
CS439 – Wireless Networks and Mobile Computing

Spring 2015

Project on Network Measurements and Analysis

Professor: Maria Papadopouli

Part A

The purpose of this assignment is to capture network traffic using tcpdump or

wireshark and the then analyze it with matlab.

At you PC, generate various types of traffic (e.g., HTTP, torrent, video

streaming, VOIP calls) for at least an hour and capture it using wireshark or

tcpdump. Then, for each protocol, save trace files with all exchanged packets

and import them in matlab.

Helpful tips on how to import data collected from wireshark into matlab:

1. Apply filters to separate the packets of each protocol.

2. Save the data in a .txt file (file-->export-->as plain text file). From the

emerging window select “packet summary” and “all packets”.

3. Save the file into your working folder in matlab.

4. Open matlab and execute the following commands:

fid=fopen('filename.txt');

C = textscan(fid, '%d %f %s %s %s %d %*[^\n]', 'headerLines', 1);

fclose(fid);

The argument %*[^\n] indicates to matlab to ignore everything that exists

after the sixth column in each line.

The cell array C contains six attributes. Select the ones that contain the

timestamp and length of packets.

Part B

Analyze the traces collected in Part A in order to obtain a better understanding

of the user demand in your network.

Produce a bar plot that indicates the total number of bytes transferred by each

protocol (e.g., HTTP, TCP, and UDP) during your experiment. Tip: use the

matlab command “bar” to construct a bar plot.

Plot the cumulative distribution function (CDF) of the packet size for each

protocol. Report the mean, median, and standard deviation of the packet size for

each protocol. Comment on the results. Tip: to construct a cdf plot use the

command “ecdf” of matlab, while to estimate the mean, median, and standard

deviation, use the commands “mean”, “median”, and “std”, respectively.

Part C

The file “Packet_header.txt” contains flow-level packet header traces (see

Appendix 1 for more detailed information).

For each of the Access Points 167, 183, 91, 143, and 469, plot the CDF of the

flow duration (sixth column in file “packet_headers.txt”).

For each of the Access Points 167, 183, 91, 143, and 469, plot the CDF of the

flow size in bytes (fifth column in file “packet_headers.txt”).

Plot the flow-size in bytes versus the duration of each flow. Is there a correlation

(Appendix II)? Explain.

What is the mean, median, and standard deviation of flow size for each of the

Access points 167, 183, 91, 143, and 469? Is the traffic load heavy or light in

general? Which AP has the lightest and which AP has the heaviest traffic load?

The file “http.txt” contains monitored HTTP traffic (see Appendix 1 for more

detailed infromation).

Consider a 5-minute time scale. Plot the number of HTTP Requests versus time

for each of the categories specified in the sixth field of the HTTP Requests trace.

Useful tips: Suppose that time instances t1 and t2 indicate the start and end of

the experiment and d is the size of the considered time intervals (e.g., 5 minutes).

If you save the timestamps of HTTP requests in a vector “x” and execute the

command “y = ceil((x - t1)/d)”, you will get a vector “y”. This vector indicates

the ID of the interval in which each request was sent. Then, you can use the

command “accumarray” and the vector “y” in order to compute the total number

of requests that were performed in each interval. Read the documentation of

“accumarray” for more information.

Produce a bar plot that shows the total number of HTTP Requests for the ten

more frequent categories that appear in the sixth field of the HTTP trace.

Comment on the plot. Is there a category that dominates the others? What types

of sites do the clients browse more?

IMPORTANT NOTE: You must submit all the MATLAB code you wrote for

the trace analysis with sufficient comments.

Appendix I

Packet header traces

The file entries includes the following fields:

1. Timestamp of the first packet of the flow.

2. ID of wireless client that initiated the flow.

3. ID of the Access point to which the wireless client was connected.

4. Total number of packets transferred during the flow.

5. Total number of bytes transferred during the flow.

6. Duration of the flow (estimated by measuring first to last packet arrival

times).

7. Duration of the flow (estimated on the basis of WLAN-originated

packets, still measuring first to last packet time arrivals, only now the

"last" packet is the last one with a useful payload).

8. Type of TCP termination:

a. Not_Closed: no termination packets (FIN or RST) observed in any

direction.

b. LAN_Closed: termination packets only observed from the LAN.

c. WAN_Closed: termination packets only observed from the WAN.

d. Complete: termination packets observed in both directions.

9. Port number of the LAN side.

10. Port number of the WAN side.

HTTP requests

Each line represents an HTTP request found in a packet captured by a server

monitoring traffic in and out of the wireless network. HTTP requests were

extracted after processing the original packet headers traces

HTTP user request logs look like this:

1044559890 972962 mdO+1om0AIt2x28foCcTA1qkNA4Q

hFJXMOBElyLJ0/JDx6/J+JnYvWV8 pfifPZXra3Z0Tpj657m6w6Lnsbmg

1044559895 915535 mS9mdo76HsLlW4YrxT9WzajaLU4g

hu7q19RyZWOFlNUfHfN0woGy9bOU pNWlImhuPtc+qVkvT0vwvQPANLU0

News/Breaking_News/

Each line contains the following columns:

1. Time in seconds since the Unix epoch that the packet was captured by the

server.

2. Number of microseconds that had elapsed since the beginning of that

second.

3. MAC address of the wireless device that made the request always starting

with an 'm'.

4. Host as drawn from the HTTP header always starting with an 'h'.

5. Requested path always starting with a 'p'.

 Recall that a standard HTTP/1.1 request may look like:

 GET/index.jsp HTTP/1.1

 Host: www.foo.com

For this case, the path is "/index.jsp" and the host would be

"www.foo.com".

All of these are SHA-1 hashed of the actual data.

6. The sixth field, if provided, identifies a category in the DMOZ database

that closely matches the site specified. If the sixth field is provided, then

the seventh field will identify how closely the request matches the DMOZ

entry. (The DMOZ was downloaded in approximately April, 2003.)

Appendix II

Notes on cross-correlation between two signals

The cross-correlation between two sampled signals is defined as:

𝑅𝑥𝑦(𝑚) =
1

𝑁
∑ 𝑦(𝑛)𝑥(𝑛 + 𝑚 − 1)

𝑁−𝑚+1

𝑛=1

𝑚 = 1,… ,𝑁 and 𝑁 is the number of samples

In matlab you can use the function xcorr(x,y,’coeff’) in order to estimate the

cross-correlation between x and y. Using the option ‘coeff’ you get the cross-

correlation normalized between 0 and 1, where 0 means that the signals are

uncorrelated.

Example (MATLAB)

X= randn(100,1); % generate the signal X

Y= sin([1:100]); % generate the signal Y

[c lags] = xcorr(X,Y,‘coeff’); %compute the cross-correlation

http://www.foo.com/

plot(lags,c) % plot the cross-correlation

