Statistical analysis using matlab

HY 439
Presented by: George Fortetsanakis

Roadmap

- Probability distributions
- Statistical estimation
- Fitting data to probability distributions

Continuous distributions

- Continuous random variable X takes values in subset of real numbers $D \subseteq R$
- X corresponds to measurement of some property, e.g., length, weight
- Not possible to talk about the probability of X taking a specific value

$$
P(X=x)=0
$$

- Instead talk about probability of X lying in a given interval

$$
\begin{gathered}
P\left(x_{1} \leq X \leq x_{2}\right)=P\left(X \in\left[x_{1}, x_{2}\right]\right) \\
P(X \leq x)=P(X \in[-\infty, x])
\end{gathered}
$$

Probability density function (pdf)

- Continuous function $p(x)$ defined for each $x \in D$
- Probability of X lying in interval I \subseteq D computed by integral:

$$
P(X \in l)=\int_{x \in l} p(x) d x
$$

- Examples:

$$
\begin{gathered}
P\left(x_{1} \leq X \leq x_{2}\right)=P\left(X \in\left[x_{1}, \mathrm{x}_{2}\right]\right)=\int_{x_{1}}^{x_{2}} p(x) d x \\
P(X \leq x)=P(X \in[-\infty, \mathrm{x}])=\int_{-\infty}^{x} p(x) d x
\end{gathered}
$$

- Important property:

$$
P(X \in D)=\int_{x \in D} p(x) d x=1
$$

Cumulative distribution function (cdf)

- For each $\mathrm{x} \in \mathrm{D}$ defines the probability $P(X \leq x)$

$$
F(x)=P(X \leq x)=P(X \in[-\infty, \mathrm{x}])=\int_{-\infty}^{x} p(x) d x
$$

Important properties:

- $\quad F(-\infty)=0$
- $F(\infty)=1$
- $\quad P\left(x_{1} \leq X \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right)$

Complementary cumulative distribution function (ccdf)

$$
G(x)=P(X \geq x)=1-P(X \leq x)=1-F(x)
$$

Exponential distribution

Probability density function

$$
f(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0, \\ 0, & x<0 .\end{cases}
$$

Cumulative distribution function

$$
F(x ; \lambda)= \begin{cases}1-e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Memoryless property:

$$
P(T>\tau+t \mid T \geq \tau)=P(T>t)
$$

Cumulative distribution function

Poisson process

Random process that describes the timestamps of various events

- Telephone call arrivals
- Packet arrivals on a router

Time between two consecutive arrivals follows exponential distribution

Time intervals $t_{1}, t_{2}, t_{3}, \ldots$ are drawn from exponential distribution

Roadmap

- Probability distributions
- Statistical estimation
- Fitting data to probability distributions

Basic statistics

Suppose a set of measurements $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$

- Estimation of mean value: $\hat{\mu}=\frac{\sum_{i=1}^{n} x_{i}}{n} \quad$ (matlab m=mean(x);)
- Estimation of standard deviation: $\hat{\sigma}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}}{n-1}}$ (matlab s=std(x);)

Estimate pdf

- Suppose dataset $x=\left[x_{1} x_{2} \ldots x_{k}\right]$
- Can we estimate the pdf that values in x follow?

Estimate pdf

- Suppose dataset $x=\left[x_{1} x_{2} \ldots x_{k}\right]$
- Can we estimate the pdf that values in x follow?

Produce histogram

Step 1

- Divide sampling space into a number of bins

- Measure the number of samples in each bin

Step 2

- $\mathrm{E}=$ total area under histogram plot $=2 * 3+2 * 5+2 * 6+2 * 2=32$
- Normalize y axis by dividing by E

Matlab code

function produce_histogram(x, bins)
\% input parameters
$\% \mathrm{X}=\left[\mathrm{x}_{1} ; \mathrm{x}_{2} ; \ldots \mathrm{x}_{\mathrm{n}}\right]$: a column vector containing the data $\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}$.
$\%$ bins $=\left[b_{1} ; b_{2} ; \ldots b_{k}\right]: A$ vector that Divides the sampling space in bins
$\%$ centered around the points b1, b2, ..., bk.
figure; \% Create a new figure
[fy] = hist(x, bins); \% Assign your data points to the corresponding bins
$\operatorname{bar}(\mathrm{y}, \mathrm{f} / \mathrm{trapz}(\mathrm{y}, \mathrm{f}), 1)$; \% Plot the histogram
xlabel('x'); \% Name axis x
ylabel('p(x)'); \% Name axis y
end

Histogram examples

Bin spacing 0.1

Bin spacing 0.05

Empirical cdf

How can we estimate the cdf that values in x follow?
(l) Use matlab function ecdf(x)

Percentiles

- Values of variable below which a certain percentage of observations fall
- 80th percentile is the value, below which 80% of observations fall.

Estimate percentiles

Percentiles in matlab: $\mathrm{p}=\operatorname{prctile}(\mathrm{x}, \mathrm{y})$;

- y takes values in interval [0 100]
- $80^{\text {th }}$ percentile: $p=\operatorname{prctile}(x, 80)$;

Median: the $50^{\text {th }}$ percentile

- med = prctile(x, 50); or
- med = median(x);

Why is median different than the mean?

- Suppose dataset $x=[1100100]:$ mean $=201 / 3=67$, median $=100$

Roadmap

- Elements of probability theory
- Probability distributions
- Statistical estimation
- Fitting data to probability distributions

Problem definition

Dataset $D=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ collected from an experiment

Families of distributions: $S=\left\{P_{1}\left(x \mid \boldsymbol{\theta}_{1}\right), P_{2}\left(x \mid \boldsymbol{\theta}_{2}\right), \ldots, P_{N}\left(x \mid \boldsymbol{\theta}_{\mathrm{N}}\right)\right\}$

- Gaussian: $\boldsymbol{\theta}_{i}=(\mu, \sigma)$
- Exponential: $\boldsymbol{\theta}_{i}=\lambda$
- Generalized pareto: $\boldsymbol{\theta}_{i}=(\kappa, \sigma, \theta)$

Which family of distributions better describes the dataset D?

Step 1: Maximum likelihood estimation

- For each family i determine parameter $\boldsymbol{\theta}_{i}^{*}$ that better fits the data
- Maximize likelihood of obtaining the data with respect to $\boldsymbol{\theta}_{\boldsymbol{i}}$

$$
\begin{aligned}
& \boldsymbol{\theta}_{\mathbf{i}}^{*}=\arg \max _{\boldsymbol{\theta}_{\mathbf{i}}} p\left(D \mid \boldsymbol{\theta}_{\mathbf{i}}\right) \longleftarrow \text { Likelihood function } \\
& =\arg \max _{\boldsymbol{\theta}_{\mathbf{i}}} p\left(x_{1}, x_{2}, \ldots, x_{k} \mid \boldsymbol{\theta}_{\mathbf{i}}\right) \\
& =\arg \max _{\boldsymbol{\theta}_{\mathbf{i}}} \prod_{j=1}^{k} p\left(x_{j} \mid \boldsymbol{\theta}_{\mathbf{i}}\right) \longleftarrow \text { Due to independence of samples } \\
& =\arg \max _{\boldsymbol{\theta}_{\mathbf{i}}} \sum_{j=1}^{k} \ln \left(p\left(x_{j} \mid \boldsymbol{\theta}_{\mathbf{i}}\right)\right)
\end{aligned}
$$

Example: exponential distribution

- Probability density function

$$
f(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0, \\ 0, & x<0 .\end{cases}
$$

- Define the log-likelihood function

$$
l(\lambda)=\sum_{i=1}^{k} \ln \left(\lambda e^{-\lambda x_{i}}\right)=\sum_{i=1}^{k} \ln (\lambda)-\sum_{i=1}^{k} \lambda x_{i}=k \ln (\lambda)-\lambda \sum_{i=1}^{k} x_{i}
$$

- Set derivative equal to 0 to find maximum

$$
\frac{d l(\lambda)}{d \lambda}=0 \Rightarrow \frac{k}{\lambda}-\sum_{i=1}^{k} x_{i}=0 \Rightarrow \lambda^{*}=\frac{k}{\sum_{i=1}^{k} x_{i}}
$$

Reform question

After MLE: instead of families we have specific distributions
$P_{1}\left(x \mid \boldsymbol{\theta}_{1}^{*}\right), P_{2}\left(x \mid \boldsymbol{\theta}_{2}^{*}\right), \ldots, P_{N}\left(x \mid \boldsymbol{\theta}_{\mathrm{N}}^{*}\right)$
Which distribution better describes the data?

Choose most appropriate distribution based on:

- Q-Q plots
- Kullback-Leibler divergence

Method of Q-Q plots

Checks how well a probability distribution $P_{i}\left(x \mid \boldsymbol{\theta}_{i}^{*}\right)$ describes the data

Algorithm

1. Draw random datasets $Y_{0}, Y_{1}, Y_{2}, \ldots, Y_{M}$ from distribution $P_{i}\left(x \mid \theta_{i}^{*}\right)$
2. Compute percentiles of these datasets at predefined set of points
3. Compute percentiles of experimental dataset D at the same points
4. Plot percentiles of Y_{0} against percentiles of each of $Y_{1}, Y_{2}, . ., Y_{M}$
5. Plot percentiles of Y_{0} against percentiles of dataset D

If plot of step 5 is in the area defined by plots in step 4 the distribution describes the data well

Plot percentiles of Y_{0} vs. percentiles of Y_{1}

Plot percentiles of Y_{0} vs. percentiles of Y_{2}

Plot percentiles of Y_{0} vs. percentiles of Y_{100}

Construct envelope

Plot percentiles of Y_{0} vs. percentiles of D

Good fitting: The blue curve of original percentiles lies in the envelope

Plot percentiles of Y_{0} vs. percentiles of D

Bad fitting: The blue curve of original percentiles lies outside the envelope

Method of Kullback-Leibler divergence

Non-symmetric metric of difference between distributions P and Q

Discrete distributions

$$
D_{K L}(P \| Q)=\sum_{i=1}^{N} p(i) \log \frac{p(i)}{q(i)}
$$

Continuous distributions

$$
D_{K L}(P \| Q)=\int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} d x
$$

Algorithm

1. Discretize the empirical pdf of the Dataset D

2. Discretize all distributions $P_{1}\left(x \mid \boldsymbol{\theta}_{1}^{*}\right), P_{2}\left(x \mid \boldsymbol{\theta}_{2}^{*}\right), \ldots, P_{N}\left(x \mid \boldsymbol{\theta}_{\mathrm{N}}^{*}\right)$
3. Compute KL divergence of theoretical distributions with dataset D
4. Choose the distribution with the lowest KL divergence

Online material

http://www.csd.uoc.gr/~hy439/schedule09.html

- Tutorials \rightarrow Statistics

Cross correlation

$x \operatorname{corr}(\mathrm{x}, \mathrm{y})$: estimates the cross correlation between two time series x and y

$$
R_{x y}(m)=E\left[x_{n+m} y_{n}\right]=E\left[x_{n} y_{n-m}\right]
$$

The larger the absolute value of the cross correlation the larger the correlation of the two variables

White noise

No correlation

Some correlation

