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Abstract—Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in
the past two decades. Most radio-based solutions require a process of site survey, in which radio signatures are collected and
stored for further comparison and matching. Site survey involves intensive costs on manpower and time. In this work, we study
unexploited RF signal characteristics and leverage user motions to construct radio floor plan that is previously obtained by site
survey. On this basis, we design WILL, an indoor localization approach based on off-the-shelf WiFi infrastructure and mobile
phones. WILL is deployed in a real building covering over 1600m2, and its deployment is easy and rapid since site survey is no
longer needed. The experiment results show that WILL achieves competitive performance comparing with traditional approaches.
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1 INTRODUCTION

P ERVASIVE and mobile systems for context-aware
computing are growing at a phenomenal rate. In

most of today’s applications such as pervasive medi-
care, smart space, wireless sensor surveillance, mobile
peer-to-peer computing, [1], [2], [3] etc., location is
one of the most essential contexts. In the literature
of pervasive computing, wireless indoor localization
has been extensively studied and many solutions are
proposed to provide room-level localization services,
such as locating a person or a printer in an office
building.

A majority of previous localization approaches em-
ploy Received Signal Strength (RSS) as a metric for
location determination. RSS fingerprints can be easily
obtained for most off-the-shelf equipments, such as
WiFi- or ZigBee-compatible devices. In these methods,
localization is divided into two phases: training and
serving. In the first phase, traditional methods in-
volve a site survey process, in which engineers record
the RSS fingerprints (e.g., WiFi signal strengths from
multiple Access Points, APs) at every position of an
interesting area and accordingly build a fingerprint
database. Next in the serving phase, when a user
sends a location query with its current RSS finger-
print, localization algorithms retrieve the fingerprint
database and return the matched fingerprints as well
as corresponding locations.
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Although site survey is time-consuming, labor-
intensive, and easily affected by environmental dy-
namics, it is inevitable for those RSS fingerprint
matching based approaches based on RSS fingerprint
matching, since the fingerprint database is constructed
based on on-site fingerprint collection.

To avoid site survey, researchers turn to character-
izing wireless signal propagation. They aim to build
accurate signal attenuation models and use RSS as
an indication of signal propagating distance. Unfor-
tunately, attenuation models perform poorly due to
unpredictable signal propagation in complex and dy-
namic indoor environments, lacking technical poten-
tials for practical uses.

The advance of wireless and embedded technolo-
gy has fostered the flourish of smartphone market.
Nowadays, mobile phones possess powerful com-
putation and communication capability, and are e-
quipped with different kinds of built-in sensors for
various functions. Accompanying with users round-
the-clock, mobile phones can be viewed as an in-
creasingly important information interface between
users and environments. These advances lay solid
foundations of breakthrough technology for indoor
localization.

On this basis, we reassess existing localization
schemes and explore the possibility of using pre-
viously unavailable information for wireless indoor
localization. Considering user movements, originally
separated RSS fingerprints are connected under cer-
tain semantics. Similarly, studying the penetrating-
wall effect of wireless signals is a good starting point
for characterizing different rooms or functional areas.
These observations motivate us to design rapidly de-
ployed localization approaches without the laborious
site survey process.
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In this study, we propose WILL, a wireless indoor
logical localization approach. By exploiting user mo-
tions from mobile phones, we successfully remove
the site survey process of traditional approaches,
while achieving competitive localization accuracy. The
rationale behind WILL is that human motions can
be applied to connect previously independent radio
signatures under certain semantics. WILL requires
no prior knowledge of AP locations, and users are
not required for explicit participation to label mea-
sured data with corresponding locations, even in the
training phase. In all, such features introduce new
prospective techniques for indoor localization.

To validate this design, we deploy a prototype sys-
tem and conduct extensive experiments in a middle-
size academic building in Tsinghua University. Exper-
iment results show that RSS-based indoor localiza-
tion can achieve room-level location accuracy even
without site survey. The average room localization
accuracy, namely, accuracy of locating fingerprints to
the rooms they are actually collected from, is over
80%, which is competitive to existing solutions.

The rest of the paper is organized as follows. We
investigate the state-of-the-art on indoor localization
technology in Section 2. Section 3 presents our design
overview. The generation of virtual rooms is studied
in Section 4. In Section 5, the techniques of floor
plan mapping, a key step of constructing the relation
between virtual rooms and ground-truth floor plan
without site survey, are discussed in detail. Section 6
summarizes the entire working process of WILL when
it receives a location query. The prototype implemen-
tation and experiments are discussed in Section 7. We
conclude the work in Section 8.

2 RELATED WORK
Location information is essential for a wide range of
pervasive and mobile applications, such as wireless
sensor networks, mobile social networks, location-
based services, smart space, etc [1], [2], [4]. In the lit-
erature of indoor localization, a well-known research
direction, many techniques have been proposed in the
past two decades. Generally, they fall into 2 categories:
fingerprinting-based and model-based.

Fingerprinting-based techniques. A large body
of indoor localization approaches adopt fingerprint
matching as the basic scheme of location determina-
tion. The main idea is to fingerprint the surrounding
signatures at every location in the areas of interests
and then build a fingerprint database. The location
is then estimated by mapping the measured finger-
prints against the database. Researchers have striven
to exploit different signatures of the existing devices
or reduce the mapping effort. Most of these tech-
niques utilize the RF signals. An early system using
these techniques is RADAR [5]. Horus [6], improved
upon RADAR, employs a stochastic description of

the RSS-location relationship and uses a maximum
likelihood based method to estimate locations. OIL
[7] structures an organic indoor localization system
by using Voronoi regions for conveying uncertainty
and employing a clustering method for identifying
potentially erroneous user data. [8] demonstrates that
GSM signals from various towers can also be used
for indoor localization. PlaceLab [9] uses radio bea-
cons to localize mobile devices in the wild. Active-
Campus [10] project adopts similar techniques but
assumes availability of AP locations. Some systems,
such as LANDMARC [11], utilize RFID for indoor
localization. Recently, SurroundSense [12] performs
logical location estimation based on ambience fea-
tures including sound, light, color, WiFi, and etc. And
[13], [14], [15] utilizes FM Radio, acoustic background
spectrum (ABS) and geo-magnetism respectively as
fingerprints for indoor location estimation. All these
approaches require site survey over areas of interests
to build fingerprint database. The considerable man-
ual cost and efforts, in addition to the inflexibility
to environment dynamics are the main drawbacks of
fingerprint-based methods.

Model-based techniques. Another type of localiza-
tion approaches use geometrical models to figure out
locations. In those methods, locations are calculated
rather than searched from known reference data. For
example, the log-distance path loss (LDPL) model is
used to estimate RF propagation distances according
to the measured RSS values. These approaches trade
the measurement efforts at the cost of decreasing
localization accuracy due to the irregular signal prop-
agation in indoor environment. [16] deploys WiFi
sniffers at known locations to measure the RSS from
various APs and then uses the LDPL model to con-
struct RSS map. [17] also employs sniffers at known
locations but uses a more sophisticated ray-tracing
model. [18] uses a Bayesian hierarchical model to
avoid the need of locations of the training points.
However, they still depend on knowledge of the AP
locations. To cut down the laborious measurement
efforts and avoid the use of AP locations, EZ [19]
models the physics constrains of wireless propagation
with LPDL model and uses a genetic algorithm to
solve them for localization. However, EZ still relies on
occasionally available GPS information at the entrance
or near a window. Besides, EZ involves in complex
computation and the physical localization scheme
might result in lot of misdetections of rooms.

Other than the RSS related model, other geometric
models are also exploited for characterizing the re-
lationship of signal transmitters and receivers. These
systems include PinPoint [20] based on Time of Ar-
rival (ToA), Cricket [21] based on Time Difference
of Arrival (TDoA), and VOR [22] based on Angle
of Arrival (AoA). Model based techniques usually
require the placement of additional infrastructure,
modifications of off-the-shelf products, or knowledge
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Fig. 1. Abrupt signal changes through a wall. AP1 is
deployed in Room I and AP2 in an adjacent Room II.
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Fig. 2. Acceleration signatures of 10 steps (each step
marked with a cross).

of hardware configuration.
Different from previous work relying on infras-

tructure and propagation model, WILL adopts the
fingerprinting technique but avoids site survey. WILL
users are not involved in any work of data collection.

3 OVERVIEW
3.1 Unexploited Potential for Localization

WiFi technology has shown its great potentials for
ubiquitous localization as it is available in a large
amount of buildings through personal electronic de-
vices like mobile phones and laptops.

By investigating the temporal and spatial charac-
teristics of indoor RF propagation of WiFi signals,
we discover some easily overlooked but dramatically
useful characteristics. A key observation is that signals
may encounter a considerable drop while passing
through a wall (as shown in Fig. 1). As a result, RSS of
a same AP can vary significantly in two rooms. People
have been observing this wall-penetrating effect of
radio signals when using wireless routers in every-
day life. Such characteristic, however, has not been
fully exploited for positioning. As shown in Fig. 1,
this variation of AP signal strength can be used to
distinguish different rooms.

On the other hand, smartphones integrate various
types of sensors such as accelerometer, magnetometer,
gyroscope, etc., offering new opportunities to capture
environment signatures and to detect user behaviors.
WILL exploits accelerometers to obtain user move-
ments, which will be further utilized to assist local-
ization. Tri-axial accelerometers provide apparent ev-
idence of human walking patterns [23]. As illustrated
in Fig. 2, the acceleration variation for walking users is
clearly different from those static. Amplitude of about
2m/s2 is caused by foot lifting and around 3m/s2 by
foot down. This signature is deeply explored in WILL
to detect user motions and collect user traces.

WILL provides human localization service through
locating mobile phones. Even though mobile phones

can integrate sensors like compasses, cameras, mi-
crophones, gyroscopes, WILL uses only accelerom-
eters since no human participation is involved for
such sensors. Moreover, different from many pre-
vious work using accelerometers for step counting
or displacement estimation [23], [24], WILL utilizes
accelerometer sensors to explore reachability between
different areas.

3.2 System Architecture

In this subsection, we present the overall vision of
WILL, as shown in Fig. 3. The working process of
WILL consists of two phases: training and serving.
We describe high level architecture and present the
details later.

During the training phase (database construction),
users in a building work with routine business while
their mobile phones automatically measure WiFi sig-
nal strengths and record accelerometer readings. Raw
data are collected in the fingerprint collection module
on the mobile phone side. All raw fingerprints (not
tagged with a known location) are pre-processed in
fingerprint processing module and divided into two
types: space-continuous and space-discontinuous, ac-
cording to users’ motion states when the fingerprints
are measured. Both types of fingerprints are classified
into different virtual rooms, which are virtual contain-
ers of fingerprints with high similarity. A logical floor
plan showing a view of relative location relationship
(e.g., connectivity and reachability) between virtual
rooms is then constructed by leveraging user trace
information from the space-continuous data, which
connect previously independent fingerprints. After-
wards, the logical floor plan is mapped to a given
ground truth one by using a novel mapping method.
By doing so, we associate the isolated fingerprints
with physical rooms. Floor plan database stores these
associated relationships.

In the serving phase, when a user sends a location
query with his/her currently measured data using
mobile phone, WILL server will response the user
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Fig. 3. WILL architecture.

with the estimated location. The query may contain a
variety of information, including WiFi measurements
and sensory data. The localization engine consults the
fingerprint database to localize the virtual room and
then obtains the corresponding physical room from
floor plan database. The location estimation and, if
possible, the floor plan that the user currently locates
at are sent back to the user. The querying data can
be simultaneously used as collected fingerprints to
update the databases.

4 VIRTUAL ROOM GENERATION
In this section, we define virtual room and describe
how to extract distinct features of fingerprints from
raw data. Afterwards, we classify fingerprints into a
number of virtual rooms.

4.1 Fingerprint Collection
WILL users do not need to deliberately collect da-
ta even during the database building phase. They
just work in offices, consume in shopping malls, or
have a rest at coffee shops, walking or sitting. The
information of WiFi signals and sensor readings is
collected automatically by their cell phones. A regular
record can be represented as Dt =< F,A >, where
F and A indicate the WiFi signal fingerprint and
accelerometer value, respectively. Assuming totally n
APs in the building, the WiFi signals fingerprint F
can be represented as

F = [f1, f2, . . . , fn] (1)

where fi denotes the RSS value of the ith AP.
The motion state of users, walking or staying, is

determined by accelerometer readings. Records of a
walking user are integrated as an entire user trace
U =< F ,A >, where F is a set of RSS fingerprints
and A a set of acceleration values. Such records are
called space-continuous as they are measured during

user’s movements. For ease of presentation, we refer
to continuous data as space-continuous data in this
paper hereafter.

Theoretically, the traveling distance of a user can be
derived from the continuous data which contain ac-
celerometer readings by integrating acceleration twice
with respect to time. However, due to the presence
of noise in the sensor readings, error accumulates
rapidly and can reach up to 100 meters after one
minute of operation [23]. To avoid accumulation of
measurement errors, most researchers adopt the indi-
vidual step counts for estimating walking distance,
just like a pedometer [24]. Different from previous
work, in WILL, it is unnecessary to estimate displace-
ment or accumulate step counts of mobile users. The
continuous data are merely used to detect user mo-
bility, i.e., to detect whether a user is mobile or static.
We modify the local variance threshold method [24]
to detect user footstep only, instead of step counts.
The method is based on filtering the magnitude of
acceleration followed by applying a threshold on the
variance of acceleration over a sliding window. Note
that a filter has been applied to smooth the raw sensor
data because measurement errors as well as signal
fluctuations exist. We omit the details here due to
space limitation.

4.2 Fingerprint Processing

As can be seen from Fig. 1, the absolute RSS values
of each individual AP vary widely over time (even
at a fix location) while the difference relationship be-
tween them maintains. Consequently, it is inadequate
to utilize absolute RSS values directly for location
estimation like conventional work. In contrast, the dif-
ference relationship among different APs is exploited
for fingerprint feature. In this work, we propose the
RSS stacking difference, which means the cumulative
difference between one AP and all other APs. RSS
stacking difference embodies the RSS gap relations of
the RSS fingerprint at a specific time and location and
tends to be a relatively stable feature of radio signals
than absolute RSS values.

Formally, given two fingerprints F = [f1, f2, . . . , fn]
and F ′ = [f ′

1, f
′
2, . . . , f

′
n], the dissimilarity (Euclidean

distance) between them using feature of RSS stacking
difference can be calculated by the following formu-
lae:

ϕ(F, F ′) =

√√√√ n∑
i=1

(
ω(fi)− ω(f ′

i)
)2 (2)

ω(fi) =

n∑
j=1

I(fi − fj > 0)(fi − fj) (3)

where I is an indicative function.
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Fig. 4. Examples of user traces through the building.

4.3 Virtual Rooms

Fingerprints are partitioned into different virtual
rooms according to the values of RSS stacking dif-
ference. A virtual room is a virtual container which
consists of the fingerprints with high similarity. For-
mally, if ϕ(F1, F2) < ξ, F1 and F2 are treated to be
in the same virtual room, where ξ is a dissimilarity
threshold of the room.

Virtual rooms are generated by applying data min-
ing approaches on fingerprints. We adopt several clus-
tering techniques, including KMeans, FarthestFirst,
EM, and FilteredCluster, which are implemented in
WEKA, a popular classification and clustering tool.
Among different techniques, KMeans demonstrates its
high accuracy and efficiency for this application. Gen-
erally, the virtual room number (or the cluster number
k) can be automatically set equal to the zone number
in the physical floor plan in practise. Detailed results
of performance comparison are shown in Fig. 8. After
virtual room generated, each fingerprint is tagged
with a virtual room label which it belongs to. In
addition, each virtual room R is marked with a repre-
sentative fingerprint F [R] for fast location estimation
(See Section 6). This representative fingerprint, along
with the dissimilarity threshold ξ, is dynamically de-
termined and updated in the fingerprint database. In
addition, both parameters are room specific, namely,
each room has a distinct value for each parameter.

5 FLOOR PLAN CONSTRUCTION
Without site survey, the key challenge of localization
is how to associate the fingerprints with their loca-
tions. In this section, we provide a matching based
technique to find a mapping relation between logical
floor plan of generated virtual rooms and the ground
truth one, which then tells the correspondence of
fingerprints and their measured locations.

5.1 Logical Floor Plan

Conventional work mostly focuses on a single location
or a single room. The relationship of different rooms
have not been sufficiently excavated. In WILL, traces
of user’s motion indicate the reachability among vir-
tual rooms, which is used to construct the logical floor
plan of virtual rooms.

A logical floor plan is a diagram showing the view
of the reachability among virtual rooms. It is formal-
ized as an undirected graph P = (V,E), namely, the
logical graph, where each vertex v ∈ V denotes a
virtual room and an edge (u, v) ∈ E indicates that
virtual room u and v are reachable from each other.
We observed that user movements inside a building,
from one room to another or through the corridors,
might indicate the connectivity between rooms. Two
rooms are referred to be connected in logical floor
plan if and only if a user can walk seamlessly from
one to the other without passing through any other
room. For ease of understanding, we take an example
in the ground truth floor plan (as shown in Fig. 4). If a
user walks from room A to room B through a corridor
segment C, then it can be derived that C is reachable
from both A and B, but A is not directly connected to
B on only this condition. We assume that reachability
is bidirectional, namely, if room A is reachable from
room B, then B is also considered reachable from A.

A series of fingerprints can be collected during
users’ movements. As fingerprints are labeled with
virtual rooms, an entire trace may traverse different
virtual rooms. In addition, the sequence of the virtual
rooms being traversed can be obtained because the
trace is timestamped and ordered.

Concretely, we consider a single user trace U =<
F ,A > where F = [F1, F2, . . . , Fm] and A =
[A1, A2, . . . , Am] indicate a sequence of m fingerprints
and acceleration readings collected during the user’s
movement. Each Fi belongs to a virtual room Ri.
Thus F corresponds to a series of virtual rooms
R = [R1, R2, . . . , Rm]. Accordingly, the reachability
between virtual rooms can be obtained by following
rule: if Ri ̸= Ri+1, which means the user walks
into virtual room Ri+1 from Ri, then Ri and Ri+1 is
marked to be reachable to each other. In other words,
an edge (Ri, Ri+1) is added to the logical floor plan P
if (Ri, Ri+1) /∈ E. Fusing a large amount of user traces
together, the logical floor plan P is constructed.

There is a key problem about how to construct user
traces when user behavior is unknown and uncon-
strained. User motions may be irregular, intermittent
and convoluted, making it hard to select valuable and
reliable traces from large quantity of raw measure-
ments. Nonetheless, the more favored long-distance
and relatively straight traces can be picked out basing
on the distinctive sensor readings and WiFi signal
features. We defer to the following two simple but
effective principles for trace selection:

• Traces with very few steps are dumped.
• Traces passing through less than two APs are

abandoned.
The first principle ensures the user is walking,

where the steps are approximately counted by the
accelerometer readings along with the trace. The sec-
ond implies the user’s location is changing, namely,
the user is walking rather than shaking the phone or
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pacing back and forth in a small area. The second
principle is according to the observation that RSS
values are relatively similar at close locations but
change dramatically with distant locations, especially
when the locations are separated by walls or other
obstructions. The number of APs passed by a trace
is determined by the AP peaks appeared within the
trace. An AP peak is an RSS value which is the
maximum signal strength of this AP during a trace
and is at least higher than a significance level , for
instance, 2/3 of the maximum RSS value indicated in
the database.

5.2 Floor Plan Mapping

Logical floor plan needs to be mapped to the ground
truth floor plan, which is available to the estate
manager of a building who is also supposed to be
the provider of location services in this building.
For convenience, the ground truth floor plan is also
referred to physical floor plan hereafter.

The physical floor plan is modeled with an undi-
rected graph P ′ = (V ′, E′), i.e., the physical graph,
where each vertex v ∈ V ′ indicates a room (or a
functional area) and each edge (u, v) ∈ E′ means the
reachability of two rooms u and v. Under this scheme,
the corridors are connected to most rooms while the
adjacent rooms are not connected if no door exists
between them. In the physical floor plan, a corridor
can be divided into several segments, mainly accord-
ing to the rooms’ corresponding areas in the corridor.
Specifically, one corridor segment corresponding to a
room is usually cut as an area, which then becomes a
vertex in physical graph (as seen from Fig. 5). Hence,
length of each segment is roughly in line with that
of the largest room it connects. The modeled physical
floor plan of our experiments is shown in Fig. 6, where
the corridor is segmented into four parts. Given the
logical floor plan P = (V,E) and the ground truth
floor plan P ′ = (V ′, E′), we define the floor plan
mapping as a function p : V 7→ V ′. In WILL, we set
the numbers of virtual rooms to equal to or more than
the number of physical areas, i.e., |V | ≤ |V ′|.

We propose a subsection mapping method (SSMM)
which contains three stages: skeleton mapping,
branch-knot mapping and the correction. The virtual
rooms with higher betweenness are in prior mapped
in skeleton mapping while the rest are mapped us-
ing bipartite matching in branch-knot mapping. The
initial mapping results are adjusted in the correction
stage. Because of space limitation, we only present
the brief framework here. For details of the mapping
algorithm, readers are referred to [25] and [26].

Skeleton mapping. Betweenness centrality [27] is
a measure of a vertex’s centrality within a graph.
Vertices that occur on many shortest paths between
other vertices have higher betweenness than those do
not. As shown in Fig. 6, the vertices in the center

(labeled C1, C2, C3, and C4) apparently have higher
betweenness than others. Based on this observation,
vertices which have the highest betweenness in P
are mapped to those with highest betweenness in P ′.
Here the mapping goal is to minimizing the total
difference of betweenness for all matching pairs.

Branch-knot mapping. The rest of vertices in P are
mapped using the sum of shortest paths length as
weights. In other words, for each vertex v in graph
P , its weight w(v) equals to the sum of all shortest
path lengths from v to all other vertices in P , namely,
w(v) =

∑
u∈P,u ̸=v d(v, u) where d(v, u) is the length

of the shortest path from v to u. The weight of each
vertex in P ′ is calculated in the same way. Then
the mapping goal is to minimize the total weight
difference, say, W (p) =

∑
v∈V |w(v)− w(p(v))|.

We formalize the branch-knot mapping as a weight-
ed minimum bipartite matching (WMBM) problem
where every vertex in P is matched to another vertex
in P ′, resulting in a perfect matching. The WMBM
problem is then performed using the Kuhn-Munkras
(KM) [28] algorithm.

Combining the result of skeleton mapping and
branch-knot mapping, an original mapping is ob-
tained. Fig. 10(a) and 10(b) show the result of skele-
ton mapping and branch-knot mapping, respectively.
Evident from Fig. 10, mapping errors could exist in
the initial mapping result. We perform the correction
stage of SSMM to fix some error mapping.

Correction. Redundant information in the initial
mapping result is utilized for correction. By compar-
ing the neighboring set of every skeleton vertex, error
mapping can be figured out and corrected. The basic
idea is: 1) if a pair of mapped skeleton vertices have
very different neighboring sets, they tends to be an
error link; 2) if two branch-knot vertices do not belong
to a pair of mapped skeleton vertices, they are likely
to be mistakenly mapped. Please refer to [26] for more
detail algorithm descriptions. The corrected results of
SSMM in our experiments are depicted in Fig. 10(c).

6 LOCALIZATION USING WILL

We have constructed the fingerprint database and
the floor plan database during the training phase of
WILL. The association between these two databases
is established as well. In this section, we present
the entire working process of WILL when it receives
location queries, which corresponds to the localization
engine module in WILL system.

6.1 Localization

Recall Section 4, we mark each virtual room R with
a representative fingerprint F [R] after they are gener-
ated from the fingerprints. We use the mean value of
all fingerprints in virtual room R as F [R]. Formally,
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F [R] can be calculated by the following formulas:

F [R] =
1

|FR|
∑

Fi∈FR

Fi (4)

where FR is the set of fingerprints that belong to R.
When one user visits a building where WILL is

deployed, he/she queries WILL server for his/her
current location with a record Dt =< F,A >, where t
is the timestamp, F and A indicate WiFi signals and
accelerometer values, respectively. The localization
engine of WILL first determines the virtual room F
belongs to, and then consults the floor plan database
to obtain the mapped physical room, which is the
response to be sent back to the user. F is estimated to
be in the virtual room which has the shortest distance
to F among all virtual rooms. Formally, F belongs to
virtual room Ri if the dissimilarity of F and F [Ri]
satisfies

ϕ(F, F [Ri]) = min {ϕ(F, F [Rj ]), Rj ∈ R} (5)

and
ϕ
(
F, F [Ri]

)
< ξ (6)

where ϕ is the dissimilarity defined by Equation (2),
R is the set of all virtual rooms and ξ denotes the
dissimilarity threshold of rooms. Fingerprints beyond
above two equations are treated as outliers and dis-
carded. Assuming that virtual room Ri is mapped to
a physical area R′

i, the user location is estimated as
zone R′

i and the result is sent back to the user with,
if possible, the floor plan.

We design the localization engine as lightweight as
possible for the purpose of better user experience on
mobile phones and making WILL easily scalable.

6.2 Database Update
The floor plan and the fingerprint database should be
updated over time to capture environment dynamics
and to remedy fingerprint deviations as the data
collected in the training phase of WILL might not
roundly reflect the overall situation of the building.
We execute two types of update operations in WILL:
minor update and major update.

Minor update, being triggered frequently, deals
with newly collected fingerprints. When user queries

arrive, the attached fingerprints are not only used
for localization, but also for updating virtual room
features, including the representative fingerprints and
dissimilarity thresholds.

Major update is carried out occasionally for a large
amount of new data, resulting in large modifications
in the previous database. For instance, if huge data
are collected through a long-term running, especially
when enough continuous data are included, the floor
plan is refreshed using the updated logical floor plan.

7 EXPERIMENTS
7.1 Experimental Methodology

We developed the client of WILL on the increasingly
popular Android OS. WiFi signals are recorded with
the frequency of around twice per second when mea-
suring. Accelerometers work in two frequencies: when
detecting motions, they record sensory data with short
intervals of 50 milliseconds; otherwise a relatively
long interval of one second is adopted.

We implemented our prototype on two Google
Nexus S phones, which support WiFi and contain
accelerometer sensors. We deployed WILL system in
one floor of an office building covering over 1600m2

in Tsinghua University, which contains 16 offices, of
which 5 are large rooms of 142m2, 7 are small ones
with different sizes and the other 4 are inaccessible.
The floor plan is shown in Fig. 5, where every physical
zone is marked with a sequence number. Most rooms
are installed with one or more APs while some have
none. Totally, n=26 APs are installed in the floor, of
which 20 are with known locations and are marked in
Fig. 5. Note that the walls of the experimental building
are constituted by only steel keels wrapped in two
wooden clapboards instead of reinforced concrete,
which reduces the walls’ shielding effects of wireless
signals to a certain extent.

Fig. 5 depicts the ground truth floor plan, where
the black triangles indicate physical functional zones
and the edges show their connected relationships. In
our evaluation, each physical room is modeled with a
vertex while the corridor is divided into 4 segments.
As a result, there are total 16 functional zones in the
physical graph.
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Fig. 10. Floor plan mapping. Vertices colored the same indicate ground truth mapping pairs.

To evaluate WILL, we need the accurate room of
each user when the location query is submitted. We
require location samples, especially those close to
the walls, to evaluate the localization performance.
To obtain these location-labeled data, we set a data
acquisition point every 4m2 and have some volunteers
move around the space, stopping regularly to take
30 measurements and manually recording the ground
truth locations. The data records for evaluation are
extended to be Dt =< F,A,L > where L is an
additional tuple, location. We collected 16,336 records
(dataset #1) on one phone and 14,271 records (dataset
#2) on another. All data are evenly collected from
accessible areas in the floor.

Space-continuous data, say, the mobility data col-
lected during user movements, consist of two parts in
our experiments. One part are collected from real user
traces, the other are generated from the discontinuous
data. To collect continuous data, volunteers, as normal
users with a mobile phone in hand, walk naturally
in the building and collect traces and fingerprints
during their natural movements. WILL records the ac-
celerometer readings and picks up RSS values during
moving with a respectively proper period. Totally, 30
real traces are extracted and additional 118 traces are
generated from those location-labeled data. Different
traces have various lengths and cover different areas
of interests. Note that the generated traces are also
realistic because the experimental data contains man-

ually labeled accurate location information.

7.2 Performance
In this section, we evaluate WILL using dataset #1 as
training data for building databases and dataset #2 as
querying data to localize.

7.2.1 User Trace Detection
Though the users kept their mobile phones in hand
when collecting continuous data in our experiments,
we find that the rhythmic acceleration signatures in
human walking patterns are evident no matter what
postures the mobile phones are. As observed in the ex-
periments, although the most remarkable acceleration
variation caused by walking appears on different axes,
the tri-axial accelerometer captures rhythmic fluctu-
ations finely whenever the mobile phone is placed
horizontally in hand, sideways up, or vertically held.
In addition, as WILL detects user mobility instead of
user displacement or step counts, WILL avoids the ac-
cumulate error caused by noisy sensor measurements.

7.2.2 Virtual Room Generation
For all virtual rooms, we mark each of them with the
label of a physical zone where the largest portion of
fingerprints within this virtual room are collected. The
assignment error rate (AE) is used for evaluation of
virtual room generation, which is referred to the per-
cent of fingerprints tagged with those virtual rooms
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taking a physical zone label different from the zone
where the fingerprints are actually collected.

As illustrated in Fig. 7, we notice that all clustering
approaches can achieve a fairly good accuracy of
over 80% on virtual rooms. Particularly, the KMeans
approach can reach an accuracy of 93% when the
virtual room number is set to 16 (equal to the physi-
cal functional zones number), which outperforms the
best performance achieved by SurroundSense [12], a
mobile phone localization system using many kinds
of fingerprints relying on site survey. We are delighted
even more that such improvement is made while
fewer kinds of fingerprints (actually only WiFi here)
are involved. The results benefit from the proposed
feature of RSS stacking difference and the concept
of virtual room. Fig. 7 further shows that partitional
clustering approaches (KMeans) achieve better perfor-
mance than others like density-based clustering (EM)
and hierarchical clustering methods (FarthestFirst).

Both physical rooms and corridor segments can be
partitioned well. Moreover, even two connected areas
totally without APs installed in (e.g., two adjacent
corridor zones) can also be distinguished by RSS data.
As shown in Fig. 8, AE of partition on physical rooms
is lower than 9%. As expected, partition on corridor
segments is less accurate. Nevertheless, the error is
smaller than 19%, which we think is acceptable as fin-
gerprints in corridors are farraginous. Moreover, there
are no walls or other obstructions between corridor
segments, which enlarges the fingerprint similarities
between different corridor segments.

It is also indicated that some virtual rooms may be
indistinguishable. As illustrated in Fig. 9, when virtual
room number increases, we observe that AE caused
by some specific rooms always keep relatively large.
On the other hand, the special building structure and
materials of the building, as described above, add to
the difficulty of distinguishing rooms, which results
in larger AE. We believe WILL would work better
in typical modern buildings with walls of reinforced
cement.

7.2.3 Localization Accuracy

The final localization accuracy is affected by two
factors: the virtual room estimation accuracy and the
floor plan mapping results. We present the mapping
results and evaluate the ultimate localization perfor-
mance using accuracy of virtual room localization
(VRL) and physical room localization (PRL) in the
following.

We use the virtual room results generated by K-
Means with virtual room number of 16 for evaluation.
The original results of the proposed SSMM on the
logical and physical graphs are displayed in Fig. 10(a)
and 10(b). Some of the mapping errors are corrected in
the correction stage of SSMM, as shown in Fig. 10(c).
There are two virtual rooms marked with the same
physical room label and mapped to a same physical
room. As a result, one room in the physical floor plan
is not mapped with any virtual rooms. In other words,
15 out of 16 virtual rooms are correctly mapped while
totally 14 out of 16 physical rooms are mapped.

We evaluate the location estimation accuracy based
on the mapping result illustrated in Fig. 10(c). To
understand the localization accuracy of each room,
we plot the cumulative distribution function (CDF) in
Fig. 11. 75% of physical rooms can achieve localization
accuracy of 80% or more. The median accuracies of
VRL and PRL are 89% and 90% and the average ac-
curacies of them are 81% and 86%, respectively. Such
encouraging results show competitive performance of
WILL comparing with traditional site survey based
methods.

7.2.4 Comparative Study

We compare WILL with some recent competitive tech-
niques, specially, SurroundSense [12] and EZ [19] ,
in terms of complexity and accuracy. SurroundSense
utilizes ambience features, including WiFi signals,
accelerometer, sound, light and even color, for in-
door localization. It is a pervasive work exploring
and opening new possibilities for indoor localization.
SurroundSense achieves an encouraging average ac-
curacy of 87%, which is almost the same as WILL.
SurroundSense, however, relies on site survey and
needs user-aware participation in localization, which
makes it labor-intensive and deployment-expensive.
Moreover, SurroundSense is inefficient in energy and
computation cost as so many features are used.

EZ in [19] performs indoor physical localization
with no pre-deployment efforts. EZ models the phys-
ical constraints of wireless propagation of all obser-
vations and uses a genetic algorithm to solve them.
EZ yields a median localization error of 2m and 7m,
respectively, in a small and a large building. Nonethe-
less, EZ falls short of distinguishing physical rooms.
In other words, the claimed median 7m error of EZ
might imply lot of misdetections of rooms, which is
where WILL stands out. In addition, EZ relies on
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occasionally available GPS information at the entrance
or near a window.

8 CONCLUSION
Previous indoor localization approaches mostly re-
ly on labor-intensive site survey over every loca-
tion. In this paper, we presented WILL, an indoor
logical localization approach without site survey or
knowledge of AP locations and power settings. The
main idea is to combine WiFi fingerprints with user
movements. Fingerprints are partitioned into different
virtual rooms and a logical floor plan is accordingly
constructed. Localization is achieved by finding a
matching between logical and ground truth floor plan.
We implement WILL in a typical office building and
it achieves an average room-level accuracy of 86%,
which is competitive to existing designs. We believe
WILL demonstrates its advantage on low human
cost, a long-standing and universal will in wireless
indoor localization. Future research in physical floor
plan construction, sophisticated floor plan mapping
as well as user behavior detection should make WILL
a ubiquitous indoor positioning system.
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