
Making Wireless Work

I n a multihop wireless ad hoc network, mobile nodes
cooperate to form a network without using any in-
frastructure such as access points or base stations. In-
stead, the mobile nodes forward packets for each

other, allowing communication among nodes outside
wireless transmission range. The nodes’ mobility and the
fundamentally limited capacity of the wireless medium,
together with wireless transmission effects such as attenu-
ation, multipath propagation, and interference, combine
to create significant challenges for routing protocols op-
erating in an ad hoc network.

Examples of applications for ad hoc networks range
from military operations and emergency disaster relief to
community networking and interaction among meeting
attendees or students during a lecture. In these and other
ad hoc networking applications, security in the routing
protocol is necessary to guard against attacks such as mali-
cious routing misdirection.

This article reviews attacks on ad hoc networks and
discusses current approaches for establishing crypto-
graphic keys in ad hoc networks. We describe the state of
research in secure ad hoc routing protocols and its re-
search challenges.

Attacks on ad hoc networks
Attacks on ad hoc network routing protocols generally
fall into one of two categories:

• Routing-disruption attacks. The attacker attempts to cause
legitimate data packets to be routed in dysfunctional ways.

• Resource-consumption attacks. The attacker injects packets
into the network in an attempt to consume valuable
network resources such as bandwidth or to consume

node resources
such as memory
(storage) or computation power.

From an application-layer perspective, both attacks are
instances of a denial-of-service (DoS) attack.

An example of a routing-disruption attack is for an at-
tacker to send forged routing packets to create a routing
loop, causing packets to traverse nodes in a cycle without
reaching their destinations, thus consuming energy and
available bandwidth. An attacker might similarly create a
routing blackhole, which attracts and drops data packets.
An attacker creates a blackhole by distributing forged
routing information (that is, claiming falsified short dis-
tance information); the attacker attracts traffic and can
then discard it. In a special case of a black hole, an attacker
could create a gray hole, in which it selectively drops some
packets but not others, for example, by forwarding rout-
ing packets but not data packets. An attacker also might
attempt to cause a node to use a route detour (suboptimal
routes), or partition the network by injecting forged rout-
ing information to prevent one set of nodes from reach-
ing another. An attacker might attempt to make a route
through itself appear longer by adding virtual nodes to the
route; we call this attack a gratuitous detour because a
shorter route exists and would otherwise have been used.
In ad hoc network routing protocols that attempt to keep
track of perceived malicious nodes in a blacklist at each
node, such as is done in the watchdog and pathrater pro-
tocol,1 an attacker might malign a good node, causing
other good nodes to add that node to their blacklists and
thus avoid that node in future routes.

A more subtle type of routing-disruption attack is cre-
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ating a wormhole in the network, using a pair of attacker
nodes A and B linked via a private network connection.
We give an example of this attack and a countermeasure
in the next section.

A rushing attack is a malicious attack that is targeted
against on-demand routing protocols that use duplicate
suppression at each node.2 An attacker disseminates
ROUTE REQUESTS quickly throughout the network,
suppressing any later legitimate ROUTE REQUESTS

when nodes drop them due to the duplicate suppression.

Packet leashes
The wormhole attack3 is a severe attack against ad hoc
routing protocols that is particularly challenging to de-
fend against; it can potentially cripple a range of ad hoc
network routing protocols. In the wormhole attack, an
attacker records packets (or bits) at one location in the
network, tunnels them to another location, and retrans-
mits them from there into the network. Most existing ad
hoc network routing protocols that lack a mechanism to
defend them against the wormhole attack would be un-
able to find routes longer than one or two hops, which se-
verely disrupts communication.

If a wormhole attacker tunnels all packets through the
wormhole honestly and reliably, no harm is done; the at-
tacker actually provides a useful service in connecting the
network more efficiently. However, when an attacker
forwards only routing control messages, this attack might
severely disrupt routing. For example, when used against
an on-demand routing protocol such as DSR4 or
AODV,5 a powerful application of the wormhole attack
can be mounted by tunneling each ROUTE REQUEST
packet directly to the target node of the REQUEST. This
attack prevents any node from discovering routes more
than two hops long.

Periodic protocols are also vulnerable to this kind of
attack. For example, OLSR6 and TBRPF7 use HELLO
packets for neighbor detection, so if an attacker tunnels to
B all HELLOpackets transmitted by A and tunnels to A all
HELLO packets transmitted by B, then A and B will be-
lieve that they are neighbors, which would cause the
routing protocol to fail to find routes when they aren’t ac-
tually neighbors.

The wormhole attack is also dangerous in other wire-
less applications. One example is any wireless access con-
trol system that is proximity based, such as wireless car
keys or proximity- and token-based access control sys-
tems for PCs.8,9 In such systems, an attacker could relay
authentication exchanges to gain unauthorized access.

Our solution to the wormhole attack is packet leashes.
We consider specifically two types of packet leashes: geo-
graphical and temporal. The main idea is that by authenticat-
ing either an extremely precise timestamp or location in-
formation combined with a loose timestamp, a receiver can
determine if the packet has traversed an unrealistic distance

for the specific network technology used. Temporal leashes
rely on extremely precise time synchronization and time-
stamps in each packet. We can approximate a packet’s travel
time as the difference between the receive time and the
timestamp. To be more conservative, however, a node can
choose to add the maximum time synchronization error,
assuming that the sender’s clock might be faster than the re-
ceiver’s. Conversely, to allow all direct communication be-
tween legitimate nodes, a node can subtract the maximum
time synchronization error, assuming that the sender’s
clock might be slower than the receiver’s.

Given the precise time synchronization required by
temporal leashes, we constructed some efficient broad-
cast authenticators based entirely on symmetric primi-
tives. In particular, we extend the Timed Efficient Stream
Loss-Tolerant Authentication (Tesla) broadcast authenti-
cation protocol10 to allow the disclosure of the authenti-
cation key within the authenticated packet. We use a
Merkle tree11 to authenticate these keys. Our research
shows that with this authentication mechanism, currently
available devices easily can support line-speed authentica-
tion of temporal leashes.

Another method of constructing a leash is to use loca-
tion information and loosely synchronized clocks. We
call such leashes geographical leashes. If the sender and re-
ceiver clocks are synchronized to within ±∆, and v is an
upper bound on any node’s velocity, then the receiver can
compute an upper bound on the distance between the
sender and itself dsr. Specifically, based on the timestamp ts
in the packet, the local receive time tr , the maximum rel-
ative error in location information δ, and the locations of
the receiver pr and the sender ps, dsr can be bounded by dsr

<_ |ps – pf|| + 2v • (tr – ts + ∆) + δ.
In certain circumstances, bounding the distance be-

tween the sender and receiver dsr can’t prevent wormhole
attacks; for example, when obstacles prevent communi-
cation between two nodes that would otherwise be in

transmission range, a distance-based scheme would still
allow wormholes between the sender and receiver. A
network that uses location information as a leash can con-
trol even these kinds of wormholes, though. To accom-
plish this, each node has a radio propagation model. A re-
ceiver verifies that every possible sender location (a δ +
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v(tr – ts + 2∆) radius around ps) can reach every possible
receiver  location (a (δ + v(tr – ts + 2∆) radius around pr).

Attacker model
In previous work,12 we defined an attacker model con-
sisting of two main attacker classes, passive and active. A
passive attacker doesn’t send messages; it just eavesdrops on
the network. Passive attackers are mainly threats against
communication privacy or anonymity, rather than
against the network’s function or routing protocol, and
thus we don’t discuss them further here.

An active attacker injects packets into the network (but
it eavesdrops as well). We characterize this kind of attacker
based on the number of nodes it owns in the network and
the number of good nodes it has compromised. We as-
sume that the attacker owns all the cryptographic key in-
formation of compromised nodes and distributes it
among all its nodes. We denote such an attacker Active-n-
m, where n is the number of nodes it has compromised
and m is the number of nodes it owns. We propose the
following attacker hierarchy (with increasing strength) to
measure routing protocol security: Active-0-1 (the at-
tacker owns one node), Active-0-x (the attacker owns x
nodes), Active-1-x (the attacker owns one compromised
node and distributes the cryptographic keys to its x – 1
other nodes), and Active-y-x. In addition, we call an at-
tacker that has compromised nodes an ActiveVC attacker
if it owns all nodes on a vertex cut through the network
that partitions the good nodes into multiple sets, forcing
good nodes in different partitions to communicate only
through an attacker node. This attack is particularly pow-
erful because it controls all traffic between nodes of the
disjoint partitions.

Key setup in ad hoc networks
In many ad hoc networks, the compromise of a single
network node and the capture of its cryptographic keys is
a viable threat. Intuitively, a single compromised node is
less powerful than numerous compromised nodes; in fu-
ture sections, we discuss several protocols that can limit a
single compromised node’s effectiveness.

To achieve this higher level of security against single
compromised nodes, however, it must be possible for the

routing protocol to distinguish among the several legiti-
mate nodes. Such nodes can be distinguished through the
use of authentication, but a single shared key can’t provide
authentication; instead, each legitimate node must pos-
sess one or more keys unique to that node. In addition,
each node must have a way to authenticate a legitimate
node. How to disseminate authentic key information is
the key-setup problem, and researchers have proposed a
number of solutions to it.

Establishing private keys
Some ad hoc network routing protocols require shared
private keys between all pairs of nodes in the network.
Private-key distribution is substantially more challenging
than public-key distribution because protocols for key
distribution must ensure the secrecy of such keys.

The obvious way to distribute private keys is to share
them with each pair of nodes before deployment, when
we know all nodes are behaving correctly. This approach
is more difficult when incremental deployment of net-
work nodes is desirable. Frank Stajano and Ross Ander-
son13 propose a scheme for establishing trust and keys be-
tween two nodes in an ad hoc network; in their
resurrecting duckling model, two nodes are touched to-
gether to bind a slave node to a master node. Once a key is
exchanged through this physical link, that key can be used
to encrypt and authenticate further information, such as a
list of shared keys. Dirk Balfanz and his colleagues14 gen-
eralize their approach, assuming a side channel in which
it’s possible to detect multiple transmitters.

If public keys have already been established, we can es-
tablish private keys by using a key-exchange protocol.15

In future sections, we discuss approaches specific to dis-
tributing public keys—that is, keys that are distributed to
all nodes. We can use such keys to verify authenticated
messages but not to generate forged authenticators.

Avoiding the problem
One approach for solving the key-management problem
is to assume that each node carries a list of legitimate pub-
lic keys. This approach is by far the most straightforward;
however, it assumes that all nodes trust a common set of
authorities and that each node can download a list of le-
gitimate nodes before deployment.

Another issue with this approach concerns incremen-
tal deployment. If network nodes are not deployed nearly
simultaneously, then one node might be deployed before
a future node can provide its keys to the authority. In this
case, the authority would need to generate keys for future
nodes. When a new node wants to join the network, it
receives both the list of legitimate nodes as well as its own
private key. In this case, the channel over which it receives
the private key must be secure against eavesdropping. Or-
dinarily, the channel over which it receives the list of le-
gitimate nodes would need to be secure only against ac-
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tive attacks; such security could be provided by using a
side channel to check the equality of a cryptographic hash
function computed over the list.

SUCV addresses
Gabriel Montenegro and Claude Castelluccia propose an
approach in which each node chooses an address based on
its public key.16 In this approach, called statistically unique
cryptographically verifiable (SUCV) addresses, each
node generates a public- and private-key pair, and then
chooses its address based on a cryptographic hash func-
tion of the public key. The authors proposed two
schemes: one in which a node’s entire IPv6 address was
the hash function’s output and another in which the least
significant 64 bits were the hash function’s output. Each
node generates its own public- and private-key pair. As a
result, that node can find another key that hashes to the
same 64-bit address in 232 time, but any other node must
on average do 263 work to find such a collision.

Unfortunately, this approach doesn’t entirely solve the
key-setup problem. In particular, in a network without
SUCV, the problem is to have a list of legitimate (node,
public-key) pairings; in a network using SUCV, the prob-
lem is to have a list of legitimate nodes.

Certificates from a certificate authority
Another approach is to define one or more certificate
authorities (CAs). Each node in the network has a cer-
tificate that includes its node address, its public key,
and a signature from the CA. If each node includes its
certificate each time it signs a message, the recipient
can first verify the certificate, and then use the public
key in the certificate to check the signature. Optimiza-
tions might let the protocol include the certificate less
frequently.

CAs can be online or offline. The difference between
these types is whether they are reachable through the net-
work. Because an online CA is reachable through the
network, it can participate in the certificate verification
protocol. However, even with an online CA, the certifi-
cate verification protocol might not be straightforward
because there is a circular dependency between security
and routing: to run the security protocol, routes must be
established to the CA, but to establish these routes, a rout-
ing protocol first must function. In Ariadne, we broke
this circular dependency12 by using the CA, which is al-
ready trusted, to establish these routes.

An online CA is often vulnerable to compromise. Li-
dong Zhou and Zygmunt J. Haas propose using threshold
cryptography to distribute the CA functionality to several
nodes.17 One simple way of achieving this is to only trust
keys that have certifications from several CAs. This tech-
nique allows the compromise of one or two nodes partici-
pating in the certifications without letting an attacker cer-
tify an arbitrary number of new nodes. We can use

threshold cryptography to provide this same semantic,
which has the advantage of providing a smaller certificate.
Seung Yi and Robin Kravets provide a more complete dis-
cussion of protocols for using CAs in ad hoc networks.18

Transitive trust and PGP trust graphs
Researchers have proposed an alternative trust model for
ad hoc networks without an online CA. In this model,
each node signs certificates for other nodes.19 A node can
search the network for a chain of certificates leading from
the node initiating the query and ending at the node try-
ing to authenticate a message. Generally, such schemes
require transitive trust—that is, if A trusts B, and B trusts
C, then such schemes require that A trust C.

This requirement can be slightly relaxed by requiring
additional node-disjoint paths and limiting the certificate
chain’s length. If multiple node-disjoint paths exist be-
tween the signer and verifier, then an attacker would have
had to compromise one node on each path to insert a
bogus key. When the certificate’s length is limited, the
impact of a compromised node can be limited. For exam-
ple, a network can limit certificate chains to one interme-
diate signer. In this case, if no neighbor of a node A is
compromised, then an attacker can’t generate a bogus
certificate that A would accept.

Public-key revocation
Ideally, when a node is compromised, some authority can
revoke the certificate for its public key. Any such system
would need to guard against an attacker that attempts to
revoke the keys of legitimate nodes.

Setting up these revocations is a problem even more
difficult than the key-setup problem. One way such cer-
tificates can be revoked is to use an online CA to sign neg-
ative certificates. However, a node would generally be
unwilling to distribute its own negative certificate. As a
result, an alternative distribution mechanism is necessary.
We proposed an approach where blacklist or other revo-
cation information can be flooded through the network
when it is discovered.2 With this approach, some flood
limiting is necessary, or an attacker can get its certificate
revoked and repeatedly flood the network with this revo-
cation information. As a result, we specified that only
new revocation information be flooded.

SEAD in mobile 
wireless ad hoc networks
Our Secure Efficient Ad hoc Distance vector routing
protocol (SEAD)20 is robust against multiple uncoordi-
nated attackers creating incorrect routing state in any
other node, in spite of active attackers or compromised
nodes in the network. We based SEAD’s design in part on
the Destination-Sequenced Distance-Vector ad hoc net-
work routing protocol (DSDV).21 To support use of
SEAD with nodes of limited CPU processing capability,
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and to guard against DoS attacks in which an attacker at-
tempts to cause other nodes to consume excess network
bandwidth or processing time, we use efficient one-way
hash functions and don’t use asymmetric cryptographic
operations in the protocol.

Distance-vector routing
In distance-vector routing, each router maintains a rout-
ing table listing all possible destinations within the net-
work. Each entry in a node’s routing table contains the
address (identity) of some destination, the node’s shortest
known distance (called the metric, usually in number of
hops) to the destination, and the address of the node’s
neighbor router that is the first hop on the shortest route
to the destination. The distance to the destination is a
metric in that table entry. Each router forwarding a packet
uses its own routing table to determine the next hop to-
ward the destination.

To maintain the routing tables, each node periodically
broadcasts a routing update containing the information
from its own routing table. Each node updates its own
table using the updates it hears so that its route for each
destination uses as a next hop the neighbor that advertised
the smallest metric in its update for that destination. The
node sets the metric in its table entry for that destination to
one (hop) more than the metric in that neighbor’s update.

The primary improvement for ad hoc networks made
in DSDV over standard distance vector routing is the ad-
dition of a sequence number in each routing table entry.
Using this sequence number prevents routing loops
caused by updates being applied out of order. This prob-
lem can be common over multihop wireless transmission
because the routing information can spread along many
different paths through the network.

Hash chains
A one-way hash chain is built on a one-way hash func-
tion. Like a normal hash function, a one-way hash func-
tion H maps an input of any length to a fixed-length bit
string. Thus, H: {0,1}* → {0,1}ρ, where ρ is the length
in bits of the hash function’s output. The function H
should be simple to compute yet must be computation-
ally infeasible in general to invert.

To create a one-way hash chain, a node chooses a ran-
dom x ∈ {0,1}ρ and computes the list of values h0, h1, h2,
h3, ..., hn,where h0 = x, and hi = H(hi–1) for 0 < i ≤ n, for
some n. The node at initialization generates the elements
of its hash chain using this recurrence, in order of increas-
ing subscript i; over time, it uses certain elements of the
chain to secure its routing updates. In using these values,
the node progresses in order of decreasing subscript i
within the generated chain.

Given an existing authenticated element of a one-way
hash chain, we can verify elements later in the sequence
of use within the chain (further on, in order of decreasing

subscript). For example, given an authenticated hi value, a
node can authenticate hi–3 by computing H(H(H(hi–3)))
and verifying that the resulting value equals hi. To use
one-way hash chains for authentication, we assume some
mechanism for a node to distribute an authentic element
such as hn from its generated hash chain.

Authenticating routing updates
Each node in SEAD uses a specific single next element
from its hash chain in each routing update that it sends
about itself (metric 0). Based on this initial element, the
one-way hash chain conceptually provides authentica-
tion for the metric’s lower bound in other routing updates
for this destination; the authentication provides only a
lower bound on the metric—that is, an attacker can in-
crease the metric or claim the same metric, but can’t de-
crease the metric.

We assume that the network operator can place an
upper bound on the ad hoc network’s diameter, and we
use m – 1 to denote this bound. The method SEAD uses
to authenticate an entry in a routing update uses the se-
quence number in that entry to determine a contiguous
group of m elements from that destination node’s hash
chain, one element of which must be used to authenticate
that routing update. The particular element from this
group of elements that must be used to authenticate the
entry is determined by the metric value being sent in that
entry. Specifically, if a node’s hash chain is the sequence of
values h0, h1, h2, h3, ..., hnand n is divisible by m, then for a
sequence number i in some routing update entry, let

.

An element from the group of elements hkm, hkm–1, …,
hkm+m–1 from this hash chain is used to authenticate the
entry; if the metric value for this entry is j, 0 ≤ j  < m, then
the value hkm–j is used here to authenticate the routing up-
date entry for that sequence number. Nodes receiving
any routing update easily can authenticate each entry in
the update, given any earlier authentic hash element from
the same hash chain.

A secure on-demand routing
protocol for ad hoc networks
Ariadne12 is a secure on-demand routing protocol that
withstands node compromise and relies only on highly
efficient symmetric cryptography. Ariadne can authenti-
cate routing messages using one of three schemes:

• shared secrets between each pair of nodes,
• shared secrets between communicating nodes com-

bined with broadcast authentication, or
• digital signatures.

In this article, we primarily discuss using Ariadne
with Tesla,10 an efficient broadcast authentication

k
n
m

i= −
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scheme that requires loose time synchronization. Using
pair-wise shared keys avoids the need for time synchro-
nization but at the cost of higher key-setup overhead.
Ariadne’s basic idea is based on DSR:4 Ariadne discovers
routes on-demand (as they are needed) through route
discovery and uses them to source route data packets to
their destinations. Each forwarding node helps by per-
forming route maintenance to discover problems with
each selected route.

Basic Ariadne route discovery
We present the Ariadne protocol’s design in two stages:
we first present a mechanism that lets the target verify the
authenticity of the ROUTE REQUEST and then present an
efficient per-hop hashing technique to verify that no
node is missing from the node list in the REQUEST. In the
following discussion, we assume that the initiator S per-
forms a route discovery for target D and that they share
the secret keys KSD and KDS, respectively, for message au-
thentication in each direction.

Target authenticates route requests. To convince the
target of the legitimacy of each field in a ROUTE
REQUEST, the initiator simply includes a message au-
thentication code (MAC) computed with key KSD over
unique data—for example, a timestamp. The target can
easily verify the route request’s authenticity and freshness
using the shared key KSD.

In a route discovery, the initiator wants to authenticate
each individual node in the node list of the ROUTE
REPLY. A secondary requirement is that the target can
authenticate each node in the node list of the ROUTE
REQUEST so that it will return a ROUTE REPLY only
along paths that contain legitimate nodes. Each hop au-
thenticates the new information in the REQUEST using
its current Tesla key. The target buffers the REPLY until
intermediate nodes can release the corresponding Tesla
keys. The Tesla security condition is verified at the target,
and the target includes a MAC in the REPLY to certify
that the security condition was met.

Per-hop hashing. Authenticating data in routing mes-
sages isn’t sufficient because an attacker could remove a
node from the node list in a REQUEST. We use one-way
hash functions to verify that no hop was omitted, an ap-
proach we call per-hop hashing. To change or remove a
previous hop, an attacker must either hear a REQUEST
without that node listed or must be able to invert the one-
way hash function. For efficiency, we can include the au-
thenticator in the hash value passed in the REQUEST. Fig-
ure 1 shows an example of Ariadne route discovery.

Basic Ariadne route maintenance
Route maintenance in Ariadne is based on DSR. A node
forwarding a packet to the next hop along the source

route returns a ROUTE ERROR to the packet’s original
sender if it is unable to deliver the packet to the next hop
after a limited number of retransmission attempts. This
section discusses mechanisms for securing ROUTE
ERRORS but doesn’t consider the case of attackers not
sending ERRORS. 

To prevent unauthorized nodes from sending
ERRORS, we require that the sender authenticate an
ERROR. Each node on the return path to the source
forwards the ERROR. If the authentication is delayed—
for example, when Tesla is used—each node that will
be able to authenticate the ERROR buffers it until it can
be authenticated.

Avoiding routing misbehavior
Ariadne, as we have described it so far, is vulnerable to an
attacker that happens to be along the discovered route. In
particular, we haven’t presented a means of determining
whether intermediate nodes are in fact forwarding pack-
ets that they have been requested to forward. To avoid the
continued use of malicious routes, we choose routes
based on their prior performance in packet delivery. Our
scheme relies on feedback about which packets were suc-
cessfully delivered. The feedback can be received either
through an extra end-to-end network layer message or by
exploiting properties of transport layers, such as TCP
with Selective Acknowledgments.22 This feedback ap-
proach is somewhat similar the one used in IPv6 for
neighbor unreachability detection.23

A node with multiple routes to a single destination can
assign a fraction of packets that it originates to be sent
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Figure 1. Route discovery example in Ariadne. The initiator node S
is attempting to discover a route to the target node D. The bold
font indicates changed message fields, relative to the previous
message of that type.

S: h0= MACKSD
(REQUEST, S, D, id,ti)

S → *: REQUEST, S, D, id,ti, h0, (), ()〉
A : h1 = H[A, h0]

MA = MACKAti
REQUEST, S, D, id,ti, h1 , (A), ())

A → *: REQUEST, S, D, id, ti, h1, (A), MA)

B : h2 = H[B, h1]

MB = MACKBti
(REQUEST, S, D, id,ti, h2 , (A, B), (MA))

B → *: REQUEST, S, D, id, ti, h2 , (A, B), (MA, MB)〉
C: h3 = H[C, h2]

MC = MACKCti
(REQUEST, S, D, id,ti, h3 , (A, B,C ), (MA, MB))

C → *: REQUEST, S, D, id, ti, h3, (A, B,C ), (MA, MB , MC)

D : MD = MACKDS
(REPLY, D, S, ti, (A, B,C ), (MA, MB, MC))

D → C : REPLY, D, S, ti, (A, B,C), (MA, MB, MC), MD, ()

C → B : REPLY, D, S,ti, (A, B,C), (MA, MB, MC), MD, (KCti
)

B → A : REPLY, D, S, ti, (A, B,C), (MA, MB, MC), MD, (KCti
, KBti

)

A → S : REPLY, D, S, ti, (A, B,C), (MA, MB, MC), MD, (KCti
, KBti

, KAti
)
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along each route. When a substantially smaller fraction of
packets sent along any particular route is successfully de-
livered, the node can begin sending a smaller fraction of
its overall packets to that destination along that route.

Lightweight security for DSR
Panagiotis Papadimitratos and Zygmunt Haas24 propose
the Secure Routing Protocol, which we can use with
DSR or the Interzone Routing Protocol in the Zone
Routing Protocol (ZRP).25 They designed SRP as an
extension header that is attached to ROUTE REQUEST
and ROUTE REPLY packets. SRP doesn’t attempt to se-
cure ROUTE ERROR packets but instead delegates the
route-maintenance function to the Secure Route Main-
tenance portion of the Secure Message Transmission pro-
tocol. SRP uses a sequence number in the REQUEST to
ensure freshness, but this sequence number can only be
checked at the target. SRP requires a security association
only between communicating nodes and uses this secu-
rity association just to authenticate ROUTE REQUESTS
and ROUTE REPLYS through the use of message authen-
tication codes. At the target, SRP can detect modifica-
tion of the ROUTE REQUEST, and at the source, SRP can
detect modification of the ROUTE REPLY.

However, SRP doesn’t attempt to prevent unautho-
rized modification of fields that are ordinarily modified
in the course of forwarding these packets. For example, a
node can freely remove or corrupt the node list of a
ROUTE REQUEST packet that it forwards.

Because SRP requires a security association only be-
tween communicating nodes, it uses extremely light-
weight mechanisms to prevent other attacks. For exam-
ple, to limit flooding, nodes record the rate at which each
neighbor forwards ROUTE REQUEST packets and gives
priority to REQUESTpackets sent through neighbors that
less frequently forward REQUEST packets. Such mecha-

nisms can secure a protocol when few attackers are pre-
sent; however, such techniques provide secondary at-
tacks, such as sending forged ROUTE REQUEST packets
to reduce the effectiveness of a node’s authentic ROUTE
REQUESTS. In addition, such techniques exacerbate the
problem of greedy nodes. For example, a node that
doesn’t forward ROUTE REQUEST packets ordinarily
achieves better performance because it is generally less
congested, and it doesn’t need to use its battery power to
forward packets originated by other nodes. In SRP, a
greedy node retains these advantages and, in addition,
gets a higher priority when it initiates route discovery.

SRP authenticates ROUTE REPLYS from intermedi-
ate nodes using shared group keys or digital signatures.
When a node with a cached route shares a group key with
(or can generate a digital signature verifiable by) the ini-
tiator of the REQUEST, it can use that group key to au-
thenticate the REPLYS. The authenticator, which is ei-
ther a message authentication code computed using the
group key or a signature, is called the intermediate node
reply token. The signature or MAC is computed over the
cache REPLY.

As we mentioned earlier, SRP doesn’t attempt to ad-
dress the route-maintenance question. In SRP, as in Ari-
adne, multiple REPLYS are returned for each REQUEST;
nodes use secure message transmission (SMT)26 to ensure
successful delivery of data packets. In SMT, data messages
are split into packets using secret sharing techniques so
that if M out of N such packets are received, the message
can be reconstructed.

Securing AODV
The Ad hoc On-demand Distance Vector routing proto-
col (AODV) spreads distance vector routing information
in an on-demand manner. Researchers have designed two
protocols to secure routing protocols based on this design.

Authenticated routing 
for ad hoc networks
Kimaya Sanzgiri and her colleagues27 developed authen-
ticated routing for ad hoc networks (ARAN), which is
based on AODV. In ARAN, each node has a certificate
signed by a trusted authority, which associates its IP ad-
dress with a public key. ARAN is an on-demand proto-
col, broken up into route discovery and maintenance. 

Figure 2 shows an example of route discovery in
ARAN. To initiate a route discovery, the initiator (in this
example, S) broadcasts a signed ROUTE REQUESTpacket
that includes the target (D in the example), its certificate
(certS), a nonce N, and a timestamp t. The nonce and
timestamp together ensure freshness when used in a net-
work with a limited clock skew. Each node that forwards
this REQUEST checks the signature or signatures. In our
example, node C checks node B’s certificate certB, then
checks the signature on the outer message. C then verifies

Figure 2. Route discovery in ARAN. In this figure, node S is
discovering a route to node D. Each node rebroadcasts the first
route request packet it receives from each route discovery. When
the route request reaches the target, the destination returns a route
reply to the node from which it heard that route request. Each
node hearing a route reply forwards the reply to the node from
which it heard the request.

S → *: (ROUTE REQUEST, D, certS, N, t )K –
S

A → *: ((ROUTE REQUEST, D, certS, N, t )K –
S
) K –

A
, certA

B → *: ((ROUTE REQUEST, D, certS, N, t )K –
S
)K –

B
, certB

C → *: ((ROUTE REQUEST, D, certS, N, t )K –
S
)K –

C
, certC

D → C : ((ROUTE REPLY, S, certD , N, t )K –
D

C → B : ((ROUTE REPLY, S, certD , N, t )K –
D

) K –
C

, certC

B → A : ((ROUTE REPLY, S, certD , N, t ) K –
D

) K –
B
, certB

A → S : ((ROUTE REPLY, S, certD , N, t ) K –
D

) K –
A
, certA
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the certificate certS for initiator S and uses the key in the
certificate to verify the signature on the REQUEST. If the
signatures (or signature, when the packet is directly re-
ceived from the initiator) are valid, the forwarding node
removes the last forwarder’s signature and certificate (if
applicable), signs the original REQUEST, and includes its
own certificate. The node then broadcasts the REQUEST.
In the example, node C removes node B’s signature, signs
the resulting REQUEST, and includes its own certificate.
Node C then broadcasts the REQUEST.

When the first ROUTE REQUEST from a route discov-
ery reaches the target, the target signs a ROUTE REPLY
and sends it to the node from which it received the RE-
QUEST. In our example, the target D returns a signed
ROUTE REPLY to the previous hop C. The ROUTE
REPLY is forwarded in much the same way as the RE-
QUEST, except that each node unicasts the REPLY to the
node from which it received the REQUEST. In particular,
each node receiving a REPLY checks the signature or sig-
natures. In our example, node B checks node C’s certifi-
cate certC, then checks the signature on the outer mes-
sage. B then verifies target D’s certificate certD and uses
the key in the certificate to verify the signature on the
REQUEST. If the signatures (or signature, when the
packet is directly received from the target) are valid, the
forwarding node removes the last forwarder’s signature
and certificate (if applicable), signs the original REPLY,
and includes its own certificate. It then unicasts the
REPLY to the node from which it received the associated
REQUEST. In the example, node B removes node C’s sig-
nature, signs the resulting REPLY, and includes its own
certificate. Node B then unicasts the resulting REPLY to
A, from which it had previously heard the REQUEST.

When a node B forwards a REPLYpacket that it received
from node C toward the previous node A, it also establishes
a routing table entry for the target D, indicating that the
next-hop destination for packets destined toward D is node
C. When packets destined for destination D are forwarded
to node B, it will in turn forward them to node C. If node B
discovers that the link from itself to node C is broken, and
thus it can’t forward packets to node C, it initiates route
maintenance. Figure 3 shows an example of ARAN route
maintenance. The intermediate node sends a ROUTE
ERROR to the previous hop, indicating that the route has
been broken. This ROUTE ERROR includes the source, des-
tination, intermediate node certificate, and a nonce and
timestamp generated by the intermediate node for fresh-
ness. This packet is forwarded unchanged to the source. 

Because ARAN uses public-key cryptography for au-
thentication, it is particularly vulnerable to DoS attacks
based on flooding the network with bogus control pack-
ets for which signature verifications are required. As long
as a node can’t verify signatures at line speed, an attacker
can force that node to discard some fraction of the control
packets it receives.

SAODV
Manel Guerrero Zapata and N. Asokan28 propose Secure
AODV (SAODV), another protocol designed to secure
AODV. The idea behind SAODV is to use a signature to
authenticate most fields of a route request (RREQ) and
route reply (RREP) and to use hash chains to authenti-
cate the hop count. SAODV designs signature extensions
to AODV. Network nodes authenticate AODV routing
packets with an SAODV signature extension, which pre-
vents certain impersonation attacks. In SAODV, an
RREQ packet includes a route request single signature
extension (RREQ-SSE). The initiator chooses a maxi-
mum hop count, based on the expected network diame-
ter, and generates a one-way hash chain of length equal to
the maximum hop count plus one. This one-way hash
chain is used as a metric authenticator, much like the hash
chain within SEAD. The initiator signs the RREQ and
the anchor of this hash chain; both this signature and the
anchor are included in the RREQ-SSE. In addition, the
RREQ-SSE includes an element of the hash chain based
on the actual hop count in the RREQ header. We call
this value the hop-count authenticator. For example, if
the hash chain values h0, h1, ..., hN were generated such
that hi = H[hi+1], then the hop-count authenticator hi

corresponds to a hop count of N – i.
With the exception of the hop-count field and hop-

count authenticator, the fields of the RREQ and RREQ-
SSE headers are immutable and therefore can be authenti-
cated by verifying the signature in the RREQ-SSE
extension. To verify the hop-count field in the RREQ
header, a node can follow the hash chain to the anchor. For
example, if the hop-count field is i, then hop-count au-
thenticator hca should be Hi[hN]. Because the length (N)
and anchor (hN) of this hash chain is included in the
RREQ-SSE and authenticated by the signature, a node
can follow the hash chain and ensure that hN = HN–i[hca].
Figure 4 shows an example of route discovery in SAODV.

When forwarding an RREQ in SAODV, a node first
authenticates the RREQ to ensure that each field is valid.
It then performs duplicate suppression to ensure that it for-
wards only a single RREQ for each route discovery. The
node then increments the hop-count field in the RREQ
header, hashes the hop count authenticator, and rebroad-
casts the RREQ, together with its RREQ-SSE extension.
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Figure 3. Route maintenance in ARAN. When a node B determines
that its next-hop to D is unreachable, it broadcasts a signed route
error message indicating that its next hop to D is unreachable. Each
node using B as a next-hop for D rebroadcasts this route error but
does not re-sign it.

B → A : 〈(ROUTE ERROR, S, D, certB , N, t )K –
B
〉

A → S : 〈(ROUTE ERROR, S, D, certB , N, t ) K –
B
〉
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When the RREQ reaches the target, the target
checks the authentication in the RREQ-SSE. If the
RREQ is valid, the target returns an RREP as in AODV.
A route reply single signature extension (RREP-SSE)
provides authentication for the RREP. As in the RREQ,
the only mutable field is the hop count; as a result, the
RREP is secured in the same way as the RREQ. In par-
ticular, an RREP-SSE has a signature covering the hash
chain anchor together with all RREP fields except the
hop count. The hop count is authenticated by a hop-
count authenticator, which is also a hash chain element.
As before, a hop-count authenticator of hi corresponds to
a hop count of N – i.

A node forwarding an RREP checks the signature ex-
tension. If the signature is valid, then the forwarding node
sets its routing table entry for the RREP’s original source,
specifying that packets to that destination should be for-
warded to the node from which the forwarding node
heard the RREP. For example, in Figure 4, when node B
forwards the RREP from C, it sets its next hop for desti-
nation D to C.

SAODV allows intermediate-node replies through the
use of a route reply double signature extension (RREP-
DSE). An intermediate node replying to an RREQ in-
cludes an RREP-DSE. The idea here is that to establish a
route to the destination, an intermediate node must have
previously forwarded an RREP from the destination. If
the intermediate node had stored the RREP and signa-

ture, it can then return the same RREP if the sequence
number in that RREP is greater than the sequence num-
ber specified in the RREQ. However, some of the fields
of that RREP, in particular the lifetime field, are no longer
valid. As a result, a second signature, computed by the in-
termediate node, is used to authenticate this field.

To allow replies based on routing information from an
RREQ packet, the initiator includes a signature suitable
for an RREP packet through the use of an RREQ-DSE.
Conceptually, the RREQ-DSE is an RREQ and RREP
rolled into one packet. To reduce overhead, SAODV uses
the observation that the RREQ and RREP fields sub-
stantially overlap. In particular, the RREQ-DSE need
only include some flags, a prefix size, and some reserved
fields, together with a signature valid for an RREP using
those values. When a node forwards an RREQ-DSE, it
caches the route and signature in the same way as if it had
forwarded an RREP.

SAODV also uses signatures to protect the route error
(RERR) message used in route maintenance. In
SAODV, each node signs the RERR it transmits,
whether it’s originating the RERR or forwarding it.
Nodes implementing SAODV don’t change their desti-
nation sequence number information when receiving an
RERR because the destination doesn’t authenticate the
destination sequence number. Figure 5 shows an example
of SAODV route maintenance.

Under attack, ARAN need only verify one signature
in an attacker’s packet by blacklisting a node that doesn’t
correctly verify the inside signature—the initiator’s signa-
ture in the case of an RREQ or the target’s signature in
the case of an RREP. An attacker, then, is unlikely to in-
clude a valid outer signature with an invalid inner signa-
ture. As a result, any bogus packet would have only a
bogus outer signature and, hence, have the same verifica-
tion cost as SAODV.

Securing link-state routing
Panagiotis Papadimitratos and Haas29 also propose the
Secure Link-State Protocol (SLSP), which uses digital
signatures and one-way hash chains to ensure the secu-
rity of link-state updates. We can use SLSP as the Intra-
zone Routing Protocol in the Zone Routing Protocol
(ZRP). SLSP is a periodic protocol that receives link-
state information through a periodic Neighbor Loca-
tion Protocol. As a part of NLP, each node broadcasts a
signed pairing between its IP address and its MAC ad-
dress. A node’s NLP can notify SLSP when one MAC
address uses two IP addresses, when two MAC addresses
claim the same IP address, and when another node uses
the same MAC address as the detecting node. These
protocols ensure some level of integrity of MAC and IP
addresses within a two-hop radius.

SLSP link-state updates are signed and propagated a
limited number of hops. In ZRP, SLSP link-state updates
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Figure 5. Route maintenance in SAODV. The main differences
between ARAN and SAODV route maintenance is that each SAODV
that forwards a route error signs it, whereas forwarding nodes in
ARAN simply rebroadcast the packet.

B → A : (RERR, D, seqD ) K –
B

A → S : (RERR, D, seqD ) K –
A 

Figure 4. Route discovery in SAODV. In this figure, node S is
discovering a route to node D. The main differences between ARAN
and SAODV route discovery are that ARAN uses an extra signature
to authenticate the previous hop, and SAODV uses a hash chain to
authenticate the metric (as in SEAD).

S → *: 〈(RREQ, id, S, seqS , D, oldseqD ,h0, N) K –
S
, 0, hN〉

A → *: 〈(RREQ, id, S, seqS , D, oldseqD , h0, N) K –
S
, 1, hN–1〉

B → *: 〈(RREQ, id, S, seqS, D, oldseqD , h0, N) K –
S
, 2, hN–2〉

C → *: 〈(RREQ, id, S, seqS, D, oldseqD , h0, N) K –
S
, 3, hN–3〉

D → C : 〈(RREP, D, seqD , S, lifetime, h ‘0, N) K –
D

, 0, h ‘N〉
C → B : 〈(RREP, D, seqD , S, lifetime, h ‘0, N) K –

D
, 1, h ‘N–1〉

B → A : 〈(RREP, D, seqD , S, lifetime, h ‘0, N) K –
D

, 2,h ‘N–2〉
A → S : 〈(RREP, D, seqD , S, lifetime, h ‘0, N) K –

D
, 3, h ‘N–3〉
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would have a maximum hop count equal to a zone radius.
To ensure that an SLSP update doesn’t travel too many
hops, each update includes a hop count representing the
number of hops traveled by the SLSP update. As in SEAD
and SAODV, a hash chain is used to authenticate the hop
count, and the hash chain values are authenticated using
the hash chain’s anchor, which is included in the signed
portion of the SLSP link-state update. 

SLSP uses the same lightweight flooding prevention
mechanism as SRP, wherein nodes that relay or generate
fewer link-state updates are given priority over any node
that sends more link-state updates. As in SRP, an attacker
can masquerade as a victim node and flood the victim’s
neighbors with link-state updates that appear to originate
at the victim. Although the victim might be able to detect
the attack, due to NLP’s duplicate MAC address detec-
tion functionality, the victim will have no way to protest.

Reputation-based systems
Confidant,30 based on DSR, consists of four compo-
nents: the monitor, the trust monitor, the reputation sys-
tem, and the path manager. For each packet a node for-
wards, the monitor on that node attempts to ensure that
the next-hop node also forwarded the packet correctly.
When the monitor detects an anomaly, it triggers action
by the reputation system, which maintains a local ratings
list. These lists are potentially exchanged with other
nodes; the trust monitor handles input from other nodes.
If a list is received from a highly trusted node, the receiver
can directly place information from the list into its local
ratings list. On the other hand, if a list is received from an
untrusted source, the receiver can completely ignore it or
give it substantially less weight than a list received from a
more trusted node. Finally, the path manager chooses
paths from the node’s route cache based on a blacklist and
the local ratings list. The path manager also specifies the
reaction to a REQUEST from a node on the blacklist or to
a REQUEST that has traversed a node on the blacklist. 

Baruch Awerbush and his colleagues31 propose a se-
cure on-demand ad hoc network routing protocol. In
this protocol, routes are discovered on-demand, as in
DSR. Each ROUTE REQUEST packet includes the same
fields used in DSR, except they include a weight list in-
stead of a node list. This weight list is a list of links, to-
gether with the cost (metric) associated with each such
link; these costs are derived from the initiator’s previous
experience sending packets over that link. When the
flooded REQUEST reaches the target, it floods a REPLY.
Each node forwards a REPLY if it has not previously for-
warded a better reply. In particular, each node computes
the total cost of the recorded hops in a REPLY and adds
the cost of the hop between the previous node and itself.
If this total cost is less than the total cost of the previously
forwarded REPLY (to this REQUEST), then the node also
forwards this REPLY.

Relative to Ariadne, this approach provides addi-
tional flexibility in specifying which routes to prefer be-
cause Ariadne returns a set of node-disjoint, lowest-la-
tency paths subject to a blacklist specified in the
REQUEST. Unlike Ariadne, their technique is vulnera-
ble to the hop-drop attack, where a node forwarding a
REPLY removes one or more nodes from the REPLY
that it forwards. Furthermore, the number of REPLY
packets sent in response to a single REQUEST is poten-
tially exponential, even in the absence of an attacker.
For example, suppose there are n nodes in addition to
the initiator and the target, arranged in n/2 groups of
two nodes. Let group 0 represent the target and group
n/2 + 1 represent the initiator. If these groups are
arranged so that both nodes in group i are neighbors of
all nodes in groups i – 1, i, and i + 1, and of no other
nodes, then group 1 would forward two REPLYs. If the
higher-metric node in group 1 was the first to forward
the REPLY, then each node in group 2 would forward
both REPLYs, for a total of four REPLYs forwarded.
Again, in the worst case, each node in group 3 would
forward all four REPLYs. In general, group i would for-
ward 2iREPLY packets, for a total of 

REPLYpacket transmissions.
Awerbush and his colleagues also propose a technique

for performing route maintenance in cases where an at-
tacker is already on the path. Their approach is to define
an acceptable level of performance—for example, based
on a packet delivery ratio within a latency limit. When a
path’s performance drops below the acceptable level, a bi-
nary search is initiated to locate the link responsible for
dropping the path’s performance level below the accept-
able level. A digital signature authenticates these detec-
tion packets are authenticated, which are then “onion”
encrypted, such that each node forwarding the packet de-
crypts the outer layer, processes any probe requests, and
forwards the packet.

This binary search technique works well in a path
with only a single attacker, when the attacker causes the
vast majority of packet losses on the path. However, an at-
tacker can still cause the protocol to detect another link as
the attacking link, simply by dropping several packets
slightly less than the threshold. It is likely that subsequent
nodes will occasionally drop a packet; in such cases, any
binary search would show that performance up to and in-
cluding the attacking node is acceptable but might find a
fault further down the path.

Secure Traceroute32 uses a similar detection scheme. It
differs in that probe packets are indistinguishable from or-
dinary packets, and it can use secret sharing to differenti-
ate between individual losses and losses beyond a certain
threshold. Another difference is that Secure Traceroute
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performs a linear search, as opposed to a binary search.
Secure Traceroute is therefore more robust against multi-
ple attackers on the route, but is slower to find a faulty
link. Another approach to avoiding malicious nodes is
choosing routes based on reinforcement learning.31 In
this approach, each node uses its previous experience
with various links to choose a path. 

Reputation-based systems rely on authentic informa-
tion in routing headers to correctly attribute malicious
behavior. As a result, they require an underlying secure ad
hoc network routing protocol. When used with such a
protocol, they can provide a powerful deterrent to mali-
cious behavior by providing the threat of blacklisting.
When such systems are used, the attacker’s game-theo-
retic optimal behavior is likely to be substantially muted,
thus improving network performance. Designers of a
reputation-based system, however, must avoid the possi-
bility of a malign attack, where an attacker causes legiti-
mate nodes to be blacklisted.

Open research challenges
A number of challenges remain in the area of securing
wireless ad hoc networks. First, the secure routing prob-
lem in such networks isn’t well modeled. A more com-
plete model of possible attacks would let protocol design-
ers evaluate the security of their routing protocol. In
addition, such a model would form the basis for using for-
mal methods to verify protocol security.

Another problem is designing efficient routing proto-
cols that have both strong security and high network per-
formance. Although researchers have designed security
extensions for several existing protocols, many of these
extensions remove important performance optimiza-
tions. Optimistic approaches can provide a better trade-
off between security and performance. 
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