit-vectors, we
have little choice but to decode them and operate on the original bit-vectors.
However, we do not have to do the decoding all at once. The compression
scheme we have described lets us decode one run at a time, and we can thus
determine where the next 1 is in each operand bit-vector. If we are taking the
OR, we can produce a 1 at that position of the output, and if we are taking the
AND we produce a 1 if and only if both operands have their next 1 at the same
position. The algorithms involved are complex, but an example may make the
idea adequately clear.
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Example 5.28: Consider the encoded bit-vectors we obtained in Example 5.25
for ages 25 and 30: 00110111 and 110111, respectively. We can decode their
first runs easily; we find they are 0 and 7, respectively. That is, the first 1 of
the bit-vector for 25 occurs in position 1, while the first 1 in the bit-vector for
30 occurs at position 8. We therefore generate 1 in position 1.

Next, we must decode the next run for age 25, since that bit-vector may
produce another 1 before age 30's bit-vector produces a 1 at position 8. How-
ever, the next run for age 25 is 7, which says that this bit-vector next produces
a 1 at position 9. We therefore generate six O's and the 1 at position 8 that
comes from the bit-vector for age 30. Now, that bit-vector contributes no more
1's to the output. The 1 at position 9 from age 25's bit-vector is produced, and
that bit-vector too produces no subsequent 1's.

We conclude that the OR of these bit-vectors is 100000011. Referring to
the original bit-vectors of length 12, we see that is almost right; there are three
trailing O's omitted. If we know that the number of records in the file is 12, we
can append those O's. However, it doesn't matter whether or not we append
the O's, since only a 1 can cause a record to be retrieved. In this example, we
shall not retrieve any of recoids 10 through 12 anyway. O

5.4.4 Managing Bitmap Indexes
We have described operations on bitmap indexes without addressing three im-
portant issues:

1. When we want to find the bit-vector for a given value, or the bit-vectors
corresponding to values in a given range, how do we find these efficiently?

2. When we have selected a set of records that answer our query, how do we
retrieve those records efficiently?

3. When the data file changes by insertion 01 deletion of records, how do we
adjust the bitmap index on a given field?

Finding Bit-Vectors

The first question can be answered based on techniques we have already learned.
Think of each bit-vector as a record whose key is the value corresponding to this
bit-vector (although the value itself docs not appear in this "record"). Then
any secondary index technique will take us efficiently from values to their bit-
vectors. For example, we could use a B-tree, whose leaves contain key-pointer
pairs; the pointer leads to the bit-vector for the key value. The B-tree is often
a good choice, because it supports range queries easily, but hash tables 01
indexed-sequential files are other options.

We also need to store the bit-vectors somewhere. It is best to think of
them as variable-length records, since they will generally grow as more records
are added to the data file. If the bit-vectors, perhaps in compressed form, are
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typically shorter than blocks, then we can consider packing several to a block
and moving them around as needed. If bit-vectors arc typically longer than
a block, we should consider using a chain of blocks to hold each one. The
techniques of Section 3.4 are useful.

Finding Records

Now let us consider the second question: once we have determined that we
need record k of the data file, how do we find it. Again, techniques we have
already seen may be adapted. Think of the kih record as having search-key
value k (although this key does not actually appear in the record). We may
then create a secondary index on the data file, whose search key is the number
of the record.

If there is no reason to organize the file any other way, we can even use the
record number as the search key for a primary index, as discussed in Section 4.1.
Then, the file organization is particularly simple, since record numbers never
change (even as records are deleted), and we only have to add new records
to the end of the data file. It is thus possible to pack blocks of the data file
completely full, instead of leaving extra space for insertions into the middle of
the file as we found necessary for the general case of an indexed-sequential file
in Section 4.1.6.

Handling Modifications to the Data File

There are two aspects to the problem of reflecting data-file modifications in a
bitmap index.

1. Record numbers must remain fixed once assigned.

2. Changes to the data file require the bitmap index to change as well.

The consequence of point (1) is that when we delete record i, it is easiest
to "retire" its number. Its space is replaced by a "tombstone'' in the data file.
The bitmap index must also be changed, since the bit-vector that had a 1 in
position % must have that 1 changed to 0. Note that we can find the appropriate
bit-vector, since we know what value record i had before deletion.

Next consider insertion of a new record. We keep track of the next available
record number and assign it to the new record. Then, for each bitmap index,
we must determine the value the new record has in the corresponding field and
modify the bit-vector for that value by appending a 1 at the end. Technically,
all the other bit-vectors in this index get a new 0 at the end, but if we are using
a compression technique such as that of Section 5.4.2, then no change to the
compressed values is needed.

As a special case, the new record may have a value for the indexed field
that has not been seen before. In that case, we need a new bit-vector for
this value, and this bit-vector and its corresponding value need to be inserted
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into the secondary-index structure that is used to find a bit-vector given its
corresponding value.

Last, let us consider a modification to a record i of the data file that changes
the value of a field that has a bitmap index, say from value v to value w. We
must find the bit-vector for v and change the 1 in position i to 0. If there is a
bit-vector for value w, then we change its 0 in position i to 1. If there is not
yet a bit-vector for w, then we create it as discussed in the paragraph above for
the case when an insertion introduces a new value.

5.4.5 Exercises for Section 5.4
Exercise 5.4.1: For the data of Fig. 5.10 show the bitmap indexes for the
attributes:

* a) Speed,

b) Ram, and

c) Hard-disk,

both in (i) uncompressed form, and (M) compressed form using the scheme of
Section 5.4.2.

Exercise 5.4.2: Using the bitmaps of Example 5.22, find the jewelry buyers
with an age in the range 20-40 and a salary in the range 0-100.

Exercise 5.4.3: Consider a file of 1,000,000 records, with a field F that has
m different values.

a) As a function of m, how many bytes does the bitmap index for F have?

! b) Suppose that the records numbered from 1 to 1,000,000 are given values
for the field F in a round-robin fashion, so each value appears every m
records. How many bytes would be consumed by a compressed index?

!! Exercise 5.4.4: We suggested in Section 5.4.2 that it was possible to reduce
the number of bits taken to encode number i from the 2 Iog2 i that we used
in that section until it is close to Iog2 i. Show how to approach that limit as
closely as you like, as long as i is large. Hint: We used a unary encoding of the
length of the binary encoding that we used for i. Can you encode the length of
the code in binary?

Exercise 5.4.5: Encode, using the scheme of Section 5.4.2, the following
bitmaps:

* a) 0110000000100000100.

b) 10000010000001001101.
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r) 0001000000000010000010000.

*! Exercise 5.4.6: We pointed out that compressed bitmap indexes consume
about 2n Iog2 n bits for a file of n records. How does this number of bits
compare with the number of bits consumed by a B-tree index? Remember that
the B-tree index's size depends on the size of keys and pointers, as well as (to a
small extent) on the size of blocks. However, make some reasonable estimates
of these parameters in your calculations. Why might we prefer a B-troc, even
if it takes more space than compressed bitmaps?

5.5 Summary of Chapter 5
4 Multidimensional Data: Many applications, such as geographic databases

or sales and inventory data, can be thought of as points in a space of two
or more dimensions.

4 Queries Needing Multidimensional Indexes: The sorts of queries that
need to be supported on multidimensional data include partial-match (all
points with specified values in a subset of the dimensions), range queries
(all points within a range in each dimension), nearest-neighbor (closest
point to a given point), and whcre-am-i (region or regions containing a
given point).

4 Executing Nearest-Neighbor Queries: Many data structures allow nearest-
neighbor queries to be executed by performing a range querj^ around the
target point, and expanding the range if there is no point in that range.
We must be careful, because finding a point within a rectangular range
may not rule out the possibility of a closer point outside that rectangle.

4 Grid Files: The grid file slices the space of points in each of the dimen-
sions. The grid lines can be spaced differently, and there can be different
numbers of lines for each dimension. Grid files support range queries,
partial-match queries, and nearest-neighbor queries well, as long as data
is fairly uniform in distribution.

4 Partitioned Hash Tables: A partitioned hash function constructs some
bits of the bucket number from each dimension. They support partial-
match queries well, and aie not dependent on the data being uniformly
distributed.

4 Multiple-Key Indexes: A simple multidimensional structure has a root
that is an index on one attribute, leading to a collection of indexes on a
second attribute, which can lead to indexes on a third attribute, and so
on. They are useful for range and nearest-neighbor queries.

4 kd-Trees: These trees are like binary search trees, but they branch on
different attributes at different levels. They support partial-match, range,
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and nearest-neighbor queries well. Some careful packing of tree nodes into
blocks must be done to make the structure suitable for secondary-storage
operations.

4 Quad Trees: The quad tree divides a multidimensional cube into quad-
rants, and recursively divides the quadrants the same way if they have too
many points. They support partial-match, range, and nearest-neighbor
queries.

4 R-Trees: This form of tree normally represents a collection of regions by
grouping them into a hierarchy of larger regions. It helps with where-am-
i queries and, if the atomic regions are actually points, will support the
other types of queries studied in this chapter, as well.

4 Bitmap Indexes: Multidimensional queries are supported by a form of
index that orders the points or records and represents the positions of the
records with a given value in an attribute by a bit vector. These indexes
support range, nearest-neighbor, and partial-match queries.

4 Compressed Bitmaps: In order to save space, the bitmap indexes, which
tend to consist of vectors with very few 1's, are compressed by using a
run-length encoding.
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