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R
adio regulatory bodies are recognizing that the rigid
spectrum assignment granting exclusive use to
licensed services is highly inefficient, due to the
high variability of the traffic statistics across time,
space, and frequency. Recent Federal Communi-

cations Commission (FCC) measurements show that, in fact,
the spectrum usage is typically concentrated over certain por-
tions of the spectrum, while a significant amount of the licensed
bands (or idle slots in static time division multiple access
(TDMA) systems with bursty traffic) remains unused or under-
utilized for 90% of time [1]. It is not surprising then that this
inefficiency is motivating a flurry of research activities in the
engineering, economics, and regulation communities in the
effort of finding more efficient spectrum management policies.

As pointed out in recent works [2]–[5], the most appropriate
approach to tackle the great spectrum variability as a function of
time and space calls for dynamic access strategies that adapt to
the electromagnetic environment. Cognitive radio (CR) origi-
nated as a possible solution to this problem [6] obtained by
endowing the radio nodes with cognitive capabilities, e.g., the
ability to sense the electromagnetic environment, make short-
term predictions, and react intelligently in order to optimize the
usage of the available resources. Multiple paradigms associated
with CR have been proposed [2]–[5], depending on the policy to
be followed with respect to the licensed users, i.e., the users who
have acquired the right to transmit over specific portions of the
spectrum buying the relative license. The most common strate-
gies adopt a hierarchical access structure, distinguishing
between primary users, or legacy spectrum holders, and second-
ary users, who access the licensed spectrum dynamically, under
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the constraint of not inducing quality of service (QoS) degrada-
tions intolerable to the primary users. Within this context, three
basic approaches have been considered to allow concurrent
communications: spectrum overlay, underlay, and interweave.
There is no strict consensus on some of the basic terminology in
cognitive systems [4]. Here we use interweave as in [5], which is
sometimes referred to as overlay communications [4].

In overlay systems, as proposed in [7], secondary users allo-
cate part of their power for secondary transmissions and the
remainder to assist (relay) the primary transmissions. By
exploiting sophisticated coding techniques, such as dirty paper
coding, based on the knowledge of the primary users’ message
and/or codebook at the cognitive transmitter, these systems
offer the possibility of concurrent transmissions without capac-
ity penalties. However, although interesting from an informa-
tion theoretic perspective, these techniques are difficult to
implement as they require noncausal knowledge of the primary
signals at the cognitive transmitters.

In underlay systems, the secondary users are also allowed
to share resources with the primary users, but without any
knowledge about the primary users’ signals and under the
strict constraint that the spectral density of their transmitted
signals fall below the noise floor at the primary receivers. This
interference constraint can be met using spread spectrum or
ultra-wideband communications from the secondary users.
Both transmission techniques do not require the estimation of
the electromagnetic environment from secondary users, but
they are mostly appropriate for short distance communica-
tions, because of the strong constraints imposed on the maxi-
mum power radiated by the secondary users.

Conversely, interweave communications, initially envi-
sioned in [6], are based on an opportunistic or adaptive usage
of the spectrum, as a function of its real utilization.
Secondary users are allowed to adapt their power allocation as
a function of time and frequency, depending on what they are
able to sense and learn from the environment, in a nonintru-
sive manner. Rather than imposing a severe constraint on
their transmit power spectral density, in interweave systems,
the secondary users have to figure out when and where to
transmit. Different from underlay systems, this opportunistic
spectrum access requires an opportunity identification phase,
through spectrum sensing, followed by an opportunity
exploitation mode [4]. For further discussion of the signal
processing challenges faced in interweave cognitive radio sys-
tems, we suggest the interested reader to refer to [2].

In this article, we focus on opportunistic resource allocation
techniques in hierarchical cognitive networks, as they seem to
be the most suitable for the current spectrum management
policies and legacy wireless systems [4]. We are specifically
interested in devising the most appropriate form of concurrent
communications of cognitive users competing over the physical
resources let available from primary users. Looking at oppor-
tunistic communication paradigm from a broad signal process-
ing perspective, the secondary users are allowed to transmit
over a multidimensional space, whose coordinates represent

time slots, frequency bins and (possibly) angles, and their goal is
to find out the most appropriate transmission strategy, assum-
ing a given power budget at each node, exploring all available
degrees of freedom, under the constraint of inducing a limited
interference, or no interference at all, at the primary users.

In general, the optimization of the transmission strategies
requires the presence of a central node having full knowledge
of all the channels and interference structure at every receiver.
But this poses a serious implementation problem in terms of
scalability and amount of signaling to be exchanged among the
nodes. The required extra signaling could, in the end, jeopard-
ize the promise for higher efficiency. To overcome this difficul-
ty, we concentrate on decentralized strategies, where the
cognitive users are able to self-enforce the negotiated agree-
ments on the spectrum usage without the intervention of a
centralized authority. The philosophy underlying this
approach is a competitive optimality criterion, as every user
aims for the transmission strategy that unilaterally maximizes
his own payoff function. The presence of concurrent secondary
users competing over the same resources adds dynamics to the
system, as every secondary user will dynamically react to the
strategies adopted by the other users. The main question is
then to establish whether, and under what conditions, the
overall system can eventually converge to an equilibrium from
which every user is not willing to unilaterally move, as this
would determine a performance loss. This form of equilibrium
coincides with the well-known concept of Nash equilibrium
(NE) in game theory (see, e.g., [8] and [9]). In fact, game theo-
ry is the natural tool to devise decentralized strategies allow-
ing the secondary users to find out their best response to any
given channel and interference scenario and to derive the con-
ditions for the existence and uniqueness of NE.

Within this context, we propose and analyze a totally decen-
tralized approach to design cognitive multiple-input, multiple-
output (MIMO) transceivers, satisfying a competitive optimality
criterion, based on the achievement of Nash equilibria. To take
full advantage of all the opportunities offered by wireless commu-
nications, we assume a fairly general MIMO setup, where the mul-
tiple channels may be frequency channels (as in orthogonal
frequency division multiple access (OFDM) systems) [10]–[12],
time slots (as in TDMA systems) [10], [11], and/or spatial chan-
nels (as in transmit/receive beamforming systems) [13].
Whenever available, multiple antennas at the secondary trans-
mitters could be used, for example, to put nulls in the antenna
radiation pattern of secondary transmitters along the directions
identifying the primary receivers, thus enabling the share of fre-
quency and time resources with no additional interference. Our
initial goal is to provide conditions for the existence and unique-
ness of NE points in a game where secondary users compete
against each other to maximize their performance, under the
constraint on the maximum (or null) interference induced on
the primary users. The next step is then to describe low-com-
plexity totally distributed techniques able to reach the equilibri-
um points of the proposed games, with no coordination among
the secondary users.



SYSTEM MODEL: COGNITIVE RADIO NETWORKS
We consider a scenario composed by heterogeneous wireless sys-
tems (primary and secondary users), as illustrated in Figure 1.
The setup may include peer-to-peer links, multiple access, or
broadcast channels. The systems coexisting in the network do
not have a common goal and do not cooperate with each other.
Moreover, no centralized authority is assumed to handle the net-
work access from secondary users. Thus, the secondary users are
allowed, in principle, to compete for the same physical resources,
e.g., time, frequency, and space. We gare interested in finding the
optimal transmission strategy for the secondary users, using a
decentralized approach. A fairly general system model to
describe the signals received by the secondary users is the
Gaussian vector interference channel

yq = Hqqxq +
∑
r �= q

Hrqxr + vq, (1)

where xq is the nTq -dimensional block of data transmitted by
source q, Hqq is the nRq × nTq (complex) channel matrix
between the q th transmitter and its intended receiver, Hrq is
the nRq × nTr cross-channel matrix between source r and
destination q, yq is the nRq -dimensional vector received by
destination q, and vq is the nRq -dimensional noise plus inter-
ference vector. The first term in the right-hand side of (1) is

the useful signal for link q, the second and third terms rep-
resent the multiuser interference (MUI) received by second-
ary user q and caused from the other secondary users and
the primary users, respectively. The vector nq is assumed to
be zero-mean circularly symmetric complex Gaussian with
arbitrary (nonsingular) covariance matrix Rvq . For the sake
of simplicity and lack of space, we consider here only the
case where the channel matrices Hqq are square nonsingu-
lar. We assume that each receiver is able to estimate the
channel (assumed to be sufficiently slowly varying) from its
intended transmitter and the overall MUI covariance matrix
(alternatively, to make short term predictions, with negligi-
ble error). The receiver sends then this information back to
the transmitter through a low bit rate (error-free) feedback
channel, to allow the transmitter to compute the optimal
transmission strategy over its own link. How to obtain both
channel-state information and MUI covariance matrix esti-

mation goes beyond the scope of this article; the interested
reader may refer to, e.g., [2] and [4], where classical signal
processing estimation techniques are properly modified to
be successfully applied in a cognitive radio environment.

The model in (1) represents a fairly general MIMO setup,
describing multiuser transmissions over multiple channels,
which may represent frequency channels (as in OFDM sys-
tems) [10]–[12], time slots (as in TDMA systems) [10], [11],
or spatial channels (as in transmit/receive beamforming sys-
tems) [13]. Different from traditional static or centralized
spectrum assignment, the cognitive radio paradigm enables
secondary users to transmit with overlapping spectrum
and/or coverage with primary users, provided that the degra-
dation induced on the primary users’ performance is null or
tolerable. How to impose interference constraints on second-
ary users is a complex and open regulatory issue [2], [4].
Roughly speaking, restrictive constraints may marginalize
the potential gains offered by the dynamic resource assign-
ment mechanism, whereas loose constraints may affect the
compatibility with legacy systems. Both deterministic and
probabilistic interference constraints have been suggested in
the literature [1], [2], [4], [15], namely: the maximum MUI
interference power level perceived by any active primary user
(the so-called interference temperature limit) [1], [2] and the

maximum probability that the
MUI interference level at each
primary user’s receiver may
exceed a prescribed threshold
[4], [15]. In the presence of
sensing errors, the access to
channels identified as idle
should also depend on the
goodness of the channel esti-
mation. As shown in [17], in
this case the optimal strategy is
probabilistic, with a probability
depending on both the false
alarm and miss probabilities.

In this article, we are interested in analyzing the contention
among the secondary users over a multiuser channel where
there are primary users as well. To limit the complexity of the
problem, in the effort to find out distributed techniques guaran-
teed to converge to NE points, we restrict our analysis to consid-
er only deterministic interference constraints, albeit expressed
in a very general form. In particular, we envisage the use of the
possible interference constraints Co. 1–Co. 4 (see also Figure 2).

CO.1 MAXIMUM TRANSMIT POWER 
FOR EACH TRANSMITTER

E
{
‖xq‖2

2

}
= Tr (Qq) ≤ Pq, (2)

where Qq denotes the covariance matrix of the symbols trans-
mitted by user q and Pq is the transmit power in units of ener-
gy per transmission.

[FIG1] Hierarchical cognitive radio network with primary and secondary users.
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CO. 2 NULL CONSTRAINTS

UH
q Qq = 0, (3)

where Uq is a strict tall matrix (to avoid the trivial solution
Qq = 0), whose columns represent the spatial and/or the fre-
quency directions along with user q is not allowed to transmit.
We assume, without loss of generality (w.l.o.g.), that each matrix
Uq is full-column rank.

CO. 3 SOFT-SHAPING CONSTRAINTS

Tr
(

GH
q Qq Gq

)
≤ P ave

q , (4)

where the matrices Gq are such that their range space identifies
the subspace where the interference level should be kept under
the required threshold. The interference temperature limit con-
straint [2] is given by the aggregated interference induced by all
secondary users. In this article, we assume that the primary user
imposing the soft constraint, has already computed the maxi-
mum tolerable interference power P ave

q for each secondary user.
The power limit P ave

q can also be the result of a negotiation or
opportunistic-based procedure between primary users (or regula-
tory agencies) and secondary users.

CO. 4 PEAK POWER CONSTRAINTS
The average peak power of each user q can be controlled by con-
straining the maximum eigenvalue [denoted by λmax(·)] of the
transmit covariance matrix along the directions spanned by the
column space of Gq:

λmax

(
GH

q Qq Gq

)
≤ P peak

q , (5)

where P peak
q is the maximum peak power that can be transmit-

ted along the spatial and/or the frequency directions spanned by
the column space of Gq.

The structure of the null constraints in (3) is a very general
form to express the strict limitation imposed on secondary users
to prevent them from
transmitting over the sub-
channels occupied by the
primary users. These sub-
channels are modeled as
vectors belonging to the
subspace spanned by the
columns of each matrix
Uq. This form includes, as
particular cases, the impo-
sition of nulls over: 1) the
frequency bands occupied
by the primary receivers;
2) the time slots occupied
by the primary users; and
3) the angular directions
identifying the primary

receivers as observed from the secondary transmitters. In the
first case, the subspace is spanned by a set of inverse fast
Fourier transform (IFFT) vectors, in the second case by a set of
canonical vectors, and in the third case by the set of steering vectors
representing the directions of the primary receivers as observed from
the secondary transmitters. It is worth emphasizing that the
structure of the null constraints in (3) is much more general
than the three cases mentioned above, as it can incorporate
any combination of the frequency, time and space coordinates.

The use of the spatial domain can greatly improve the capa-
bilities of cognitive users, as it allows them to transmit over the
same frequency band but without interfering. This is possible if
the secondary transmitters have an antenna array and use a
beamforming that puts nulls over the directions identifying the
primary receivers. Of course, this requires the identification of
the primary receivers, a task that is much more demanding than
the detection of primary transmitters [4]. As an example, there
are some recent works showing that, in the application of CR
over the spectrum allocated to commercial TV, one might
exploit the local oscillator leakage power emitted by the radio
frequency (RF) front-end of the TV receiver to locate the
receivers [18]. Of course, in such a case, the detection range is
quite short and this calls for a deployment of sensors very close
to the potential receivers. A different scenario pertains to cellu-
lar systems. In such a case, the mobile users might be rather
hard to locate and track. However, the base stations are rela-
tively easier to identify. Hence, in a cellular system operating in
a time-division duplexing (TDD) mode, the secondary users
could exploit the time slot allocated for the uplink channel and
put a null in the direction of the base stations. This would avoid
any interference towards the cellular system users, without the
need of tracking the mobile users.

The soft-shaping constraints expressed in (4) and (5) repre-
sent a constraint on the total average and peak average power
radiated (projected) along the directions spanned by the column
space of matrix Gq. They are a relaxed form of (3) and can be
used to keep the portion of the interference temperature generat-
ed by each secondary user q under the desired value. In fact,

[FIG2] Example of null/soft-shaping constraints.
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under (4)–(5), the secondary users are allowed to transmit over
some subchannels occupied by the primary users but only pro-
vided that the interference that they generate falls below a pre-
scribed threshold. For example, in a MIMO setup, the matrix
Gq in (4) would contain, in its columns, the steering vectors iden-
tifying the directions of the primary receivers.

Within the assumptions made above, invoking the capacity
expression for the single user Gaussian MIMO channel—
achievable using random Gaussian codes by all the users—the
maximum information rate on link q for a given set of users’
covariance matrices Q1, . . . , QQ , is [19]

Rq(Qq, Q−q) = log det
(

I + HH
qqR−1

−qHqqQq

)
, (6)

where

R−q � Rvq +
∑
r �= q

HrqQrHH
rq (7)

is the MUI plus noise covariance matrix observed by user q and
Q−q � (Qr)r �= q is the set of all the users’ covariance matrices,
except the qth one. Observe that R−q depends on the strategies
Q−q of the other players.

RESOURCE SHARING AMONG
SECONDARY USERS BASED ON GAME THEORY
Given the multiuser nature of the scenario described above, the
design of the optimal transmission strategies of secondary users
would require a multiobjective formulation of the optimization
problem, as the information rate achieved on each secondary user’s
link constitutes a different single objective function. The globally
optimal solutions of such a problem—the Pareto optimal surface of
the multiobjective problem—would define the largest rate region
achievable by secondary users, given the power constraints (Co.
1–Co. 4): the rate vector profile R(Q�) � [R1(Q�), . . . , RQ(Q�)]
is Pareto optimal if there exists no other rate profile R(Q) that
dominates R(Q�) componentwise, i.e., R(Q�) ≥ R(Q), for all feasi-
ble Qs, where at least one inequality is strict.

Unfortunately, the computation of the rate region is analytical-
ly intractable and thus not applicable in a CR scenario, since every
scalar/multiobjective optimization problem involving the rates of
secondary users in (6) is not convex (implied from the fact that
the rates Rq(Q) are nonconcave functions of the covariance
matrices Q). Furthermore, even in the simpler case of transmis-
sions over single-input, single-output (SISO) parallel channels,
the network utility maximization (NUM) problem based on the
rates functions (6) has been proved in [24] to be a strongly NP-
hard problem, under various practical settings as well as different
choices of the system utility function (e.g., sum-rate, weighted
sum-rate, and geometric rate-mean). Roughly speaking, this
means that there is no hope to obtain an algorithm, even central-
ized, that can efficiently compute the exact globally optimal solu-
tion. Although in theory, the rate region could be still found by an
exhaustive search through all possible feasible covariance matri-

ces, the computational complexity of this approach is prohibitive-
ly high, given the large number of variables and users involved in
the optimization. The situation is particularly critical in CR sys-
tems, where the cognitive users sense a very large spectrum.
Consequently, suboptimal algorithms have been proposed in the
literature to solve special cases of the proposed optimization
[20]–[23], most of them dealing with the maximization of the
(weighted) sum-rate in SISO frequency-selective interference
channels (obtained from our general model when the channel
matrices are diagonal, the covariance matrices reduce to the
power allocation vectors, and the null/soft-shaping constraints are
removed) [20], [21]. Due to the nonconvex nature of the problem,
these algorithms either lack global convergence or may converge
to poor spectrum sharing strategies. 

Furthermore, even if one decides to employ a suboptimal
method, e.g., [20]–[23], the algorithms are not suitable for CR
systems as they are centralized and thus cannot be implemented
in a distributed way. These techniques require a central author-
ity (or node in the network) with knowledge of the (direct and
cross-) channels to compute all the transmission strategies for
the different nodes and then to broadcast the solution. This
scheme would clearly pose a serious implementation problem
in terms of scalability of the network and amount of signaling
to be exchanged among the nodes, which makes such an
approach not appealing in the scenario considered in this article.

To overcome the above difficulties and reach a better trade-
off between performance and complexity, we shift our focus to
a different notion of optimality: the competitive optimality cri-
terion; which motivates a game theoretical formulation of the
system design. Using the concept of NE as the competitive
optimality criterion, the resource allocation problem among
secondary users is then cast as a strategic noncooperative
game, in which the players are the secondary users and the
payoff functions are the information rates on each link: Each
secondary user q competes against the others by choosing the
transmit covariance matrix Qq (i.e., his strategy) that maxi-
mizes his own information rate Rq(Qq, Q−q) in (6), given con-
straints imposed by the presence of the primary users, besides
the usual constraint on transmit power. A NE of the game
is reached when each user, given the strategy profiles of
the others, does not get any rate increase by unilaterally
changing his own strategy. The first question to answer
under  such f ramework  i s  whether  such an  overa l l
dynamical system can eventually converge to an equilib-
rium point, while preserving the QoS of primary users.
The second basic issue is if the optimal strategies to be
adopted by each user  can be computed in a  total ly
decentralized way. We address both questions in the
forthcoming sections.

For the sake of simplicity, we start considering only con-
straints Co. 1 and Co. 2. These constraints are suitable to model
interweave communications among secondary users where, in
general, there are restrictions on when and where they may
transmit (this can be done using the null constraints Co. 2).
Then, we allow underlay and interweave communications
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simultaneously, by including in the optimization also interfer-
ence constraints Co. 3 and Co. 4.

RATE MAXIMIZATION GAME WITH NULL CONSTRAINTS
Given the rate functions in (6) and constraints Co. 1–Co. 2, the
rate maximization game is formally defined as 

(G1) :

maximize Rq(Qq, Q−q)

Qq � 0

subject to Tr(Qq) ≤ Pq,

UH
q Qq = 0,

∀q = 1, . . . , Q,

(8)
where Q is the number of players (the secondary users) and
Rq(Qq, Q−q) is the payoff function of player q, defined in (6).
Without the null constraints, the solution of each optimization
problem in (8) would lead to the well-known MIMO waterfilling
solution [19]. The presence of the null constraints modifies the
problem and the solution for each user is not necessarily a water-
filling anymore. Nevertheless, we show now that introducing a
proper projection matrix the solutions of (8) can still be efficient-
ly computed via a waterfilling-like expression. To this end, we
rewrite game G1 in a more convenient form as detailed next. 

Introducing the projection matrix PR(Uq)⊥ =
I − Uq(UH

q Uq)
−1UH

q (the orthogonal projection onto R(Uq)
⊥,

where R(·) is the range space operator), it follows from the con-
straint UH

q Qq = 0 that any optimal Qq in (8) will always satisfy

Qq = PR(Uq)⊥ QqPR(Uq)⊥ . (9)

The game G1 can then be equivalently rewritten as

maximize
Qq � 0

log det
(

I + H̃H
qqR̃−1

−qH̃qqQq

)

subject to Tr(Qq) ≤ Pq

Qq = PR(Uq)⊥ QqPR(Uq)⊥ ,

∀q = 1, . . . , Q,

(10)

where each H̃rq � HrqPR(Ur)⊥ is a modified channel and

R̃−q � Rvq +
∑
r �= q

H̃rqQrH̃H
rq.

At this point, the problem can be further simplified by noting
that the constraint Qq = PR(U⊥

q ) QqPR(U⊥
q ) in (10) is redundant.

The final formulation then becomes

maximize
Qq � 0

log det
(

I + H̃H
qqR̃−1

−qH̃qqQq

)

subject to Tr(Qq) ≤ Pq,

∀q = 1, . . . , Q.

(11)

This is due to the fact that, for any user q, any optimal solu-
tion Q�

q in (11), the MIMO waterfilling solution [13], will be
orthogonal to the null space of H̃qq, whatever R̃−q is, imply-
ing Q�

q = PR(Uq)⊥ Q�
qPR(Uq)⊥ . Building on the equivalence of

(8) and (11), we can apply the results in [13] to the game in
(11) and derive the structure of the NE of game G1 , as
detailed next.

NASH EQUILIBRIA OF GAME G1

Game G1 always admits an NE, for any set of channel matri-
ces, transmit power of the users, and null constraints, since
it is a concave game (the payoff of each player is a concave
function in his own strategy and each admissible strategy
set is convex and compact) [13]. Moreover, it follows from
(11) that all the Nash equilibria of G1 satisfy the following
set of nonlinear matrix-value fixed-point equations [13]:
∀q = 1, . . . , Q,

Q�
q = W̃Fq

(
H̃H

qqR−1
−q(Q

�−q)H̃qq

)
� W�

q Diag
(
p�

q
)

W�H
q , (12)

where we made explicit the dependence of R−q on Q�−q as
R−q(Q�−q); W̃Fq denotes the waterfilling operator, implicitly
defined in (12); W�

q = Wq(Q�−q) is the semiunitary matrix with
columns equal to the eigenvectors of matrix H̃H

qqR−1
−q(Q

�−q)H̃qq

corresponding to the positive eigenvalues λ�
q,k = λq,k(Q�−q),

with R−q(Q−q) defined in (7); and the power allocation
p�

q = pq(Q�−q) satisfies the following simultaneous waterfilling
equation: for all k and q,

p�
q(k) =

(
μq − 1

λ�
q,k

)+
, (13)

with (x)+ � max(0, x) and μq chosen to satisfy the power con-
straint 

∑
k p�

q(k) = Pq. 
Interestingly, the solution (12) shows that the null con-

straints in the transmissions of secondary users can be handled
without affecting the computational complexity: The optimal
transmission strategy of each user q can be efficiently computed
via a MIMO waterfilling solution, provided that the original
channel matrix Hqq is replaced by H̃qq.

This result has an intuitive interpretation: To guarantee
that each user q does not transmit over a given subspace
(spanned by the columns of Uq), whichever the strategies of
the other users are, while maximizing his information rate,
one only needs to induce in the channel matrix Hqq a null
space that coincides with the subspace where the transmission
is not allowed. This is precisely what is done by introducing
the modified channel H̃qq.

The waterfilling-like structure of the NE as given in (12)
along with the interpretation of the MIMO waterfilling solu-
tion as a matrix projection onto a proper convex set as given in
[13] play a key role in studying the uniqueness of the NE and
in deriving conditions for the convergence of the distributed
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algorithms described later. The analysis of the uniqueness of
the NE goes beyond the scope of this article and it is addressed
in [14]. What is important to remark here is that, as expected,
the conditions guaranteeing the uniqueness of the NE impose
a constraint on the maximum level of MUI generated by sec-
ondary users that may be tolerated in the network. But, inter-
estingly, the uniqueness of the equilibrium is not affected by
the interference generated by the primary users.

RATE MAXIMIZATION GAME WITH
NULL CONSTRAINTS VIA VIRTUAL NOISE SHAPING
In this section, we show that an alternative approach to
impose null constraints Co. 2 on the transmissions of second-
ary users passes through the introduction of virtual interfer-
ers. The idea behind this alternative approach can be easily
understood if one considers the transmission over SISO fre-
quency-selective channels, where all the channel matrices
have the same eigenvectors (the FFT vectors): to avoid the use
of a given subchannel, it is sufficient to introduce a virtual
noise with sufficiently high power over that subchannel. The
same idea cannot be directly applied to the MIMO case, as
arbitrary MIMO channel matrices have different right/left sin-
gular vectors from each other. Nevertheless, we show how to
design the covariance matrix of the virtual noise (to be added
to the noise covariance matrix of each secondary receiver), so
that all the Nash equilibria of the game satisfy the null con-
straint Co. 2 along the specified directions.

Let us consider the following strategic noncooperative game:

(Gα) :

maximize
Qq � 0

log det
(

I+HH
qqR−1

−qHqqQq

)

subject to Tr(Qq) ≤ Pq,
∀q = 1, . . . , Q,

(14)

where

R−q,α � R−q + αÛqÛH
q

= Rvq +
∑
r�=q

HrqQrHH
rq + αÛqÛH

q , (15)

denotes the MUI-plus-noise covariance matrix observed by sec-
ondary user q, plus the covariance matrix αÛqÛH

q of the virtual
interference along R(Ûq), where Ûq is a tall matrix and α is a
positive constant. Our interest is on deriving the asymptotic
properties of the solutions of Gα , as α → +∞. To this end, we
introduce the following intermediate definitions first. For each
q, define the tall matrix Û⊥

q such that R(Û⊥
q ) = R(Ûq)

⊥ , and
the modified channel matrices

Ĥrq = Û⊥H

q Hrq ∀r, q = 1, . . . , Q. (16)

We then introduce the auxiliary game G∞, defined as

(Gα) :

maximize
Qq � 0

log det
(

I+ĤH
qqR̂−1

−qĤqqQq

)

subject to Tr(Qq) ≤ Pq,
∀q = 1, . . . , Q,

(17)

where

R̂−q � Û⊥H
q RvqÛ⊥

q +
∑
r �= q

ĤrqQrĤH
rq. (18)

It can be shown that games Gα and G∞ are asymptotically
equivalent in the sense specified next.

NASH EQUILIBRIA OF GAMES Gα AND G∞
Games Gα and G∞ always admit an NE, for any set of channel
matrices, power constraints, and α > 0. Moreover, under mild
conditions guaranteeing the uniqueness of the NE of both
games (denoted by Q�

α and Q�∞, respectively), we have [14]:

lim
α →∞ Q�

α = Q�∞, (19)

i.e., the NE of Gα asymptotically coincides with that of G∞.
Observe that, similarly to game G1, also in games Gα and

G∞, the best response of each player can be efficiently comput-
ed via MIMO waterfilling-like solutions, and the Nash equilibria
of both games satisfy a simultaneous waterfilling equation.

Using (19), one can derive the asymptotic properties of the
(unique) NE of game Gα as α → ∞, through the properties of
the equilibrium Q�∞ of G∞. Following a similar approach as in
the previous section, one can show that each Q�

q,∞ satisfies the
following condition:

UH
q Q�

q,∞ = 0, with Uq � H−1
qq Ûq. (20)

Condition (20) provides, for each user q, the desired relationship
between the directions of the virtual noise to be introduced in the
noise covariance matrix of the user [see (18)], the matrix Ûq, and
the real directions along which user q will not allocate any power,
i.e., the matrix Uq. It turns out that if user q is not allowed to allo-
cate power along Uq, it is sufficient to choose in (18) Ûq � HqqUq.

Since the existence and uniqueness of the NE of game Gα do
not depend on α, the (unique) NE of Gα (that in general will
depend on the value of α) can be reached using the asynchro-
nous algorithms described later, irrespective of the value of α.
Thus, for sufficiently large values of α, the NE of Gα tends to
satisfy condition (20), which provides an alternative way to
impose constraint Co. 2.

RATE MAXIMIZATION GAME
WITH SOFT AND NULL CONSTRAINTS
We focus now on the rate maximization in the presence of both
null and soft-shaping constraints. The resulting game can be
formulated as follows: ∀q = 1, . . . , Q,
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(G2) :

maximize
Qq � 0 Rq(Qq, Q−q)

subject to Tr
(
GH

q QqGq
) ≤ P ave

q

λmax
(
GH

q Qq Gq
) ≤ P peak

q

UH
q Qq = 0.

(21)

We assume w.l.o.g. that each Gq is a full-row rank matrix, so
that the soft-shaping constraint in (21) imposes a con-
straint on the average transmit power radiated by user q in
the whole space.

The soft constraints in (21) are the result of a constraint on
the overall interference temperature limit imposed by the pri-
mary users [2]. Typically, the most stringent conditions between
the power constraints Co. 1 and Co. 3 is the soft-shaping con-
straint Co. 3. This motivates the absence in (21) of the power
constraint Co. 1, although it could also be added. 

NASH EQUILIBRIA OF GAME G2

We can derive the structure of the NE of game G2, similarly to
what we did for game G1. For each q ∈ �, define the tall matrix
Uq � G�

qUq, where G�
q denotes the Monroe-Penrose pseudoin-

verse of Gq [25], introduce the projection matrix
PR(Uq)⊥

= I − Uq(U
H
q Uq)

−1 U
H
q (the orthogonal projection

onto R(Uq)
⊥) and the modified channel matrices

Hrq = HrqG�H

r PR(Ur)⊥
, r, q = 1, . . . , Q. (22)

Using the above definition, we can now characterize the Nash
equilibria of game G2, as shown next.

The game G2 admits an NE, for any set of channel matri-
ces and null/soft-shaping constraints. Moreover, every NE
satisfies the following set of nonlinear matrix-value fixed-
point equations:

Q�
q = G�H

q WFq

(
H

H
qqR−1

−q(Q
�−q)Hqq

)
G�

q

� G�H

q V�
q diag

(
p�

q
)

V�H
q G�

q

∀q = 1, . . . , Q,

(23)

where WFq denotes the waterfilling operator, implicitly defined
in (23); V�

q = Vq(Q�−q) is the semiunitary matrix with columns
equal to the eigenvectors of matrix H

H
qqR−1

−q(Q
�−q)Hqq , with

R−q(Q−q) defined in (7), corresponding to the L̄q = rank(Hqq)
positive eigenvalues λ�

q,k = λq,k(Q�−q), and the power allocation
p�

q = pq(Q�−q) satisfies the following simultaneous waterfilling
equation: for all k and q,

p�
q(k) =

⎧⎪⎨
⎪⎩

[
μq − 1

λ�
q,k

]P peak
q

0
, if P peak

q L̄q > P ave
q ,

P peak
q , otherwise,

(24)

where [·]P peak
q

0 denotes the Euclidean projection onto the inter-
val [0, P peak

q ] and μq is chosen to satisfy the power constraint∑
k p�

q (k) = P ave
q (see, e.g., [26] for practical algorithms to

compute such a μq).
The structure of the NE in (23) states that the optimal

transmission strategy of each user leads to a diagonalizing
transmission with a proper power allocation, after pre/post-
multiplication of the waterfilling solution by matrix G�

q.
Similarly to G1, the conditions for the uniqueness of the
NE of game G2 can be obtained, building on the interpre-
tation of the waterfilling solutions in (23) as matrix pro-
jection [13]. As expected, the NE of the game is unique,
provided that the interference generated by secondary
users is not too high.

MIMO ASYNCHRONOUS ITERATIVE 
WATERFILLING ALGORITHM
So far, we have shown that the optimal resource allocation
among secondary users in hierarchical cognitive networks
corresponds to an equilibrium of the system, where all the
users have maximized their own rates, without hampering the
communications of primary users. Since there is no reason to
expect a system to be initially at the equilibrium, the funda-
mental problem becomes to find a procedure that reaches
such an equilibrium from nonequilibrium states. In this sec-
tion, we focus on algorithms that converge to these equilibria.
Since we are interested in a decentralized implementation,
where no signaling among secondary and primary users is
allowed, we consider only totally distributed iterative algo-
rithms, where each user acts independently of the others to
optimize his own transmission strategy while perceiving the
other active users as interference

More specifically, to reach the Nash equilibria of the games
introduced in the previous section, we propose a fairly general
distributed and asynchronous iterative algorithm, called asyn-
chronous iterative waterfilling algorithm (IWFA). In this algo-
rithm, all secondary users maximize their own rate (via the
single user MIMO waterfilling solution (12) for game G1, (23)
for game G2, and the classical MIMO waterfilling solution for
games Gα and G∞) in a totally asynchronous way, while keep-
ing the temperature noise levels in the licensed bands under
the required threshold [2]. According to the asynchronous
updating schedule, some users are allowed to update their
strategy more frequently than the others, and they might even
perform these updates using outdated information on the
interference caused by the others.

Before introducing the proposed asynchronous MIMO
IWFA, we need the following preliminary definitions. We
assume, without loss of generality, that the set of times at
which one or more users update their strategies is the dis-
crete set T = N+ = {0, 1, 2, . . . }. Let Q(n)

q denote the covari-
ance matrix of the vector signal transmitted by user q at the
nth iteration, and let Tq ⊆ T denote the set of times n at
which Q(n)

q is updated (thus, at time n /∈ Tq , Q(n)
q is left

unchanged). Let τ q
r (n) denote the most recent time at which



the interference from user r is perceived by user q at the nth
iteration (observe that τ q

r (n) satisfies 0 ≤ τ
q
r (n) ≤ n). Hence,

if user q updates his own covariance matrix at the nth itera-
tion, then he chooses his optimal Q(n)

q , according to (12) for
game G1 and (23) for game G2, and using the interference
level caused by the set of covariance matrices:

Q(τττ q(n))
−q �

(
Q
(τ

q
1 (n))

1 , . . . , Q

(
τ

q
q−1(n)

)
q−1 , Q

(
τ

q
q+1(n)

)
q+1 , . . . , Q

(
τ

q
Q(n)

)
Q

)
.

(25)

Some standard conditions in asynchronous convergence theory
that are fulfilled in any practical implementation need to be sat-
isfied by the schedule {τ q

r (n)} and {Tq}; we refer to [13] for the
details. Using the above notation, the asynchronous MIMO IWFA
is formally described in Algorithm 1 below, where the mapping
in (27) is defined as

fq(Q−q) � W̃Fq

(
H̃H

qqR−1
−qH̃qq

)
, q = 1, . . . , Q, (26)

with W̃Fq(·) given in (12) if the algorithm is applied to game G1,
and it is defined as

fq(Q−q) � G�H

q WFq

(
H

H
qqR−1

−qHqq

)
G�

q, q = 1, . . . , Q,

with WFq(·) given in (23) if the algorithm is applied to game G2.
The mapping fq(Q−q) reduces to the classical MIMO waterfilling
solution [19] if games Gα and G∞ are considered. 

ALGORITHM 1: MIMO ASYNCHRONOUS IWFA
Set n = 0 and Q(0)

q = any feasible point; 
for n = 0 : Nit

Q(n+1)
q =

⎧⎨
⎩

fq

(
Q(τττ q(n))

−q

)
, if n ∈ Tq,

Q(n)
q , otherwise;

∀q =1, . . . , Q

(27)

end
Convergence of the asynchronous IWFA is studied in [13],

[14] (see also [11] and [12] for special cases of the algorithm),
where it was proved that the algorithm converges to the NE of
the proposed games under the same conditions guaranteeing the
uniqueness of the equilibrium. The proposed asynchronous IWFA
contains as special cases a plethora of algorithms, each one
obtained by a possible choice of the updating schedule {τ q

r (n)},
{Tq}. The sequential [2], [11], [27], [28] and simultaneous
[11]–[13] IWFAs are just two examples of the proposed general
framework. The important result stated in [11]–[13] is that all the
algorithms resulting as special cases of the asynchronous MIMO
IWFA are guaranteed to reach the unique NE of game under the
same set of convergence conditions, since convergence conditions
do not depend on the particular choice of {Tq} and {τ q

r (n)} [13].
Moreover all the algorithms obtained from Algorithm 1 have

the following desired properties:
■ Low complexity and distributed nature: Even in the
presence of null and/or shaping constraints, the best
response of each user q can be efficiently and locally com-
puted using a MIMO waterfilling-based solution, provided
that each channel Hqq is replaced by the modified channel
H̃qq (if game G1 is considered) or Hqq (if game G2 is consid-
ered). Thus, Algorithm 1 can be implemented in a distrib-
uted way, since each user only needs to measure the overall
interference-plus-noise covariance matrix R−q and waterfill
over H̃H

qqR−1
−qH̃qq [or over H

H
qqR−1

−qHqq].
■ Robustness: Algorithm 1 is robust against missing or out-
dated updates of secondary users. This feature strongly relaxes
the constraints on the synchronization of the users’ updates
with respect to those imposed, for example, by the simultane-

ous or sequential updating schemes [11]–[13].
■ Fast convergence behavior: The simultane-
ous version of the proposed algorithm con-
verges in a very few iterations, even in
networks with many active secondary users.
As an example, in Figure 3 we show the rate
evolution of three links out of eight secondary
links, corresponding to the sequential IWFA
and simultaneous IWFA, as a function of the
iteration index. As expected, the sequential
IWFA is slower than the simultaneous IWFA,
especially if the number of active secondary
users is large, since each user is forced to wait
for all the users scheduled in advance, before
updating his own covariance matrix. This intu-
ition is formalized in [11], where the authors
provided the expression of the asymptotic con-
vergent factor of both the sequential and
simultaneous IWFAs.

[FIG3] Simultaneous versus sequential IWFA: rates of secondary users versus
iterations, obtained by the sequential IWFA (dashed-line curves) and simultaneous
IWFA (solid-line curves).
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■ Control of the radiated interference: Thanks to the game
theoretical formulation including null and/or soft-shaping
constraints, the proposed asynchronous IWFA does not suffer
of the main drawback of the classical sequential IWFA [27],
i.e., the violation of the interference temperature limits [2].
MIMO CR can greatly benefit from multiple antennas to

limit or avoid interference towards the primary users. As an
example, Figure 4 shows the optimal resource allocation based
on the game theoretical formulation G1, for a cognitive MIMO
network composed by two primary users and two secondary
users, sharing the same spectrum and space. Secondary users
are equipped with four transmit/receive antennas, placed in
uniform linear arrays critically spaced at half of the wave-
length of the passband transmitted signal. For the sake of sim-
plicity, we assumed that the channels between the transmitter
and the receiver of the secondary users have three physical
paths (one line-of-sight and two reflected paths) as shown in
Figure 4(a). To preserve the QoS of primary users’ transmis-
sions, null constraints are imposed to secondary users in the
(line-of-sight) directions of primary users’ receivers [see sub-
plot (a)]. For the scenario shown in the figure, one null con-
straint for each player is imposed along the transmit directions
φ1 = π/2 and φ2 = −5π/12. This can be done choosing for
each player q the matrix Uq in (21) coinciding with the spa-
tial  signature vector in the transmit direction φq , 
i.e., Uq = [1, exp(− j2π
tq sin(φq)), exp(− j2π2
tq sin(φq)),

exp(− j2π3
tq sin(φq))]T, with 
tq = 1/2 denoting the nor-
malized (by the signal wavelength) transmit antenna separation
and q = 1, 2. In Figure 4(b), we plot the transmit beamforming
patterns, associated to the (two) eigenvectors of the optimal
covariance matrix of the two secondary users at the NE,
obtained using Algorithm 1. In each radiation diagram plot,
solid (blue) and dashed (black) line curves refer to the two
eigenvectors corresponding to the nonzero eigenvalues
(arranged in increasing order) of the optimal covariance matrix
(recall that, because of the null constraints, the equivalent chan-
nel matrix H̃qq in (21) has rank equal to 2). Observe that the
null constraints guarantee that at the NE no power is radiated
by the two secondary transmitters along the directions φ1 (for
transmitter one) and φ2 (for transmitter two), showing that in
the MIMO case, the orthogonality among primary and secondary
users can be reached in the space rather than in the frequency
domain, implying that primary and secondary users may share
frequency bands, if this is allowed by FCC spectrum policies.

SPECIAL CASES
The MIMO game theoretic formulation proposed in the previous
sections provides a general and unified framework for studying
the resource allocation problem based on rate maximization in
hierarchical CR networks, where primary and secondary users
coexist. In this section, we specialize the results to two scenarios
of interest: 1) the spectrum sharing problem among primary and
secondary users transmitting over SISO frequency-selective
channels, and 2) the MIMO transceivers design of heterogeneous
systems sharing the same spectrum over unlicensed bands.

SPECTRUM SHARING OVER SISO FREQUENCY-SELECTIVE
CHANNELS WITH SPECTRAL MASK CONSTRAINTS
The block transmission over SISO frequency-selective channels
is obtained from the I/O model in (1), when each channel matrix
Hrq is a N × N Toeplitz circulant matrix, Rvq is a N × N diago-
nal matrix and N is the length of the transmitted block (see,
e.g., [10]). This leads to the following eigendecomposition for
each channel Hrq = WDrq WH, where W is the normalized IFFT
matrix, i.e., [W]i j � e j2π(i−1)( j−1)/N/

√
N for i, j = 1, . . . , N

and Drq is a N × N diagonal matrix, where [Drq]kk � Hrq(k) is
the frequency-response of the channel between source r and
destination q. Within this setup, we focus on game G1 given in
(8), but similar results could be obtained if game G2, Gα or G∞
were considered instead. In the case of SISO frequency-selective
channels, game G1 can be rewritten as
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[FIG4] Optimal transmit beamforming patterns at the NE of
game G1 for a cognitive MIMO network composed of two
primary and two secondary users.
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maximize
Qq � 0

log det
(

I + HH
qqR−1

−qHqqQq

)

subject to Tr(Qq) ≤ Pq

[
WHQqW

]
kk ≤ pmax

q (k), ∀k = 1, . . . , N,

∀q = 1, . . . , Q, (28)

where {pmax
q (k)} is the set of spectral mask constraints, that can

be used to impose shaping (and thus also null) constraints on
the transmit power spectral density (PSD) of secondary users
over licensed/unlicensed bands.

NASH EQUILIBRIA 
The solutions of the game in (28) have the following structure
[10]:

Q�
q = W Diag(p�

q)W
H, ∀q = 1, . . . , Q, (29)

where p�
q � (p�

q (k))N
k= 1 is the solution to the following set of

fixed-point equations:

p�
q = wfq(p�−q), ∀q = 1, . . . , Q, (30)

with the waterfilling vector operator wfq(·) defined as

[wfq(p−q)]k �
[
μq − 1 + ∑

r �= q |Hrq(k)|2 pr(k)

|Hqq(k)|2
]pmax

q (k)

0

(31)

with k = 1, . . . , N, where μq is chosen to satisfy the power
constraint with equality 

∑
k p�

q (k) = Pq.
Equation (29) states that, in the case of SISO frequency-

selective channels, an NE is reached using, for each user, a mul-
ticarrier strategy (i.e., the diagonal transmission strategy
through the frequency bins), with a proper power allocation.
This simplification with respect to the general MIMO case,
is a consequence of the property that all channel Toeplitz
circulant matrices are diagonalized by the same matrix,
i.e., the IFFT matrix W, that does not depend on the chan-
nel realization.

Interestingly, multicarrier transmission with a proper
power allocation for each user is still the optimal transmis-
sion strategy if in (28) instead of the information rate, one
considers the maximization of the transmission rate using
finite order constellations and under the same constraints as
in (28) plus a constraint on the average error probability.
Using the gap approximation analysis, the optimal power allo-
cation is still given by the waterfilling solution (31), where
each channel transfer function |Hqq(k)|2 is replaced by
|Hqq(k)|2/�q, where �q ≥ 1 is the gap [10]. The gap depends
only on the constellation and on error probability constraint
Pe,q; for M-QAM constellations, for example, the resulting gap
is �q = (Q−1(Pe,q/4))2/3 (see, e.g., [29]).

Reaching an NE of the game in (28) satisfies a competitive
optimality principle, but, in general, multiple equilibria may
exist, so that one is never sure about which equilibrium is real-
ly reached. Sufficient conditions on the MUI that guarantee the
uniqueness of the equilibrium have been proposed in the litera-
ture [10]–[12], [27], and [28]. Among all, one of the two follow-
ing conditions is sufficient for the uniqueness of the NE:

∑
r �= q

max
k

|H̄rq(k)|2
|H̄qq(k)|2

d 2
qq

d 2
rq

< 1, ∀q = 1, . . . , Q, (32)

∑
r �= q

max
k

|H̄rq(k)|2
|H̄qq(k)|2

d 2
qq

d 2
rq

< 1, ∀r = 1, . . . , Q, (33)

where we have introduced the normalized channel transfer func-
tions Hrq(k) � H̄rq(k)/d 2

rq, ∀r, q, with drq indicating the dis-
tance between transmitter of the r th link and the receiver of the
qth link. From (32)–(33), it follows that, as expected, the unique-
ness of NE is ensured if secondary users are sufficiently far apart
from each other. In fact, from (32)–(33), for example, one infers
that there exists a minimum distance beyond which the unique-
ness of NE is guaranteed, corresponding to the maximum level of
interference that may be tolerated by the users. Specifically, con-
dition (32) imposes a constraint on the maximum amount of
interference that each receiver can tolerate; whereas (33) intro-
duces an upper bound on the maximum level of interference that
each transmitter is allowed to generate. Interestingly, the
uniqueness of the equilibrium does not depend on the interfer-
ence generated by the transmissions of primary users.

ASYNCHRONOUS IWFA 
To reach the equilibrium of the game, secondary users can per-
form the asynchronous IWFA based on the mapping in (31).
This algorithm can be obtained directly from Algorithm 1, as a
special case. It was proved in [12] that, e.g., under conditions
(32)–(33), the asynchronous IWFA based on mapping (31) con-
verges to the unique NE of game in (28) as Nit → ∞, for any set
of feasible initial conditions and updating schedule.

In Figure 5, we show an example of the optimal power allo-
cation in SISO frequency-selective channels at the NE, obtained
using the proposed asynchronous IWFA, for a CR system com-
posed by one primary user [subplot (a)] and two secondary users
[subplot (b)] subject to null constraints over licensed bands,
spectral mask constraints and transmit power constraints. In
each plot, solid and dashed-dot line curves refer to optimal PSD
of each link and PSD of the MUI plus thermal noise, normalized
by the channel transfer function square modulus of the link,
respectively. In this example, there is a band A (from 50 to 300
frequency bins) allocated to an active primary user; there is then
a band B (from 300 to 400 frequency bins) allocated to licensed
users, but temporarily unused; the rest of the spectrum, denoted
as C, is vacant. The temporarily void band B can be utilized by
secondary users, provided that they do not overcome a maxi-
mum tolerable spectral density. The optimal power allocations
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shown in Figure 5 are the result of running the simultaneous
IWFA. We can observe that the secondary users do not transmit
over band A and they allocate their power over both bands B and
C, respecting a power spectral density limitation over band B.

MIMO TRANSCEIVER DESIGN OF HETEROGENEOUS
SYSTEMS IN UNLICENSED BANDS
We consider now a scenario where multiple unlicensed MIMO
cognitive users share the same unlicensed spectrum and geo-
graphical area. The availability of MIMO transceivers clearly
enriches the possibilities for spectrum sharing as it adds the
extra spatial degrees of freedom. In unlicensed bands, there are
no interference constraints to be satisfied by the users. Thus, the
game theoretical formulation as given in (8), without consider-
ing the null constraints, seems the most appropriate to study
the resource allocation problem in this scenario. In the follow-
ing we refer to game G1 tacitly assuming that the null con-
straints are removed.

Similarly to the SISO case, sufficient conditions for the
uniqueness of the NE are given by one of the two following set
of conditions (more general conditions are given in [13]):

Low MUI received:
∑
r �= q

ρ
(

HH
rqH−H

qq H−1
qq Hrq

)
< 1,

∀q = 1, . . . , Q, (34)

Low MUI generated:
∑
q �= r

ρ
(

HH
rqH−H

qq H−1
qq Hrq

)
< 1,

∀r = 1, . . . , Q, (35)

where ρ(A) denotes the spectral radius of A [25]. Conditions
(34)–(35) quantify how much MUI can be tolerated by the sys-
tems to guarantee the uniqueness of the NE. Interestingly,
(32)–(33) and most of the conditions known in the literature
[11], [27], and [28] for the uniqueness of the NE of the rate-
maximization game in SISO frequency-selective interference
channels and OFDM transmission come naturally from
(34)–(35) as special cases.

The Nash equilibria of game G1 can be reached using the
asynchronous IWFA described in Algorithm 1, whose conver-
gence is guaranteed under conditions (34)–(35), for any set of
initial conditions and updating schedule of the users [13].

In Figure 6 we show an example of the benefits of MIMO
transceivers in the cognitive radio context. We plot in the figure
the sum-rate of a two-user frequency-selective MIMO system as
a function of the inter-pair distance among the links, for differ-
ent number of transmit/receive antennas. The rate curves are
averaged over 500 independent channel realizations, whose taps
are simulated as independent identically distributed (i.i.d.)
Gaussian random variables with zero mean and unit variance.
For the sake of simplicity, the system is assumed to be symmet-
ric, i.e., the transmitters have the same power budget and the
interference links are at the same distance (i.e.,
drq = dqr, ∀q, r), so that the cross channel gains are compara-
ble in average sense. From Figure 6, one infers that, as for sin-

gle-user systems or multiple access/broadcast channels, also in
MIMO interference channels, increasing the number of anten-
nas at both the transmitter and the receiver side leads to a better
performance. The interesting result, coming from Figure 6, is
that the incremental gain due to the use of multiple
transmit/receive antennas is almost independent of the interfer-
ence level in the system, since the MIMO (incremental) gains in
the high-interference case (small values of drq/dqq) almost coin-
cide with the corresponding (incremental) gains obtained in the
low-interference case (large values of drq/dqq), at least for the
system simulated in Figure 6. This desired property is due to the
fact that the MIMO channel provides more degrees of freedom
for each user than those available in the SISO channel, that
can be explored to find out the best partition of the available
resources for each user, possibly cancelling the MUI.

CONCLUSIONS AND DIRECTIONS
FOR FURTHER DEVELOPMENTS
In this article, we have proposed a signal processing approach
to the design of CR systems, using a competitive optimality
principle based on game theory. We have addressed and solved
some of the challenging issues in CR, namely: 1) the establish-
ment of conditions guaranteeing that the dynamical interac-
tion among cognitive nodes, under constraints on the transmit
spectral mask and on interference induced to primary users,
admits a (possibly unique) equilibrium; and 2) the design of
decentralized algorithms able to reach the equilibrium points,
with minimal coordination among the nodes. We have seen
how basic signal processing tools such as subspace projectors
play a fundamental role. The spectral mask constraints have
been in fact used in a very broad sense, meaning that the pro-
jection of the transmitted signal along prescribed subspaces
should be null (null constraints) or below a given threshold
(soft constraints). The conventional spectral mask constraints
can be seen as a simple case of this general set-up, valid for
SISO channels and using as subspaces the space spanned by
the IFFT vectors with frequencies falling in the guard bands.
This general setup encompasses multiantenna MIMO systems,
which is particularly useful for CR, as it provides the additional
spatial degrees of freedom to control the interference generat-
ed by the cognitive users.

Of course, this field of research is full of interesting further
directions worth of investigation. The NE points derived in this
article were dictated by the need of finding totally decentralized
algorithms with minimal coordination among the nodes.
However, the NE points may not be Pareto efficient. This raises
the issue of how to move from the NE towards the Pareto opti-
mal tradeoff surface, still using a decentralized approach. Game
theory itself provides a series of strategies to move from ineffi-
cient Nash equilibria towards Pareto-efficient solutions, still
using a decentralized approach, through, for example, repeated
games, where the players learn from their past choices [9].
Examples of such games are the auction games, where the auc-
tioneer (primary users) dynamically determine resource alloca-
tion and prices for the bidders (secondary users), depending on
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traffic demands, QoS and supply/demand curves,
as evidenced in a series of works (see, e.g.,
[30]–[32]). Repeated games may also take the form
of negotiations between primary and secondary
users, with primary users willing to lease part of
their spectrum to secondary users, under suitable
remunerations [16] or under the availability given
by secondary users to establish cooperative links
with the primary users to improve their QoS [33].
Competitive pricing for spectrum sharing was also
proposed as an oligopoly market where a few pri-
mary users offer spectrum access opportunities to
secondary users [34]. An interesting issue will be
the integration of our asynchronous IWFA in
repeated (auction) games, where the optimization
considers a set of primary users offering the lease
of portion of their resources to a set of secondary
users, as a function of traffic demands, QoS
requirements and physical constraints.

Our search for the uniqueness conditions of
the NE and the convergence conditions of our pro-
posed algorithms forced us to simplify the model.
For example, we assumed that each receiver has
an error-free short-term prediction of the channel.
This assumption was necessary for the mathemati-
cal tractability of the problem and to be able to
provide closed-form expressions of our findings.
This is useful to gain a full understanding of the
problem, without relying on simulation results
only. However, in practice, the transmitter is only
able to acquire an estimate affected by errors and,
based on that, to form a prediction of the short
term future evolution. An interesting extension of
the presented approach consists then in taking
into account the effects of estimation errors and
developing robust strategies. This is particularly
relevant in CR systems because the strategy adopt-
ed by the cognitive users may be more or less
aggressive depending on the reliability of their
channel sensing. 

Channel identification has a long history in sig-
nal processing. The problem becomes especially
challenging in CR networks, where the estimation
of the channel voids, for example, must be very
accurate. Nevertheless, the estimation itself may
be improved by exploiting the availability of a net-
work of nodes that could, in principle, cooperate
to get better and better estimates of the electro-
magnetic environment, working as a sensor net-
work of cognitive nodes.
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[FIG6] Sum rate of the users versus the inter-pair distance drq/dqq; drq = dqr ,
drr = dqq = 1, ∀r, q, for different numbers of transmit/receive antennas.
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[FIG5] Spectrum sharing among one primary user [subplot (a)] and two
secondary users [subplot (b)]: Optimal PSD of each link (solid lines), and PSD of
the MUI-plus-thermal noise normalized by the channel transfer function square
modulus of the link (dashed-dot line).
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