
Kullback–Leibler divergence 

    In probability theory and information theory, the Kullback_Leibler divergence is a non-

symmetric measure of the difference between two probability distributions P and Q. Although it 

is often intuited as a distance metric, the KL divergence is not a true metric. For example, the KL 

divergence from P to Q is not necessarily the same as the divergence from Q to P. For 

probability distributions P and Q of a discrete random variable, the KL divergence from Q to P is 

defined to be: 
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On the other hand, if P and Q are probability distributions of a continuous random variable, the 

KL divergence from Q to P is defined as: 
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Based on the equations (1) and (2), we can define a symmetric measure of the difference 

between the distributions P and Q as following: 

 

                                                         𝐷 𝑃,𝑄 =  
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    Usually in practice we are given a data set 𝑋 that corresponds to a repeated execution of the 

same experiment. Also we are given a set of parameterized probability distributions 𝑃 =

 𝑃1  𝑥 𝜽1 ,  𝑃2  𝑥 𝜽2 ,… ,  𝑃𝛮  𝑥 𝜽𝛮  . For example, 𝑃1  𝑥 𝜽1  could correspond to a family of 

Gaussian distributions. In this case, the parameter vector 𝜽1contains the mean and the variance. 

For each family of distributions 𝑃𝑖 ∈ 𝑃 we can compute the parameter vector 𝜽𝑖
∗ that fits better to 

the data set X using the method of maximum likelihood estimation  [1]. Our goal is to determine 

which of the distributions 𝑃1  𝑥 𝜽1
∗ ,  𝑃2  𝑥 𝜽2

∗ ,… ,  𝑃𝛮  𝑥 𝜽𝛮
∗   describes better the dataset X.  

    To do this we first define the empirical probability distribution function 𝑄 that corresponds to 

the data set X. In particular we divide the probability space into a number of equally sized and 

non-overlapping bins. At each bin we assign a probability that is equal to the ratio of the number 

of samples that lie inside this bin versus to the total number of samples. We also perform a 

discretization of the probability distributions 𝑃1 
 𝑥 𝜽1

∗ ,  𝑃2 
 𝑥 𝜽2

∗ ,… ,  𝑃𝛮 
 𝑥 𝜽𝛮

∗  . Specifically 

we assume that each 𝑃𝑖  𝑥 𝜽𝑖
∗  is approximated by the discrete probability distribution function 

𝑃 𝑖  𝑥 𝜽𝑖
∗  that is constant within each bin and equal to the mean value of 𝑃𝑖  𝑥 𝜽𝑖

∗  at the 

corresponding bin. Another way that we could use in order to estimate 𝑃 𝑖  𝑥 𝜽𝑖
∗  more easily is to 

create a dataset 𝑌 of randomly drawn samples from the distribution 𝑃𝑖  𝑥 𝜽𝑖
∗ . The empirical 

distribution function that corresponds to the dataset 𝑌 is an estimation of  𝑃 𝑖 
 𝑥 𝜽𝑖

∗  . 



Subsequently, for each pair  𝑄,  𝑃 𝑖 𝑥 𝜃𝑖
∗     we compute the metric 𝐷  𝑄,  𝑃 𝑖 𝑥 𝜃𝑖

∗     according to 

equation (3). Finally, the distribution with the minimum distance from Q is assumed to describe 

better the dataset X.  

    The above procedure is implemented by the function kld_test_all_g_sym. This function 

uses the following families of distributions: 

Name Parameters PDF (probability distribution 

function) 

CDF (cumulative distribution 

function ) 

Rayleigh 𝜎 𝑃 𝑥 =  
𝑥

𝜎2
𝑒−𝑥2/2𝜎2

 𝐶 𝑥 =  1 −  𝑒−𝑥2/2𝜎2
 

Lognormal 𝜇,𝜎 > 0 
𝑃 𝑥 =  

1

𝑥𝜎 2𝜋
𝑒
−
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2𝜎2  𝐶 𝑥 =  
1

2
𝑒𝑟𝑓𝑐  −

𝑙𝑛𝑥 − 𝜇

𝜎 2
  

Weibull 𝜆 > 0,𝜅 > 0 
𝑃 𝑥 =

𝜅

𝜆
 
𝑥

𝜆
 
𝑘−1

𝑒−(𝑥/𝜆)𝜅  𝑥 ≥ 0 
𝐶 𝑥 =  1 −  𝑒−(𝑥/𝜆)𝜅   𝑥 ≥ 0 

Gamma 𝜅 > 0,𝜃 > 0 
𝑃 𝑥 =  𝑥𝑘−1

𝑒−𝑥/𝜃

𝜃𝜅𝛤(𝜅)
        𝑥 ≥ 0 𝐶 𝑥 =  

𝛾(𝜅, 𝜒/𝜃)

𝛤(𝜅)
       𝑥 ≥ 0 

Exponential 𝜆 > 0 𝑃 𝑥 =  𝜆𝑒−𝜆𝑥                       𝑥 ≥ 0 𝐶 𝑥 =  1 − 𝑒−𝜆𝑥          𝑥 ≥ 0 

Generalized 

pareto 
𝑘 ≠ 0,𝜎 > 0, 𝜃 

𝑃 𝑥 =
1

𝜎
 1 + 𝜅

𝑥 − 𝜃

𝜎
 
−1−1/𝜅

 
𝐶 𝑥 =  1 − (1 + 𝑘

𝑥 − 𝜇

𝜎
)−1/𝜅  

 

The following table shows the matalb functions that implement the method of maximum 

likelihood estimation for various families of distributions: 

Distribution Matlab function 

Rayleigh rayfit 

Lognormal lognfit 

Weibull wblfit 

Gamma gamfit 

Exponential expfit 

Generalized pareto gpfit 

 

The input parameters of the function kld_test_all_g_sym are the following: 

Input parameters Description 

rd A column vector that contains the samples of the dataset X. 

Nbins The number of bins that we use in order to compute the empirical probability 

distribution function.              

 

Finally, the output parameters of kld_test_all_g_sym are: 

Output parameters Description 

dist A 6x2 matrix. The first column contains the mean value of the metric of 

equation (3) for all distributions in the sequence: Rayleigh, Weibull, 

Lognormal, Pareto, Gamma and finally Exponential. The second column 

contains the variance of the metric of equation (3).  

 

 

 



Example 

First we run the matlab command: 

 

 data = wblrnd(1, 1.5, 10000,1);     

 

This command creates a vector of 10000 randomly drawn samples from the Weibull distribution 

with parameters 𝜆 = 1 and 𝑘 = 1.5. Subsequently we execute the command: 

 

dist = kld_test_all_g_sym(data, 50); 

 

The components of the matrix dist are shown in the following table: 

Distribution Mean  Variance 

Rayleigh 0.1158 0.0168 

Weibull 0.0092 0.0021 

Lognormal 0.1079 0.0057 

Pareto 0.0670 0.0039 

Gamma 0.0117 0.0019 

Exponential 0.1457 0.0047 

 

The minimum mean distance as expected corresponds to the Weibull distribution. 

 

ccdf (complementary cumulative distribution function) 

     The complementary cumulative distribution function of a random variable X is given by the 

following relation: 

 

𝐹𝑐 𝑥 =  𝑃(𝑋 ≥ 𝑥) 

 

The function 𝐹𝑐 𝑥  is also related with the cumulative distribution function of X by the following 

equation: 

 

𝐹𝑐 𝑥 = 1 − 𝑃 𝑋 ≤ 𝑥 =  1 − 𝐹(𝑥) 

 

    Suppose that we want to check whether a given dataset X fits with a particular family of 

distributions 𝑃  𝑥 𝜽 . In this case we first use the method of maximum likelihood estimation to 

calculate the value of the parameter vector 𝜽∗ that describes better the dataset X. Then we plot 

the empirical ccdf of the dataset X and the ccdf of the distribution 𝑃  𝑥 𝜽∗ . If these two ccdf 

curves are close we can conclude that the dataset X is likely to be generated by the 

distribution 𝑃  𝑥 𝜽∗ . 

    The name of the matlab function that implements the ccdf test is plotccdf. The input 

parameters of this function are the following: 

 



Input parameters Description 

data A column vector that contains the samples of the dataset X. 

distribution A string which can take one of the following values: „weibull‟, „lognormal‟,  

„exponential‟, „pareto‟, „gamma‟, „rayleigh‟. Each value corresponds to a 

different family of distributions. 

log If the value of this parameter is 1 the ccdfs are plotted in log-log scale. Otherwise 

they are plotted in linear scale. 

  

Example 

    We first create a dataset of 10000 samples drawn from a weibull distribution with parameters 

𝜆 = 1 and 𝜅 =  1.5 using the following command: 

 

data = wblrnd(1, 1.5, 10000,1);     

 

Then we execute the command: 

 

ccdf_test( data , 'weibull', 0); 

 

The result is shown in figure 1. From this figure we can easily observe that that dataset X is 

described well by a Weibull distribution as expected. 

 
Figure 1: Plot that is produced by the execution of the command ccdf_test( data , 'weibull', 0); 

 

Q-Q plots 

    In statistics, a Q-Q plot is a probability plot, which is a graphical method for comparing two 

probability distributions by plotting their percentiles against each other. A percentile is the value 



of a variable below which a certain percent of observations fall. For example, the 20th percentile 

is the value, below which 20 percent of the observations may be found.  

    In order to produce the Q-Q plot that corresponds to two different datasets X and Y we first 

discretize the interval [0 1]. In particular, we take a number of samples 𝑠 1 ,𝑠 2 ,… , 𝑠(𝑁) that 

are equally spaced and cover the entire range of values from 0 to 1. In figure 2 we show the 

discretization of the interval [0 1] into 11 samples. 

  
Figure 2: Discritization of the interval [0 1] to 11 equally spaced samples. 

 

    Subsequently we evaluate the inverse of the cumulative distribution function that corresponds 

to the dataset X at all the samples s(1), …, s(N). The values that are computed this way are the 

percentiles of the datasets X and are denoted as 𝑝𝑋 1 ,𝑝𝑋 2 ,… ,𝑝𝑋(𝑁). Similarly we can 

compute the percentiles 𝑝𝑌 1 ,𝑝𝑌 2 ,… , 𝑝𝑌(𝑁) of the dataset Y. If we plot the percentiles of Y 

versus the percentiles of X, we get the Q-Q plot. In figure 3 we show how we calculate the 

percentiles of a dataset X of 10000 samples drawn from an exponential distribution of mean 

𝜆 = 2 and the percentiles of a dataset Y of 10000 samples drawn from the gamma distribution 

with parameters 𝑘 = 2.5 and 𝜃 = 2.5.  

 
Figure 3: The left diagram shows the procedure that we follow in order to calculate the percentiles of a dataset X of 

10000 samples drawn from an exponential distribution of mean 𝜆 = 2. The right diagram shows he same procedure 

for a dataset Y of 10000 samples drawn from a gamma distribution with parameters 𝑘 = 2.5 and 𝜃 =  2.5. 

 

    In order to check if a dataset X is generated from a particular family of distributions 𝑝(𝑥|𝜽) 

we first use the maximum likelihood estimation method to compute the parameter vector 𝜽∗ that 

fits better to the dataset X (maximizes the log-likelihood function). Subsequently we generate a 

number of datasets 𝑌0 , 𝑌1,  𝑌2,… ,𝑌𝑁  of the same size as X with samples that are drawn from the 

probability distribution 𝑝(𝑥|𝜽∗). Then we plot the percentiles of each of the datasets 𝑌1 ,𝑌2 ,… ,𝑌𝑛  



versus the percentiles of 𝑌0. That way we construct the envelope of the distribution 𝑝(𝑥|𝜽∗). 

Finally we plot the percentiles of X versus the percentiles of 𝑌0. If this final curve lies within the 

envelope of 𝑝(𝑥|𝜽∗) we can conclude that the probability distribution 𝑝(𝑥|𝜽∗) describes well the 

dataset X. 

    The Q-Q plot test that was described above is implemented by the function envelope_qqplot. 

The input parameters of this function are the following: 

Input parameters Description 

indata A column vector that contains the samples of the dataset X. 

distribution A string which can take one of the following values: „weibull‟, „lognormal‟, 

„extreme_value‟, „exponential‟, „generalized_extreme_value‟, „pareto‟, 

„gamma‟, „rayleigh‟ and „bipareto‟. Each value corresponds to a different 

family of distributions. 

samples The number of synthetic datasets that will be used to create the envelope. 

 

The output parameters of the function envelope_qqplot are the following:  

Output parameters Description 

paramhat_vec  The value of the parameter vector 𝜽∗ that is calculated using the method of 

maximum likelihood estimation. 

 

Example 

    We first create a dataset X of 10000 samples drawn from a Weibull distribution with 

parameters 𝜆 = 1 and 𝜅 = 1.5 using the following command: 

 

data = wblrnd(1, 1.5, 10000,1); 

 

Then we run the command: 

 

[paramhat_vec] = envelope_qqplot(data, 'weibull', 50); 

 

    The value of the parameter paramhat_vec that is returned by the function envelope_qqplot is 

equal to [0.9912 1.4905] which is very close to the actual parameters of the Weibull distribution. 

Also the Q-Q plot that is created by the function envelope_qqplot  is shown in figure 4. The blue 

points correspond to the original data while the green points correspond to the envelope. We can 

easily observe that the blue points lie within the envelope which means that the dataset X is 

described well by a weibull distribution as expected. 

 



 
Figure 4: The Q-Q plot that is produced by the execution of the command [paramhat_vec] = envelope_qqplot(data, 

'weibull', 50); 
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