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Abstract

The wireless access, use and traffic demand are on a fast rise, leading
to an increased demand for radio spectrum. On the other hand, cur-
rent spectrum allocation policies are highly inefficient resulting in an
underutilization of this valuable natural resource. To increase spec-
tral efficiency, the research community has proposed cognitive radios
that enable new network architectures and access markets, opening
new opportunities for business cases. Unlike traditional cellular-based
markets, these markets have larger sizes, are more heterogeneous, and

potentially can offer an improved set of services.

This thesis presents a modeling framework and simulation platform
for access markets. It integrates models of the customers (e.g., pref-
erence, demand, mobility, transmission power, willingness-to-pay),
channel, provider infrastructure deployment, customer distribution,
and price-adaptation mechanisms. Providers aim to maximize their
own profit, while clients decide based on various criteria, such as the
financial cost of their access, transmission rate and required transmis-
sion power. Moreover, it introduces the “flexi-card”, a novel service
paradigm that allows a user with a cognitive radio to dynamically
access Base stations (BSs) of different providers based on various cri-
teria, such as its profile, network conditions, and offered prices. Card
users can select the appropriate operator and BS on a per-call ba-
sis. Customers could dynamically decide to buy a long-term subscrip-
tion or become card users. This research analyzes the evolution of a
duopoly that offers the flexi-card service as well as long term subscrip-
tions, considering a diverse customer population from the perspective

of customers, providers, and regulators. The analysis demonstrates



that the flexi-card substantially improves the performance of a market
in terms of the percentage of disconnected users, blocking probability,

and social welfare.



[Tepiindn

Ti¢ tedeutaleg dexoetieg, 1 (ATnom Yo acUouaty TeocBucy, OAoEva xou
au&dveTar, 0dNYOVTaS ot Uio avtioToryn abénorn tng {Rtnong douatog.
Anéd tny dAAn Thevpd, ol Teéyouces ToMTixEC avadeorg pdouaTos etvou
o€ peYdho Podud urn anodoTxéS, OdNYWYTUG OF UEELXY EXUETIAAEUOT)
ToU TOAUTIHOU auTol Quoxol mépou. [ va aulrcel TV anoteheo-
HorTxy) Yenon Tou QACUATOS, 1) ETLOTAROVIXT XOVOTNTA TEOTEWVE TS YV-
WOTINES PADLOETUXOWVWVYIES, TOU ELGAYOUY VEOUS TOTOUG DIXTUUXGY dp-
YITEXTOVIXOY XL AYOR®Y TEOGRBUCTC avolyovToug VEES EMLYELONUATIXES
OUVUTOTNTEG. XE avTilEoT UE TIC TaPABOCLUXES AYORES TWY XUPEADTOVY
OuxTOWY, ouTol ot YEou TUTOL ayopnvy €youv ueyahltepa UeyEDT), elvou

O ETEPOYEVES Xa UTOPOVY Vo TUPEYOUY XAAVTEPES UTNEEGIES.

Avuth n yetantuytaxt epyasta tapouctdlet ulo uedodohoyia povielonoinong
2o ol TAATPORUO TREOCOUOWWOEWY Yia aYopés TpbdoBaorg. TlepthopfBdvel
wovtéha Yo Toug tehdteg (npotiuroels, {Htnom, xivion, oyl exmtounic,
avoyy oty TwY), To XavdAL, TN SixTuax UTOBOUT TV TUeoY WY, THY
YWEIXT XATOVOUT TV YPTNOTWY X0l TO UN)YOVIOUO AVATEOGUUOY NG TWY
Tiwy. Ou mdpoyol oxomelouy 6T PEYIOTOTOMNOY TOU %€EDB0US TOUG,
eV oL ypfoTec arogactlouv e Bdon didpopa xpithpld, OTWS T0 X60TOg
TeocBouong, To pUING UETADOONC %ot TNV ATATOVUEVT] oYY EXTOUTYS.
Emniéov npoteivel tnv "euéhixty xdptd’, plo umneesio mou emtpénet oe
YPHOTES TOU BLUDETOUY TO XUTAAANAO UALXO XU AOYIGUIXG, VO GUVOEOVTOL
duvaixd o otaduols BAorg BlpoRETIXMY TopdY WY e Bdor didgopd
AQLTARIYL, OTWS TO TEOPIA TOUG, TNV XATACTUCY, TOU dXTUOU Xal TG
TpocQepoueveg Tiég. Ilehdteg mou ypnowonowldy v eughxty xdpTa
UTOPOUY VO ETAEYOUY TOV TNAETUXOWVWVIIXO TOUS THROYO avd XAHOT).

Avuth 1 egpyacioa avahler Ty eCEMEn plac duomwitoxiic ayopds mou



TEOGQEREL TNV UTNEESi TNE EVENXTNG xAETOC xodidS xat cuufohaa
UEYIANG Otdipxctog, Vewpmviag €va TEROYEVY) TANUUGUS YENoTOY X
e€etdlovTag TNy ETIBOGT TNG AYORJS ATO TNV OXOTIA TWY YENOTMOV, TWY
TapOY WV xat Twv puilwotwy @dopatog. H avdiuon avadeixviel 6t 1
eVENXTY xdpTa PehTiwvel TNV emB0OOT ulog AYORds XAl CUYXEXQUIEV
UELOVEL TO TOGOGTO TWYV UTOCUVOEDEUEVWY YENOTWY XL TNV TavoTnTa

andppubng (ANOEWY EVE AUEAVEL TNV XOWOVIXT| EUTUEP(dL.
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Chapter 1
Introduction

The wireless access, use and traffic demand are on a fast rise, leading to an in-
creased demand for radio spectrum. According to forecasts, by 2014, the mobile
data traffic will exceed the 3.6 exabytes per month worldwide. Besides perfor-
mance reasons, the efficient spectrum utilization is imperative from an economic
point of view: spectrum is a scarce resource of high economic value (its worldwide
value is approximately 1 trillion USD) for both the society and the wireless in-
dustry with a wide variety of active business stakeholders. Shannon’s law sets the
limits on the achievable transmission rate. To increase the spectral efficiency, the
research community has been developing multiple input multiple output (MIMO)
systems, intelligent and directional antennas, channel assignment and topology
control protocols, and improved MAC protocols. Another direction is cognitive
radio networks (CRNs), an emerging disruptive technology, which aims to im-
prove spectrum utilization, by enabling dynamic spectrum use by devices capable
of sensing the spectrum and detecting currently idle spectrum holes, and using
them without introducing interference to licensed, primary users [1].

The expectation that the commercial deployment of CRNs will lead to im-
proved network services and accelerate the evolution of wireless technologies has
triggered numerous research and industrial activities, such as the opportunistic
radio access to specific dedicated bands and the extension of the unlicensed part of
the spectrum. However, telecommunication operators and cellular providers are
reluctant to follow this paradigm shift. The cognitive radio technology empow-

ers networked devices with new degrees of flexibility and freedom, enabling new



network architectures, access methods, and services, enriching the roles of service
providers, and opening new opportunities for businesses cases. This important
paradigm shift can be demonstrated by examples from the area of spectrum mar-

kets and wireless access services.

1.1 Motivation

Until recently, the main spectrum market was the one of traditional cellular-
based providers with Base station (BS) deployments and long-term licenses to
fixed predetermined channels with exclusive access rights. However now new
spectrum market paradigms arise: (a) network operators that deploy femtocell
or mesh-like wireless networks dynamically, opportunistically, in a self-organizing
manner based on the expected traffic demand in a region, creating secondary
spectrum markets, (b) virtual (or service) providers that “sublease” certain part
of the spectrum dynamically for certain time periods and in specific regions from
(traditional) cellular providers, forming “local spot markets”, and (c) assuming
an “open (free) spectrum”, network operators may deploy Base stations (BSs) in
certain regions and perform with new-comer operators a joint channel allocation.
Major research and economic interest stems from these potentially large spectrum
markets. For example, a company in US, SpecEx, has been already providing an
online marketplace of available licensed radio spectrum for sale or lease on the
secondary market by enabling someone to search for spectrum offerings and access
underused spectrum.

This paradigm shift becomes accentuated by the multi-dimensional conver-
gence in telecommunications, e.g., in mobile, fixed and broadcasting, in voice and
data, in wireless and cellular networks, in ad hoc and infrastructure-based net-
works and in spectrum use as well as by the grass-root and cooperative aspects
that have also characterized the Internet evolution. The paradigm of an unli-
censed spectrum with different types of providers that offer dynamically wireless
Internet access also reinforces the development of novel grass-root, cooperative
communication paradigms and services. Owners may deploy services or rent /lease
spectrum assets, while service providers need not be spectrum owners. They may

create coalitions, e.g., by sharing a part of the infrastructure, spectrum or infor-



mation about their customers. However how such markets should be designed
in order to be profitable and efficient? What are the important business-aspects
that need to be considered with respect to price determination, operational and
service models, types of coalitions, user requirements and demand? How and
when should a service provider decide to expand its deployment of BSs? What
would be the appropriate service models to offer under certain spectrum condi-
tions and presence of competition? Such questions motivate this research. Unlike
the traditional cellular-based markets, these spectrum markets have larger sizes
(in terms of number of potential providers), are more heterogeneous (in terms
of services, clients, and providers), and potentially can offer an improved set of
services (e.g., higher multiplexing gains and a reduction of costs due to the higher
utilization of existing infrastructure). The space under which such markets need
to be analyzed is multi-dimensional and tightly integrates systems and business
aspects. We believe that business-driven comparative analysis studies of the evo-
lution of spectrum markets based on different spectrum access/sharing paradigms
are crucial in assessing the benefits of CRNs and further accelerating the tech-
nology transfer. The main objective of this research is to set the foundations
for the development of a modular modeling framework and simulation platform
that enables the business-driven comparative analysis study of various spectrum
markets and services under a diverse set of customer profiles and performance

metrics.

1.2 Challenges

Unlike the traditional cellular-based markets, the new types of spectrum markets
have larger sizes (not only in terms of the number of clients but also of potential
providers), are more heterogeneous (in terms of services, clients, providers, and
network architecture), multi-layered (in the spatial and temporal granularities in
which different phenomena manifest), more dynamic (e.g., in the decision making
process of clients and providers, network deployment, channel allocation), multi-
dimensional (many parameters, such as the spectrum allocation, BS deployments,
and pricing, affect their evolution and performance), and are more complex (e.g.,

the interplay of various parameters affect their performance). To the best of our



knowledge, there is no framework modeling spectrum markets that has addressed
all these issues. From a systems perspective, the aforementioned characteristics
impose several performance consequences, such as an increased algorithmic and
computational complexity. To analyze the evolution of such markets, the afore-
mentioned mechanisms and interactions among entities need to be modeled at
the appropriate time (which may vary from seconds to years) and spatial scales
(ranging from a few meters to the size of a country). The modeling and simula-
tion of such markets in fine-detail (i.e., at the microscopic-level, considering each
entity and interaction) results in an extremely large number of events, generated
by their entities and their interactions. It can be very computational expensive
to keep track of all the details and not amenable to analysis. Moreover, it is dif-
ficult to design proper adaptation mechanisms for providers (e.g., price setting,
capacity planning, spectrum acquisition) and users (e.g., service selection) due
to the interplay of various parameters at different spatial and temporal scales
which may introduce feedback loops that can make the market unstable. From
a modeling perspective, it is unclear how such complex, dynamic and large-scale
markets can be modeled in an accurate, robust, and scalable manner. Even
appropriate theoretical methodologies that would enable the analysis of the ac-
curacy and scalability tradeoffs for different modeling approaches have not been

yet proposed.

1.3 Contributions

This master thesis makes the following contributions:

1. It develops a modeling framework and simulation platform that allows us
to instantiate and assess various types of cellular-based access markets.
This framework contains models for (a) the channel, (b) the network topol-
ogy (e.g., cellular, mesh, vehicular), (c) the network operator infrastruc-
ture deployment /distribution, (d) the user mobility and distribution, (e)
the relations and interactions among providers and users, (f) the multi-
ple spatio-temporal scales (over which these relations and interactions are

manifested), (g) the type, reliability and amount of information that is



available to various entities, (h) the user preferences and tolerance criteria
with respect to the wireless access (e.g., based on transmission rate, energy,
financial cost) and the provider selection mechanism, (i) the utility func-
tions of the providers, and (j) price-adaptation algorithm. The simulation
environment based on this framework is modular, in that, it can instantiate

and implement different models for the aforementioned parameters.

. It introduces the u-map, a novel system with a user-centric geo-database
that enables users to upload measurements that their devices collect about
network conditions, interference, and coverage as well as their feedback
about their profile and quality of experience (QoE) for certain types of ser-
vices. This database will be generated in a grass-root fashion and can be ac-
cessed by users to make an educated selection of the operator /service as well
as by providers to obtain information about the customer profiles/market
and experience in order to improve/adjust their deployment, services, and
prices. The vision behind such databases, like the u-map, is to assist to-
wards the “self-regulation” spectrum environment, reducing the need for
active spectrum compliance testing, and as a consequence, making time for

other regulator activities.

. It proposes a novel service for cellular networks, the “flexi-card”: A flexi-
card client is not associated with a specific operator but can dynamically
access BSs of different operators based on various criteria, such as its profile,
the network conditions, and the offered prices, on a per-call basis. Such ser-
vice is a typical access paradigm in wireless local area networks (LANs) and
similar to the concept of “soft” (or virtual) subscriber identity module (SIM)
cards. We show that the flexi-card becomes a catalyst in a cellular-based
market, providing significant benefits, compared to traditional markets with
only subscribers. For example, the analysis demonstrated that a duopoly
that offers the flexi-card in addition to subscriptions alleviates the market
exclusion effects, dramatically reduces the percentage of disconnected users,
decreases substantially the blocking probabilities, and improves the social

welfare!



4. Tt evaluates the performance of cellular-based spectrum markets considering
different customer populations and the perspective of regulators, users, and
operators, possibly with conflicting objectives. A primary role of regulators
is to promote competition and social welfare, a fair inclusive treatment of
various user populations with respect to services and access, e.g., by min-
imizing the number of disconnected customers. Clients target to improve
the QoE of their access under their cost constraints, while the revenue max-

imization is the primary objective of providers.

1.4 Roadmap

Chapter 2 presents the related work in the areas of cognitive radios and spectrum
markets. First, it provides a taxonomy of approaches that design and optimize the
performance of cognitive radio networks. Then, it classifies studies of spectrum
markets with respect to different dimensions. First, it distinguishes between two
different market layers, the “spectrum acquisition” and “service provisioning” and
presents studies that model either of these layers or both of them. Then, it classi-
fies proposed approaches into “microscopic” and “macroscopic” ones. Microscopic
approaches model the market in a very fine level of detail while macroscopic ap-
proaches perform various aggregations to reduce the computational complexity.
Finally, there is a discussion on the various types of price-adaptation algorithms
that are used in the cognitive radio literature.

Chapter 3 describes in detail the proposed modeling framework and simulation
platform. Specifically, it defines the channel model, the decision-making mecha-
nism of users (with respect to the provider from which they buy wireless access),
and introduces a novel price-adaptation algorithm for providers that is based on a
second-degree concave polynomial approximation of their payoff function. It also
introduces the u-map, and illustrates a case in which it can be used to reduce
the blocking probability of user calls. Finally, it defines two different types of
markets and performs exhaustive simulations to evaluate their performance.

Chapter 4 introduces the “flexi-card” service for cellular-based spectrum mar-
kets. It describes the decision making of users with respect to service selection

(subscription or flexi-card) and BS selection (selection of a BS to perform a call).



It also describes two different price adaptation mechanisms, one for the subscrip-
tion rates and one for the rate of the flexi-card service. Finally, it performs
exhaustive simulations to evaluate the performance of a spectrum market that
offers the flexi-card service. Chapter 5 contains the conclusions of this thesis and

Chapter 6 our future work plans.

1.5 Related publications

The modeling framework and simulation platform described in Chapter 3 are the

main contributions of the following publications:

1. “A novel multi-layer framework for modeling the evolution of
spectrum markets and cognitive-radio devices”, published in IEEFE
DySPAN 2011 by Georgios Fortetsanakis, Markos Katsoulakis, and Maria
Papadopouli.

2. “A Game-theoretical modeling framework for spectrum markets
and cognitive-radio devices”, ICS-FORTH, Heraklion, Crete, Greece,
Tech. Rep. 414, February 2011 by Georgios Fortetsanakis, Markos Kat-

soulakis, and Maria Papadopouli.

The concept of the “u-map” described in Chapters 3 and 4 is introduced
in the following technical report: “The development of a user-centric QoE-
based geo-database for spectrum markets”, ICS-FORTH, Heraklion, Crete,
Greece, Tech. Rep. 422, July 2011 by Georgios Fortetsanakis, and Maria Pa-
padopouli.

Finally, the “flexi-card” service described in Chapter 4 is the main contribu-
tion of the following technical report: “To subscribe, or not to subscribe:
The analysis of new service paradigms in cellular markets”, ICS-FORTH,
Heraklion, Crete, Greece, Tech. Rep. 424, July 2011 by Georgios Fortetsanakis,
Maria Papadopouli, Gunnar Karlsson, Manos Dramitinos, and Emre A. Yavuz.
(Submitted to IEEE Infocom 2012)



Chapter 2

Related work

2.1 Cognitive radios

During the last decades, the demand for wireless access is on a fast rise. On the
other hand, current spectrum allocation policies are highly inefficient resulting
in underutilization of this valuable natural resource. This motivates the design
of new communication protocols and access paradigms that will increase spec-
trum utilization allowing the satisfaction of the increasing demand. Currently,
spectrum access is defined by two different paradigms, the “exclusive use”, and
“spectrum commons”. In exclusive use, the spectrum is owned by the government
and is licensed to particular providers and application types. On the contrary,
in spectrum commons the spectrum is unlicensed and can be accessed by any
device that follows a specific set of rules that are part of an industry standard
(e.g., IEEE 802.11).

To increase spectrum utilization, the research community introduced a new
spectrum access paradigm, the hierarchical access. In this paradigm, some intel-
ligent devices called cognitive radios are allowed to function at licensed portions
of the spectrum, given that they would not affect the quality of service of the
licensed systems. In particular, the total interference power that is measured
at the receiver of a licensed system should not exceed a certain threshold, the
interference temperature limit [2]. In some cases, it is sufficient to ensure that

the probability of exceeding a certain level of interference power should be kept



lower than a threshold [3].

The hierarchical access paradigm has been adopted by various schemes in the
literature. These schemes try to improve the efficiency of cognitive radio networks
using various techniques. For example, some of them use power control to limit
the levels of interference, while others use beamforming, to restrict the trans-
mission and reception of signals to certain directions [4, 5, 6]. Another method
reduces the interference power by decoding the message of primary systems and
subtracting it from the overall signal [7]. Some approaches dynamically adjust
the transmission rate according to the current wireless conditions [8] while others
allocate channels to the various transmitter-receiver pairs, to increase the spectral
efficiency [9, 10, 11, 12, 13, 14]. The proposed channel allocation algorithms are
centralized or distributed, proactive or on-demand, and they assign contiguous
or non-contiguous bands to the various devices [15, 16].

Generally, the goal of all these approaches is to improve the efficiency of cog-
nitive radio networks. They also consider different performance metrics such as,
the total achievable throughput or the degree of fairness of the medium access
scheme. Moreover, some approaches consider the user-perceived QoE (quality of
experience) of certain types of applications, and model it in terms of various net-
work parameters, such as the transmission rate and the packet-error probability
[17, 18]. Using such metrics, the allocation of resources to the various devices can
be performed more efficiently.

According to other approaches, the secondary users could dedicate a portion
of their transmission power to enhance the transmissions of the primary system
[19]. By using complicated coding techniques, like the dirty-paper coding, they
can achieve transmission rates that are close to the channel capacity. Even though
such approaches are interesting in a theoretical point of view, it is difficult to
implement them in real systems. This is because the secondary users should be

informed about the modulation scheme and the message of the primary system.



2.2 Spectrum market modeling

2.2.1 Market layers

In the cognitive radio literature, spectrum markets have been modeled in two
different layers, the spectrum acquisition and service provisioning. Spectrum
acquisition, focuses on the process with which providers acquire licenses to oper-
ate at certain portions of the spectrum, from the state or other providers. These
licenses are offered in different time and space granularities, from long-term na-
tionwide licenses to regional licences with relatively short duration. On the con-
trary, service provisioning describes how providers choose the types of services
they will offer to end users, using the spectrum they have acquired. It also models
the price determination for the offered services as well as the end-user decision
making.

Several studies model the spectrum acquisition of providers, based on different
assumptions. Some of them [20, 21| focus on nationwide licenses that are valid for
a long period of time (e.g., ten years), while others describe secondary spectrum
markets, in which license holders may sublease a portion of their spectrum to
other firms, at specific regions and for shorter periods of time. For example,
Niyato et al. [22] consider multiple primary providers that sublease a portion
of their unused spectrum to a secondary provider to increase their profit. They
also study a scenario [23] with multiple providers that are organized in a certain
hierarchy, in which the provider ¢ can buy spectrum from the provider ¢ — 1 and
can sublease a portion of it to the provider i+ 1. Jia et al. [24] consider a license
holder that subleases a porion of its unused bandwidth to a set of providers to
increase its revenue, while in other studies [25, 26] multiple sellers offer spectrum
to multiple buyers. All these sellers offer one channel of the same bandwidth
and each buyer requests for access to a single channel. Kasbekar et al. [27] also
proposed a framework with multiple sellers that offer spectrum to multiple buyers,
but each buyer is able to win more than one bands. Moreover, two different types
of licenses were considered, primary and secondary licenses. A primary license
holder has the highest priority to access the spectrum while secondary license

holders function in an opportunistic manner.
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In service provisioning, there are also various studies with different assump-
tions on the types of offered services and the characteristics of end-users. For
example, Wysocki et al. [28] consider a provider that offers two types of ser-
vices, one for primary and one for secondary users. The price for the secondary
service is determined in a way that balances out the QoE degradation of the pri-
mary service. Other studies [29, 30] consider service provisioning in code division
multiple access (CDMA) wireless networks, in which users are charged according
to the transmission power they invest, while Gao et al. [31] consider a provider
that offers services of different quality and price. The service quality is indicated
by the maximum transmission power, a user can invest. Niyato et al. [32] assume
that multiple providers offer services to multiple groups of users. The providers
decide the amount of spectrum and price they will offer to the market while users
choose the provider from which they will buy services. Xing et al. [33] introduce
a model, in which users choose provider based on their own profile that is char-
acterized by their target QoE and willingness to pay, while Ji et al. [34] design
an auction with multiple providers that offer channels to multiple users. Each
provider offers one channel for sale that can be allocated to a single user. Finally,
Chang et al. [35] consider a provider that offers services to both primary and
secondary users and sets a limit to the number of channels that can be allocated
to the secondary service to guarantee the quality of the primary service.

Except of studies that focus only on spectrum acquisition or service provision-
ing there are some approaches that consider both procedures jointly [36, 37]. In
these approaches, multiple providers acquire spectrum from a central spectrum
moderator and use it to offer services to end users. Each provider decides on the
amount of spectrum to be purchased, based both on the current prices that are
set by the moderator, and the user demand. Moreover, it sets the prices for the
end-user services in a way that maximizes its revenue. The decision making of
providers with respect to the amount of spectrum to be purchased and the price
setting of services manifest in different time granularities. Specifically, a provider
purchases spectrum much more rarely than it adapts the prices for the end-user

services.
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2.2.2 Level of detail

Spectrum markets are complex systems which involve interactions between a
large number of end-users, each having its own profile, and many providers with
network infrastructures of different technology, that offer various types of services.
They also involve interactions between providers and spectrum regulators that
set the rules for the spectrum allocation and its proper use. All these interactions
manifest in different spatial and temporal scales. For example, spectrum licenses
are renewed much more rarely compared to the rate with which providers change
the prices for the end-user services. Similarly, end users take their decisions much
more often compared to the rate with which providers change their strategies.
Thus, it is difficult to design a complete model of spectrum markets that describes
in detail all these interactions.

Existing models of spectrum markets can be classified into two general cate-
gories, namely, the microscopic- and the macroscopic- level ones. The microscopic-
level models consider the interactions among all participating entities in a spec-
trum market, at a very fine level of detail, mostly assuming a limited number of
such entities due to the high computational complexity. For example, in some
studies [29, 30, 31, 33, 34, 35, 37], each user is modeled as a distinct entity with its
own profile that may depend on its willingness to pay or its target QoE. Wysocki
et al. [28] also propose a model which describes in detail the user arrival process
in the market.

On the other hand, the macroscopic-level models consider only an “average”
behavior of certain types of entities (e.g. end users) to make the analysis more
tractable. For example, some studies [22, 36] use a polynomial of second degree
to describe how the user demand depends on the offered prices. Others [23, 24]
consider that each provider knows a priori the amount of spectrum its clients
need without discussing the details of the provider-user interaction that leads to
this demand. Niyato et al. [32] also proposed a model in which users are divided
into groups and only the average behavior of users in each group is taken into
consideration. Finally, there are studies [25, 26, 27], focusing on the spectrum
acquisition of providers, which assume that each provider knows its valuation for

the available spectrum, but they do not discuss how this valuation is determined.
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Unlike the previous approaches, this thesis sets the foundations for the de-
sign of a framework that models the interactions of entities at several spatial
scales, from large metropolitan areas to small neighborhoods (e.g., within the
coverage of a wireless access point), enabling the instantiation of various param-
eters at different time granularities. Moreover, it will provide the set of models
and mathematical transformations that allow to “scale up or down” a modeling
environment in order to analyze a certain phenomenon at the appropriate level
of detail, controlling the loss of information. Specifically, models in this frame-
work will be more detailed compared to macroscopic approaches but will perform
various aggregations of entities to reduce the amount of unnecessary informa-
tion. That way the computational complexity will be reduced compared to the

microscopic approaches allowing the study of more complex markets.

2.3 Price adaptation

Pricing of spectral resources is an important issue in most studies of spectrum
markets. In studies that model the spectrum acquisition of service providers in
various spatial and temporal scales (nation-wide or regional licenses), the auctions
are the preferable mechanism to perform the spectrum allocation. In the economic
literature [20, 21] it is proven that auctions is the best means to allocate spectrum
to firms that value it the most, thus increasing the social welfare. In studies that
model the competition of providers to offer services to wireless users, various
pricing algorithms have been considered. These algorithms can be classified in
two general categories based on the amount of information that is available to
providers. The first class of algorithms assumes that providers have full knowledge
of the market, which means that they can predict the reaction of users to all
possible choices of strategy they could make. Moreover, the providers know the
strategies and the utility functions of all their competitors. These assumptions
are strong and unrealistic in most practical scenarios, in which the information
that is available to providers is limited. Thus, in the second class of algorithms
the providers have partial knowledge of the market and use reinforcement learning

to predict the behavior of users and their competitors.
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2.3.1 Full-knowledge algorithms

The most commonly used full-knowledge price setting algorithms are (a) best
response, and (b) fictitious play. In these algorithms, each provider offers a price
that maximizes its expected revenue based on a suitable prediction of the behavior

of its competitors.

1. Best response [36, 38, 39] assumes that providers take actions one after the
other according to a certain ordering. When a provider acts, it changes
its price in a suitable way that maximizes its performance, assuming that
the environment will remain the same. Specifically, each provider chooses
a price that maximizes its immediate payoff, based on the assumption that
the prices of the other providers will not change. Although best response
fails to account for simultaneous adaptation from multiple providers, it can
be shown to converge to a Nash equilibrium in special cases, such as two-
player zero-sum games, supermodular games, potential games, and certain

types of submodular games.

2. Fictitious play [40] also considers that providers take actions one after
the other according to an ordering scheme. In contrast to best response,
providers choose the offered prices in a way that maximizes their expected
revenue based on the assumption that the historical distribution of actions
of the other providers is a good predictor of their future actions. Fictitious
play is characterized by good convergence properties in practice, although
converge to Nash equilibrium is known to be false in general. One drawback
is the need to explicitly observe the behavior of all opponents which may

be unrealistic in certain scenarios.

2.3.2 Partial-knowledge algorithms

In case that providers do not know a model of the behavior of users or other
providers, they adopt various types of reinforcement-learning algorithms to pre-
dict this behavior based on data that are collected throughout the market evolu-

tion. The most common types of reinforcement-learning algorithms used in the
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spectrum-market literature are (a) steepest ascent, (b) stochastic learning, (c) Q-
learning, (d) regret-based algorithms, and (e) the amoeba algorithm. The above

algorithms are based on different types of available information to providers.

1. Steepest ascent [22, 32] is adopted is scenarios in which, a provider may
not be able to observe the profit or the offered prices of other providers.
Therefore, in order to perform the price adaptation, a provider should be
based only on local information. In this case, it will adapt the price towards
the direction that maximizes its profit with a certain step. Specifically, the

relationship between the current and the new price is described as follows:

pi(t+1) =pi(t) + a; (a(g(P)> (2.1)
Di
where p;(t) is the price offered by the provider ¢ at time ¢, p is a vector with
the current prices of all providers, U; is the utility function of the provider
i, and a; is the adjustment speed (i.e. learning rate) of the adaptation.
To estimate the derivative of its utility function with respect to the price,
a provider performs a small variation in the currently offered price and
observes the resulting difference in the user demand. This method is based
on the assumption that the spectral resources can be divided in a continuous
manner among the users. However, in most practical cases of medium
access schemes the spectral resources are discrete. For example, in time
division multiple access (TDMA), spectrum is divided into time-frequency
slots while in frequency division multiple access (FDMA), in channels of
fixed bandwidth. In such cases, the estimation of the derivative of the

utility function of a certain provider becomes a more complicated issue.

2. Stochastic learning algorithms [33] assume that providers adapt their prices
in alternating turns and that they can offer a price from a given discrete
set. At each turn, a provider chooses a price randomly, according to a
certain probability distribution defined on the set of available prices, and
measures the resulting revenue. Then it adapts the probability distribution
in such a way, that increases the weight of prices that achieved high revenue

and penalizes prices that achieved low revenue. For example, this can be
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done by proper filtering of the probability distribution. These types of
algorithms have two important disadvantages. First they are characterized
by very slow convergence and for a given provider, the price adaptation of

its competitors introduces a non-stationary environment.

. Q-learning [38, 39] describes the environment of an agent using a Markov de-
cision process. A finite-state Markov decision processis a tuple < X, U, f,p >
where X is a finite set of environment states, U is a finite set of agent ac-
tions, f : X xU x X — [0, 1] is the state transition probability function, and
p: X xU x X — R is the reward function. In spectrum pricing problems,
the state of the environment z € X is a vector which contains the prices
of the competitors of a certain provider. When this provider performs an
action u € U, all its competitors will react to this action by changing the
state of the environment from z; to xp.;. Then the provider receives a
reward 7541 according to the reward function r = p(z, ug, xx+1). The goal

of the provider is to maximize at each turn, the expected discounted return:

7=0

In most practical cases of spectrum markets, the providers do not know a
priori the expected discounted return that is associated with the various
available prices and they estimate it based on the history of the market
evolution. Specifically, each provider maintains a “lookup table” which
contains an approximation of the expected discounted return Q(z,u) for
all possible pairs of the environmental states and provider actions. At each
step of the algorithm, the provider chooses a new price based on the cur-
rently estimated lookup table and using the Boltzmann exploration strat-
egy. Then it updates the estimation of the function Q(z,u) according to a
certain adaptation rule. A detailed description of single-agent and multi-
agent Q-learning can be found in [41]. Various important issues arise when
implementing the Q-learning algorithm in practice. It is difficult to main-
tain lookup tables for the function Q(x,u) especially in markets with many

providers due to their large size. Moreover, it is not clear how these tables

16



should be initialized. Finally, in many cases the speed of convergence of the

Q-learning algorithm is very slow.

4. Regret-based algorithms [40] are in a sense a generalization of fictitious play,
which replace explicit opponent modeling with an implicit “regret matrix”.
Each player maintains such a matrix, which tracks, for every pair of actions
J, k the difference in utility that a provider would have obtained if it had
taken the action k£ in the past everywhere it took action 7. Given that the
current action of a provider is j, the probability of choosing action k in the
next step is proportional to the regret from j to k. Learning proceeds by
exploring and switching to actions that are perceived as “better” according
to this regret measure. Maintenance of the regret matrix requires no explicit
awareness of other providers. The main disadvantage is that providers are
required to know, the utility they would have obtained for each possible
choice of strategy they could have made in the past. This requirement is

removed in modified regret matching that is presented in [42].

5. The amoeba algorithm [43] is used in a case that a provider offers n different
types of services at different prices. Specifically, each provider maintains n+
1 sets of prices and their corresponding revenue as it was recently measured
in the market. The convex hull of these sets of prices is a nondegenerate
simplex of n dimensions. At each iteration, new sets of prices are computed
along with their corresponding values of revenue, to form a new simplex.
The algorithm stops when the revenue that corresponds to the vertices of
the simplex satisfies a predefined condition. One important disadvantage
of this algorithm is that the price adaptation of rival providers introduces

a non-stationary environment which is not taken into consideration.

In this thesis we used two different price-adaptation algorithms, that are an
extension of steepest ascent and best response respectively. As mentioned ear-
lier, steepest ascent is based on the assumption that a provider can measure the
derivative of its utility with respect to the offered price by performing a small
variation of the current price and measuring the user reaction. This method is

valid only when the spectral resources can be continuously divided among users.
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However, in this thesis we study TDMA-based cellular networks in which users
can buy access to a discrete number of time-frequency slots and therefore the
derivative estimation becomes a more complex issue. To overcome this problem,
we assume that providers perform the price adaptation based on a second-degree
concave polynomial approximation of the payoff function and estimate its param-
eters based on the history of the game evolution. This approximation is simple
yet appropriate to capture the mathematical properties of the payoff function of
a provider. Specifically, each provider keeps track of the last sets of prices that
have been offered as well as the corresponding values of revenue. It periodically
fits the polynomial to the recently collected data by solving a least-squares prob-
lem with the additional constraint that the polynomial is concave, formulated
as a semi-definite program [44]. The price is adapted using the steepest ascent
method on the estimated polynomial. The algorithm is described in detail in
Section 3.1.3.

In best response, it is assumed that a provider has full knowledge of the user
demand and the utility functions of other providers. This is a strong assumption
which we relax by considering that providers only know the distribution of the
user profiles and can observe only the prices that are offered by their competitors.
Then we apply a clustering algorithm on the profiles of users and we represent
each class of users by a single imaginary entity which we call “representative user”.
The demand of a representative user is computed in such a way that matches the
average demand of the users it represents. Then each providers simulates off line
the decision making of representative users for all prices it can offer and estimates
its revenue. Finally, the provider chooses the price that maximizes its revenue
based on the assumption that the prices of its competitors will remain the same.

A complete description of the algorithm is provided in Section 4.1.7.
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Chapter 3

The modeling framework and

simulation platform

Cognitive radios, an emerging disruptive technology, aims to improve spectrum
utilization and efficiency, enabling dynamic spectrum use. Unlike traditional
cellular-based access markets, in which users associate with specific providers,
new market types arise in which users will be able to choose their provider on a per
call basis. Their choice will depend on various parameters such as their proximity
to BSs of the various providers, the channel conditions, and the offered prices.
These types of markets will offer more opportunities for wireless connectivity to
users and will increase their QoE.

In this work, we introduce a modeling framework and simulation platform
that studies cellular-based access markets with two different types of users, the
subscribers, and the card users. Subscribers perform long-term contracts with
a specific provider and can connect only to BSs of that provider for the entire
duration of their contract. On the contrary, card users can connect to a BS
belonging to any provider at the start of each call. Different pricing schemes
are adopted to charge the two types of clients. Providers in this framework are
competitive and they set their prices in such a way that maximizes their profit
while users decide based on various criteria, such as, the financial cost of their
access, the quality of the offered services, and the required transmission power.

Our modeling framework takes into consideration various parameters, such as,

19



(a) the channel, (b) the network topology (e.g., cellular, mesh, vehicular), (c) the
network operator infrastructure deployment/distribution, (d) the user mobility
and distribution, (e) the relations and interactions among providers and users,
(f) the multiple spatio-temporal scales (over which these relations and interac-
tions are manifested), (g) the type, reliability and amount of information that is
available to various entities, (h) the user preferences and tolerance criteria with
respect to the wireless access (e.g., based on transmission rate, energy, finan-
cial cost) and the provider selection mechanism, (i) the utility functions of the
providers, and (j) price-adaptation algorithm. The simulation environment based
on this framework is modular, in that, it can instantiate and implement different

models for the aforementioned parameters.

3.1 Modeling framework

3.1.1 Channel model

To simulate the channel quality, we employed the Okumura Hata path-loss model
for small cities [45]. Moreover, the contribution of shadowing (expressed in dB)
to the channel gain at the positions of BSs follows a multivariate Gaussian dis-

tribution with mean 0 and covariance matrix defined in Eq. (3.1).

o if i = 7,
C(i,j) = (3.1)

2 —||Li—L;||/Xe  if i £ S
o2eIbi=Lill/Xe if § £ 4.

V)

Where o is the standard deviation of shadowing (2.5 dB in our simulations), X,
is the correlation distance within which the shadowing effects are correlated [46]
and L;, L; are the positions of the BSs i and j respectively.

To model the effect of angular correlation of shadowing we represent each BS
with six points instead of one. These points lie on a circle with center the BS
position and radius 1m and they are equally spaced. Furthermore, we determine
the value of shadowing at the points that represent all BSs by drawing a sample
from the distribution described in Eq. (3.1). When a user communicates with

a specific BS, the contribution of shadowing to the channel gain is equal to the
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value that corresponds to the point representing the BS, whose direction is the
closest to the direction of arrival of the signal [47].

We compute the interference power at a time-frequency slot belonging to a
specific BS by measuring the contribution of all interfering users at cochannel
BSs. Moreover, we assume that cochannel BSs of the same provider are not
synchronized resulting in overlaps between multiple time-frequency slots and thus
in users that interfere to more than one slots. In real wireless networks, the
amount of interference at the available time-frequency slots and the channel gain
will be measured by the network interfaces of BSs and sent to the users with

appropriate messages.

3.1.2 User decision making

Consider that there is a set of users U in a particular geographical region. Fach

user u € U takes its decisions by solving the following optimization problem.

maximize Y a (§> log, ( 1+ M) — be(s)To(s)

* ses

subject to  Tin < ZTu(s) < Trazx

seS
;C(S>Tu(s) < Cr,[r‘laz (32)
BY, (), TG ) o
2 (N) 082 (1 TG ) = fHar
Zsz’gn(Tu(s)) =1
s€S

Where S is the set of available time-frequency slots at neighboring BSs, G(u, s) is
the channel gain that the user u observes at the time-frequency slot s, and I(s),
c(s) are the interference plus noise power and monetary cost of the slot s respec-
tively. B is the width of a single channel and N is the number of time-frequency
slots in which a channel is divided. Furthermore, T5yin, Tinaz, Crnges and Ry, are

the minimum and maximum allowable transmission power, the maximum price

per minute that the user u can tolerate for a time-frequency slot and the target
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transmission rate of the user w. Finally, the vector T, = (T,(s)),.4 contains the
transmission power that the user u invests in all available time-frequency slots

and the function sign(z) is defined as follows.

n(z) 1 ifx>0, (3.3)
sign(z) = )
g 0 otherwise

The objective of the above optimization problem consists of two parts. The
first part is the total achievable transmission rate, while the second part is the
monetary cost that is required to achieve this rate. We assume that a user pays a
price that is proportional to the transmission power it invests. Moreover, the two
parts of the objective function are taken into consideration with different weights
(a and b respectively). The final constraint restricts each user to invest trans-
mission power at a single time-frequency slot. To solve this problem we consider

each time-frequency slot s € S separately and solve the following problem.

maximize (%) log, <1 + W) ~ be(s)To(s)

subject to Thin < Tu(S) < Thas
c(s)Ty(s) < Cv

max

(2 g 1+ 1009

In other words, we compute the optimal value of the objective function for
each time-frequency slot and subsequently we choose the slot whose optimal value
is the largest. To decrease the computational complexity of the above procedure,

we exclude the time-frequency slots that satisfy one of the following conditions.

c(s)T > C* (3.4a)

max

(%) log, (1 + %) < Ry, (3.4b)
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Where be is the maximum between T},;, and the minimum amount of transmis-
sion power required to achieve the target transmission rate and T is the minimum
between T},,, and the maximum transmission power for which the monetary cost
constraint is satisfied. Slots that satisfy the condition (3.4a) cannot satisfy the
monetary cost constraint while slots that satisfy the condition (3.4b) cannot sat-

isfy the target transmission rate constraint, and thus, they cannot be chosen.

3.1.3 Price adaptation algorithm

Most of the related approaches consider a given (a priori known) function that
models the demand of secondary users to perform the price adaptation or de-
cide about the amount of spectrum, which providers will offer in a given market
[22, 24, 36, 37]. Unlike them, this work does not assume that the demand is
known. Moreover, it employs a price adaptation algorithm which assumes that
the providers only know their own prices and the prices of their competitors and
measure their own revenue. No knowledge is available about the user character-
istics and preferences.

We consider an access market in which a set P = {py, pa, ..., px } of providers
compete to offer services to end users. For each possible set of prices x =
(21,9, ...,xx) that is offered, each provider p € P achieves the revenue Fj,(x).
The function F, : R"T — R is generally unknown due to the limited infor-
mation that is available to each provider. Furthermore, in some scenarios, this
function may be time-varying due to various dynamical phenomena such as (a)
arrivals/departures of users, (b) user mobility, (¢) changes in the channel condi-
tions.

Our price adaptation algorithm approximates the function F,, with a concave
polynomial of second degree g,(x) = x? Apx + kax + v, and estimates its pa-
rameters based on the history of the game evolution. Specifically, each provider

maintains a dataset

D, = {x(4), Fp(x(2)) Yimn—Mp,...n—1,n (3.5)

where x(i) represents the ith set of prices that has been offered in the market

and M, corresponds to the number of previous price sets that are stored in the
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dataset D,. To compute the parameters of the polynomial g,(x) each provider

solves the following optimization problem.

n

minimize Y w" (g, (x(i) — Fy(x(1)))?

Apkp,vp .
i=n—Mp

3.6
subject to  g,(x) = x" A,x + k. X + v, (3.6)

A, <0

Where w takes a value between 0 and 1 and defines the weight with which previous
price sets are taken into consideration.

The above optimization problem is a semi-definite program and can be solved
efficiently [44] . We constrain our polynomial to be concave for two reasons (a) to
better capture the characteristics of concave payoff functions, and (b) to ensure
the stability of the price adaptation process that is performed according to the
following rule.

dgp(x)

20+ 1) = ay(n) + p 22 (3.7)

&cp x=x(n)

where g is the step size.

To initialize our algorithm, we take into consideration that the price 0 corre-
sponds to revenue 0 for all providers. Moreover, each provider starts by offering
a very small price (0.01 in our simulations). The initial estimation of the polyno-
mial parameters is based on these first observations. Due to the limited number
of available points in the dataset D,, at the beginning of the experiment, the
solution of the problem (3.6) may require a large number of Newton steps. In
this case, we restrict the number of steps to be lower than a threshold. This leads
a crude initial estimation of the polynomial that is improved as the size of the
dataset increases.

Alternatively, we could initialize our algorithm by solving a least-norm prob-
lem (minimize the Euclidean norm of the vector that contains the polynomial
parameters) instead of a least-squares problem until the size of the dataset D,
becomes larger than the number of the polynomial parameters.

Finally, at the beginning of the experiment, the polynomial parameters are

re-estimated every time a provider p € P adds a new point to the dataset D,.
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When the size of the dataset becomes larger than a threshold, the parameters of
the polynomial are renewed once for every L (in our simulations 10) new points
that are added to the dataset D,. This decreases the computational complexity
of the algorithm. The price adaptation is still based on the rule (3.7) using the

most recent estimation of the polynomial.

3.2 Simulation platform

The simulation platform can instantiate access markets with cellular providers,
owners of spectral resources, that offer wireless access via their BSs to clients in a
small city. The providers divide their channels to time-frequency slots according
to a TDMA scheme. In these markets, two types of customer populations are
present: the card users and the subscribers. A card user selects a BS at the start
of each call dynamically, while subscribers choose their provider upon their arrival
in the region and connect only to BSs of that provider for the remaining duration
of the experiment.

A client is characterized by a price tolerance threshold and a target transmis-
sion rate threshold. Based on their preference, clients can also be distinguished
in two categories, namely the price-preference and transmission rate-preference
ones. In rate preference, clients aim to optimize only their transmission rate when
selecting a BS, given that this BS can satisfy both the price tolerance and target
transmission rate thresholds (a = 1 and b = 0 in problem 3.2). Clients with price
preference aim to minimize the financial cost of acquiring a time-frequency slot,
when selecting a BS, given that this BS can satisfy both the willingness to pay
and target-transmission rate thresholds (e = 0 and b = 1 in problem 3.2). We
may also define other types of customer profiles by appropriately choosing the
weights a and b in the objective function of problem 3.2 .

Clients generate requests to connect to a BS (i.e., calls). The durations of
calls and disconnection periods are given by appropriate stochastic processes. For
example, in this work we considered two different types of client demand models,
one with constant and one with varying demand. In constant demand, clients
are always willing to remain connected, thus their demand can be viewed as a

single call that lasts for the entire duration of the experiment. On the contrary,
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in varying demand, clients generate calls of limited duration and between two
consecutive calls there is an interval in which a client remains disconnected.

In the current version of the simulation platform, clients move only when
they are not performing calls and with pedestrian speed. The position of a client
at the end of a disconnection period is chosen randomly from a circular region
with center the position of the client at the beginning of the disconnection and
radius the maximum possible traveled distance during this period. If a client
ends up in a position outside the borders of the city it is reflected back in the
city. The simulation platform can be extended to consider other mobility models
(e.g., vehicular mobility) and mobility traces.

Finally, the simulation platform maintains the wumap, a data structure that
corresponds to a grid-based representation of a region. Each cell of the grid stores
statistics about the providers and the QoE of calls. At the end of a call, a card
client reports the number of available time-frequency slots of the closest BS of each
provider. Subscribers also report the number of available time-frequency slots of
the closest BS of their providers. This information is uploaded and stored in a
centralized database (u-map). Based on this information, the average spectrum
availability i.e., number of available time-frequency slots of a BS of a provider,
averaged over all collected measurements, is computed. Subscribers select the
provider with the highest average spectrum availability. In this work, the main
purpose of the u-map is to reduce the call blocking probability. In a more general
context, different type (e.g., QoE-based) of measurements can be recorded on the
u-map, the cell size of the u-map may vary, and different BS/provider selection
mechanisms can be employed to improve the QoE of a user. A description of the

matlab functions that implement the simulation platform is provided in Appendix

A.

3.3 Performance evaluation

To evaluate the proposed framework and simulation platform we instantiated
two cellular markets with two providers that offer wireless access to users. In
the first market users are stationary and are willing to remain connected for the

entire duration of the experiment, which is relatively small (2000 seconds). On
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the contrary, in the second market, users are moving with pedestrian speed and
are characterized by varying demand. These assumptions allow us to study the

evolution of the market in longer periods (on the order of a month).

3.3.1 Market 1: stationary users with constant demand
3.3.1.1 Description

Two cellular networks, deployed by different providers, offer services to users in
a small city, represented as a rectangle of 11 Km x 9 Km. Each network consists
of 49 BSs placed on the sites of a triangular grid, with a distance between two
neighboring sites of 1.6 Km. Moreover, each provider owns bandwidth of 5.6
MHz, that is divided into 28 channels of 0.2 MHz width. These channels are
allocated to BSs according to a frequency reuse scheme with spatial reuse factors
of 4 and 7, for Provider 1 and Provider 2, respectively. The closest BSs at the
same frequency band as a given BS in a topology with a spatial reuse factor of 4
can be located by “moving” two steps towards any direction on the grid. On the
other hand, in a topology with a spatial reuse factor of 7, by “moving” two steps
towards any direction, then turning by 60 degrees, and “moving” one more step,
the closest BSs at the same frequency band as a given BS can be located. This is
illustrated in Fig. 3.1. Each channel is further divided into three time-frequency
slots in a TDMA scheme, resulting in 21 time-frequency slots per BS of Provider
1 and 12 slots per BS of Provider 2. The parameters of the cellular networks of
the two providers are summarized in Table 3.1. Note that a single time-frequency
slot can be offered to only one user. Also, the demand of each user is exactly one
slot.

There is a distribution of 600 users in this region interested in buying wireless
Internet access from these two providers. Each user is characterized by a price
tolerance threshold (i.e., he can tolerate a maximum cost for the Internet access)
given by a Gaussian distribution (m = 0.15, 0 = 0.0374) and has a target trans-
mission rate (expressed in Mbps) that follows a Gaussian distribution (m = 0.1,
o = 0.01).

A Uniform and a Zipf topology are simulated. In the Uniform topology, users

are distributed in the entire region according to a Uniform distribution, while in
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Figure 3.1: Closest BSs using the same frequency band when the spatial reuse
factor is 4 (left plot) and 7 (right plot).
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the Zipf topology (shown in Fig. 3.2), users are placed mostly at the center of
the city. In both cases, users are stationary.

To avoid the effect of boundary conditions, we analyzed only the measure-
ments that correspond to BSs and users in a small rectangular region at the
center of the city (marked as “region of interest”, the inner rectangle shown in
Fig. 3.2). Specifically, only the BSs located in that region and users of that region

that also access the Internet via those BSs are considered in the price adaptation

Table 3.1: Cellular network parameters

Parameters Provider 1 | Provider 2
Bandwidth (MHz) 5.6 5.6
Channel width (MHz) 0.2 0.2
Slots per channel 3 3
Spatial reuse factor 4 7
Distance of two
neighboring BS (Km) L6 L6
Distance to the closest
interfering BS (Km) 320 1.2
Slots per Base station 21 12
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Figure 3.2: Uniform topology (left), Zipf topology (right).

algorithm and in the reported evaluation results. The region of interest includes
9 BSs of each provider. 150 users are present in the Uniform topology and 242
users in the Zipf topology, respectively.

Each user reconsiders its choice periodically (here, every 2 sec), while each
provider adapts its price at time instances produced by a Poisson process with
a mean of 0.03 renewals/sec. Providers run the price adaptation algorithm de-
scribed in Section 3.1.3. An experiment corresponds to a specific topology (The
Uniform topology indicated with “U” and the Zipf topology indicated with “Z”).
All the users of an experiment employ the same user preference metric (Price
“P” or Rate “R” preference). It lasts for 2000 sec. The results reported for each
scenario (e.g., “U-R”in Fig. 3.4, for a Uniform topology with rate preference)
are average statistics over 30 Monte Carlo runs. This simulation testbed was

implemented in Matlab.

3.3.1.2 Simulation results

In rate-preference, a user connects to the BS that offers the best channel in terms
of received signal to interference plus noise ratio (SINR). Due to the spatial reuse
scheme, the impact on SINR of the interference of other users at co-channel cells
is relatively small compared to the channel gain, which is determined mostly by

the distance between transmitter (a given user) and receiver (its BS). Therefore,
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users tend to select the geographically nearest BS. This has as a result providers
to increase their prices, without significantly influencing the BS selection process
of users. Consequently, the prices of the two providers converge to a relatively
high value.

On the contrary, in price preference, users connect to a BS of the least ex-
pensive provider, given that they can still achieve their target transmission rate.
In these scenarios, even small changes in the price could cause some users to
change provider. This has two important implications; First, compared to the
rate-preference scenario, a larger number of handoffs are performed between BSs
of the two providers. Second, the intensity of competition keeps the prices of the
two providers at relatively low levels.

Fig. 3.3 presents the evolution of prices under the two topologies and user
preference metrics, while Fig. 3.4 summarizes the revenue and spectrum uti-
lization per BS for each provider and the number of handoffs and percentage of
disconnection of users. Specifically, the revenue corresponds to the average of
the total revenue of all BS at the region of interest throughout an experiment,
averaged over all Monte-Carlo runs. The spectrum utilization for a BS is the
integral of the percentage of time slots assigned to users during the experiment,
normalized by the duration of the experiment. The reported value is computed
in the same manner as the revenue. The number of handoffs corresponds to the
number of transitions between BSs of a user during an experiment, averaged over
all users and all Monte-Carlo runs. The disconnection period of a user corre-
sponds to the total percentage of time that this user is disconnected during an
experiment. We compute the average over all users in an experiment, and re-
port the average over all Monte-Carlo runs. We also indicate the corresponding
median values in parenthesis.

The spatial user distribution affects the system dynamics: In the uniform
topology, the total number of users located in the region of interest is 150. Fur-
thermore, the availability of time-frequency slots of the two providers is 189 and
108, respectively. Therefore, the Provider 2 is not able to satisfy the user de-
mand, resulting to a small advantage for the Provider 1 in terms of number of
clients and revenue. On the contrary, in Zipf, in the region of interest, the user

demand exceeds the availability of time-frequency slots of each provider. Thus,
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Figure 3.3: (a) The price evolution in the Zipf topology, (b) The price evolution
in the Uniform topology.

the providers have the opportunity to increase their prices even further, result-
ing in higher revenues for both providers (compared to the Uniform topology).
Finally, due to the relatively high user density, the difference in the revenue of
the two providers increases (compared to the revenue reported in the Uniform
topology). The above results are shown in Fig.3.4 (a).

In price-preference, the prices are higher in the Zipf than in the Uniform
topology. This is because the user demand is larger than the availability of time
frequency slots of each provider. This offers more opportunities for price increase
than in the uniform topology. In rate-preference, the prices in the two topologies
are similar (U-R vs. Z-R), since users decide based on topological criteria. The
price evolution is mostly affected by the user price tolerance threshold which
follows the same distribution in both topologies.

The revenue is higher in rate-preference than in price-preference scenarios.
This is due to not only the higher prices but also to the tendency of users to invest
more transmission power to achieve higher rate. Finally, the spectrum utilization
is higher for the Provider 2, due to its lower availability of time-frequency slots.

As observed earlier, compared to rate-preference, the price-preference corre-
sponds to a larger number of handoffs (e.g., U-R vs. U-P, and Z-R vs. Z-P).
However, exactly the opposite occurs for the disconnection intervals. In rate

preference, the prices are higher than in price preference, exceeding the price
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Figure 3.4: (a) Provider revenue (left) and spectrum utilization (right), (b) User
handoffs (left) and disconnection intervals (right).

tolerance thresholds of a larger number of users.

Interestingly, in the Uniform topology, a larger number of handoffs and lower
disconnection periods occur. This is due to the lower user demand in the Uni-
form topology than in the Zipf topology (150 vs. 242 users), resulting to a larger
availability of time-frequency slots. Thus, the likelihood that a user will be able
to connect to a BS is higher in the Uniform topology than in the Zipf one. This
means that a user has on average more opportunities to roam to a different net-
work. On the contrary, in Zipf, the likelihood of fully-utilized time-frequency
slots of BSs is higher, resulting to fewer choices for users, and thus, longer dis-
connection periods.

Finally, the median value of handoffs and disconnection periods is much lower
that the corresponding mean values, indicating that most users are connected to
a single BS for the entire experiment. A small number of users switch back and
forth between BSs or remain disconnected for almost the entire duration of the

experiment.
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3.3.2 Market 2: moving users with varying demand
3.3.2.1 Description

In this market, we assume that the parameters of the cellular networks of providers
are the ones described in Table 3.1. Moreover, we consider two different BS
deployments, namely, the uniform deployment, in which the network of each
provider covers the entire city, and the non-uniform deployment, in which six
BSs (out of 49) of provider 2 are removed. Clients located in the neighborhood
of the removed BSs can buy spectral resources only from the provider 1. This is
an example of a partial monopoly, in the sense that there are regions in which
clients have only the option of connecting to BSs of a single provider. The two

BS deployments are shown in Fig 3.5
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Figure 3.5: Uniform BS deployment (left), non-uniform BS deployment (right).

There are 5000 clients in total (4400 card users and 600 subscribers), dis-
tributed according to a uniform distribution in the simulated region of this small
city. In our experiments, the price tolerance threshold (in euros per minute) and
target transmission rate (in Mbps) follow a Gaussian distribution. Specifically, we
simulated client populations with normal price tolerance (m = 0.15, ¢ = 0.0374)
and high price tolerance (m = 0.2, o = 0.0374). We also simulated client pop-

ulations with a normal target transmission rate (m = 0.1, o = 0.01) and high
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target transmission rate (m = 0.2, 0 = 0.01). A client generates a sequence of
call requests. The call duration follows a Pareto distribution (z, = 3.89, a = 4.5)
of mean 5 min, while the disconnection period follows a Log-normal distribution
(m = 3.22, 0 = 0.37) of mean 27 min. We assume that during disconnection pe-
riods, clients move with pedestrian speed of maximum value 1 m/sec, while they
remain stationary during calls. Furthermore, during a call, the client remains
connected to the same BS for the entire duration of the call.

Providers use the polynomial-based approximation of their payoff function (as
described in Section 3.1.3) to determine the prices for card clients dynamically, at
time instances generated by a Poisson process with a mean rate of 0.002 renewals
per minute. We assume that both providers offer the same prices to subscribers,
which remain fixed through the entire duration of the experiment. This is a
reasonable assumption, given the time duration (30500 minutes or 21 days) and
scale of these experiments.

This analysis will evaluate the impact of client characteristics and preferences,
BS distribution (presence of partial monopoly) on the performance of providers
and clients. The performance of a provider is characterized by its revenue and
spectrum utilization while the performance of a client is indicated by the percent-
age of blocked calls. The revenue of a provider corresponds to the average total
revenue of all BSs in the region of interest that belong to that provider, averaged
over all Monte-Carlo runs. The spectrum utilization of a BS corresponds to the
average percentage of time frequency slots allocated to clients. The spectrum
utilization of a provider corresponds to the average utilization of all its BSs in the
region of interest, averaged over all Monte-Carlo runs. The percentage of blocked
calls of a client is the ratio of its successful calls over the total number of call
requests. Our reported results are average statistics over all clients.

We implemented the simulation platform and this market in Matlab. 10
Monte Carlo runs were performed for each scenario (shown in Table 3.2). Each
scenario simulates a homogeneous client population with respect to preferences
and thresholds. Specifically, “P” scenarios correspond to a price-preference pop-
ulation, while “R” scenarios to a rate preference ones. For each scenario in
Table 3.2, we simulated two client populations, one with price-preference (P) and

another with rate-preference (R) (Fig. B.30). Note that in partial monopoly (rnd)
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scenarios, subscribers select randomly their provider while in partial monopoly,
they choose provider based on the information that is available on the u-map
(described in Section 3.2). Each run represents the evolution of the market in
a microscopic level and lasts 30500 minutes (including a warm up period of 500
min). Compared to clients, the decision making and updating times of providers
occur in longer time scales. The relatively long duration of our simulations is re-
quired in order to better observe the evolution of providers and their interaction

with clients in this simulated small-city environment.

Table 3.2: Description of Scenarios

Scenario Price Rate BS u-map
threshold | threshold | deployment | used
Normal normal normal uniform yes
High price tolerance high normal uniform yes
High target rate normal high uniform yes
Partial monopoly normal normal non-uniform yes
Partial monopoly (rnd) normal normal non-uniform no

3.3.2.2 Simulation results

In general, price preference (P) triggers a more intense competition among providers
than rate preference (R). This results in relatively lower prices: fewer users will be
blocked due to their price tolerance threshold (Fig. 3.7 (a)&(b)). Furthermore,
in rate preference (R), the revenue is much larger (an order of magnitude) than in
price preference (P), in which the competition between providers forces them to
keep their prices relatively low (Fig. 3.6 (a)&(b)). In rate preference, clients tend
to buy with a price equal to their maximum price tolerance threshold (in order
to increase their transmission rate), while in price preference, clients are more
conservative (in that they aim at paying the minimum possible price to achieve
the targeted transmission rate). These results are similar to the ones reported
in Section 3.3.1.2.

ing probability also increases (Fig.

In the case of increased target rate, as expected, the block-
3.7 (a)).

the revenue of providers will decrease. This is due to the fact that, although in

Interestingly, in rate preference,

rate preference scenarios, clients invest their mazimum transmission power that
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Figure 3.6: Main results for providers: Revenue (a) and (b). Spectrum utilization
(d) and (e). Averages over 10 simulation experiments, each lasting 30500 min.

satisfies the price threshold in order to achieve the highest possible data rate, for
high target rates, fewer clients will achieve their target rate, and therefore, the
blocking probability will increase, resulting to a smaller revenue and spectrum
utilization.

In price preference scenarios, clients select the least expensive BS (if any) that
satisfies their rate and price constraints. As the target rate increases, the price-
based selection criterion “deteriorates”, since a client will tend to select more
frequently the BS that is “closest” to it (i.e., BS with the best channel quality)

than the least expensive one (compared to lower target rate scenarios) in order
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Figure 3.7: Main results for clients: Percentage of blocked calls (a) and (b).
Averages over 10 simulation experiments, each lasting 30500 min.

to satisfy the increased data rate requirement. This allows providers to increase
their prices, and thus, their revenue. (Fig. 3.6 (a)). Note that as the target
rate increases in price preference scenarios, the BS selection mechanism exhibits
more similarities as in rate preference scenarios (i.e., clients tend to choose the BS
with the best channel quality). As observed also in rate-preference, the blocking
probability is increased, which results to smaller spectrum utilization.

In rate preference, as the price threshold increases, we would expect that
the blocking probability decreases, while the spectrum utilization also increases
(Fig. 3.7 (a) and 3.6 (c)). Interestingly, these changes are small, due to the inter-
dependency of the price tolerance threshold of clients and price setting mechanism
of providers. The increase of price tolerance threshold allows providers to increase
their prices even further. The increase of prices is directly reflected on the in-
creased revenue of providers. Although the blocking probability and spectrum
utilization have not changed, the prices are now higher.

As a result of the relatively higher prices in rate preference compared to price
preference, the blocking probabilities are larger. Note that this is true only for
card users. For subscribers, the prices are the same in both scenarios and remain
fixed for the entire duration of the experiment. In addition, in price preference,

the higher the price tolerance threshold, the lower the blocking probability.
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Card clients have smaller blocking probability than subscribers, since on av-
erage, a subscriber is further away from the “best” BS than a card client. This
is because a subscriber “belongs” to a provider, and thus, selects a BS from the
set of BSs deployed by that provider, while a card client may select a BS from a
larger set of BSs that belong to various providers.

In general, provider 1 has a higher spectrum availability (i.e., larger number
of time frequency slots) resulting in larger revenue compared to provider 2 and
smaller spectrum utilization. Moreover, this is even more prominent in the partial
monopoly case, in which the difference in the spectrum availability of the two
providers is increased.

In partial monopoly, unlike the case of rate preference, in which the revenue
increase is not dramatic, in price preference, the revenue of the monopoly provider
is doubled. This is due to the price tolerance threshold and the competition with
the other provider (shown in Fig. 3.6 (b)). Actually, the price-tolerance threshold
is the dominant factor, given that in rate preference, the impact of competition
is less prominent since clients select the BS with the best channel quality (and
not the lowest price). Note that in monopoly scenarios, there are some regions
in which BSs of both providers are present, resulting in a competition. In the
region of monopoly, the price setting mechanism of the provider is constrained
by the price tolerance threshold, while in the remaining regions, by mainly the
competition among providers. The larger the region of a monopoly, the larger the
flexibility for that monopoly (provider) to set its price. The competition between
providers in the other regions and the tendency of the monopoly provider to
increase its price give the opportunity to the other provider to also increase its
price, and thus, its revenue. This is an example of cases where partial monopolies
provide opportunities to non-monopoly providers to increase their revenue.

The u-map indicates that the spectrum availability of provider 1 exceeds
the spectrum availability of provider 2. As expected, all subscribers select the
provider 1. To evaluate the impact of the u-map, we employ a baseline scenario
in which subscribers select a provider randomly (rnd). Compared to the random
selection (rnd), the map-based selection exhibits lower average blocking proba-
bility for subscribers, both in rate and price preference (Fig. 3.7 (b)). Clearly

the u-map is beneficial to clients. Potentially providers could also take advantage
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from the reported information about the call arrivals and distributions and user
willingness to pay threshold. For example, an increased blocking probability in
certain areas may alarm providers for further investigation and better capacity
planning. In this study, the price adaptation algorithm of providers does not em-
ploy any information about clients. It is important to note that the integration of
additional knowledge about the population may further improve the performance
of the price adaptation mechanism by satisfying the price tolerance threshold of

a larger client population.
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Chapter 4

Flexi-card: a new service in

cellular-based access markets

The expectation that the commercial deployment of CRNs will lead to improved
network services has triggered numerous research and industrial activities and
discussions about the dynamic spectrum access and sharing mechanisms. Tradi-
tionally, cellular wireless networks are managed by operators, which offer a fixed
part of the spectrum to their customers via subscription mechanisms. Subscribers
and pre-paid card users are associated with a certain operator to access the spec-
trum. However, new paradigms in both the wholesale and retail spectrum market
and service models are being formed. Unlike the traditional cellular-based mar-
kets, these spectrum markets have larger sizes (in terms of number of potential
providers), are more heterogeneous (in terms of services, clients, and providers),
and potentially can offer an improved set of services (e.g., higher multiplexing
gains and a reduction of costs due to the higher utilization of existing infrastruc-
ture).

As the wireless access and use increases, customers are differentiated even
more by their usage and data-rate requirement profile. Often subscribers with
relatively high usage pattern are subsidized by the ones with lower usage demand.
As the cognitive radio technology advances, an even more diverse set of services
will be available. To this end, we proposed the novel paradigm of a card client

that is not associated with a specific operator and can dynamically access BSs
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of different infrastructures and operators based on various criteria, such as its
profile, the network conditions, and the offered prices. Specifically, card users are
flexible to select the appropriate operator on a per-call basis. This “flexi-card”
paradigm, which has been assumed as a typical access paradigm in wireless LANs,
could be a new type of service offered in cellular-based access markets. A similar
concept is the “soft” (or virtual) SIM cards.

This work models a cellular market, its providers and a population of clients,
highlighting the impact on the new service paradigms of card users on the evolu-
tion of the market and the welfare. Customers could dynamically decide to buy
a long-term subscription or become card users. As card users, they can decide
about their provider on a per-call basis, while as subscribers they are associated
with a specific provider for the entire duration of their contract. The decision
making process of a client for selecting the appropriate service paradigm takes
into consideration the constraints, demand, and QoE criteria of that client.

We also consider different customer populations and analyze the flexi-card
service from the perspective of regulators, users, and operators, possibly with
conflicting objectives. A primary role of regulators is to promote competition
and social welfare, a fair inclusive treatment of various user populations with
respect to services and access, e.g., by minimizing the number of disconnected
customers. Clients target to improve their access (e.g., by reducing their blocking
probability) and satisfy their demand, according to their profile. On the other
hand, the revenue maximization is the primary objective of providers.

The introduction of the card service rises several research questions: Will
this additional service paradigm improve the social welfare by providing more
options to customers? What is the impact on the benefit of customers, revenue
of providers and market share? Are more or less users excluded from the wireless
access due to the market prices offered? Would card service be a viable option
for operators and a way to differentiate their services and attain more revenue?
How does the traffic demand and customer profile shape the decision making
mechanism and market share of customers? Would subscriptions “die out” and
card users dominate the customer population? How does the market “treat” the
different customer populations? What are the related pricing decisions of the

operators and how they affect the outcome?
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Our modeling framework allows us to perform an in-depth performance analy-
sis of a cellular duopoly market where providers compete for a diverse population
of customers who can access two different services. This is an important contri-
bution of this work since most related approaches focus on just one good. It is
important to note that claims on optimality made on various related approaches
(e.g. [48, 49, 50]), with respect to the revenue of providers, the social welfare,
and market efficiency, though valid in their context where providers compete for
selling one good for a certain price, may not hold in our setting. In general,
product differentiation allows for a finer market segmentation and can further
increase the revenue of providers. In our model, there are two goods to be offered
to the market, and thus, two different prices to be offered for those goods: the
pricing decisions of the network operators are more complicated but at the same
time allow for a finer partitioning of the market and possibly higher participation
for users and revenue for the operators. That is, users that may have been “ex-
cluded” in a market where only long-term contracts are offered, due to the fact
that their communication needs and respective willingness to pay do not justify
entering this market, could now consider beneficial the good of “cards”, thus in-
creasing the overall market pie. This market exhibits several complexities due to
the interplay of several parameters (e.g., the dynamic decisions of clients, their
multiple options, the competition among providers, the diverse customer profiles)

both in time and space.

4.1 Modeling framework and simulation plat-

form

The modeling framework is fully configurable and parameterized based on the
channel, infrastructure and network topology, type of users (e.g., service, de-
mand, mobility, constraints, preferences, decision making processes), providers
(e.g., price estimation, services), and available information. We have developed
a detailed simulation environment of this framework, which is modular, in that,

it can instantiate and implement different models for these parameters.
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4.1.1 Cellular topologies

Each provider has deployed a cellular topology that offers wireless access via its
BSs to clients in a small city. The providers divide their channels into time-
frequency slots according to a TDMA scheme. To simulate the channel quality,
we employed the Okumura Hata path-loss model for small cities considering the
contribution of shadowing to the channel gain [46, 47]. The interference power
at a BS during a time frequency slot is computed considering the contribution of

all interfering devices at cochannel BSs.

4.1.2 Clients

When entering the market, a client needs to select an appropriate service or
remain disconnected. Two customer types are considered, namely, the subscribers
and card users, with their corresponding service types of subscription and flexi-
card, respectively. A card user may select a BS of any provider, while a subscriber
of a certain provider connects only to BSs of that provider. Service selections of
clients are performed in a synchronized manner and change periodically. The
time interval between two consecutive service selections of clients is denoted as
epoch, and is of fixed duration. During an epoch, clients generate requests to
connect to a BS to start a call (i.e., flow). The duration of calls and off durations
(i.e., time interval between the end of a call and the start of the immediately next
one of the same customer) are given by appropriate distributions. Specifically,
the call duration follows a Pareto distribution, while the off duration is generated
according to a Lognormal distribution (as were modeled in our empirical-based
modeling work [51]). At the beginning of each call, a client selects a BS and
remains connected to this BS for the entire duration of the call.

The utility of a client when selecting a service or a BS to perform a call,
depends on its profile, which includes the constraints, demand, and preferences
of that client. The constraints of a user are quantified by four thresholds: two
thresholds for the service selection and two thresholds for the BS selection. The
constraints of a user u for the service selection are expressed by its willingness to
pay for a service (e.g., T'(u)) and its call blocking probability tolerance threshold

(B(u)). Moreover, the constraints of a user u for the BS selection are, its will-
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Figure 4.1: An example of a cellular-based duopoly with a card user and a sub-
scriber.

ingness to pay for that call and the minimum acceptable data-rate. On the other
hand, the preferences indicate the selection criterion, which can be either based
on the monetary cost of the service or the QoE (e.g., the data-rate, call blocking
probability). The preference criteria are used for selecting a service type as well
as selecting a BS. In service selection, a client takes a decision that optimizes the
metric that reflects its preference with respect to the blocking probability or the
cost. Specifically, in the case of a cost-conscious customer, the client selects the
service that minimizes its cost spending, while a QoE-conscious customer selects
the service that minimizes the blocking probability. In BS selection, a client con-
nects to BS of its wireless range based either on the data-rate or price criterion.
Specifically, a price-conscious client selects the BS that minimizes its cost spend-
ing, while QoE-conscious clients select the BS that mazimizes their achievable
data-rate. For the service selection, a client expresses its preference with respect
to cost and blocking probability, while for the BS selection, the preference is over
cost and data-rate. For example, a client may select its service type based on
the blocking probability criterion and the BS based on the price criterion. We
assume that during disconnection periods, clients move with pedestrian speed of
maximum value 1 m/sec, while they remain stationary during calls. Furthermore,

during a call, the client remains connected at the same BS for the entire duration
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of the call.

4.1.3 u-map

The market assumes the presence of a user-centric data repository that maintains
information about the customer population. The u-map is a data structure that
corresponds to a grid-based representation of a region. At the end of an epoch,
each client reports the percentage of blocked calls and its service type at the u-
map. The call duration, status, customer id, and provider id are recorded at the u-
map. Statistics on the mean, median, and maximum blocking probabilities across
all subscribers of the same provider are computed and reported at the u-map,
taking into consideration the values reported by clients at the end of an epoch.
Providers report their subscription and card-rates at the u-map. Furthermore,
each client reports information about its constraints, demand, and preferences at

the u-map.

4.1.4 Decision-making process of clients

The decision-making process of a client involves long-term decisions made at
the beginning of each epoch for selecting the service type for that epoch and
short-term decisions for selecting the appropriate BS at a per call basis. For
each of the three service options, namely, to become subscriber of the Provider
1, subscriber of the Provider 2, or card-user, the service constraints need to be
satisfied. Specifically, a client first checks whether the total cost for that service is
under its willingness to pay threshold as well as the estimated blocking probability
with that service is under the blocking probability threshold. A client needs to
estimate the blocking probability for each of the above services. Specifically,
the blocking probability of subscribers of a certain provider is estimated as the
average blocking probability as reported by all subscribers of that provider during
a number of previous epochs, at the u-map. Similarly, the blocking probability
for the card service is estimated as the average blocking probability of all card
users during the same period of multiple epochs, as reported at the u-map. After
the service-type selection, during an epoch, clients make calls and, for each call, a

client can select a BS in its wireless range that satisfies its willingness to pay and
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data-rate thresholds. The data-rate is computed based on the Shannon capacity
theorem, although more sophisticated models that take into consideration the
modulation schemes can also be incorporated easily [52].

A client becomes disconnected when any of its constraints for the service selec-
tion can not be satisfied. Otherwise, the user chooses a service type (subscriber
with one of the two providers or card user) according to its preference with re-
spect to blocking probability and price. A call can be successful or blocked. An
unsuccessful selection or association process with a BS results to a blocked call.
Specifically, a call is blocked when any of the client constraints for the BS selec-
tion can not be satisfied by any BS in the wireless range of the client or all the

channels of these BSs have been serving other calls.

4.1.5 Providers

Providers perform two decision making processes, namely, (a) the estimation of
their subscription rate at the start of each epoch, and (b) the estimation of the
card rate that takes place multiple times during an epoch. The subscription
rate is decided at the start of an epoch and remains fixed during that epoch,
while the card rate is updated multiple times during the epoch. The subscription
charging scheme is a two-parameter tariff that includes a flat-rate (e.g., p) for an
up to a certain total call duration (e.g., Dyqt) and a fized per-minute per watt of
transmission power cost po that charges for any extra call duration. The flat-rate
price p is determined at the subscription rate estimation process. For example, a
subscriber u with demand D(u) that buys a subscription with a rate p, will pay p
if D(u) < D, whereas, if its total call duration exceeds D4, it will be charged
of po* 7 xd, for each extra call of duration d, during which, it invests transmission
power of 7. The card charging scheme is a simple [inear tariff which charges the
calls per minute and Watt of transmission power. These pricing schemes that
charge the clients proportionally to the transmission power they invest aim to

penalize an aggressive increase of the transmission power.
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4.1.6 Subscription rate estimation

In subscription rate estimation, the objective of a provider is to maximize its
revenue. We assume that each provider knows the distribution of the demand,
constraints and preferences of all clients, as provided by the u-map. The approach
is myopically greedy, in the sense that it determines the price that maximize its
revenue for the upcoming epoch, assuming a fixed price of its competitors, an
average card rate (based on the card rates announced during the previous epochs
by all providers) p., and knowledge of the demand, preferences, and constraints of
all clients (via the u-map). At the beginning of each epoch, a provider determines
the subscription rate and announces it to the market, then each client can make
its service selection.

To estimate its revenue, each provider emulates the market offline and the
decision making process of all clients (based on their profile recorded at the u-
map). Specifically, the provider knows the demand distribution of each client, its
constraints, and emulates the service selection process of this client. As mentioned
earlier, the constraints of a client (namely, its blocking probability and willingness
to pay) need to be satisfied. To perform this estimation, the provider should be
able to predict the blocking probability of all available services (subscription and
card services) for all possible sets of subscription rates that could offered in the
market. We assume, that providers predict the blocking probability using the

following sigmoid-based model:

1
1 + e@1p1tazpz+b

B(p1,p2) = (4.1)

Where py, ps are the subscription rates offered by the provider 1 and 2 respectively.
Each provider employs a sigmoid model, not only to predict the blocking proba-
bility of its own subscribers, but also the blocking probability of the subscribers
of its rival provider and the one of card users. This information is required for
a provider to emulate the user decision making. The parameters of the sigmoid
model, for all available services, are estimated by all providers simultaneously
and are updated in a periodic manner (once every 20 epochs). The estimation
of the model parameters is performed using least-squares fitting on data that are

collected during the last 20 epochs. These data are average statistics that are
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computed based on information that is uploaded by all users on the umap.
After the emulation of the service selection of a client, a provider estimates
the expected charge for this client based on its demand. Specifically, to compute
the extra charge (over the flat rate fee) for the subscription service, the provider
considers the average price per minute, that its subscribers paid when they ex-
ceeded their free time, during the last epochs. Similarly, the average charge per
minute of card users is computed. Based on the offered subscription rates, the
average card rates, and the user demand, the provider can estimate its revenue.
After exploring the space of the possible prices, the algorithm reports as the sub-
scription rate of the provider, the price p* that maximizes its revenue, (given the

announced subscription rate for its competitor).

4.1.7 Card rate estimation

The price estimation for card rates runs multiple times during an epoch, motivat-
ing the design of a more efficient algorithm. It is a novel algorithm based on the
concept of representative users: Instead of considering the detailed characteristics
of each individual customer/entity in our population, something impractical and
unrealistic, we model the customer population using a relatively small number of
representative users.

To determine the characteristics of “representative users”, we consider that the
city consists of a number of regions Ry, k =1, ..., K. We also divide the duration
of the experiment 7" into a number of non-overlapping intervals T,,,,m = 1, ..., M.
Finally, we denote the set of all calls that are performed during the experiment as
H. A specific call h € H can be written as a triplet (hy, hq, h,;) where h,, are the
characteristics of the user that performed the call (willingness to pay and data-
rate threshold) and h,, h, are the location and the time instance at which the
call was initiated. The characteristics of the “representative users” of a specific
region Ry at a given time interval 7T, are determined based on the dataset of
calls that were performed at the same region during the previous time interval
H(k,m —1) ={h € H|h, € Rg,h, € Tp,_1}. Specifically, the characteristics of
the “representative users” are determined by applying a clustering algorithm on
the dataset H(k,m — 1) (e.g., the K-means in this case).
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To estimate the revenue of a provider at a particular time instance, the price
of its competitor is assumed to remain fixed. The positions of the “representative
users” of each region are according to a uniform distribution on the area of the
region. The “representative users” take their decisions at a random order. Sub-
sequently, the decision making of the “representative users” is simulated and the
revenue of each provider is computed. This process is repeated for all prices that
could be offered by the providers. We also employ multiple random realizations
of the “representative-user” positions and order of their decision process (corre-
sponding to multiple Monte Carlo runs) to increase the accuracy of our results.

The prices are adapted by applying the best response algorithm.

4.2 Performance evaluation

4.2.1 Simulation scenarios

The simulation platform considers a small city, represented by a rectangle of 3
Km x 2.3 Km. Each provider has a cellular network that consists of 4 BSs placed
on the sites of a triangular grid, with a distance between two neighboring sites
of 1.6 Km. Moreover, each provider owns bandwidth of 5.6 MHz, that is divided
into 28 channels of 0.2 MHz width. These channels are allocated to BSs according
to a frequency reuse scheme with spatial reuse factors of 4 and 7, for Provider
1 and Provider 2, respectively. Each channel is further divided into three time-
frequency slots in a TDMA scheme, resulting in 21 time-frequency slots per BS of
Provider 1 and 12 slots per BS of Provider 2. Note that a single time-frequency
slot of a given BS can be offered to only one client. Each client is associated with
one BS during a given call. The maximum allowable transmission power that a
client can invest is 2 Watts. A snapshot of the network topology is shown in Fig.
4.2.

There are 2000 clients in total, distributed according to a uniform distribution
in the simulated region of this small city. The constraints of clients namely the
willingness to pay and the blocking probability threshold for the service selection
as well as the data-rate and the willingness to pay threshold for the BS selection,

follow Gaussian distributions (their parameters are shown in Table 4.1). The
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Figure 4.2: Network topology with users that are performing calls.

name convention “X-Y” indicates with “X” the service type selection criterion
and with “Y” the BS selection criterion (as shown in Table 4.2).

Each client generates a sequence of call requests. The call duration follows a
Pareto distribution (x5 = 3.89, a = 4.5) of mean 5 min, while the disconnection
period follows a Log-normal distribution with different parameters for each user
(@ is uniformly distributed in the interval [4.0679 6.2150] and o is equal to 0.37)
resulting in client demand varying from 33 to 267 minutes per epoch. We assume
that during disconnection periods, clients move with pedestrian speed of max-
imum value 1 m/sec, while they remain stationary during calls. Furthermore,

during a call, the client remains connected at the same BS for the entire duration

Table 4.1: The thresholds of the client constraints follow Gaussian dis-
tributions

Threshold Mean | Standard deviation
Willingness to pay (service selection) | 0.17 0.0374
Blocking probability 0.2 0.05
Willingness to pay (BS selection) 0.15 0.0374
Data-rate (Mbps) 0.1 0.01
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Table 4.2: Simulated scenarios

Scenario | Service criterion | BS criterion
B-R Blocking probability Data-rate

B-P Blocking probability Price
P-R Price Data-rate
P-P Price Price

of the call.

We implemented the simulation platform and this market in Matlab. 10 Monte
Carlo runs were performed for each scenario. The preferences and constraints of
a client remain wunaltered throughout the simulation. Each run represents the
evolution of the market during a period of 160 epochs, each lasting 5 days (a
27-month period in total). This long duration is required in order to better
observe the evolution of providers, their interaction with clients in this simulated
small-city environment, and identify transient and steady-state phenomena. To
highlight the impact of the flexi-card service, two market types were simulated: an
only-subscriber market (baseline case), in which each customer has only the choice
of becoming a subscriber with one of the providers or remain disconnected, and a
mixed market, in which customers have the additional service option of becoming

card users.

4.2.2 Analysis

This analysis evaluates the impact of service paradigms on the evolution of the
market, using metrics that can provide insights to regulators, customers, and
providers. The performance of a provider is characterized by its revenue, while
the performance of a client is indicated by the blocking probability of its calls.
Furthermore, we quantify the overall satisfaction of the society by computing
the percentages of blocked calls, social welfare, market share, and percentage of
disconnected users for the only-subscriber and mixed markets. The percentage of
blocked calls of a client is the ratio of its successful calls over the total number

of call requests. The social welfare is defined as the sum of the net benefit of all
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Table 4.3: Customer Populations

Type Willingness to pay | Blocking Probability Demand

High-business > 80% percentile < 20% percentile all range

Bargain-finders < 20% percentile > 80% percentile all range
Low-profile < 50% percentile all range < 20% percentile

users and providers. The net benefit of a provider is its revenue while the net
benefit of a user is the difference of what the user was willing to pay and what
the user actually paid for his/her calls. Our reported results are average statistics
over all epochs and Monte Carlo runs.

We comparatively analyze the only-subscriber and mixed markets. We spec-
ulated that the presence of the card service will reduce the blocking probability
(compared to the baseline case), and thus encouraging more clients to remain
connected. Indeed, the presence of card service becomes a catalyst in the market!
There is a dramatic decline of the number of disconnected users, a prominent
reduction in the blocking probability in all scenarios, and an increase in the so-
cial welfare (as shown in Figs. 4.3a, 4.3b, and 4.3c, respectively). Note that
due to the larger participation in the market, the social welfare attained is sub-
stantially improved, thus comprising further evidence of the merits of having the
multiple service offerings in the market. We also observe that card users exhibit
significantly lower blocking probabilities than subscribers in all scenarios.

We distinguished three customer populations, namely the high-business, bargain-
finder, and low-profile customers (Table 4.3) and observed their performance in
the context of the two markets. From the perspective of regulators, an impor-
tant implication to the social welfare is the exclusion effect. To highlight how an
only-subscriber market excludes certain customer populations (e.g., the ones of
low demand and willingness to pay), we computed the percentage of such users
that remain disconnected, and found that in the B-R scenario this percentage
drops from 83% in the only-subscriber market to 65% in the mixed market. On
the contrary , in the P-R scenario we observe a slight increase of the percentage
of disconnected low profile users, from 78% in the only-subscriber market to 81%
in the mixed market (Fig. 4.3d). This is due to the higher subscription rates in
the mixed market (Fig. 4.4c).
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Figure 4.3: (a) Percentage of disconnected users. (b) Blocking probability. (c)
Social welfare. (d), (e), and (f) Percentage of disconnected low-profile, high-
business, and bargain-finder users, respectively.
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(d) Card rates in the mixed market.

In the B-P and P-P scenarios the percentage of disconnected low profile users
drops from about 83% in the only-subscriber market to 0% in the mixed market
(Fig. 4.3d). Moreover, the percentage of the high-business disconnected users is
close to 0 in all scenarios! (Fig. 4.3e). More statistics about the percentage of
disconnected users of other customer profiles are shown in Figs. 4.3d, 4.3e, and

4.3f. We will now focus on the specific scenarios:
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4.2.2.1 Blocking probability criterion

The first part of this analysis focuses on the blocking probability as the criterion
for selecting the service. For the BS selection, clients select the BS based on the
data-rate or price criterion. The only-subscriber market shows very high percent-
ages of disconnected users (e.g., up to 30%, as shown in Fig. 4.3a) and relatively
high blocking probabilities (e.g., up to 0.14, as shown in Fig. 4.3b). In general,
due to the higher channel availability of the first provider compared to the second
one, that directly affects the observed blocking probabilities, the revenue of the
first provider is larger. This difference is prominent especially in the B-R sce-
nario (Fig. 4.4a, 4.4b). Interestingly though, a different charging behavior of the
providers depending on the BS selection criteria (rate preference vs. price prefer-
ence) can be observed: in rate preference, card users invest higher transmission
power which will affect their total monetary spending, and of course, the revenue
of the provider. On the other hand, in the B-P scenario, the price preference in
the BS selection, forces the providers to keep their card rates relatively low, and
thus, their revenue is lower than in B-R.

What is also interesting, and not necessarily expected, is that in the mixed
market with rate preference (B-R as shown in Figs. 4.4a and 4.4b), not only the
percentage of disconnected users and the blocking probability are lower but also
the revenue of the second provider has increased substantially while the revenue
of the first provider is almost unaffected. This means that the prices allow low-
and high-consumption users to self select the most suitable product that matches
their type, thus increasing participation in the market. Customers as subscribers
tend to select the first provider that has the lower blocking probability (due to its
larger channel availability). Although the subscription rate of the second provider
is significantly smaller compared to the first provider (Fig. 4.4c), the blocking
probability criterion for the service selection gives a distinct advantage to the first
provider.

The card becomes the preferable service for customers sensitive to the blocking
probability and data-rate and with higher willingness to pay threshold, which
results to relatively higher card rates. The high-business customers in the mixed

market always prefer the card service option, given that it offers them the lowest
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blocking probability (Fig. 4.5b). As mentioned earlier, unlike the only-subscriber
market, in the mixed market, there are no disconnected high-business customers.

In the B-R scenario, in both the only-subscriber and mixed market, the second
provider attracts more bargain-finder and low-profile users than the first one
(Fig. 4.5a and 4.5b) due to its lower subscription rate. Specifically, even if the
blocking probability of the first provider is lower compared to the second one,
its subscription rate is higher and cannot satisfy the willingness to pay threshold
of the majority of the low-profile and bargain-finder users. These users have
no other choice but to become subscribers of the second provider. In addition,

the percentage of card-users from these populations is significantly lower than in
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the case of high-business customers, given the relatively higher rates of the card
service. When the BS selection uses the price preference (i.e., B-P), the difference
in the percentage of disconnected users in the mixed market compared to the only-
subscriber is even more dramatic (31% vs. 0.18%, as shown in Fig. 4.3a). Similar
reductions are observed in the per user and per call blocking probabilities (e.g.,
0.14 compared to 0.05, as shown in Fig. 4.3b). Moreover, the price criterion
intensifies the competition, which has as a result, a more prominent reduction in
the offered prices, causing a steep decrease in the revenue of the first provider

(Fig. 4.4a). Even more interestingly, the population of subscribers dies out!
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Note that the price preference at the BS selection affects dramatically the card
rates: the competition between providers results in a card rate reduction which

encourages all customers to become card users (Fig. 4.5d).

4.2.2.2 Price criterion

The second part of this analysis focuses on the price as the criterion for selecting
the service. For the BS selection, clients select the BS based on their preference,
i.e., data-rate and price (P-R and P-P, respectively). The mixed markets still
exhibit a very low percentage of disconnected users. At the same time, the price
criterion in the service selection alleviates the advantage of the low blocking prob-
ability of the first provider resulting in a prominent reduction of its revenue (Fig.
4.4a and 4.4b). In addition, the competition of the providers in the offered sub-
scription and card rates encourages more customers to become subscribers com-
pared to the markets in which the blocking probability was the service selection
criterion. The preference of users for lower prices over the blocking probability

further increases the blocking probability.

4.2.2.3 Additional discussion on price dynamics

A general trend in the mixed markets is that the difference of the card rates of the
two providers is very small (as shown in Fig. 4.4d). This can be explained by the
symmetry in the deployments of the two providers and the uniform distribution
of clients in the region. As mentioned earlier, the card rates are determined and
are affected by the BS selection mechanism, in which the position of the clients
and the BS deployments play an important role. The card product market is
actually a commodity market with an almost identical “market price” across all
competing providers (same with price for any kind of commodity goods ranging
from crude oil to Internet transit prices) [53]. In the cases of blocking probability
and rate preferences, the card rates are relatively increased, compared to the
subscription rates. On the other hand, in the case of price preference, the price
criterion forces the providers to keep their offered card rates at relatively lower
levels.

Notice that the only-subscriber market, the average subscription rate that is
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offered by the second provider is lower compared to the first provider (as shown in
Fig. 4.4c). Moreover, the differences between the two subscription rates is larger
in the B-R and B-P scenarios compared to the P-R and P-P scenarios. This
is due to the advantage of the first provider in the blocking probability which
significantly affects the client decisions in B-R and B-P. On the contrary, in P-R
and P-P, price is the parameter that mostly affects the client decisions resulting
in small differences between the subscription rates of the two providers.
Another parameter that affects the performance of providers is the block-
ing probability forecasting. As mentioned in Section 4.1.6, the providers predict
the blocking probability of all services (subscription and card services) using a
sigmoid-based model. The parameters of this model are re-estimated once every
20 epochs by fitting the data that are collected during these epochs to the model.
Then, at each epoch, a provider chooses the subscription rate it will offer to
the market based on the most recently estimated blocking probability prediction
model. This methodology sometimes makes a provider choose a strategy that is
not beneficial in terms of revenue. Specifically, the sigmoid model could be such,
that a provider may believe that if it increases its price it would significantly
reduce the blocking probability of its subscribers or it may affect the blocking
probabilities of the subscribers of rival providers or even the ones of card users.
This does not happen in practice and results in the provider achieving very low
revenue. In most cases in which this phenomenon takes place we observe that
in following intervals the parameters of the sigmoid model are corrected and the
behavior of the provider becomes again profitable. To correct this pathology,
we could increase the memory of the system when we estimate the parameters
of the sigmoid model. Specifically, instead of relying only in data that are col-
lected during the last 20 epochs, we may also take into consideration data that
are collected before these epochs, perhaps with a smaller weight. That way the
system will remember that certain choices of strategy are not beneficial and as
such they will not be adopted again in future epochs. We present next the time
series of the offered subscription rates, blocking probability, revenue, and mar-
ket share of both providers in all simulated scenarios and we discuss the observed

phenomena. These results correspond to one Monte Carlo run from each scenario.
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Figure 4.7: B-R only-subscriber market: subscription rates (a), blocking proba-
bility (b), revenue of providers (c), market share (d)

In the epochs 40 - 60 the sigmoid model is such, that the provider 2 believes,

that if it increases its price it will reduce the blocking probability of its sub-

scribers and at the same time increase the blocking probability of the subscribers

of provider 1. The provider 1 also increases its price in the epochs 80 - 100 for

similar reasons. Fig 4.7b indicates that the expectation of the providers are not

met and the blocking probabilities are not significantly affected by their choices
of strategy. Moreover, as indicated in Fig. 4.7c and 4.7d, in epochs 40 -60 and

80 - 100, the revenue and market share of both providers is decreased.
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B-R: mixed market
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Figure 4.8: B-R mixed market: subscription rates (a), blocking probability (b),
revenue of providers (c), market share (d)

In the epochs 20 - 40 and 120 -140, the parameters of the sigmoid model are
such, that the provider 2 believes that if it increases its price it will decrease the
blocking probability of its subscribers and at the same time increase the blocking
probability of the subscribers of provider 1. On the contrary, the provider 1 be-
lieves that by decreasing its price, it will increase the blocking probability of the
subscribers of the provider 2. In these intervals, providers pick a strategy which
they believe that will result in their subscribers observing the lowest blocking
probability, thus the provider 2 chooses a very high price and the provider 1 a
very low price. Fig. 4.8b indicates that despite the predictions of the sigmoid

61



model, the blocking probabilities are not

significantly affected by the choices of

the providers. This results in a decrease of their revenue as depicted in Fig. 4.8c.

B-P: only-subscriber market
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Figure 4.9: B-P only-subscriber market: subscription rates (a), blocking proba-
bility (b), revenue of providers (c), market share (d)

In the epochs 120 -140 , the provider 2 believes that its blocking probability is

lower compared to provider 1 and increases

its price to achieve more revenue. Sim-

ilarly, the provider 1 assumes that its blocking probability is higher than provider

2 and thus it decreases its price to attract customers that cannot become sub-

scribers of the provider 2 due to its increased subscription rate. However, Fig.

62



4.9b and 4.9¢ indicate that the predictions of providers are not met which results

in a decrease of their revenue.
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Figure 4.10: B-P mixed market: subscription rates (a), blocking probability (b),
revenue of providers (c), market share (d)

Fig. 4.10d indicates that in this scenario there are no subscribers.

How-

ever, both providers occasionally offer high subscription rates as indicated in Fig.

4.10a. This happens because providers believe that by adjusting the subscription

rates they can affect the blocking probability of the card service and thus achieve

higher revenue. However, the revenue is not affected as indicated by the Fig.

4.10c.
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P-R: only-subscriber market
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Figure 4.11: P-R only-subscriber market: subscription rates (a), blocking proba-
bility (b), revenue of providers (c), market share (d)

Price preference in service selection triggers an intense competition between
providers. Despite the advantage of the first provider with respect to the blocking
probability (Fig. 4.11b), the subscription rate is the parameter that mostly influ-
ences the user decisions. This results in price-war like phenomena, in which both
providers offer similar prices. Specifically, each provider offers a slightly lower

price than its competitor to achieve higher revenue (Fig. 4.11a). This results in
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large movements of users between the two providers (Fig. 4.11d) and bursty time

series of revenue (Fig. 4.11c).
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Figure 4.12: P-R mixed market: subscription rates (a), blocking probability (b),
revenue of providers (c), market share (d)

In this scenario, the presence of the card service reduces the intensity of compe-
tition between providers leading to slightly higher subscription rates compared to
the only-subscriber market. Specifically, each provider does not intend to reduce

its price below a certain threshold, because by doing so, it will lose profit from
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the card users. Despite this fact, we can still observe price-war like phenomena,
but the subscription rates are on average higher compared to the only-subscriber
market (Fig. 4.12a vs 4.11a) leading to increased revenue for both providers (Fig.
4.12¢ vs 4.11c).
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Figure 4.13: P-P only-subscriber market: subscription rates (a), blocking proba-
bility (b), revenue of providers (c), market share (d)

In this scenario, we observe similar trends compared to the only-subscriber
market in P-R. This is expectable, because the price preference in the BS selec-
tion affects only the decisions of users that exceed their free time. Users that

have not surpassed their free time, pay only the subscription rate which means
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that the cost of their calls does not depend on the transmission power they in-

vest. Thus, they tend to invest the maximum allowable transmission power to

achieve high data-rate. When users surpass their free time, they are charged pro-

portionally to the transmission power they invest and the price preference in BS

selection can significantly affect their decision. The differences that we observe

in the only-subscriber market between the P-R and P-P scenarios are due to this

phenomenon.

P-P: mixed market
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Fig. 4.14a indicates that the provider 2 offers regularly a very high subscrip-
tion rate. This is due to the sigmoid model which makes the provider 2 believe
that if it increases its subscription rate, it will improve the blocking probability
of the card service. Specifically, in cases that the provider 2 cannot achieve ad-
ditional revenue by lowering its subscription rate, to attract more subscribers, it
may instead increase the subscription rate to decrease the blocking probability
of the card users. However, as shown in Fig. 4.14b, this choice of the provider 2
does not significantly affects the blocking probabilities and the provider 2 achieves

lower revenue.

4.2.2.4 Discussion on sensitivity analysis with respect to the user pro-
files

An important question in this study, is how the characteristics of the user popula-
tion affect the performance of the market (e.g., the blocking probability, percent-
age of disconnected users, and revenue of providers). We expect that, an increase
of the user willingness to pay would not significantly affect the observed blocking
probability and percentage of disconnected users. This is due to the price-setting
mechanism of providers, which will increase the subscription and card rates to
take advantage of the increased user willingness to pay. On the contrary, the
increased prices will result in an increase of the revenue of providers. More-
over, we expect that the increase of the revenue will be more intense in scenarios
with blocking probability and rate preference (B-R) compared to s scenarios with
price preference (P-P). This is due to the intense price competition of providers
in scenarios in which users are characterized by price preference.

We also expect that, a decrease in the blocking probability threshold of users
will result in an increase of the percentage of disconnected users and a small
decrease of the blocking probability. This is due to the strong dependency of the
observed blocking probability to the willingness to pay and target rate thresholds
of users. The effect of the channel availability on the blocking probability is less
intense due to the small user demand which is on average lower that the channel
availability of providers.

An increase in the data-rate threshold of users will result in fewer users being
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able to satisfy their thresholds and thus, in an increase of the observed blocking
probabilities and percentage of disconnected users. Moreover, in scenarios with
rate preference in the BS selection (B-R and P-R), we expect that the offered
prices would not be significantly affected by the increase of the rate threshold.
This is due to the strong dependency of the offered rices to the user willingness
to pay thresholds in such scenarios. In addition, the increased percentage of
disconnected users and blocking probability will result in a decrease of the revenue
of providers. In scenarios with price preference in the BS selection (B-P and P-P),
we expect that the increased rate threshold of users will reduce the intensity of
competition between providers. Specifically, users will have fewer choices of BSs
to satisfy their rate requirement, and thus, they will tend to select the closest BS.
This will give the opportunity to providers to increase their prices and achieve a
higher revenue. Such results have already been observed in the analysis presented
in Section 3.3.2.2.

Finally, an increase of the average user demand beyond the channel availability
of providers will result in an increase of the blocking probability. This increase
will be more intense for the subscribers of provider 2 compared to provider 1.
Moreover, we expect to observe an increased percentage of disconnected users. In
scenarios with blocking probability preference in service selection (B-R and B-P),
we expect to observe a small increase of the offered prices due to the increased
demand, which will result in a small increase of the revenue of providers. On
the contrary, in scenarios with price preference in the service selection (P-R and
P-P), we expect that the increased user demand will decrease the intensity of
competition between providers. Specifically, even if a provider is more expensive
than its competitor, it will still attract all the customers that cannot be served
by its rival provider due to the limited channel availability. This will give the
opportunity to provider to increase their prices and achieve higher revenue com-
pared to scenarios with small user demand. Appendix B provides the results of

a sensitivity that was performed in order to evaluate the above conclusions.
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Chapter 5

Conclusions

This thesis presents a modeling framework and simulation platform that allow
us to instantiate and assess various types of access markets. This framework
takes into consideration various parameters, such as, the channel, the network
topology, the network operator infrastructure deployment /distribution, the user
mobility and distribution, the relations and interactions among providers and
users, the multiple spatio-temporal scales (over which these relations and inter-
actions are manifested), the type, reliability and amount of information that is
available to various entities, the user preferences and tolerance criteria with re-
spect to the wireless access (e.g., based on transmission rate, energy, financial
cost) and the provider selection mechanism, the user profile, the utility functions
of the providers, and price-adaptation algorithm. It also considers a diverse set
of customer populations and analyzes the evolution of the market using metrics
that can provide insight to regulators, customers, and operators.

It proposes the “u-map”, a novel system with a user-centric geo-database that
enables users to upload measurements that their devices collect about network
conditions, interference, and coverage as well as their feedback about their profile
and QoE for certain types of services. The analysis shows that can be benefi-
cial in enabling subscribers to select in a more “educated” manner their network
operator and improve their access. The u-map concept is powerful in that it
enables providers and clients to estimate or forecast some critical parameters to
improve their targets. Finally, it introduces the “flexi-card” service, which be-

comes a catalyst, providing significant benefits, compared to traditional markets
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with only subscribers. The analysis demonstrates that the duopoly that offers
the card services in addition to subscriptions alleviates the market exclusion ef-
fects, dramatically reduces the percentage of disconnected users, and decreases
substantially the blocking probabilities. Furthermore, due to the larger partici-
pation in the market, the social welfare attained is also substantially improved,
thus comprising further evidence of the merits of having the multiple product

offerings in the market.
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Chapter 6

Future work

We plan to experiment with tit-for-tat price adaptation strategies and investigate
whether the two providers can implicitly cooperate to offer prices that yield higher
revenue to both, instead of constantly competing against each other. The analy-
sis will be extended to include a sensitivity analysis of the various thresholds and
multiple degrees of asymmetry of the two providers (in terms of deployment and
resources). Another important long-term objective of this research is the incor-
poration of measurements from a real-life network environment in our simulation
platform. Specifically, we consider the integration of information collected from a
metropolitan-area wireless network, e.g., BSs deployment, empirical-based chan-
nel models (e.g., ray-tracing), mobility models, and user traffic traces. This will
further enrich the simulation platform by enabling the cross-validation and analy-
sis of various paradigms and spectrum markets in even more realistic settings. We
also plan to incorporate the presence of malicious, mis-configured or non-rational
entities in our simulation platform. For example, malicious/mis-configured clients
may upload erroneous information on the u-map, while non-rational entities can
make “mistakes”.

Another research direction is to enhance the price setting algorithm with
longer-term objectives, define a more sophisticated blocking probability predic-
tion model, and reservation policies that can be superior to myopically greedy
approaches. Specifically, we will explore a longer time scale prediction of the
users’ reaction to the posted prices and more importantly the competitor’s re-

action curve. Furthermore, we will employ state-of-the-art “trunk reservation”
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policies for reserving a part of the network for the high-value high-business users,
thus offering competitive prices and attractive blocking probabilities.

In this thesis the modeling of spectrum markets is performed at a microscopic
level and considers the distinct characteristics of all users and providers. This
methodology is accurate but becomes computationally intractable especially in
cases of large markets. On the other hand, macroscopic approaches that have been
proposed in the literature are more tractable but their results may be highly in-
accurate in certain cases. For example, an average metric that describes the user
profiles may not be able to capture the spatial variations of the user behavior and
demand. Specifically, not only in different regions we may have distinct customer
profiles, but also a certain customer may exhibit different behavior depending
on the region in which it is located. For example, customers at the center of
a metropolitan area may have higher traffic demand while at the suburbs, their
wireless demand may decrease (e.g., due to the use of wired infrastructure). More-
over, a mobile user depending on its content may have different traffic demand
characteristics. Finally, different channel conditions depending on the region may
impose different radio propagation characteristics and affect the channel quality
and the offered services.

A long-term goal of this research is to propose a methodology to perform ap-
propriate aggregations of the entities at the microscopic level that will reduce the
computational complexity and at the same time control the loss of information,
taking into consideration the aforementioned parameters. Specifically, we plan to
introduce various levels of detail between the microscopic and macroscopic levels,
each with different amount of available information and complexity. These levels
of detail are called “mesoscopic levels” and we can choose among them depending
on the phenomenon which we need to analyze. One way to define the mesoscopic
levels would be to apply different data-mining and clustering algorithms to define
“representative entities”. The representative entities will be fewer compared to
real entities reducing the computational complexity and at the same time they
will describe the behavior of real entities in a more accurate manner compared

to simple averages.
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Appendix A

Simulation platform functions

Table A.1 provides a brief description of the matlab functions that implement

the simulation platform and describes how these functions call each other.

Table A.1: Matlab functions

Function

Description

Calls

Called by

Construct_topology

Constructs the
topology of the
network

Providers_topology
Users_topology

Providers_topology

Constructs the
network of BSs of
providers

Construct_topology

Users_topology

Generates the
population of users

Construct_topology

Monte_Carlo

Performs multiple
random realizations
(Monte Carlo runs)
of an experiment

Define cells
Define_representatives
Nominated_devices
Run_experiment

Define_cells

Divides a region
into a number of
subregions and
classifies users
according to the
subregion in which
they belong

Monte_Carlo

Define_representatives

Defines the
characteristics of the
representative users
in each subregion

Divide_set

Monte_Carlo
Run_experiment
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Divide_set

Distributes a
resource among M
entities according to
a probability vector p

Define_representatives
Run_experiment

Nominated_devices

Finds the BSs and
users that lie in the
region of interest

Monte_Carlo
Present_results

Run_experiment

Performs a single
realization of a
given time interval
of the experiment

Experiment_schedule
Secondary _utility
Subscriber_utility
Estimate_interference
Find _cell
Apriori_utility
Primary_utility
Least_squares

Logit

Metropolis
update_price
plot_topology
Define_representatives

Monte_Carlo

Experiment_schedule

Constructs a
schedule of all the
events that will take
place during an
interval of the
experiment

User_schedule

Run_experiment

User_schedule

Returns the time
instances that mark
the beginning and
end of user calls as
well as the ids of
users that performed
these calls

Call_durations
Inter_call_durations

Experiment_schedule

Call_durations

Draws random
samples for the call
durations of users

User_schedule

Inter_call_durations

Draws random
samples for the
inter-call intervals of
users

User_schedule
Run_experiment

Secondary _utility

Computes the utility
of a card user for all
available strategies

Channel_model

Run_experiment
Run_experiment

Channel_model

Computes the
channel gain from a
user position to a
given set of BSs
using the Okumura-
Hata path loss
model

Secondary _utility
Subscriber _utility
Estimate_interference
Representative_utility
Average_interference
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Subscriber_utility

Computes the utility
of a subscriber user
for all available
strategies

Channel_model

Run_experiment
Subscriber_utility
Estimate_interference
Representative_utility

Estimate_interference

Estimates the
interference that is
introduced by the
transmission of a
specific user to
various BSs

Channel_model

Run_experiment

Find_cells

Maps a user position
in the considered
geographical region
to a specific
subregion

Run_experiment

Apriori_utility

Estimates the utility
of a provider for all
possible prices it can
offer. This
estimation is
performed using the
method of the
representative users

Representative_utility
Average_interference

Run_experiment

Representative_utility

Computes the utility
of a representative
user for all available
strategies

Channel_model
Inter_call_durations

Apriori_utility

Average_interference

Updates the data
structure that stores
the average
interference at each

BS

Channel_model

Apriori_utility

Primary _utility

Measures the utility
that is achieved by
each provider a
posteriori. This
method of utility
estimation is used in
the polynomial
approach

Run_experiment

Least_squares

Fits a polynomial of
second degree to a
Dataset. The
Hessian of this
polynomial is
positive semi-
definite

Run_experiment

Logit

Implements the
Logit rule

Run_experiment
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Metropolis

Implements the
Metropolis
algorithm

Run_experiment

update_price

Applies a gradient-
based rule to update
the offered price of a
service provider in
the case of the
polynomial
approach

Run_experiment

plot_topology

Plots a snapshot of
the network
topology

Run_experiment

Shadowing_matrix

Determines the
contribution of
shadowing to the
channel gain at the
positions of BSs

Construct_topology

Present_results

Processes the data
structure in which
we store the results
of an experiment. It
produces various
plots and returns It
performance
statistics for
providers, card, and
subscriber users

Nominated_devices

To run an experiment the following steps should be performed:

1. Construct the topology of the network: Specify the values of all the

input parameters of the function Construct_topology and call this func-

tion. That way the data structures PD (provider BSs) and SD (user pop-

ulation) will be produced. Subsequently one should execute the function
Shadowing matrix with the proper input to determine the contribution of

shadowing to the channel gain at the positions of BSs.

2. Run the experiment: After producing the data structures PD, SD and
S from the previous step one should specify the values of all the remaining

required input parameters of the function Monte_Carlo and execute this

function.

3. Present the results of the experiment: Load the file which contains

7




the data structure with the results of the experiment. Then execute the
function Present_results to compute performance statistics for the providers

and users and produce plots.
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Appendix B

Sensitivity analysis

To evaluate the effect of the user characteristics on the performance of the market,
we performed a sensitivity analysis study. In this study, we defined a baseline
user case, in which the constraints of the users follow Gaussian distributions with

parameters that are given in Table B.1.

Table B.1: User constraints in the baseline user case

Constraint Mean | Standard deviation
Willingness to pay (service selection) | 0.17 0.0374
Blocking probability 0.2 0.05
Willingness to pay (BS selection) 0.15 0.0374
Data-rate (Mbps) 0.1 0.01

Subsequently, we defined some additional user cases by changing, each time,
the mean value of a specific user constraint. For example, in the high willingness
to pay user case, we increased the mean value of the user willingness to pay, in
the service and BS selection, from 0.17 and 0.15 Euros/min to 0.22 and 0.20 Eu-
ros/min respectively. In the high target data-rate user case, we increased the mean
value of the user data-rate requirement from 0.1 Mbps to 0.12 Mbps. Finally, in
the low blocking probability threshold user case, we decreased the mean value of
the user blocking-probability threshold from 0.2 to 0.165. The parameters of the

Gaussian distributions that determine the user constraints, in the aforementioned
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user cases, are shown in Tables B.2, B.3, B.4.

Table B.2: User constraints in the high willingness to pay user case

Constraint Mean | Standard deviation
Willingness to pay (service selection) | 0.22 0.0374
Blocking probability 0.2 0.05
Willingness to pay (BS selection) 0.20 0.0374
Data-rate (Mbps) 0.1 0.01

Table B.3: User constraints in the high target data-rate user case

Constraint Mean | Standard deviation
Willingness to pay (service selection) | 0.17 0.0374
Blocking probability 0.2 0.05
Willingness to pay (BS selection) 0.15 0.0374
Data-rate (Mbps) 0.12 0.01

Table B.4: User constraints in the low blocking probability threshold

user case
Constraint Mean | Standard deviation
Willingness to pay (service selection) | 0.17 0.0374
Blocking probability 0.165 0.05
Willingness to pay (BS selection) 0.15 0.0374
Data-rate (Mbps) 0.1 0.01

As mentioned in Chapter 4, each user generates a sequence of call requests. In
the baseline user case, the call duration follows a Pareto distribution (z; = 3.89,
a = 4.5) of mean 5 min, while the disconnection period follows a Log-normal
distribution with different parameters for each user (u is uniformly distributed
in the interval [4.0679 6.2150] and o is equal to 0.37) resulting in client demand
varying from 33 to 267 minutes per epoch. To estimate the effect of the user
demand on the performance of the market we defined the high demand user case,
in which the parameter y of the Log-normal distribution that corresponds to the
disconnection periods is uniformly distributed in [3.3679 5.5150]. This results in
client demand varying from 66 to 500 minutes per epoch. In the following sections

we present performance evaluation results for all the aforementioned user cases.
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B.3 High target data-rate
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B.4 Low blocking probability threshold
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