Introduction to Wireless Sensor
Networks:
Networking Aspects

Nancy Panousopoulou
Electrical and Computer Engineer, PhD
Signal Processing Lab, ICS-FORTH
apanouso@ics.forth.gr

8.04.2014, 10.04.2014

mailto:apanouso@ics.forth.gr

sensor processing, transceiver

(connection to the outer-world,

(transducer, measuring a stora ge
i e.g. other sensor nodes, or data
phy 5{ca/ P hen?men?n e'?' (communication with sensor, 9 Il ink
heat, light, motion, vibration, data acquisition, and collectors --sinks)

[]
O u t | | n e and sound) preprocessing, buffers handling,
etc)

* Part 1: Applications, Standards and Protocols power unit
(battery based — limited lifetime!)

* Introduction & Reasoning of Existence

* Sensing, Processing, and Networking Aspects

LQI CORR Value

* Standards, Topologies & Protocols

* Part 2: WSN Programming I B e T
LigBee
Alliance

* WSN Core and types of nodes

* Real-time Operating Systems

* Examples & Hands on Session

WSN Core

Typical State Machine of a Sensor Node

Standby / Wake-up(SENSOR)

sensing

Data Re Data R
ady(p ata Read
(Cong (SENSE)

Network
(DON

Sensor Ready
(PROCESS)

Netwo \ K Read
Reac Networking elwork heady processing
(COMM (PROCESS)

Data Ready(SEND)

TELOSB

Mica2

Micaz

IRIS

Shimmer

SUNSPOT

Zolertia Z1

XM1000

T1802.15.4@2.4GHz
(functional PHY,
MAC compatible)

T1802.15.4@868MHz

(functional PHY,
compatible MAC)

T1802.15.4@2.4GHz
(functional PHY,
MAC compatible)

ATMEL 802.15.4@2.4GHz

(functional PHY,
MAC compatible)

T1802.15.4@2.4GHz
(functional PHY,
MAC compatible)
Nordic BT

(fully functional)

T1802.15.4@2.4GHz
(functional PHY,
MAC compatible)

T1802.15.4@2.4GHz
(functional PHY,
MAC compatible)

T1802.15.4@2.4GHz
(functional PHY,
MAC compatible)

Tl msp430-F1 (16-bit)

ATMEL AVR 128L (16-bit)

ATMEL AVR 128 (16-bit)

ATMEL AVR 1281

Tl msp430-F1 (16-bit)

ATMEL ARM (32-bit)

Tl msp430-F2

Tl msp430-F2

10KB RAM,
48KB Flash

4KB
RAM/48 KB
Flash

4KB
RAM/48 KB
Flash

8KB
RAM/48 KB
Flash

10 KB RAM,
48 KB Flash,
2GB pSD

1 MB RAM,
8 MB Flash

8K RAM,
92KB Flash

8K RAM,
116 Flash,
1MB
External
Flash

The WSN Core — technologies and platforms...[1-6]

Temperature,
Humidity, Light

3-axis
accelerometer,
Tilt & vibration

3-axis
accelerometer, 3-
color light.

3-axis
accelerometer,
temperature

Temperature,
Humidity, Light

10 GIOs, USB programming interface

Dedicated environmental sensor board.
51-pin expansion, RS232.

Dedicated environmental sensor board
51-pin expansion, RS232.

Dedicated environmental sensor board.
51-pin expansion.

Expandability for Accelerometers and ECG,
EMG.
USB mother board.

USB. 4 GIOs.

52-pin expansion board.
Open source community support &
commercial support (excellent Wiki)

10 GIOs, USB programming interface

Open platform.
Environmental and health structural monitoring. PoC research
projects

Open source software support — Active.

One of the oldest platforms.

Environmental and health structural monitoring. PoC research
projects

Open source software support — Active (?).

Environmental and health structural monitoring. PoC research
projects

Open source software support — Active (?).

Dipole Antenna

Environmental and health structural monitoring. PoC research
projects

Open source software support — Active.

Dipole Antenna

Research platform with commercial support. Excellent support
(open source tools & customized applications).

Healthcare and Sports projects (wearable computing)

Active and expanding.

Rechargeable battery (up to 8hours in fully functional mode)

Open platform.

JVM (very easy to program). Emulator is also available.
Fancy platform with demos for audience with no related
background. Active. For hobbyists ©

Built in Li Battery

All WSN-related. One of the latest platforms.
Allows the option for a dipole antenna.

from a family of open platforms....

SMA connection (dipole antenna)...

All WSN-related, perhaps not for healthcare (bulky size and
design).

Can last up to 3 weeks on low data rate (per minute).

mailto:802.15.4@2.4GHz
mailto:802.15.4@868MHz
mailto:802.15.4@2.4GHz
mailto:802.15.4@2.4GHz
mailto:802.15.4@2.4GHz
mailto:802.15.4@2.4GHz
mailto:802.15.4@2.4GHz
mailto:802.15.4@2.4GHz

The WSN Core — technologies and platforms...[1-6](cont’)

Family

Firefly

WiSMote

Xbee

WaspMote

Jennic / NXP

TRX HProcessor

ATMEL ATMegal28RFA1
(SoC) 802.15.4@2.4GHz
(functional PHY,
MAC compatible)

T1802.15.4@2.4GHz
(functional PHY,
MAC compatible)
2" generation

TI msp430-F5

Digi 868 / 2.4GHz
(SoC)

xBee-15.4. / ZigBee ATMEL AVR 1281
WiFi

BT 2.1.0 (BR / EDR)

3G

NFC

Jennic 2.4GHZ (SoC)
32-bit pProcessor (ATMEL ?)
PHY functional.
support for MAC (HW MAC Accelerator)

Memory

8 KB RAM,
128 KB Flash

16KB RAM,
128 Flash

Needs
(mother
board)

8 KB RAM,
128 KB
Flash,
2GB puSD

128KB
RAM, 128
KB ROM

On-board Sensors

3-axis
accelerometer,

temperature, light.

3-axis
accelerometer,
temperature.

Expandability, Usability & Support

Dedicated environmental sensor board (inc.

audio, barometric pressure, PIR sensor,
liquid / relay switch).
+ GIOs

8 Analog, 16 GIO, mini USB

Serial communication (to pController) or
host SCB (arduino, rasbery etc)

Analog, Digital, USB, 12C

Analog, Digital, ADC, SPI, Digital audio
interface, UART

Research platform (CMU).
Not as popular as

Notes & Application areas

other platforms. (?)

Optional support for Power-Line Communications and RS-485
(candidate for homes automation and industrial monitoring.)
Research, open platform.

Provide wireless end-point connectivity to devices -> plug-
and-play.

AT Commands for accessing the board.

OTAP.

802.1.5.4 on HW

Built in a torrent style — highly customizable w.r.t. the
application needs.

GPS optional.

Commercial product — for commercial and very applied
projects.

OTAP

Closed platform.
Proprietary protocol stack — ZigBee / 6LoWPAN
Pure commercial platform. Plug-and-play...

mailto:802.15.4@2.4GHz
mailto:802.15.4@2.4GHz

WSN Core

What we use...

Product
Name Extras Notes:

Not advisable for industrial

Indoors RF range: ~30/environments due to antenna. SMA
m (without Line-of- |connector / Dipole antenna is not
XM1000 [Sight). supported.

4 "y

Similar as XM1000, |Advisable for industrial environments,
CM5000- |less powerfull. 5dBi |due to antenna option. Network
SMA dipole antenna compatible to XM1000 —

http://www.advanticsys.com/shop/asxm1000-p-24.html
http://www.advanticsys.com/shop/mtmcm5000sma-p-23.html

WSN Core

When selecting motes for your applications...

* One ssize doesn’t fit them all.

* Support by company and open source community

* Power consumption

* |Interoperability, Accessibility and tools (LProcessor toolchains, etc)

* Antenna design and antenna performance — standard-compliance &/ implementation is
not panacea to RF problems....

WSN Programming

* Motes selection €< Programming environment.

* Open source & Research platforms: Linux-alike environments
* Plug-and-play and closed platforms: wide range of tools.

* When programming a mote - programming its pProcessor to:
 access the peripheral devices (transceiver, leds, sensors etc)
* handle, store, modify the acquired information.

WSN Programming

Direct uProcessor programming Real time Operating Systems

Low-level / Embedded C & Assembly |:> A level of abstraction between the programmer

Hardware specific
Faster (simplified applications & experienced and the hardware platform
P or P HW Interoperability of WSN application

rogrammer
progra er) Allows better control on the platform

N itable for histi lications & . :
ot suitable for sophist cated_ abp Suitable for more complex network topologies
network topologies

WSN Programming

[7-10]

Tiny

Contiki

The Open Source OS for the Internet of Things

S

Nano-RK: A Wireless Sensor Networking Real-Time Operating System

Sensors

APP

Transport

NWK

MAC

Hardware Abstraction Layer

Memory

A

|

A

\ 4

MProcessor

A

TRX / PHY
(MAC)

\ 4

Other (e.g.
battery monitor,
GlOs,etc)

VSN Programming

TiNnyOS

Contiki

The Open Source OS for the Internet of Things

First Release 1999 2005
Supported Platforms (in official 17 26
distributions)
Community Support & Forums Yes Yes
Programming Language nesC C

Single / Multiple Thread

Single (multithread is optional)

Single (multithread — explicitly defined library)

Structure

Component-based

Protothreads

Simulator / Emulator

TOSSIM (python)

Cooja / MSPSIm Emulator (java)

OTAP

Yes

Yes

Protocol Stack

(802.15.4) MAC (not fully supported)
Collection Tree

(802.15.4) MAC (not fully supported)
Radio Duty Cycle & MAC

6LoWPAN RIME / ulP
6LoWPAN
Great flexibility in generating highly customizable protocol With default distribution: RIME or 6LoOWPAN (modifiable)
stack
Interfacing with host (Serial Specific format (ActiveMessageC) Flexible
Communication) (but provides tools s.a. SLIP)
Documentation* 66 ®
Debugging experience* AN ® 6

WSN Programming

 Component-based architecture, implementing one single stack
* Event-based, non-blocking design that allows intra-mote concurrency

* Written in NesC
e Structured, component-based C-like programming language

Programming Model:

 Components: encapsulate state and processing — use or provide
interfaces

* Interfaces list commands and events

* Configurations wire components together

WSN Programming TiNyOS

Two components are wired via interfaces.

Component A Component B
(user of I) 4- I (provider of I)

Interface I

e.go. Component
g Application: Protocol Stack

Uses Send. (a chain of

calls the components):
Provides Send.
sendMsg(msg) 4-}
command Implements the

Implements the sendMsg(msg)
event sendDone Interface command

Send

Components are statically linked to kernel
(not reconfigurable after compiling)
The kernel is a chain of components interacting via interfaces GoTo- flow

WSN Programming Contiki

Sequential flow control while keeping The Open Source OS for the Internet of Things

a single stack
[11-12]

Event-based - Invoking processes (non-blocking)

Using protothreads: a programming abstraction that User User
combines events and threads Application Application
Process #1 Process #N

Single stack and sequential flow control
Contiki Network Processes

Posting events or polling (Protocol Stack)

Contiki Core processes
(Platform Configuration)

WSN Programming

[29]
int a_protothread(struct pt *pt) {
PT BEGIN (pt) ;

PT WAIT UNTIL(pt, conditionl); Q Q
if (something) {

PT WAIT UNTIL (pt, condition2);

PT_END (pt) ;

4

#define

#define

#define

#define

#define

I

Contiki

The Open Source OS for the Internet of Things

Each process is essentially a protothread

PROCESS_WAIT_EVENT(
Wait for an event to be posted to the process.

PROCESS_WAIT_EVENT _UNTIL(c)
Wait for an event to be posted to the process, with an extra condition.

PROCESS_YIELD()
Yield the currently running process.

PROCESS_YIELD_UNTIL(¢)
Yield the currently running process until 2 condition occurs.

PROCESS _WAIT_UNTIL(c)
Wait for a condition to occur.

WSN Programming

Hello-world in WSN programming.

A Blinking-Led Application
* Program a mote to blink a led every T seconds.

TiNnyOS

configuration BlinkAppC

{
}

implementation

{

components MainC, BlinkC, LedsC;

components new TimerMi11iC ()
components new TimerMilliC()
components new TimerMillicC ()

BlinkC -> MainC.Boot;

BlinkC.Timer0O -> TimerO0;
BlinkC.Timerl -> Timerl;
BlinkC.Timer2 -> Timer?2;
BlinkC.Leds -> LedsC;

as TimerQ;
as Timerl;
as Timer?2;

#include "Timer.h"

module

{

}

uses
uses
uses
uses
uses

BlinkC @safe ()

interface Timer<TMilli>
interface Timer<TMilli>
interface Timer<TMilli>
interface Leds;
interface Boot;

implementation

{

event void Boot.booted()

{

call TimerO.startPeriodic(
call Timerl.startPeriodic(
call Timer2.startPeriodic(

}

event void TimerO.fired ()

{

dbg ("BlinkC",

call Leds.ledOToggle() ;

}

event void Timerl.fired ()

{

dbg ("BlinkC",

call Leds.ledlToggle()

}

event void Timer2.fired ()

{

dbg ("BlinkC",

call Leds.led2Toggle();

}

as TimerO;
as Timerl;
as Timer?2;

250) ;
500)
1000

.
4

~ N

"Timer 0 fired @ %s.\n",

"Timer 1 fired Q@ %s \n",

"Timer 2 fired @ %s.\n",

sim time string()):;

sim time string()):;

sim time string());

#include "contiki.h"

- - #include "dev/leds.h"
Contiki

#include <stdio.h> /* For printf () */
The Open Source OS for the Internet of Things /

/* We declare the process */

One main.c for each platform: Core & Network PROCESS (blink process, "LED blink process™);

processes /* We require the processes to be started automatically */
T AUTOSTART PROCESSES (&blink process);

process_init(); / — _
process_start(&etimer_process, NULL); .

. P e */
ctimer_init();)

/* Implementation of the process */
init_platform(); PROCESS THREAD (blink process, ev, data)
- {
set_rime_addr(); static struct etimer timer;
PROCESS BEGIN() ;

// low level api to phy
€c2420_init(); while (1)

{ {
uint8_t longaddr[8];

/* we set the timer from here every time */
uint16_t shortaddr;

etimer set (&timer, CLOCK CONF SECOND) ;

shortaddr = (rimeaddr_node_addr.u8[0] << 8) + rimeaddr_node_addr.u8[1];
memset(longaddr, 0, sizeof(longaddr));
rimeaddr_copy((rimeaddr_t *)&Ilongaddr, &rimeaddr_node_addr);

/* and wait until the event we receive is the one we're
waiting for */

PROCESS WAIT EVENT UNTIL (ev == PROCESS EVENT TIMER) ;
cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
} printf ("Blink... (state %0.2X).\r\n", leds get());
cc2420_set_channel(RF_CHANNEL); /* update the LEDs */
memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr)); leds toggle (LEDS GREEN) ;
}
queuebuf_init(); PROCESS END () ;

NETSTACK_RDC.init();
NETSTACK_MAC.init(); /

—

Contiki
WS N P rog ra m m i n g The Open Source OS for the Internet of Things

The communication layers in Contiki [29-31]

* The ulP TCP/IP stack
* Lightweight TCP/IP functionalities for low complexity pControllers
* Asingle network interface (IP, ICMP, UDP,TCP)

* Compliant to RFC but the Application layer is responsible for handling
retransmissions (reduce memory requirements)

* The Rime protocol stack

* A set of communication primitives (keeping pck headers and protocol stacks
separated)

* A pool of NWK protocols for ad-hoc networking
* Best-effort anonymous broadcast to reliable multihop flooding and tree protocols

Contiki
WS N P rog ra m m i n g The Open Source OS for the Internet of Things

How does Rime work

e Rime is a software trick
A stack of NWK layers

Each layer is associated with a channel

2KB memory footprint

Interoperability and ease in changing the protocol stack

MAC Pavload
2 Bytes 1 Bytes N - M Bytes M Bytes
Length AN {Rime Header + Payload) + 1 Channel Number Fime Header Payload

WSN Programming

How does Rime work — Example

* The Collection Tree Protocol (CTP)

* Tree-based hop-by-hop reliable data collection
» Large-scale network (e.g. environmental or industrial monitoring)

e Reliable Unicast Bulk

* Event-driven data transmission of a large data volume
* Personal health-care

WSN Programming Contiki

The Open Source OS for the Internet of Things
Layer Description Channel | Contribution to Rime
Header
Broad Best-effortlocal 129 Sender ID Reliable
roadcast est-effort loca ender Unicast Bulk Collect
Neighbor Periodic Neighbor 2 Receiver ID, Application

discovery Discovery Channel Reliable unicast
mechanism

area broadcast

\
1
1
1
|
|
Unicast Single-hop unicast 146 Receiver ID :

to an identified I

neighbor Neighbor I
Stubborn Repeatedly sends a Receiver ID discovery "
unicast packet until , I

unicast
cancelled by upper l’

layer -
Reliable Single-hop reliable 144 Packet Type and Packet ID
Unicast unicast (ACKs and broadcast

retransmissions)

Eile Simulation Motes Tools Settings Help

=J Network B=E3 E] Simulation control GJ@ X

View Zoom Run Speed limit n Nntesaa
| start | Fause | step || Reload |
Time: 13:15.901

L] Speed: ---
IO Iall.IIIIII 3] Mote output
File Edit Wiew
)] Time ms | Mote | Message
641 I0:1 Rime started with address 1.0
650 ID:1 MAC 01:00:00:00:00:00:00:00 Contiki.
G50 I0:1 CSMA ContikiMaC, channel check rate.
663 ID:1 Starting 'Hello world process’
663 I0:1 Hello. world
.
¢ COOJ d

* The Contiki emulator for running WSN applications. _ .

(=] Timeline showing 1 motes
* Very useful for debug_ginﬁ your codes — the same e ————————
code you test on cooja, the same you upload to your
mote

* Evaluating the network performance (?) — has very
simplifying models for radio propagation....

* Unit disk model: Edges are instantly configured according
to power attenuation w.r.t to distance & success ratio
(configurable)

* Directed graph radio medium: Considers preconfigured
edges, without checking the output power.

* Multipath ray tracer: Simulates reflection and diffraction
through homogeneous obstacles (considers that all
nodes have the same transmission power)

Outline

* Part 2: WSN Programming

* WSN Core and types of nodes
* Real-time Operating Systems

* Examples & Hands on Session

Hands on Session Contiki

The Open Source OS for the Internet of Things

What we are going to do...

Sensing

Wireless

‘ Sensing '

Hands on Session Contiki

The Open Source OS for the Internet of Things

What we are going to use...in order to upload code to the motes
e FTDI drivers (for Windows machines only) — USB2Serial

* How the host computer reserves a mote:
e COM<No> (Windows — Device Manager)
» /dev/ttyUSB<No> (Linux) [cat /var/log/syslog]
* Make sure that you have access on device (for programming it)
chmod 777 /dev/ttyUSBO
* Serial dump: make TARGET=sky MOTES=/dev/ttyUSBO login

Hands on Session at Cooja

e Cooja (for emulating the motes behavior)
Guidelines for running the codes at Cooja:

1. From your VM / Instant Contiki run the “cooja” application

2. Follow the instructions given at: http://www.contiki-os.org/start.html (step
3) for creating a new simulation

Select “sky” as the mote type
3. The result of the printf is shown at the “Mote Output” view

http://www.contiki-os.org/start.html

Hands on Session at Cooja

Applications Places T3 «) 2:35PM R Instant Contiki 3

My simulation - Cooja: The Contiki Network Simulator

File Simulation Motes Tools Settings Help
File Edit View Search Terminal Hel — —— o
: =) Network Jox|) Simulation control (-)(3) Notes
View Zoom Run Speed limit No help available
Enter notes here

jar:
[jar] Building jar: /home/user/contiki/tools/cooja/apps/powertracke
owertracker. jar

{Vstart || Pause | step “ Reload j

run:
Time: 13:15.901

[java]l INFO [AWT-EventQueue-0] (Gl java:2826) - External tools def ”
Speed: ---

ttings: /external_tools_linux.config
[java]l INFO [AWT-EventQueue-0] (GUI.java:2856) - External tools use
ngs: /home/user/.cooja.user.properties (vJ Mote output B
[java] INFO [AWT-EventQueue-0] (Simulation.java:423) - Simulation r :
Weed: 123456 ‘Flle Edit ‘\fl.ew i
[java]l] INFO [AWT-EventQueue-0] (CompileContiki.java:131) - > make h |Time ms | Mote | Message
rld.sky TARGET=sky 641 ID:1 Rime started with address 1.0
[java] *** Setting up f1611 IO! | 650 ID:1 MAC 01:00:00:00:00:00:00:00 Contiki...
[java] INFO [AWT-EventQueue-0] (MspMote.java:217) - Loading firmwar ‘560 ID:1 CSMA ContikiMAC, channel check rate...
/home/user /contiki/examples/hello-world/hello-world.sky | 663 ID:1 Starting 'Hello world process’
[java]l INFO [Thread-0] (Simulation.java:252) - Simulation main loop 063 I0i1 chello,vorld
d, system time: 1374754847189
[java] INFO [Thread-0] (Simulation.java:311) - Simulation main Lloop
d, system time: 1374754857922 Duration: 10733 ms Simulated time 79
Ratio 74.15457001770241

Filter:

£2] Timeline showing 1 motes

File Edit View Zoom Events Motes

1

3 [Terminal My simulation - Cooja:...

Hands on Session

Hello World © contiki/examples/hello-world
[Code structure & compile]

#include "contiki.h"

Hello-world.c
#include <stdio.h> /* For printf() */
/* _____________________________ e e e __*/
PROCESS(hello_world_process, "Hello world process"); /**Process definition**/
AUTOSTART_PROCESSES(&hello_world_process); /**Process Start**/

/* e e e e __*/
PROCESS_THREAD(hello_world_process, ev, data) /**Process implementation**/

{
PROCESS_BEGIN(); /**Always first**/

printf("Hello, world\n"); //process core

PROCESS_END(); /**Always last**/

}
/* _____________________________ —_——— —_——— —_——— __*/

Hello
World

Sensing

Wireless
Sensing

Hello

Hands on Session Worid

Sensing

Hello World © contiki/examples/hello-world
[Code structure & compile]

Wireless
Sensing

Program:

1. Open command terminal.

2. cd contiki/examples/hello-world

3. make TARGET=<platform*> hello-world.upload (compile and program)

Serial Dump
1. At new tab (File/Open new tab).
2. make TARGET=sky MOTES=/dev/ttyUSBO login

*sky/xm1000

Hands on Session

Hello World © contiki/examples/hello-world

[How to trigger a process]

* How to wake up from a process

#define

#define

#define

#define

#define

PROCESS WAIT_EVENTI()
Wait for an event to be posted to the process.

PROCESS WAIT_EVENT _UNTIL(c)
Wait for an event to be posted to the process, with an extra condition.

PROCESS_YIELD)
Yield the currently running process.

PROCESS _YIELD UNTIL(c)
Yield the currently running process until 2 condition occurs.

PROCESS WAIT_UNTIL(c)
Wait for a condition to occur.

Hello
World

Sensing

Wireless
Sensing

Keep on mind that:
Automatic variables not stored

across a blocking wait

When in doubt, use static local
variables

void

Hands on Session

void

Hello World © contiki/examples/he
[How to trigger a process]

void
int

e Timers

clock_time_t

clock_time_t

e Event timer (etimer) : Sends an
event when expired

void

etimer_set (struct etimer *et, clock_time_t interval)
S5et an event timer.

etimer_reset (struct etimer *et)
Reset an event timer with the same interval as was previously set.

etimer_restart (struct etimer *et)
Restart an event timer from the current point in time.

etimer_adjust (struct etimer *et, int td)
Adjust the expiration time for an event timer.

etimer_expired (struct etimer *et)
Check if an event timer has expired.

etimer_expiration_time (struct etimer *et)
Cet the expiration time for the event timer.

etimer_start_time (struct etimer *et)
Get the start time for the event timer.

etimer_stop (struct etimer *et)
S5top a pending event timer.

void ctimer_set (struct ctimer *c, clock_time_t t, void(*f){void *), void *ptr)
S5et a callback timer.

void ctimer_reset (struct ctimer *c)

* Ca”baCk timer (Ctimer) : Ca”S d Reset a callback timer with the same interval as was previously set.
function when expired — used by Rime Vvoid ctimer_restart (struct ctimer *c)

Restart a callback timer from the current point in time.

void ctimer_stop (struct ctimer *c)
Stop a pending callback timer.

int ctimer_expired (struct ctimer *c)
Check if a callback timer has expired.

Hello

Hands on Session Worid

Sensing

Hello World © contiki/examples/hello-world
[How to trigger a process] wieles
From hello-world.c generate a new application (print-and-blink.c) that:
1. periodically (e.g. per second) prints a message.

2. when the message is printed a led toggles
#include “leds.h”

leds_toggle(LEDS_RED / LEDS_GREEN / LEDS_YELLOW)
macro for time: CLOCK_SECOND

PROCESS(print_and_blink_process, ”Print and blink process");
AUTOSTART _PROCESSES(&print_and_blink_process);

PROCESS_THREAD(print_and_blink_process, ev, data)
itatic struct etimer et;

PROCESS_BEGIN(); /**Always first**/

while(1) {

etimer_set(&et, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
printf(“Echo\n”);

leds_toggle(LEDS _GREEN);

}

PROCESS_END(); /**Always last**/
1

Hello
World

D |
Sensing

Wireless
Sensing

Hands on Session

Sensing © contiki/examples/hello-world
[Access a sensor]

* Sensor: supported by contiki (platform/dev/<platform>)

* const struct sensors_sensor
e @sky: shtll_sensor.value(type) --global
//type = SHT11 _SENSOR_TEMP, SHT11_SENSOR_HUMIDITY

light_sensor.value(type) --global
//type = LIGHT_SENSOR_TOTAL_SOLAR, LIGHT_SENSOR_PHOTOSYNTHETIC

battery_sensor.value(type) —global
//type =0

* ACTIVATE / DEACTIVE (<sensors_sensor>)

Hello
World

Sensing

Wireless
Sensing

Hands on Session

Sensing © contiki/examples/hello-world
[Access a sensor]

From the print-and-blink, generate a new application (sense-and-blink.c) that:

1. Periodically sample one or more of the on-board sensors
#include "dev/light-sensor.h” / "dev/sht11-sensor.h” / "dev/battery-sensor.h”

SENSORS_ACTIVATE(<>)
[Sample...]
SENSORS_DEACTIVATE(<>)

2. When done prints the sampled value and toggles a led

Command for serial dump: make TARGET=sky MOTES=/dev/ttyUSBO login

Hello
World

Sensing

Wireless
Sensing

Hello
World

Hands on Session »

1 process 2 processes Sensing
PROCESS(sense_process, "Sense process");
struct sensor_datamsg({ PROCESS(print_and_blink_process, "Print and blink process");
AUTOSTART_PROCESSES(&sense_process, &print_and_blink_process);
uint16_t temp; Wireless

uintl6_t humm;

uint16_t batt; static struct sensor_datamsg msg; Sensi ng

static process_event_t event_data_ready;
}sensor_datamsg;

PROCESS_THREAD(sense_process, ev, data)

{
PROCESS_THREAD(sense_and_blink_process, ev, data)
{ PROCESS_BEGIN(); /**Always first**/
static struct etimer et;
static struct sensor_datamsg msg; SENSORS_ACTIVATE(sht11_sensor);
SENSORS_ACTIVATE(battery_sensor);
PROCESS_BEGIN(); /**Always first**/
while (1) {
SENSORS_ACTIVATE(sht11_sensor);
SENSORS_ACTIVATE(battery_sensor); process_post(&print_and_blink_process,event_data_ready, &msg);
while (1) {
}
etimer_set(&et, CLOCK_SECOND); PROCESS_END(); /**Always last**/
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
}
msg.temp=shtl1l_sensor.value(SHT11_SENSOR_TEMP); /* */
msg.humm = sht11_sensor.value(SHT11_SENSOR_HUMIDITY); PROCESS_THREAD(print_and_blink_process, ev, data)
msg.batt = battery_sensor.value(0); {
printf("Sensor raw values: temperature:%d, humidity: %d, battery: %d\n", msg.temp, msg.humm, msg.batt); PROCESS_BEGIN(); /**Always first**/
leds_toggle(LEDS_GREEN);
while (1) {

PROCESS_YIELD_UNTIL(ev==event_data_ready);
} printf("Sensor raw values: temperature:%d, humidity: %d, battery: %d\n", msg.temp, msg.humm, msg.batt);
leds_toggle(LEDS_GREEN);
SENSORS_DEACTIVATE(sht11_sensor);
SENSORS_DEACTIVATE(battery_sensor); }
PROCESS_END(); /**Always last**/ PROCESS_END(); /**Always last**/
} }

Hello

Hands on Session Worid

Sensing

Wireless Sensing © contiki/examples/hello-world
[Access a sensor & trx]

Wireless
Sensing

Communication:
* Each type of connection (rime / ulP / 6LoWPAN) defines a structure

* Each type of rime connection defines a struct for the callback function (rx
events).

Callback function has to have a specific definition...

* Each rime-based connection is associated with a predefined channel (>128)

Hello

Hands on Session Word

Sensing

Wireless Sensing © contiki/examples/hello-world
[Access a sensor & trx]

Wireless
Sensing

@ rime: N
* packetbuf module for packet buffer management
e Struct rimeaddr_t for rime addressing...
typedef union {
unsigned char u8[RIMEADDR_SIZE]; //=2
} rimeaddr _t;

@ uip:
* uipbuf module for packet buffer management
e Struct ipaddr_t

The packetbuf module does Rime's buffer management. More...

Files

file

file

Defines
#define

#define

packetbuf.c

Rime buffer (packetbuf) management.

packetbuf.h

Header file for the Rime buffer (packetbuf) management.

PACKETBUF SIZE 128
The size of the packetbuf, in bytes.

PACKETEUF_HDR_SIZE 48
The size of the packetbuf header, in bytes.

Functions

void

void

int

void

packetbuf clear (void)
Clear and reset the packetbuf.

packetbuf clear_hdr (void)
Clear and reset the header of the packetbuf.

packetbuf_copyfrom (const void *from, uint16_t len)
Copy from external data into the packetbuf.

packetbuf compact (void)
Compact the packetbuf.

int

int

int

int

void

void *

void *

void

int

void *

uintle_t

uint8_t

uintle_t

packetbuf copyto_hdr (uint8_t *to)
Copy the header portion of the packetbuf to an external buffer.

packetbuf copyto (void *to)
Copy the entire packetbuf to an external buffer.

packetbuf hdralloc (int size)
Extend the header of the packetbuf, for outbound packets.

packetbuf hdrreduce (int size)
Reduce the header in the packetbuf, for incoming packets.

packetbuf set datalen (uintl6_t len)
Set the length of the data in the packetbuf.

packetbuf dataptr (void)
Get a pointer to the data in the packetbuf.

packetbuf hdrptr (void)
Get a pointer to the header in the packetbuf, for outbound packets.

packetbuf_reference (void *ptr, uintl6_t len)
Point the packetbuf to external data.

packetbuf is_reference (void)
Check if the packetbuf references external data.

packetbuf reference_ptr (void)
Get a pointer to external data referenced by the packetbuf.

packetbuf datalen (void)
Get the length of the data in the packetbuf.

packetbuf hdrlen (void)
Get the length of the header in the packetbuf, for outbound packets.

packetbuf totlen (void)
Get the total length of the header and data in the packetbuf.

Hello

Hands on Session Worid

N
Wireless Sensing © contiki/examples/hello-world Sensing
[Access a sensor & trx]

From the sense-and-tx, generate a new application (sense-and-trx.c) that: Wireless
1. Periodically samples from on-board temperature sensor >ensing
2. When done broadcast the value

3. Upon the reception of a incoming packet, print its contents and the source node id

#include net/rime.h
static const struct broadcast_callbacks broadcast_call = {broadcast_recv}; -- visible outside process
Defined as: static void broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)

static struct broadcast_conn broadcast; -- visible outside process

Inside process:

broadcast_open(&broadcast, 129, &broadcast_call); --connection -- 129: the broadcast rime channel
packetbuf copyfrom(const void *data, data length); --form tx buffer

broadcast_send(&broadcast); -- send to connection

Hands on Session

PROCESS_THREAD(send_and_blink_process, ev, data)
{

static uint8_t data2send[sizeof(sensor_datamsg)];
PROCESS_EXITHANDLER(broadcast_close(&broadcast);)
PROCESS_BEGIN(); /**Always first**/

broadcast_open(&broadcast, 129, &broadcast_call);

Receive
while (1) {

PROCESS_YIELD_UNTIL(ev==event_data_ready); static void

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)

{
data2send[0] = msg.temp & 255;//Isb
data2send[1] = msg.temp >> 8;//msb uint8_t *appdata;

inti;

data2send[2] = msg.humm & 255;
data2send[3] = msg.humm >> §; appdata = (uint8_t *)packetbuf_dataptr();
data2send[4] = msg.batt & 255; printf("Data recv:[");
data2send[5] = msg.batt >> 8; for (i=0;i<packetbuf_datalen();i++)

Send (
packetbuf_copyfrom(data2send,sizeof(sensor_datamsg)); printf("%u ",appdatali]);
broadcast_send(&broadcast);

//printf("Sensor raw values: temperature:%d, humidity: %d, battery: %d\n", msg.temp, msg.humm, msg.batt); }

leds_toggle(LEDS_GREEN);
} //this is the id of the sender (as defined in compile time).
PROCESS_END(); /**Always last**/ printf("], from: %d.%d\n",from->u8[0], from->u8[1]);
} printf("\n");

References

O 0N UhEWDNPRE

N = T
N o= O

http://en.wikipedia.org/wiki/List of wireless sensor nodes
www.advanticsys.com

www.shimmersensing.com

www.jennic.com

http://www.libelium.com/products/waspmote/overview/
www.digi.com/xbee

http://www.nanork.org/projects/nanork/wiki

http://mantisos.org/index/tiki-index.php.html

www.tinyos.net

www.contiki-os.org

http://www.ee.kth.se/~mikaelj/wsn course.shtml

http://contiki.sourceforge.net/docs/2.6/index.html

http://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
http://www.advanticsys.com/
http://www.shimmersensing.com/
http://www.jennic.com/
http://www.libelium.com/products/waspmote/overview/
http://www.digi.com/xbee
http://www.nanork.org/projects/nanork/wiki
http://mantisos.org/index/tiki-index.php.html
http://www.tinyos.net/
http://www.contiki-os.org/
http://www.ee.kth.se/~mikaelj/wsn_course.shtml
http://contiki.sourceforge.net/docs/2.6/index.html

