Forthroid on Android: A QR-code based
Information Access System for Smart Phones

Anastasios Alexandridis*, Paulos Charonyktakis*, Antonis Makrogiannakis®*,
Artemis Papakonstantinou*, and Maria Papadopouli*'*
*Department of Computer Science, University of Crete
*Institute of Computer Science, Foundation for Research and Technology - Hellas
fSchool of Electrical Engineering, KTH Royal Institute of Technology

Abstract—The Forthroid is a location-based system that “aug-
ments” physical objects with multimedia information and enables
users to receive information about physical objects or request
services related to physical objects. It employs computer-vision
techniques and Quick Response codes (QR-codes). We have
implemented a prototype on Android platforms and evaluated
its performance with systems metrics and subjective tests. We
discuss our findings and challenges in prototyping on Android
OS. The analysis indicates that the network and the server are the
main sources of delay, while the CPU load may vary depending
on the specific Forthroid operation. The preliminary subjective
test results suggest that users tolerate these delays and the offered
services can be particularly useful.

I. INTRODUCTION

The emergence of wireless networks and their continuous
deployment world-wide has triggered a fast growth of location-
aware and pervasive computing services and applications. We
designed and evaluated the Forthroid, a location-based system
and set of services, that enables users to obtain multimedia
information about specific points of interest using their mobile
phones and provides services related to physical objects (e.g.,
a printing service). The Forthroid can be easily deployed and
used in indoor and outdoor environments, such as museums,
campuses, and metropolitan areas. The Forthroid uses Quick
Response codes (QR-codes), which are two-dimensional bar-
codes that can encode various types of information. QR-
codes can be attached to physical objects. Already in sev-
eral metropolitan areas, such codes have been placed, e.g.,
in stores, at the entrance of buildings to provide floorplan
information, on walls for announcing upcoming events. An
example of usage of the Forthroid is illustrated in Fig. 2.

The Forthroid architecture consists of QR-codes (associated
with physical objects in proximity), Forthroid clients, that run
on Android smart phones, and the Forthroid multi-threaded
server. A Forthroid client may scan QR-codes (associated
with a certain point of interest) and communicate with the
Forthroid server via the Internet in order to retrieve multimedia
information or request services associated with that point of
interest. Although the community has proposed similar QR-
code information access systems (e.g., [1]-[5]), to the best
of our knowledge, there are no empirical studies that analyze
their performance.

¥ Contact author: Maria Papadopouli (email: mgp@ics.forth.gr)

The Forthroid builds on our earlier work, the PhotoJournal
[6]. The PhotoJournal is a novel location-based media sharing
application that enables users to build interactive journals that
associate multimedia files with locations on maps and share
this information with other users. The contribution of this
paper is twofold: it presents the design and architecture of the
system, and its performance evaluation using subjective tests
and system metrics, such as the delay, distance estimation er-
ror, battery consumption, and CPU load. Moreover, it discusses
some of the main challenges that programmers often face,
when developing similar applications. This paper is organized
as follows: Section II presents related work, while Section III
focuses on the architecture of the system. The performance
of the system and the user study are discussed in Section
IV. Finally, Section V summarizes our main conclusions and
future work plans.

II. RELATED WORK

The community has developed several exciting location-
aware and mobile computing applications. For example, the
CoolTown project [7] of the HP labs is a location-aware
ubiquitous system that explores opportunities provided by
the convergence of Web technology, wireless networks, and
portable client devices to support “web presence” for people,
places, and things by associating URLs with visual codes
placed on objects. Several mobile computing applications have
been using barcodes [1]-[5]. For example, Ljungstrand et
al. [3] proposed barcode stickers, which can be attached to
physical objects. Barcode stickers map web pages to physical
objects and enable users to access the web by scanning an
attached barcode.

A comparative performance analysis of several vision-based
distance estimation algorithms is presented by Maidi et al.
[8]. The authors developed a hybrid approach to distance
estimation that mixes an iterative and an analytical method
for pose estimation. Their approach is compared to several
sophisticated vision-based algorithms. The execution time of
their hybrid approach is 112 us for one pose estimation and
the mean distance error is 7.2 mm for a distance of 1 m.

Sony has developed a new type of marker named CyberCode
[1], along with a visual tagging system with tracking capabili-
ties. Ordinary mobile phones can easily recognize CyberCode
tags, enabling the estimation of the 3D position and orientation

Timing
Patterns

L. d
o)

‘h-\.

(=]

Encoding
E ; Region
\ Alignemt

patterns

Ez{i 5

i

suaneg
.IBPHI

ofE,..L..,EI

(a) (b)

Fig. 1. (a) A typical QR-code. (b) The main components of a QR-code.

The Telecommunications and
Networks Laborato

(b)

Fig. 2. (a) A user scans a QR-code in order to retrieve information
about a point of interest at the Telecommunications and Networks Laboratory
(FORTH). (b) A screen snapshot of the information returned to a user for a
specific point of interest.

of the camera relative to the tag. TRIP [2] is a computer
vision system which uses printable 2D circular markers for
the identification and location estimation of objects. It can
successfully recognize an object 98% of the cases with an
average error of less than 3 cm and identify entities within
3 meters distance. Rukzio et al. [4] proposed a system
that enables mobile devices to “interact” with posters using
cameras and near-field networks. Rohs et al. [5] utilized 2D
visual codes, similar to QR-codes, in order to retrieve object-
related information. Their recognition algorithm can detect
multiple codes simultaneously and compute the coordinates
of the target in the coordinate system induced by the code.

III. SYSTEM ARCHITECTURE

The main entities of the Forthroid are the QR-codes and
their main components, namely, the finder patterns, timing
patterns, alignment patterns, and the encoding region (as
shown in Fig. 1). A unique identifier is encoded in each QR-
code. The Forthroid defines and uses two QR-code types,
namely, the information-aware and action-aware QR-codes.
The information-aware QR-codes are attached to points of in-
terest and are associated with specific multimedia information,
while the action-aware QR-codes map the corresponding point
of interest with certain services that can be provided to users.

The Forthroid architecture employs the client-server
paradigm: it consists of the application that runs on the mobile
device (client) and the server. The client uses the ZXing Appli-
cation Programming Interface (API) and the Barcode Scanner
open-source application provided by Google, for scanning
and decoding QR-codes. The server consists of two modules,
namely, the information retrieval, and the distance estimation
module. To support information retrieval, the server deploys a
MySQL database that contains information regarding all points

. WLAN Information-aware
. QR-code

L. (1) Scan QR-Code
UserA User B C‘"E —— e, Edm
.8 8B--——-T--—--T &

(2) Decode QR-Code

Action-aware
QR-code

(4) Send Response

P OMysQL :
L NS

Information
Retrieval

Module
Server

o

INTERNET

A

i OpenCV :
: Framework :

Module

Fig. 3. The Forthroid architecture.

of interest, while the OpenCV framework is used to perform
the distance estimation. The server is multi-threaded and can
support a significant number of clients/requests.

Fig. 3 illustrates the general architecture of the Forthroid.
A user holding an Android smart phone points to a QR-code
(which is associated with a point of interest, for example a
painting). The Forthroid mobile application detects the QR-
code and decodes its unique identifier locally. A query for
that point of interest is formed, containing the identifier of
the specific QR-code and the captured image. The client
sends the query to the server via the Internet. When the
server receives a query, it determines the type of the QR-
code based on the enclosed identifier. If the type corresponds
to an information-aware QR-code, the information retrieval
and distance estimation modules are invoked. The information
retrieval module accesses the database to retrieve the appropri-
ate information and the distance estimation module performs
camera calibration. The server forms a response that contains
the multimedia information about the point of interest and the
estimated distance between the smart phone and the QR-code,
and sends the response to the client.

In the case of an action-aware QR-code, action-specific
operations are performed by the server. Currently, we have
designed and evaluated the printing service: when a user scans
a QR-code, which is attached to a printer, a list of all the points
of interest he/she has visited is displayed. The user can then
choose an item from this list and information about that item
stored in the Forthroid server will be sent to the printer. The
Forthroid server keeps track of the points of interest that recent
Forthroid users have visited. Specifically, each time a client
sends a query requesting information for a point of interest,
the server creates a new entry in the database with the IP of
the client and the identifier of the point of interest. Since IPs
are dynamically assigned and a new client may have the same
IP as an old one which has “left” the network, these entries
expire after a certain period of time.

The main operations of the Forthroid take place during
the preview and the query periods. Specifically, during the

TABLE I
VARIOUS EVENT TYPES. THE TERM 7; INDICATES THE TIME THE EVENT ¢
WAS RECORDED AT THE CORRESPONDING MONITOR

Time Event description
T client successfully decodes a QR-code
T> client unicasts the query to the server
T3 server receives the query
Ty server sends back the response
Ts client receives the response from the server
Ts client displays the response to the user

TABLE I
DIFFERENT DELAY TYPES BASED ON THE RECORDED EVENT TYPES

Delay Time
Server Ty — T3
Network Ts —Ty+ T3 — 1T

Android client
Total

To—Th+Ts —Ts
Te — T4

preview period, the Forthroid client uses the mobile camera to
iteratively scan the area until it is able to detect and decode a
QR-code. The query period includes the time required for the
client-server communication and the display of the results on
the screen of the smart phone.

The distance of the smart phone from the plane that the QR-
code is attached is estimated by camera calibration techniques.
The camera calibration process determines the matrix M (Eq.
(1)) that projects a 3D point P from the world coordinate
system to a 2D point p in the coordinate system of the image

[9]:

p=MP (D

where M is the 3x4 projective or complete camera calibration
matrix. Eq. (1) can be further decomposed into:

p = K[R|t]P 2)

where K is the 3x3 matrix of the infrinsic camera specific
parameters and [R]t] is the 3x4 joint rotation and transla-
tion matrix, i.e., the matrix of the extrinsic parameters. The
extrinsic parameters describe the position of the camera in
terms of orientation and translation with respect to the world
coordinates. In order to estimate the extrinsic camera param-
eters, first the correspondences between points in the world
and image coordinate systems must be identified. Then, the
camera matrix M can be estimated using several methods for
camera calibration, such as the Least Squares [10], nonlinear
estimation [11], and iterative algorithms [9].

The Forthroid uses the corners of the finder patterns as
the calibration pattern. Specifically, 36 correspondences are
created and each of them is associated with a specific corner
of a finder pattern square. The upper-left corner is used to
define the origin of the world coordinate system. The camera
calibration process is divided into two phases: the intrinsic
parameters calibration, which is carried out only once, and

the extrinsic parameter estimation. The intrinsic camera cali-
bration is done using the MATLAB Calibration Toolbox [12].
When a query arrives at the server, the extrinsic parameter
calibration is performed in order to estimate the distance of
the smart phone from the QR-code. For that, first, the image
is rotated counterclockwise so that the position of the finder
patterns in the image matches the position of the finder patterns
in the actual QR-code (lines passing from the centers of the
finder patterns form a “I"” shape). The angle of the rotation is
estimated by inspecting the position of the centers of the finder
patterns in the captured image and is included in the client
query. Then, the corner detection procedure is carried out in
order to create the world to image correspondences. The Harris
corner detection algorithm [13] is applied on the three finder
patterns of the QR-code. Specifically, Harris corner detector
aims to find the twelve corners that correspond to the corners
of the three squares inside each finder pattern. The resulted
correspondences are then used in the extrinsic parameter
estimation. Then, the 3D world coordinates of the location
of the camera, i.e., camera center C, can be determined by
Eq. (3) [14]:

C=-R% 3)

The distance of the user from the QR-code is the Euclidean
distance of the camera center from the origin of the world
coordinate system.

IV. PERFORMANCE ANALYSIS

To evaluate the performance of the Forthroid, empirical-
based measurements and subjective tests were performed.
Specifically, first we measured the delay, the distance estima-
tion error, and the battery consumption of the Forthroid run-
ning on the Android device. Then, we performed a preliminary
subjective study in the premises of our lab at FORTH-ICS.

The testbed includes an HTC Nexus One smart phone that
runs Android 2.2 and a 2.66 GHz Core 2 Duo Dell Desktop
with 2048 MB RAM and Linux Ubuntu Operating System
server. The server is connected via FastEthernet and the smart
phone (client) is connected via an IEEE802.11 Access Point
(AP) to the FORTH-ICS infrastructure network.

A. Delay

As it is illustrated in Tables I and II, the total delay that a
user experiences consists of the following components:

1) Server delay: it corresponds to the total time elapsed
between the reception of a query by the server and the
transmission of a response. Its dominant components
are the distance estimation and the information retrieval
modules.

2) Network delay: it includes the network and propagation
delay.

3) Android client delay: it consists of the time for the
query generation and the time for displaying the server
response on the screen.

1 T peeeeeeee R
0.9 r
L I I
0.8 | .
R
0.6f : Il — Total delay
= ol I -—--Server delay ||
8 05 : : ------ Network delay
0.4f ooy —— Android delay |
Y| SO R ,
0.2f 1 !
. | i
0] }
: !
0 I ; ; ; ;
0 2000 4000 6000 8000 10000
Delay (ms)
Fig. 4. Cumulative distribution function of the various types of delays.
x 10*
-b
L5f
£
z
3z I
A E
05 B TR
r’
——Total delay
--+--Server delay
0 5 10 15 20 25 30 35 40 45 50 55
Number of requests
Fig. 5. Mean delay vs. number of concurrent requests (95% confidence
intervals).

To measure these delays, the events shown in Table I were
defined. When a specific event occurs, our software invokes a
system call in order to get the current system time in millisec-
onds. During the evaluation phase, a Forthroid client scans
an information-aware QR-code. This process was repeated 30
times. The median total, server, network, and android delay
are 5.68, 2.68, 1.99 and 1.01 seconds, respectively, with a
relatively small variance (as shown in Fig. 4).

To study the impact of the number of simultaneous requests
on the delay, we used a desktop PC that sends to the Forthroid
server a number of concurrent simulated queries for points of
interest. We varied the number of concurrent requests from 5
to 50 (step of 5). Each experiment for a specific number of
concurrent requests was repeated 10 times and the total delay,
as well as the server delay, were measured (as shown in Fig.
5). A prominent increase in the delay occurs when the number
of concurrent requests is 40 or more, due to the substantial
increase in the memory required for processing them. As a
result, some threads may have to wait for others to finish,
increasing the server and the total delay.

B. Distance estimation

To test the accuracy of the distance estimation module, a
QR-code of size 11x11 cm? is scanned at various distances,
in the range of 40 cm up to 2 m, at every 10 cm. The
aforementioned distance range (40 cm, 2 m) corresponds to
the minimum and maximum distance, respectively, for which
the ZXing library is able to detect and decode a QR-code. The

— Scenario A
-—--Scenario B
------ Scenario C

0 1 2 3 4 5 6 7 8
Distcance Error (cm)

Fig. 6. Cumulative distribution function of the distance estimation error.
Preview period
1 4
14
0.8]]
4
1
i 0.6 i —— OLED
O 04 I' —CPU
I
0.2 H |
/
(\ 1 1 -'—, L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Energy consumption (mW/ms)
Query period
1 — T i
/
038 A
’
’
z 0.6 if{—— OLED
g } o |—cru
0.4 A Wifi
[
0.2 ,,’ H
/
G n n - = n n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Energy consumption (mW/ms)
Fig. 7. Cumulative distribution function of the battery consumption during

the preview and query periods.

following scenarios are employed in our measurements:

e Scenario A: The user is located in front of a QR-code,
holding the camera parallel to the surface on which the
QR-code is mounted.

e Scenario B: The user scans the QR-code holding the
camera from different angles.

e Scenario C: The user holds the camera with an arbitrary
rotation. As a result, the QR-code is rotated in the
captured image. The user can stand either in front of the
QR-code or at an arbitrary angle.

Each scenario was repeated three times for each distance
(resulting in a total of 3x17 experiments). Fig. 6 illustrates the
error between the reported and the actual distance. The median
error for the scenario A is 1.3 cm, while for both the scenarios
B and C, it is 2.6 cm. Moreover, the application reports a
distance estimation at 94%, 84% and 87% of the cases for
scenario A, B, and C, respectively. The distance estimation
procedure fails when the correspondences are not correctly
identified, e.g., blurred or shaky pictures.

C. Battery consumption

Given the energy constraints of mobile devices, a developer
should consider the efficient memory allocation and CPU

TABLE III
QUESTIONNAIRE OF OUR PRELIMINARY SUBJECTIVE STUDY

Question 1 Easiness to get familiar with the Forthroid and use it
Question 2 Experience w.r.t. delay to obtain the information about
the point of interest
Question 3 Usefulness of the application in general
Question 4 Easiness to successfully scan QR-codes
TABLE IV
PERCENTAGE OF USERS THAT PROVIDED A SPECIFIC SCORE IN EACH
QUESTION
Question 1 Question 2
Trivial 66.7% Excellent 40%
Very Easy 33.3% Very Good 33.3%
Satisfactory 0 % Satisfactory 26.7%
Very Difficult 0% Not Satisfactory 0%
Too Difficult 0% Bad 0%
Question 3 Question 4
Trivial 26.7%
Very Useful 73.3% Very Easy 40%
Useful 26.7 % Satisfactory 33.3%
Not That Useful 0% Very Difficult 0%
Too Difficult 0%

usage. The battery consumption and the CPU usage of the
Forthroid application were evaluated. The following experi-
ment was carried out: During the preview period, the mo-
bile device scans an information-aware QR-code. The battery
consumption during the two periods was recorded using the
PowerTutor application [15]. The experiment was repeated 90
times. In each run, the battery consumption due to the wireless
interface, Organic Light-Emitting Diode (OLED) display, and
CPU, was measured separately. The median consumption of
the wireless interface is 0.17 mW/ms during the query period
(as shown in Fig. 7). Since no wireless communication occurs
during the preview period, the wireless interface consumes
no battery. The consumption due to the CPU is much higher
during the preview period than during the query period, since
during preview, the client device iteratively tries to detect and
decode a QR-code (which contributes to a great amount of
CPU load). Note that fine-level conclusions about the battery
consumption cannot be easily drawn, since the consumption
due to OLED operations depends on the specific content and
color displayed on the screen [16]. We also observed that in a
few cases the battery consumption due to OLED operations is
significantly lower than its median value (as shown in Fig. 7).
In those cases, at the query period, the content changes from
the specific image captured by the camera to an almost black
screen, where the retrieved information is displayed. Moreover,
the camera previewing snapshots are still on the display with
low intensity. Such cases occur when a user holds the mobile
device in such a way that the content changes rapidly, while
reading the retrieved information.

The CPU usage of the Android device during the preview

and the query period was also measured. For that, we imple-
mented a more lightweight version of the Linux top command
which displays a listing of the most CPU intensive tasks of
the system. We modified it to measure the CPU usage on
intervals shorter than one second (that the original top tool
by default uses). During the preview period, the total CPU
usage was 89.6%, out of which, the 67% was exclusively by
the Forthroid process. During the query period, the total CPU
usage was 49.6%, out of which only the 27.7% was utilized
by our system. More sophisticated software and hardware
mechanisms are required for performing more accurate battery
consumption measurements.

D. Subjective study

We performed a preliminary user study to evaluate the
user experience running the Forthroid application in the
Telecommunications and Networks Laboratory at FORTH.
Four information-aware QR-codes were attached on various
posters and one action-aware QR-code was placed next to the
printer (for the printing service). At first, we briefly presented
the functionality of the Forthroid to the 15 colleagues, mostly
students of the Institute of Computer Science at FORTH, who
agreed to participate in the user study. We then asked them to
use the system for at least 10 minutes. At the end, each user
answered a questionnaire (shown in Table III) and evaluated
his/her experience using the system (the scale/score for each
question is shown in Table IV). All users submitted their
responses in the questionnaire. The reported scores are shown
in Table IV. Most of them reported that it was easy to use the
Forthroid and tolerated the delay.

E. Discussion

We faced several challenges while developing the Forthroid
on the Android platform related to the camera API, the screen,
and GUI. During the preview period, the screen of the mobile
device displays the area viewed by the camera. The preview
resolution may vary from 176x144 pixels to 1280x720 pixels
and differs from the picture resolution, which is the resolution
to which a picture is taken by the camera, and varies from
640x480 pixels to 2592x1952 pixels. The preview and picture
resolutions depend on the specific model of the device. The
relatively low preview resolutions constraint the application,
since camera calibration procedures require high resolution
images in order to provide accurate results. We overcame
this problem by capturing two pictures, one in the preview
resolution for the QR-code decoding, and one in the picture
resolution for the distance estimation. When a QR-code is
detected, the application invokes the fakePicture() method of
the Camera API in order to capture a picture with the highest
resolution available from the picture resolutions. As in the case
of most portable mobile devices, Android smart phones have
relatively small screens and, inevitably, application developers
have to fit the graphical content on them. Moreover, in order
to make the GUI user-friendly, we tried to keep it simple and
provided a help button in the menu to guide users.

V. CONCLUSION AND FUTURE WORK

This work focused on the Forthroid, a location-based infor-
mation retrieval system, and analyzed the delay, the distance
estimation error, and the battery consumption of the system.
The performance analysis indicates that the heavyweight im-
age processing functions result in a significant increase of the
total delay. Moreover, the network delay is also considerable
due to the overheard for transmitting large size images. On
the contrary, the efficient hardware and software of the HTC
Nexus One smart phone result in relatively small processing
delays. A significant amount of the total CPU is “utilized” by
the preview period, while the corresponding CPU load during
the query period is smaller. However, during the query period,
the wireless interface and the OLED become the main sources
of energy spendings.

The preliminary subjective study indicates that such systems
can be useful and encourages us to enhance its functionality
and further analyze its performance. We plan to extend the
Forthroid to support more services, e.g., enable the retrieved
information to be sent via e-mail, be posted on a social net-
working page and on Google Maps. In addition, the Forthroid
will be integrated with the PhotoJournal to create various
multimedia journals of various visits [6]. We speculate that
the integration of the Forthroid with Facebook and other
social networking applications will enrich the online social
networking experience of users. Also, we will improve the
scanning/decoding of QR-codes process by providing addi-
tional (visual or auditory) “messages/clues” to users (which
was also provided as feedback in the user study). Finally the
subjective study will be extended to a larger and more diverse
user population, for a longer period of time, and in various
premises, in order to have more conclusive results about the
quality of user experience.

ACKNOWLEDGMENT

The authors would like to thank Manolis Surligas for
his help during the implementation of the lightweight top
command for the evaluation of the CPU usage. Thanks also
goes to Google for their equipment grant of Android smart
phones (Google AndroidEDU programme), and the FORTH-
ICS and KTH ACCESS for their support.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. Rekimoto and Y. Ayatsuka, “Cybercode: designing augmented reality
environments with visual tags,” in Proceedings of DARE 2000 on
Designing augmented reality environments, Elsinore, Denmark, April
2000.

D. Lopez de Ipina, P. R. S. Mendona, and A. Hopper, “Trip: A low-cost
vision-based location system for ubiquitous computing,” Personal and
Ubiquitous Computing, pp. 206219, May 2002.

P. Ljungstrand, J. Redstrom, and L. E. Holmquist, “Webstickers: using
physical tokens to access, manage and share bookmarks to the web,”
in Proceedings of DARE 2000 on Designing augmented reality environ-
ments, Elsinore, Denmark, 2000.

E. Rukzio, A. Schmidt, and H. Hussmann, “Physical posters as gateways
to context-aware services for mobile devices,” IEEE Workshop on Mobile
Computing Systems and Applications, pp. 10-19, December 2004.

M. Rohs and B. Gfeller, “Using camera-equipped mobile phones for in-
teracting with real-world objects,” in Advances in Pervasive Computing,
Linz/Vienna, Austria, April 2004.

N. Kotilainen and M. Papadopouli, “You’ve got photos! the design and
evaluation of a location-based media-sharing application,” in 4th Inter-
national Mobile Multimedia Communications Conference (Mobimedia),
Oulu, Finland, July 2008.

T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty,
G. Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra, and
M. Spasojevic, “People, places, things: web presence for the real world,”
Mob. Netw. Appl., pp. 365-376, October 2002.

M. Maidi, J. Y. Didier, F. Ababsa, and M. Mallem, “A performance
study for camera pose estimation using visual marker based tracking,”
Machine Vision and Applications, pp. 365-376, 2010.

R. Szeliski, Computer Vision: Algorithms and Applications.
Verlag New York Inc, 2010.

D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Prentice Hall, 2002.

J. Heikkila and O. Silven, “A four-step camera calibration procedure
with implicit image correction,” in Proceedings of Computer Vision and
Pattern Recognition, San Juan, Puerto Rico, 1997.

J. Y. Bouguet, “Camera calibration toolbox for Matlab.” [Online].
Available: http://www.vision.caltech.edu/bouguetj/calib_doc/

C. Harris and M. Stephens, “A Combined Corner and Edge Detection,”
in Proceedings of The Fourth Alvey Vision Conference, Manchester,
1988.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2003.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, Scottsdale, AZ, USA,
2010.

M. Dong, Y.-S. K. Choi, and L. Zhong, “Power-saving color transfor-
mation of mobile graphical user interfaces on oled-based displays,” in
Proceedings of the 14th ACM/IEEE international symposium on Low
power electronics and design, San Fancisco, CA, USA, 2009.

Springer-

