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Abstract—This work presents a novel multi-layer modelling
framework for the evolution of spectrum markets of multiple
spectrum/network operators that provide wireless access to users.
It integrates models of the channel, mobility, user preference,
network operators (providers), infrastructure deployment, user
distribution, and price-adaptation mechanisms. Providers aim to
maximize their own profit, while clients decide based on criteria,
such as the financial cost of the access, transmission rate, and
required transmission power. This paper gives a brief description
of the modelling framework and a novel price-adaptation algo-
rithm for providers. It presents how this framework can be used
to instantiate a cellular-based market in a small city. Finally, it
analyzes the evolution of this market under different topologies
and user profiles, summarizing the main performance results.

I. INTRODUCTION

Cognitive radio networks (CRNs), an emerging disruptive
technology, aims to improve spectrum utilization, enabling
dynamic spectrum use. This research focuses on the design
of a complete multi-layer modelling framework of CRNs,
incorporating both systems and business aspects using sta-
tistical mechanics, game theory and economics. It integrates
models about the channel, network operators, infrastructure,
and primary and secondary devices (e.g., their preference,
constraints, placement). A distinct prominent feature is its
emphasis on the interactions among the CRNs entities that
occur in multiple time and spatial scales. The multi-layer
modelling aspect is inspired by the approach in [1]. We are in
the process of developing a modular simulation environment
that implements the modelling framework and instantiates var-
ious models, allowing comparative assessments of spectrum-
sharing mechanisms under different scenarios. The framework
should enable researchers to capture different types of infor-
mation sharing, interactions, negotiation strategies, and frust
among entities.

To the best of our knowledge, it is the only modelling
framework that attempts to incorporate such an extensive set
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of parameters that allow the modelling of various complex
interactions of CRNs entities and business-driven cases in a
realistic manner. Most of the related approaches focus on a
specific sub-problem/aspect of CRNs omitting their inherent
features. Specifically, they can be classified into two cate-
gories, namely, the microscopic- and the macroscopic- level
ones. The microscopic-level approaches consider interactions
among secondary devices at a very fine spatial level, mostly
assuming a limited number of primary devices due to the
high computational complexity [2], [3], [4], [5], [6], [7],
[8]. On the other hand, the macroscopic approaches focus on
the revenue of the providers, considering only an ‘“average”
(over large temporal or spatial scales) behavior of secondary
devices [9], [10], [11], [12]. Unlike these approaches, this
framework models the interactions of primary and secondary
entities at several spatial scales, from large metropolitan areas
to small neighborhoods (e.g., within the coverage of a wireless
access point), enabling the instantiation of various parameters
at different time granularities. For example, the rate at which
primary devices change their prices for their spectral resources
is often smaller than the rate at which secondary devices
demand for spectral resources.

An intuitive way to think of the multi-layer aspect of this
framework is as a set of mathematical transformations that
allows to “scale up or down” the modelling environment. At
the microscopic level of the framework, the various entities
are modeled in fine temporal and spatial detail. On the other
hand, the mesoscopic level exhibits various aggregations. For
example, the users are modeled as a population with certain
attributes, computed as spatial averages of the characteristics
of the individual users of that population. Furthermore, the
selection process of these user populations are no longer
deterministic but stochastic and location-dependent. Due to
the heterogeneity of these populations, the framework allows
the definition of mixed strategies for the spectrum access
negotiation process. For example, in the case of a population
of users, a mixed strategy indicates the probability with which



users choose to buy spectrum from various providers at a
specific location. Section II describes the modelling frame-
work. Section III illustrates how this framework can be used
to instantiate and assess a spectrum market with cellular-based
network access. Finally, it discusses our findings.

II. MODELLING FRAMEWORK

The most important parameters of the modelling framework
are (a) the channel, (b) the network topology (e.g., cellular,
mesh, vehicular), (c) the network operator infrastructure de-
ployment/distribution, (d) the user mobility and distribution,
(e) the relations and interactions among primary and sec-
ondary entities (e.g., among primary devices, between primary
and secondary devices, among network operators), (f) the
multiple spatio-temporal scales (over which these relations
and interactions are manifested), (g) the type, reliability and
amount of information that is available to various entities,
(h) the user preferences and tolerance criteria with respect to
the wireless access (e.g., based on transmission rate, energy,
financial cost, handoffs frequency, duration of disconnection)
and the network operator selection mechanism, (i) the user
profile (e.g., misconfigured/selfish/malicious entities), (j) the
utility function of the primary entities (e.g., spectrum owner),
and (k) price-adaptation algorithm.

The simulation environment based on this framework is
modular, in that, it can instantiate and implement different
models for the aforementioned parameters. For example, the
channel can be modeled using large-scale propagation models
(e.g., path-loss and shadowing) and small-scale models (e.g.,
multi-path fading).

This work considers the cellular topologies of two network
operators that offer wireless access via their base stations
(BSs) to wireless users in a small city. The network operators
(called also providers) are the primary entities that own a
part of the spectrum, offering wireless access via their base
stations (BSs). Secondary entities (called also users) buy the
wireless Internet access from network operators for a certain
duration. Furthermore, we assume that the providers divide
their channels into time-frequency slots according to a TDMA
scheme and each user requests a single slot for his access.

To simulate the channel quality, we employed the Okumura
Hata path-loss model for small cities [13]. Moreover, the
contribution of shadowing (expressed in dB) to the channel
gain at the positions of BSs follows a multivariate Gaussian
distribution with mean 0 and covariance matrix defined in Eq.

(D).
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where o, is the standard deviation of shadowing (2.5 dB in
our simulations), X, is the correlation distance within which
the shadowing effects are correlated [14], and L;, L; are the
positions of the BSs ¢ and j, respectively.

To model the effect of angular correlation of shadowing, we
represent each BS with six points instead of one located on a

circle with center the BS position. When a user communicates
with a specific BS, the contribution of shadowing to the
channel gain is equal to the value that corresponds to the
point representing the BS, whose direction is the closest to
the direction of arrival of the signal [15].

The interference power at a time-frequency slot belonging to
a specific BS is computed by measuring the contribution of all
interfering devices at co-channel BSs. Moreover, co-channel
BSs of the same provider may not be synchronized, resulting
in “overlapping” time-frequency slots, and thus, in devices
that cause interference during more than one slots. In real
wireless networks, the amount of interference at the available
time-frequency slots and the channel gain will be measured
by the network interfaces of BSs and sent to the users with
appropriate messages. To penalize an aggressive increase of
the transmission power, the providers adopt a pricing scheme
that charges the users proportionally to the transmission power
they invest. Moreover, the maximum allowable transmission
power that a user can invest is 2 Watts.

In general, different service paradigms can be modeled (e.g.,
“time/recharge” cards or subscription-based schemes). Most
of the related approaches consider a given (a priori known)
function that models the demand of secondary users to perform
the price adaptation or decide about the amount of spectrum,
which they will offer in a given market [9], [10], [11], [12].
Unlike them, this work does not assume that the demand
is known and considers different algorithms for the price
adaptation. Specifically, it considers that the providers only
know their own prices and the prices of their competitors and
measure their own revenue. No knowledge is available about
the user characteristics and preferences.

The providers perform a novel price adaptation algorithm
based on a second-degree concave polynomial approximation
of the payoff function and estimate its parameters based on the
history of the game evolution. This approximation is simple
yet appropriate to capture the mathematical properties of the
payoff function of a provider. Specifically, each provider keeps
track of the last combinations of prices that have been offered
as well as the corresponding values of revenue. It periodically
fits the polynomial to the recently collected data by solving
a least-squares problem with the additional constraint that the
polynomial is concave, formulated as a semi-definite program
[16]. The price is adapted by “moving towards” the direction
of the partial derivative of the polynomial that corresponds to
that specific provider and with a certain step. The algorithm
is described in detail in [17]. Finally, the providers adapt their
prices at time instances generated via a stochastic process (e.g.,
Poisson distribution).

III. PERFORMANCE EVALUATION
A. Description of scenarios
Two cellular networks, deployed by different providers,
offer services to users in a small city, represented as a rectangle
of 11 Km x 9 Km. Each network consists of 49 BSs placed
on the sites of a triangular grid, with a distance between two
neighboring sites of 1.6 Km. Moreover, each provider owns



bandwidth of 5.6 MHz, that is divided into 28 channels of 0.2
MHz width. These channels are allocated to BSs according to
a frequency reuse scheme with spatial reuse factors of 4 and
7, for Provider 1 and Provider 2, respectively. The closest BSs
at the same frequency band as a given BS in a topology with
a spatial reuse factor of 4 can be located by “moving” two
steps towards any direction on the grid. On the other hand, in
a topology with a spatial reuse factor of 7, by “moving” two
steps towards any direction, then turning by 60 degrees, and
“moving” one more step, the closest BSs at the same frequency
band as a given BS can be located. This is illustrated in Fig.
1. Each channel is further divided into three time-frequency
slots in a TDMA scheme, resulting in 21 time-frequency slots
per BS of Provider 1 and 12 slots per BS of Provider 2. Note
that a single time-frequency slot can be offered to only one
user. Also, the demand of each user is exactly one slot.
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Fig. 1: Closest BSs using the same frequency band when the
spatial reuse factor is 4 (left plot) and 7 (right plot).

There is a distribution of 600 users in this region interested
in buying wireless Internet access from these two providers.
Each user is characterized by a price-tolerance threshold (i.e.,
he can tolerate a maximum cost for the Internet access) given
by a Gaussian distribution (m = 0.15, ¢ = 0.0374) and has
a target transmission rate (expressed in Mbps) that follows a
Gaussian distribution (m = 0.1, ¢ = 0.01).

A Uniform and a Zipf topology are simulated. In the
Uniform topology, users are distributed in the entire region
according to a Uniform distribution, while in the Zipf topology
(shown in Fig. 2), users are placed mostly at the center of
the city. In both cases, users are stationary.

To avoid the effect of boundary conditions, we analyzed
only the measurements that correspond to BSs and users in a
small rectangular region at the center of the city (marked as
“region of interest”, the inner rectangle shown in Fig. 2).
Specifically, only the BSs located in that region and users
of that region that also access the Internet via those BSs
are considered in the price adaptation algorithm and in the
reported evaluation results. The region of interest includes 9
BSs of each provider. 150 users are present in the Uniform
topology and 242 users in the Zipf topology, respectively.

Two user-preference metrics were simulated, namely the
transmission-rate and price-preference ones. In rate prefer-
ence, users take into consideration only the achievable trans-
mission rate, given that the offered price from the specific
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Fig. 2: Zipf-like distribution of users in a small city.

BS does not exceed their price-tolerance threshold. Users
with price preference aim to minimize the cost of acquiring
a time-frequency slot, given that their target transmission
rate requirement is satisfied. Each user reconsiders its choice
periodically (here, every 2 sec), while each provider adapts its
price at time instances produced by a Poisson process with a
mean of 0.03 renewals/sec. Providers run the price adaptation
algorithm described in Section II. An experiment corresponds
to a specific topology (The Uniform topology indicated with
“U” and the Zipf topology indicated with “Z”). All the users of
an experiment employ the same user preference metric (Price
“P” or Rate “R” preference). It lasts for 2000 sec. The results
reported for each scenario (e.g., “U-R”in Fig.4, for a Uniform
topology with rate preference) are average statistics over 30
Monte Carlo runs. This simulation testbed was implemented
in Matlab.

B. Simulation results and discussion

In rate-preference, a user connects to the BS that offers the
best channel in terms of received SINR. Due to the spatial
reuse scheme, the impact on SINR of the interference of other
users at co-channel cells is relatively small compared to the
channel gain, which is determined mostly by the distance
between transmitter (a given user) and receiver (its BS).
Therefore, users tend to select the geographically nearest BS.
This has as a result providers to increase their prices, without
significantly influencing the BS selection process of users.
Consequently, the prices of the two providers converge to a
relatively high value.

On the contrary, in price preference, users connect to a
BS of the least expensive provider, given that they can still
achieve their target transmission rate. In these scenarios, even
small changes in the price could cause some users to change
provider. This has two important implications; First, compared
to the rate-preference scenario, a larger number of handoffs
are performed between BSs of the two providers. Second, the
intensity of competition keeps the prices of the two providers
at relatively low levels.

Fig. 3 presents the evolution of prices under the two topolo-
gies and user preference metrics, while Fig. 4 summarizes the
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Fig. 3: (a) The price evolution in the Zipf topology, (b) The price evolution in the Uniform topology.
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Fig. 4: (a) Provider revenue (left) and spectrum utilization (right), (b) User handoffs (left) and disconnection intervals (right).

revenue and spectrum utilization per BS for each provider and
the number of handoffs and percentage of disconnection of
users. Specifically, the revenue corresponds to the average of
the total revenue of all BS at the region of interest throughout
an experiment, averaged over all Monte-Carlo runs. The spec-
trum utilization for a BS is the integral of the percentage of
time slots assigned to users during the experiment, normalized
by the duration of the experiment. The reported value is
computed in the same manner as the revenue. The number
of handoffs corresponds to the number of transitions between
BSs of a user during an experiment, averaged over all users
and all Monte-Carlo runs. The disconnection period of a user
corresponds to the total percentage of time that this user is
disconnected during an experiment. We compute the average
over all users in an experiment, and report the average over all
Monte-Carlo runs. We also indicate the corresponding median
values in parenthesis.

The spatial user distribution affects the system dynamics:
In the uniform topology, the total number of users located
in the region of interest is 150. Furthermore, the availability

of time-frequency slots of the two providers is 189 and 108,
respectively. Therefore, the Provider 2 is not able to satisfy the
user demand, resulting to a small advantage for the Provider
1 in terms of number of clients and revenue. On the contrary,
in Zipf, in the region of interest, the user demand exceeds the
availability of time-frequency slots of each provider. Thus,
the providers have the opportunity to increase their prices
even further, resulting in higher revenues for both providers
(compared to the Uniform topology). Finally, due to the
relatively high user density, the difference in the revenue of
the two providers increases (compared to the revenue reported
in the Uniform topology). The above results are shown in
Fig.4 (a).

In price-preference, the prices are higher in the Zipf than
in the Uniform topology. This is because the user demand
is larger than the availability of time frequency slots of each
provider. This offers more opportunities for price increase than
in the uniform topology. In rate-preference, the prices in the
two topologies are similar (U-R vs. Z-R), since users decide
based on topological criteria. The price evolution is mostly



affected by the user price tolerance threshold which follows
the same distribution in both topologies.

The revenue is higher in rate-preference than in price-
preference scenarios. This is due to not only the higher prices
but also to the tendency of users to invest more transmission
power to achieve higher rate. Finally, the spectrum utilization
is higher for the Provider 2, due to its lower availability of
time-frequency slots.

As observed earlier, compared to rate-preference, the price-
preference corresponds to a larger number of handoffs (e.g.,
U-R vs. U-P, and Z-R vs. Z-P). However, exactly the opposite
occurs for the disconnection intervals. In rate preference, the
prices are higher than in price preference, exceeding the price
tolerance thresholds of a larger number of users.

Interestingly, in the Uniform topology, a larger number of
handoffs and lower disconnection periods occur. This is due
to the lower user demand in the Uniform topology than in
the Zipf topology (150 vs. 242 users), resulting to a larger
availability of time-frequency slots. Thus, the likelihood that
a user will be able to connect to a BS is higher in the Uniform
topology than in the Zipf one. This means that a user has on
average more opportunities to roam to a different network.
On the contrary, in Zipf, the likelihood of fully-utilized time-
frequency slots of BSs is higher, resulting to fewer choices for
users, and thus, longer disconnection periods.

Finally, the median value of handoffs and disconnection
periods is much lower that the corresponding mean values,
indicating that most users are connected to a single BS for
the entire experiment. A small number of users switch back
and forth between BSs or remain disconnected for almost the
entire duration of the experiment.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents a microscopic spatial and temporal scale
of the interactions between cellular network providers and
users. It analyzes the impact of topology and price and rate
preference on the price evolution, provider revenue, spectrum
utilization, number of handoffs and disconnection periods. It
also highlights the effect of price tolerance and preference on
the degree of competition between providers. It is possible
under different BS deployments, user distributions, population
sizes, and preferences to observe phenomena like price wars
and monopolies. Furthermore, it is part of future work to
explore how these interactions evolve in larger spatio-temporal
scales.

In this work, users select the appropriate BS (and provider)
based on their current observations/measurements of the chan-
nel quality and price. A part of our on-going effort focuses on
modelling other novel schemes, such as the integration of their
previous measurements (“history”) or available community-
based measurements (collected from various devices) to en-
hance the network/provider selection process. Moreover, this
work considers user utility functions based on the channel
capacity (a measure of the maximum achievable transmission
rate). However, we plan to incorporate user-centric functions

that take into consideration finer-level statistics on network
conditions and reflect the user satisfaction.

Another prominent feature of our research is the design and
integration of spectrum-sharing mechanisms that will realize
various competitive, cooperative, and hybrid business models.
Such models will be instantiated using specific parameters
of the proposed framework (e.g. the amount of information
shared among various entities and type of interaction) and
access paradigms that depict realistic business cases. For
example, in a cooperative business model, cellular networks
may establish long-term agreements with TV networks or net-
work providers of IEEE802.11 infrastructures form coalitions.
We believe that this work sets the directions for developing
a general framework that allows researchers to instantiate,
implement, and assess interesting and realistic spectrum-based
market approaches.
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