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I. INTRODUCTION

Data compression involves the development of a com-
pact representation of information. Most representa-
tions of information contain large amounts of redun-
dancy. Redundancy can exist in various forms. It may
exist in the form of correlation: spatially close pixels in
an image are generally also close in value. The redun-
dancy might be due to context: the number of possi-
bilities for a particular letter in a piece of English text
is drastically reduced if the previous letter is a q. It can
be probabilistic in nature: the letter e is much more
likely to occur in a piece of English text than the letter
q. It can be a result of how the information-bearing se-
quence was generated: voiced speech has a periodic
structure. Or, the redundancy can be a function of the
user of the information: when looking at an image we
cannot see above a certain spatial frequency; therefore,
the high-frequency information is redundant for this
application. Redundancy is defined by the Merriam-
Webster Dictionary as “the part of the message that can
be eliminated without the loss of essential informa-
tion.” Therefore, one aspect of data compression is re-
dundancy removal. Characterization of redundancy in-
volves some form of modeling. Hence, this step in the
compression process is also known as modeling. For
historical reasons another name applied to this process
is decorrelation.

After the redundancy removal process the infor-
mation needs to be encoded into a binary represen-
tation. At this stage we make use of the fact that if the
information is represented using a particular alpha-
bet some letters may occur with higher probability
than others. In the coding step we use shorter code

words to represent letters that occur more frequently,
thus lowering the average number of bits required to
represent each letter.

Compression in all its forms exploits structure, or
redundancy, in the data to achieve a compact repre-
sentation. The design of a compression algorithm in-
volves understanding the types of redundancy present
in the data and then developing strategies for ex-
ploiting these redundancies to obtain a compact rep-
resentation of the data. People have come up with
many ingenious ways of characterizing and using the
different types of redundancies present in different
kinds of technologies from the telegraph to the 
cellular phone and digital movies.

One way of classifying compression schemes is by
the model used to characterize the redundancy. How-
ever, more popularly, compression schemes are di-
vided into two main groups: lossless compression and
lossy compression. Lossless compression preserves all
the information in the data being compressed, and
the reconstruction is identical to the original data. In
lossy compression some of the information contained
in the original data is irretrievably lost. The loss in in-
formation is, in some sense, a payment for achieving
higher levels of compression. We begin our examina-
tion of data compression schemes by first looking at
lossless compression techniques.

II. LOSSLESS COMPRESSION

Lossless compression involves finding a representation
which will exactly represent the source. There should
be no loss of information, and the decompressed, or



reconstructed, sequence should be identical to the
original sequence. The requirement that there be no
loss of information puts a limit on how much com-
pression we can get. We can get some idea about this
limit by looking at some concepts from information
theory.

A. Information and Entropy

In one sense it is impossible to denote anyone as the
parent of data compression: people have been finding
compact ways of representing information since the
dawn of recorded history. One could argue that the
drawings on the cave walls are representations of a sig-
nificant amount of information and therefore qualify as
a form of data compression. Significantly less contro-
versial would be the characterizing of the Morse code
as a form of data compression. Samuel Morse took ad-
vantage of the fact that certain letters such as e and a
occur more frequently in the English language than q
or z to assign shorter code words to the more frequently
occurring letters. This results in lower average trans-
mission time per letter. The first person to put data
compression on a sound theoretical footing was Claude
E. Shannon (1948). He developed a quantitative notion
of information that formed the basis of a mathematical
representation of the communication process.

Suppose we conduct a series of independent ex-
periments where each experiment has outcomes A1,
A2, . . ., AM. Shannon associated with each outcome a
quantity called self information, defined as

i(Ak) � log �
P(

1
Ak)
�

The units of self-information are bits, nats, or Hart-
leys, depending on whether the base of the logarithm

is 2 e, or 10. The average amount of information as-
sociated with the experiment is called the entropy H:

H � E[i(A)] � �
M

k�1
i(Ak)P(Ak) � �

M

k�1
P(Ak) log �

P(
1
Ak)
�

� � �
M

k�1
P(Ak) log P(Ak) (1)

Suppose the “experiment” is the generation of a let-
ter by a source, and further suppose the source gen-
erates each letter independently according to some
probability model. Then H as defined in Eq. (1) is
called the entropy of the source. Shannon showed
that if we compute the entropy in bits (use logarithm
base 2) the entropy is the smallest average number of
bits needed to represent the source output.

We can get an intuitive feel for this connection be-
tween the entropy of a source and the average num-
ber of bits needed to represent its output (denoted by
rate) by performing a couple of experiments.

Suppose we have a source which puts out one of
four letters {A1, A2, A3, A4}. In order to ascertain the
outcome of the experiment we are allowed to ask a
predetermined sequence of questions which can be
answered with a yes or a no. Consider first the case of
a source which puts out each letter with equal proba-
bility, that is,

P(Ak) � �
1
4

� k � 1,2,3,4

From Eq. (1) the entropy of this source is two bits. The
sequence of questions can be represented as a flow-
chart as shown in Fig. 1. Notice that we need to ask two
questions in order to determine the output of the
source. Each answer can be represented by a single bit
(1 for yes and 0 for no); therefore, we need two bits to
represent each output of the source. Now consider a
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slightly different situation in which the source puts out
the four different letters with different probabilities:

P(A1) � �
1
2

�, P(A2) � �
1
4

�, P(A3) � �
1
8

�, P(A4) � �
1
8

�

The entropy of this source is 1.75 bits.
Armed with the information about the source, we

construct a different sequence of questions shown in
Fig. 2. Notice that when the output of the source is A1

we need ask only one question. Because P(A1) � �
1
2

� on
the average this will happen half the time. If the source
output is A2 we need to ask two questions. This will
happen a quarter of the time. If the source output is
A3 or A4 we will need to ask three questions. This too
will happen a quarter of the time. Thus, half the time
we can represent the output of the source with one
bit, a quarter of the time with two bits, and another
quarter of the time with three bits. Therefore, on the
average we will need 1.75 bits to represent the output
of the source. We should note that if our information
about the frequency with which the letters occur is
wrong we will end up using more bits than if we had
used the question sequence of Fig. 1. We can easily
see this effect by switching the probabilities of A1 and
A2 and keeping the questioning strategy of Fig. 2.

Both these examples demonstrate the link between
average information, or entropy of the source, and
the average number of bits, or the rate, required to
represent the output of the source. They also demon-
strate the need for taking into account the proba-
bilistic structure of the source when creating a repre-
sentation. Note that incorrect estimates of the

probability will substantially decrease the compres-
sion efficiency of the procedure.

The creation of a binary representation for the
source output, or the generation of a code for a source,
is the topic of the next section.

B. Coding

In the second example of the previous section the way
we obtained an efficient representation was to use
fewer bits to represent letters that occurred more fre-
quently—the same idea that Samuel Morse had. It is
a simple idea, but in order to use it we need an algo-
rithm for systematically generating variable length
code words for a given source. David Huffman (1951)
created such an algorithm for a class project. We de-
scribe this algorithm below. Another coding algorithm
which is fast gaining popularity is the arithmetic cod-
ing algorithm. We will also describe the arithmetic
coding algorithm in this section.

1. Huffman Coding

Huffman began with two rather obvious conditions
on the code and then added a third that allowed for
the construction of the code. The conditions were:

1. The codes corresponding to the higher
probability letters could not be longer than the
code words associated with the lower probability
letters.
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2. The two lowest probability letters had to have
code words of the same length. 

He added a third condition to generate a practical
compression scheme.

3. The two lowest probability letters have codes that
are identical except for the last bit.

It is easy to visualize these conditions if we think of the
code words as the path through a binary tree: a zero
bit denoting a left branch and a one bit denoting a
right branch. The two lowest probability letters would
then be the two leaves of a node at the lowest level of
the tree. We can consider the parent node of these
leaves as a letter in a reduced alphabet which is ob-
tained as a combination of the two lowest probability
symbols. The probability of the letter corresponding to
this node would be the sum of the probabilities of the
two individual letters. Now, we can find the two lowest
probability symbols of the reduced alphabet and treat
them as the two leaves of a common node. We can con-
tinue in this fashion until we have completed the tree.

We can see this process best through an example.

EXAMPLE 1: HUFFMAN CODING

Suppose we have a source alphabet with five letters
{a1,a2,a3,a4,a5} with probabilities of occurrence P(a1)
� 0.15, P(a2) � 0.04, P(a3) � 0.26, P(a4) � 0.05, and
P(a5) � 0.50. We can calculate the entropy to be

H � � �
5

i�1
P(ai) log P(ai) � 1.817684 bits

If we sort the probabilities in descending order we can
see that the two letters with the lowest probabilities are
a2 and a4. These will become the leaves on the lowest
level of the binary tree. The parent node of these
leaves will have a probability of 0.09. If we consider the
parent node as a letter in a reduced alphabet it will be
one of the two letters with the lowest probability: the
other one being a1. Continuing in this manner we get
the binary tree shown in Fig. 3. The code is

a1 110
a2 1111
a3 10
a4 1110
a5 0

It can be shown that, for a sequence of independent
letters, or a memoryless source, the rate of the Huff-
man code will always be within one bit of the entropy.

H � R � 1

In fact we can show that (Gallagher, 1978) if pmax is
the largest probability in the probability model, then

for pmax � 0.5 the upper bound for the Huffman code
is H(S) � pmax, while for pmax � 0.5, the upper bound
is H(S) � pmax � 0.086. If instead of coding each let-
ter separately we group the letters into blocks con-
taining n letters, then the rate is guaranteed to be
even closer to the entropy of the source. Using our
looser bound we can show that the bounds on the av-
erage length of the code will be

H � R � �
n
1

�

However, blocking letters together means an expo-
nential increase in the size of the alphabet. There-
fore, in many situations this particular approach is
not very practical.

2. Arithmetic Coding

Practical arithmetic coding came into existence in
1976 through the work of Risannen (1976) and Pasco
(1976). However, the basic ideas of arithmetic coding
have their origins in the original work of Shannon
(1948). (For a brief history see Sayood, 2000). Arith-
metic coding relies on the fact that there are an un-
countably infinite number of numbers between 0 and
1 (or any other nonzero interval on the real number
line). Therefore, we can assign a unique number from
the unit interval to any sequence of symbols from a fi-
nite alphabet. We can then encode the entire se-
quence with this single number which acts as a label
or tag for this sequence. In other words, this number
is a code for this sequence: a binary representation of
this number is a binary code for this sequence. Be-
cause this tag is unique, in theory, given the tag the
decoder can reconstruct the entire sequence. In or-
der to implement this idea we need a mapping from
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the sequence to the tag and an inverse mapping from
the tag to the sequence.

One particular mapping is the cumulative density
function of the sequence. Let us view the sequence to
be encoded as the realization of a sequence of ran-
dom variables {X1, X2, 			} and represent the set of all
possible realizations which have nonzero probability
of occurrence in lexicographic order by {Xi}. Given a
particular realization

Xk � xk,1,xk,2, 			

the cumulative distribution function FX(xk,1,xk,2, 			) is
a number between 0 and 1. Furthermore, as we are
only dealing with sequences with nonzero probability,
this number is unique to the sequence Xk. In fact, we
can uniquely assign the half-open interval [FX(Xk�1),
FX(Xk�1)) to the sequence Xk. Any number in this in-
terval, which we will refer to as the tag interval for Xk,
can be used as a label or tag for the sequence Xk. The
arithmetic coding algorithm is essentially the calcula-
tion of the end points of this tag interval. Before we
describe the algorithm for computing these end
points let us look at an example for a sequence of
manageable length.

Suppose we have an iid sequence with letters from
an alphabet A � {a1,a2,a3,a4}. The probability of oc-
currence of the letters are given by p0 � 0.3, p1 � 0.1,
p2 � 0.2, and p4 � 0.4. Ordering the letters from the
smallest to the largest index, we have FX(a1) � 0.3,
FX(a2) � 0.4, FX(a3) � 0.6, and FX(a4) � 1.0. We will
find the tag interval for the sequence a4,a1,a2,a4. We
begin with a sequence that consists of a single letter
a4. Given that FX(a4) � 1.0 and FX(a3) � 0.6, the tag
interval is [0.6,1.0). Now consider the two-letter se-
quence a4, a1. If we impose a lexicographic ordering,

FX1,X2(X1 � a4, X2 � a1)

� �
3

i�1
�
4

j�1
Pr[X1 � ai,X2 � aj] � Pr[X1 � a4,X2 � a1]

� FX(a3) � Pr[X1 � a4,X2 � a1]

� 0.6 � 0.4 
 0.3 � 0.72

The two-letter sequence prior to a4, a1 in the lexico-
graphic ordering is a3, a4. We can compute FX1,X2(X1

� a3,X2 � a4) � 0.6; therefore, the tag interval is
(0.6,0.72]. Another way of obtaining the tag interval
would be to partition the single letter tag interval
[0.6,1) in the same proportions as the partitioning of
the unit interval. As in the case of the unit interval,
the first subpartition would correspond to the letter
a1, the second subpartition would correspond to the

letter a2, and so on. As the second letter of the se-
quence under consideration is a1, the tag interval
would be the first subinterval, which is [0.6,0.72).
Note that the tag interval for the two-letter sequence
is wholly contained in the tag interval corresponding
to the first letter. Furthermore, note that the size of
the interval is p4p1 � 0.12. Continuing in this manner
for the three-letter sequence, we can compute
FX1,X2,X3(a4,a1,a2) � 0.672 and FX1,X2,X3(a4,a1,a1) �
0.648. Thus, the tag interval is (0.648,0.672]. Again
notice that the tag interval for the three letter se-
quence is entirely contained within the tag interval
for the two-letter sequence, and the size of the inter-
val has been reduced to p4p1p2 � 0.024. This pro-
gression is shown in Fig. 4. If we represent the upper
limit of the tag interval at time n by u(n) and the lower
limit by l(n), we can show that

l(n) � l(n�1) � (u(n�1) � l(n�1)) FX(xn � 1) (2)

u(n) � l(n�1) � (u(n�1) � l(n�1)) FX(xn). (3)

Notice that as the sequence length increases, the tag
interval is always a subset of the previous tag interval.
However, the number of digits required to represent
the tag intervals increases as well. This was one of the
problems with the initial formulation of arithmetic
coding. Another was the fact that you could not send
the code until the last element of the sequence was
encoded. Both these problems can be partially re-
solved by noting that if we use a binary alphabet, once
the interval is complete in either the upper or lower
half of the unit interval the most significant digits of
the upper and lower limits of the tag interval are iden-
tical. Furthermore, there is no possibility of the tag in-
terval migrating from the half of the unit interval in
which it is contained to the other half of the unit in-
terval. Therefore, we can send the most significant bit
of the upper and lower intervals as the tag for the se-
quence. At the same time we can shift the most sig-
nificant bit out of the upper and lower limits, effec-
tively doubling the size of the tag interval. Thus, each
time the tag interval is trapped in either the upper or
lower half of the unit interval, we obtain one more bit
of the code and we expand the interval. This way we
prevent the necessity for increasing precision as long
as the tag interval resides entirely within the top or bottom
half of the unit interval. We can also start transmitting
the code before the entire sequence has been en-
coded. We have to use a slightly more complicated
strategy when the tag interval straddles the midpoint
of the unit interval. We leave the details to Sayood
(2000).
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C. Sources with Memory

Throughout our discussion we have been assuming
that each symbol in a sequence occurs independently
of the previous sequence. In other words, there is no
memory in the sequence. Most sequences of interest to
us are not made up of independently occurring sym-
bols. In such cases an assumption of independence
would give us an incorrect estimate of the probability
of occurrence of that symbol, thus leading to an inef-
ficient code. By taking account of the dependencies
in the sequence we can significantly improve the
amount of compression available. Consider the letter
u in a piece of English text. The frequency of occur-
rence of the letter u occurring in a piece of English
text is approximately 0.018. If we had to encode the
letter u and we used this value as our estimate of the
probability of the letter, we would need approximately
log2 �

0.0
1
18
� � 6 bits. However, if we knew the previous

letter was q our estimate of the probability of the let-
ter u would be substantially more than 0.018 and thus
encoding u would require fewer bits. Another way of
looking at this is by noting that if we have an accurate
estimate of the probability of occurrence of particular
symbols we can obtain a much more efficient code. If
we know the preceding letter(s) we can obtain a more
accurate estimate of the probabilities of occurrence
of the letters that follow. Similarly, if we look at pixel
values in a natural image and assume that the pixels
occur independently, then our estimate of the proba-
bility of the values that each pixel could take on would
be approximately the same (and small). If we took
into account the values of the neighboring pixels, the

probability that the pixel under consideration would
have a similar value would be quite high. If, in fact,
the pixel had a value close to its neighbors, encoding
it in this context would require many fewer bits than
encoding it independent of its neighbors (Memon
and Sayood, 1995).

Shannon (1948) incorporated this dependence 
in the definition of entropy in the following manner.
Define

Gn � � �
i1�m

i1�m  
�

i2�m

i2�m
			 �

in�m

in�1

P(X1 � i1,X2 � i2, . . ., Xn � in)

log P(X1 � i1,X2 � i2,. . . ,Xn � in)

where {X1,X2, . . .,Xn} is a sequence of length n gen-
erated by a source S. Then the entropy of the source
is defined as

H(S) � lim
n→�

�
n
1

� Gn

There are a large number of compression schemes
that make use of this dependence.

D. Context-Based Coding

The most direct approach to using this dependence
is to code each symbol based on the probabilities pro-
vided by the context. If we are to sequentially encode
the sequence x1,x2, . . .,xn, we need � log �i�0

n�1

p(xi�1|x1,x2, . . .,xn) bits (Weinberger et al., 1995). The
history of the sequence makes up its context. In prac-
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Figure 4 Narrowing of the tag interval for the sequence a4a0a2a4.



tice, if we had these probabilities available they could
be used by an arithmetic coder to code the particular
symbol. To use the entire history of the sequence as
the context is generally not feasible. Therefore, the
context is made up of some subset of the history. It
generally consists of those symbols that our knowl-
edge of the source tells us will have an affect on the
probability of the symbol being encoded and which
are available to both the encoder and the decoder.
For example, in the binary image coding standard
JBIG, the context may consist of the pixels in the im-
mediate neighborhood of the pixel being encoded
along with a pixel some distance away which reflects
the periodicity in half-tone images. Some of the most
popular context-based schemes today are ppm (pre-
diction with partial match) schemes.

1. Prediction with Partial Match

In general, the larger the size of a context, the higher
the probability that we can accurately predict the sym-
bol to be encoded. Suppose we are encoding the
fourth letter of the sequence their. The probability of
the letter i is approximately 0.053. It is not substan-
tially changed when we use the single letter context e,
as e is often followed by most letters of the alphabet.
In just this paragraph it has been followed by d, i, l,
n, q, r, t, and x. If we increase the context to two let-
ters he, the probability of i following he increases. It in-
creases even more when we go to the three-letter con-
text the. Thus, the larger the context, the better off we
usually are. However, all the contexts and the proba-
bilities associated with the contexts have to be avail-
able to both the encoder and the decoder. The num-
ber of contexts increases exponentially with the size
of the context. This puts a limit on the size of the con-
text we can use. Furthermore, there is the matter of
obtaining the probabilities relative to the contexts.
The most efficient approach is to obtain the frequency
of occurrence in each context from the past history
of the sequence. If the history is not very large, or the
symbol is an infrequent one, it is quite possible that
the symbol to be encoded has not occurred in this
particular context.

The ppm algorithm initially proposed by Cleary and
Witten (1984) starts out by using a large context of
predetermined size. If the symbol to be encoded has
not occurred in this context, an escape symbol is sent
and the size of the context is reduced. For example,
when encoding i in the example above we could start
out with a context size of three and use the context
the. If i has not appeared in this context, we would
send an escape symbol and use the second order con-

text he. If i has not appeared in this context either, we
reduce the context size to one and look to see how of-
ten i has occurred in the context of e. If this is zero,
we again send an escape and use the zero order con-
text. The zero order context is simply the frequency
of occurrence of i in the history. If i has never oc-
curred before, we send another escape symbol and
encode i, assuming an equally likely occurrence of
each letter of the alphabet.

We can see that if the symbol has occurred in the
longest context, it will likely have a high probability
and will require few bits. However, if it has not, we pay
a price in the shape of the escape symbol. Thus, there
is a tradeoff here. Longer contexts may mean higher
probabilities or a long sequence of escape symbols.
One way out of this has been proposed by Cleary and
Teahan (1997) under the name ppm*. In ppm* we
look at the longest context that has appeared in the
history. It is very likely that this context will be fol-
lowed by the symbol we are attempting to encode. If
so, we encode the symbol with very few bits. If not, we
drop to a relatively short context length and continue
with the standard ppm algorithm. There are a number
of variants of the ppm* algorithm, with the most pop-
ular being ppmz developed by Bloom. It can be found
at http://www.cbloom.com/src/ppmz.html.

E. Predictive Coding

If the data we are attempting to compress consists of
numerical values, such as images, using context-based
approaches directly can be problematic. There are
several reasons for this. Most context-based schemes
exploit exact reoccurrence of patterns. Images are
usually acquired using sensors that have a small
amount of noise. While this noise may not be per-
ceptible, it is sufficient to reduce the occurrence of
exact repetitions of patterns. A simple alternative to
using the context approach is to generate a predic-
tion for the value to be encoded and encode the pre-
diction error. If there is considerable dependence
among the values with high probability, the predic-
tion will be close to the actual value and the predic-
tion error will be a small number. We can encode this
small number, which as it occurs with high probabil-
ity will require fewer bits to encode. An example of
this is shown in Fig. 5. The plot on the left of Fig. 5 is
the histogram of the pixel values of the sensin image,
while the plot on the right is the histogram of the dif-
ferences between neighboring pixels. We can see that
the small differences occur much more frequently
and therefore can be encoded using fewer bits. As 
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opposed to this, the actual pixel values have a much
more uniform distribution.

Because of the strong correlation between pixels in
a neighborhood, predictive coding has been highly
effective for image compression. It is used in the cur-
rent state-of-the-art algorithm CALIC (Wu and
Memon, 1996) and forms the basis of JPEG-LS, which
is the standard for lossless image compression.

1. JPEG-LS

The JPEG-LS standard uses a two-stage prediction
scheme followed by a context-based coder to encode
the difference between the pixel value and the pre-
diction. For a given pixel the prediction is generated
in the following manner. Suppose we have a pixel
with four neighboring pixels as shown in Fig. 6. The
initial prediction X is obtained as

if NW � max(W,N)
X � max(W,N)
else
{

if NW � min(W,N)
X � min(W,N)
else
X � W � N � NW

}

This prediction is then refined by using an estimate
of how much the prediction differed from the actual
value in similar situations in the past. The “situation”
is characterized by an activity measure which is ob-
tained using the differences of the pixels in the neigh-
borhood. The differences NE � N, N � NW, and NW
� W are compared against thresholds which can be
defined by the user and a number between 0 and 364
and a SIGN parameter which takes on the values �1
and �1. The sign parameter is used to decide whether
the correction should be added or subtracted from
the original prediction. The difference between the
pixel value and its prediction is mapped into the range
of values occupied by the pixel and encoded using
Golomb codes. For details, see Sayood (2000) and
Weinberger et al. (1998).

2. Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) uses the
memory in a sequence in a somewhat different man-
ner than either of the two techniques described pre-
viously. In this technique the entire sequence to be
encoded is read in and all possible cyclic shifts of the
sequence are generated. These are then sorted in lex-
icographic order. The last letter of each sorted cycli-
cally shifted sequence is then transmitted along with
the location of the original sequence in the sorted
list. The sorting results in long sequences of identical
letters in the transmitted sequence. This structure can
be used to provide a very efficient representation of
the transmitted sequence. The easiest way to under-
stand the BWT algorithm is through an example.

EXAMPLE: BWT
Suppose we wish to encode the sequence

RINTINTIN. We first obtain all cyclical shifts of this se-
quence and then sort them in lexicographic order as
shown in Fig. 7.

We transmit the string consisting of the last letters
in the lexicographically ordered set and the position
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Figure 6 Labeling of pixels in the neighborhood of a pixel to
be encoded.



of the original string in the lexicographically ordered
set. For this example the transmitted sequence would
be the string TTRIIINNN and the index 7. Notice that
the string to be transmitted contains relatively long
strings of the same letter. If our example string had
been realistically long, the runs of identical letters
would have been correspondingly long. Such a string
is easy to compress. The method of choice for BWT is
move-to-front coding (Burrows and Wheeler, 1994;
Nelson, 1996; Sayood, 2000).

Once the string and the index have been received,
we decode them by working backwards. We know the
last letter in the string is its seventh element which is N.
To find the letter before N we need to generate the
string containing the first letters of the lexicographi-
cally ordered set. This can be easily obtained as II-
INNNRTT by lexicographically ordering the received
sequence. We will refer to this sequence of first letters
as the F sequence and the sequence of last letters as the
L sequence. Note that given a particular string and its
cyclic shift, the last letter of the string becomes the first
letter of the cyclically shifted version, and the last letter
of the cyclically shifted version is the letter prior to the
last letter in the original sequence. Armed with this fact
and the knowledge of where the original sequence was
in the lexicographically ordered set, we can decode the
received sequence. We know the original sequence was
seventh in the lexicographically ordered set; therefore,
the last letter of the sequence has to be N. This is the
first N in L. Looking in F we see that the first N appears
in the fourth location. The fourth element in L is I.
Therefore, the letter preceding N in our decoded se-
quence is I. This I is the first I in L; therefore, we look
for the first I in F. The first I occurs in the first location.
The letter in the first location in L is T. Therefore, the
decoded sequence becomes TIN. Continuing in this
fashion we can decode the entire sequence.

The BWT is the basis for the compression utilities bzip
and bzip2. For more details on BWT compression, see
Burrows and Wheeler (1994), Nelson and Gailly
(1996), and Sayood (2000).

F. Dictionary Coding

One of the earliest forms of compression is to create
a dictionary of commonly occurring patterns which is
available to both the encoder and the  decoder. When
this pattern occurs in a sequence to be encoded it can
be replaced by the index of its entry in the dictionary.
A problem with this approach is that a dictionary that
works well for one sequence may not work well for an-
other sequence. In 1977 and 1978, Jacob Ziv and Abra-
ham Lempel (1977, 1978) described two different ways
of making the dictionary adapt to the sequence being
encoded. These two approaches form the basis for
many of the popular compression programs of today.

1. LZ77

The 1977 algorithm commonly referred to as LZ77
uses the past of the sequence as the dictionary. When-
ever a pattern recurs within a predetermined window,
it is replaced by a pointer to the beginning of its pre-
vious occurrence and the length of the pattern. Con-
sider the following (admittedly weird) sequence:

a mild fork for miles vorkosigan

We repeat this sentence in Fig. 8 with recurrences re-
placed by pointers. If there were sufficient recurrences
of long patterns, we can see how this might result in
a compressed representation. In Fig. 8 we can see that
the “compressed” representation consists of both
pointers and fragments of text that have not been en-
countered previously. We need to inform the decoder
when a group of bits is to be interpreted as a pointer
and when it is to be interpreted as text. There are a
number of different ways in which this can be done.
The original LZ77 algorithm used a sequence of
triples <o,l,c> to encode the source output, where o is
the offset or distance to the previous recurrence, l is
the length of the pattern, and c corresponds to the
character following the recurrence. In this approach
when a symbol was encountered for the first time (in
the encoding window) the values for o and l were set
to 0. Storer and Syzmanski (1982) suggested using a
one bit flag to differentiate between pointers and sym-
bols which had not occurred previously in the coding
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Figure 7 Cyclically shifted versions of the original sequence
and lexicographically order set of the cyclical shifts.
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Figure 8 Illustration for LZ77.



window. In their variant, commonly known as LZSS,
the one bit flag is followed by either a pair (<o,l>) or
the code word of the new symbol. There are a num-
ber of variants of both the LZ77 and the LZSS algo-
rithms which are the basis for several popularly used
compression utilities. Included among them are gzip
and PNG (portable network graphics).

2. LZ78

The 1978 algorithm requires actually building a dy-
namic dictionary based on the past symbols in the se-
quence. The sequence is encoded using pairs of code
words <i,c>, where i is the index to a pattern in the
dictionary and c is the code word of the character fol-
lowing the current symbol. The most popular variant
of the LZ78 algorithm is the LZW algorithm devel-
oped by Terry Welch (1984). In this variation the dic-
tionary initially contains all the individual letters of
the source alphabet. The encoder operates on the se-
quence by collecting the symbols in the sequence into
a pattern p until such time as the addition of another
symbol  will result in a pattern which is not con-
tained in the dictionary. The index to p is then trans-
mitted, the pattern p concatenated with  is added as
the next entry in the dictionary, and a new pattern p
is begun with  as the first symbol.

Variants of the LZW algorithm are used in the UNIX
compress command as part of the graphic interchange
format (GIF) and for the modem protocol v. 42bis.

III. LOSSY COMPRESSION

The requirement that no information be lost in the
compression process puts a limit on the amount of com-
pression we can obtain. The lowest number of bits per
sample is the entropy of the source. This is a quantity
over which we generally have no control. In many ap-
plications this requirement of no loss is excessive. For
example, there is high-frequency information in an im-
age which cannot be perceived by the human visual sys-
tem. It makes no sense to preserve this information for
images that are destined for human consumption. Sim-
ilarly, when we listen to sampled speech we cannot per-
ceive the exact numerical value of each sample. There-
fore, it makes no sense to expend coding resources to
preserve the exact value of each speech sample. In
short, there are numerous applications in which the
preservation of all information present in the source
output is not necessary. For these applications we relax
the requirement that the reconstructed signal be iden-
tical to the original. This allows us to create compres-

sion schemes that can provide a much higher level of
compression. However, it should be kept in mind that
we generally pay for higher compression by increased
information loss. Therefore, we measure the perfor-
mance of the compression system using two metrics. We
measure the amount of compression as before; how-
ever, we also measure the amount of distortion intro-
duced by the loss of information. The measure of dis-
tortion is generally some variant of the mean squared
error. If at all possible, it is more useful to let the ap-
plication define the distortion.

In this section we describe a number of compres-
sion techniques that allow loss of information, hence
the name lossy compression. We begin with a look at
quantization which, in one way or another, is at the
heart of all lossy compression schemes.

A. Quantization

Quantization is the process of representing the out-
put of a source with a large (possibly infinite) alpha-
bet with a small alphabet. It is a many-to-one mapping
and therefore irreversible. Quantization can be per-
formed on a sample-by-sample basis or it can be per-
formed on a group of samples. The former is called
scalar quantization and the latter is called vector quan-
tization. We look at each in turn.

1. Scalar Quantization

Let us, for the moment, assume that the output al-
phabet of the source is all or some portion of the real
number line. Thus, the size of the source alphabet is
infinite. We would like to represent the source output
using a finite number of code words M. The quantizer
consists of two processes: an encoding process that
maps the output of the source into one of the M code
words, and a  decoding process that maps each code
word into a reconstruction value. The encoding
process can be viewed as a partition of the source al-
phabet, while the decoding process consists of ob-
taining representation values for each partition. An
example for a quantizer with an alphabet size of four
is shown in Fig. 9. If the quantizer output alphabet in-
cludes 0, the quantizer is called a midtread quantizer.
Otherwise, it is called a midrise quantizer.

The simplest case is when the partitions are of the
same size. Quantizers with same size partitions are
called uniform quantizers. If the source is uniformly dis-
tributed between �A and A, the size of the partition
or quantization interval � is 2A/M. The reconstruc-
tion values are located in the middle of each quanti-
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zation interval. If we define the difference between
the input x and the output Q(x) to be the quantiza-
tion noise, we can show that the variance of the quan-
tization noise in this situation is �2/12. If the distrib-
ution of the source output is other than uniform, we
can optimize the value of � for the particular distrib-
ution (Gersho and Gray, 1991; Max, 1960).

Often, the distribution of the quantizer input is a
peaked distribution modeled as a Gaussian or Laplacian
distribution. If the encoder is going to use a fixed length
code, that is, each quantizer output is encoded using the
same number of bits, we can get a lower average distor-
tion if we use smaller partitions corresponding to the
lower value inputs. Such a quantizer is called a nonuni-
form quantizer and is specified by the boundary values of
the partition bi and the reconstruction levels yi. If we
know the probability density function fX(x), the bound-
ary and reconstruction values for an M-level quantizer
which minimizes the mean squared error can be ob-
tained by iteratively solving the following equations.

yj �

�bj

bj�1
xfX(x)dx}

�bj

bj�1
fX(x)dx

(4)

bj � (5)

Rather than changing the size of the quantization in-
tervals, we can also implement a nonuniform quan-
tizer as shown in Fig. 10. The high-probability input

yj�1 � yj�
2

region is “spread out” so as to make use of multiple
quantization intervals. The mapping is reversed after
the quantizer. For a companding function c(x) and a
source which lies between �xmax, the variance of the
quantization noise is

�q
2 � �xmax

�xmax
dx. (6)

If a variable length code such as a Huffman code or
arithmetic coding is used to encode the output of the
quantizer, Gish and Pierce (1968) showed that the opti-
mum quantizer is a uniform quantizer which covers the
entire range of the source output. If the range is large
and our desired distortion is small, the number of quan-
tizer levels can become quite large. In these situations we
can use a quantizer with a limited output alphabet called
a recursively indexed quantizer (Sayood and Na, 1992).

The JPEG algorithm uses a set of uniform scalar
quantizers for quantizing the coefficients used to rep-
resent the image. The quantizer levels are then en-
coded using a variable length code.

2. Vector Quantization

The idea of representing groups of samples rather
than individual samples has been present since Shan-
non’s original papers (1948). There are several ad-
vantages to representing sequences. Consider the sam-
ples of the signal shown in Fig. 11. The values vary
approximately between �4 and 4. We could quantize
these samples with an eight-level scalar quantizer with
� � 1. So the reconstruction values would be {��

1
2

�, ��
3
2

�,
��

5
2

�, ��
7
2

�}. If we were to use a fixed length code we
would need three bits to represent the eight quan-
tizer outputs. If we look at the output of the quantizer
in pairs, we get 64 possible reconstruction values.
These are represented by the larger filled circles in
Fig. 12. However, if we plot the samples of the signal
as pairs (as in Fig. 13) we see that the samples are
clustered along a line in the first and third quadrants.
This is due to the fact that there is a high degree of
correlation between neighboring samples, which
means that in two dimensions the samples will cluster

fX(x)
�
(c�(x))2

x2
max�

3M2
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Figure 9 Quantizer with alphabet size of four.

Figure 10 Companded quantization.



around the y � x line. Looking from a two-dimen-
sional point of view, it makes much more sense to
place all the 64 output points of the quantizer close
to the y � x line. For a fixed length encoding, we
would need six bits to represent the 64 different quan-
tizer outputs. As each quantizer output is a represen-
tation of two samples, we would end up with three bits
per sample. Therefore, for the same number of bits,
we would get a more accurate representation of the
input and, therefore, incur less distortion. We pay for
this decrease in distortion in several different ways.
The first is through an increase in the complexity of
the encoder. The scalar quantizer has a very simple
encoder. In the case of the two-dimensional quan-

tizer, we need to block the input samples into “vec-
tors” and then compare them against all the possible
quantizer output values. For three bits per sample
and two dimensions this translates to 64 possible com-
pares. However, for the same number of bits and a
block size, or vector dimension, of 10, the number of
quantizer outputs would be 23
10 which is
1,073,741,824! As it generally requires a large block
size to get the full advantage of a vector quantizer, this
means that the rate at which a vector quantizer (VQ)
operates (i.e., bits per sample) is usually quite low.

The second way we pay is because of the fact that
the quantizer becomes tuned to our assumptions
about the source. For example, if we put all our quan-
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Figure 11 Samples of a signal.
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Figure 12 Two-dimensional view of an eight-level scalar 
quantizer.

Figure 13 Two-dimensional view of an eight-level scalar 
quantizer.



tizer output values along the y � x line and then we
started getting input vectors which lay in the second
or fourth quadrants, we would end up with substan-
tial distortion in the reconstruction.

The operation of a VQ can be summarized as fol-
lows (see Fig. 14). Both the encoder and the decoder
have copies of the VQ codebook. The codebook con-
sists of the quantizer reconstruction vectors. The en-
coder blocks the input into an N sample vector and
finds the vector in the codebook which is closest (usu-
ally in the Euclidean sense) to the input. The encoder
then sends the index of the closest match. The de-
coder, upon receiving the index, performs a table
lookup and obtains the reconstruction vector.

The VQ codebook is usually obtained using a clus-
tering algorithm popularized by Linde, Buzo, and
Gray (1980). It is generally referred to by the initials
of the three authors (LBG). The LBG algorithm ob-
tains a nearest neighbor partition of the source out-
put space by making use of a training set. Selection
of the training set can be an important aspect of the
design of the VQ as it embodies our assumptions
about the source output. Details of the LBG algo-
rithm can be found in a number of places (see 
Gersho and Gray, 1991; Linde, Buzo, and Gray, 1980;
Sayood, 2000).

There are a number of variations on the basic VQ
described above. The most well known is the tree
structured vector quantizer (TSVQ). Details on these
can be found in Gersho and Gray (1991).

B. Predictive Coding

If we have a sequence with sample values that vary
slowly as in the signal shown in Fig. 11, knowledge
of the previous samples gives us a lot of information
about the current sample. This knowledge can be
used in a number of different ways. One of the ear-
liest attempts at exploiting this redundancy was in

the development of differential pulse code modula-
tion (DPCM) (Cutler, 1952). A version of DPCM is
the algorithm used in the International Telecom-
munication Union (ITU) standard G.726 for speech
coding.

The DPCM system consists of two blocks as shown
in Fig. 15. The function of the predictor is to obtain
an estimate of the current sample based on the recon-
structed values of the past sample. The difference be-
tween this estimate, or prediction, and the actual value
is quantized, encoded, and transmitted to the receiver.
The decoder generates an estimate identical to the
encoder, which is then added on to generate the re-
constructed value. The requirement that the predic-
tion algorithm use only the reconstructed values is to
ensure that the prediction at both the encoder and
the decoder are identical. The reconstructed values
used by the predictor, and the prediction algorithm,
are dependent on the nature of the data being en-
coded. For example, for speech coding the predictor
often uses the immediate past several values of the se-
quence, along with a sample that is a pitch period
away, to form the prediction. In image compression
the predictor may use the same set of pixels used by
the JPEG-LS algorithm to form the prediction.

The predictor generally used in a DPCM scheme is
a linear predictor. That is, the predicted value is ob-
tained as a weighted sum of past reconstructed values.

pn � �
i�I

ai xi

where I is an index set corresponding to the samples
to be used for prediction. The coefficients ai are gen-
erally referred to as the predictor coefficients. If we as-
sume the source output to be wide sense stationary, the
predictor coefficients can be obtained as a solution of
the discrete form of the Weiner-Hopf equations

A � R�1P

where A is an M 
 1 vector of predictor coefficients, 
R is the M 
 M autocorrelation matrix of the set of
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samples used to form the prediction, and P is the M 

1 vector of autocorrelation coefficients between the el-
ements of the index set and the value to be estimated.

Both the quantizer and the predictor in the DPCM
system can be adaptive. The most common form of
adaptivity for DPCM in speech coding is based on the
reconstruction values. This allows both the encoder
and the decoder, in the absence of channel errors, to
adapt using the same information.

In Fig. 16 we show the results of encoding the sensin
image using a simple fixed predictor and a recursively
indexed quantizer with entropy coding.

C. Transform Coding

Transform coding first became popular in the early
1970s as a way of performing vector quantization
(Huang and Schultheiss, 1963). Transform coding
consists of three steps. The data to be compressed is
divided into blocks, and the data in each block is
transformed to a set of coefficients. The transform is

selected to compact most of the energy into as few co-
efficients as possible. The coefficients are then quan-
tized with different quantizers for each coefficient. Fi-
nally, the quantizer labels are encoded.

Transform coding generally involves linear trans-
forms. Consider the situation where the data is
blocked into vectors of length M. The transform co-
efficients can be obtained by multiplying the data
with a transform matrix of dimension M 
 M.

� � AX

where X is a vector of size M 
 1 containing the data,
and � is the M 
 1 vector of transform coefficients. The
data can be recovered by taking the inverse transform:

X � A�1�

In most transforms of interest the transform matrix is
unitary, that is,

A�1 � AT

If the data is stationary we can show that the optimum
transform in terms of providing the most energy com-
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Figure 15 Block diagram of a DPCM system.

Figure 16 (a) The original sensin image and (b) the sensin image coded at one bit per pixel using DPCM and the
recursively indexed quantizer.



paction is the Karhunen-Loeve transform (KLT). The
KLT transform matrix is constructed from the eigen-
vectors of the autocorrelation matrix. Therefore, the
transform is data dependent. Different sets of data might
require different transform matrices. In practice, unless
the size of the transform is small relative to the data, it
generally costs too many bits to send the transform ma-
trix to the decoder for the KLT to be feasible. The prac-
tical alternative to the KLT has been the discrete cosine
transform (DCT). The DCT provides comparable com-
pression to the KLT for most sources and has a fixed
transform matrix whose elements are given by:

[A]i,j �
��

M
1
�� cos �(2j �

2M
1)i�
� i � 0, j � 0,1,			, M � 1

��
M
2
�� cos �(2j �

2M
1)i�}
� i � 1,2,			, M � 1, 

(7)

j � 0,1,			, M � 1

The rows of the transform matrix are shown in graph-
ical form in Fig. 17. We can see that the rows repre-
sent signals of increasing frequency. Thus, the DCT
breaks the signal up into its frequency components.
As most natural sources, such as speech, have higher
low-frequency content the lower order coefficients
usually contain most of the information about a par-
ticular block. We obtain compression by discarding
those coefficients which contain little or no energy.

When coding two-dimensional sources such as im-
ages, most transform coding schemes use separable

transforms. These are transforms which can be imple-
mented by first taking the transform of the rows and
then taking the transform of the columns (or vice
versa). The popular JPEG image compression standard
uses a separable 8 
 8 DCT as its transform. The im-
age is divided into 8 
 8 blocks. These blocks are then
transformed to obtain 8 
 8 blocks of coefficients.

The coefficients have different statistical character-
istics and may be of differing importance to the end
user. Therefore, they are quantized using different
quantizers. In image compression the lower order co-
efficients are more important in terms of human per-
ception and are therefore quantized using quantizers
with smaller step sizes (and hence less quantization
noise) than the higher order, higher frequency coef-
ficients. A sample set of step sizes recommended by
the JPEG committee (Pennebaker and Mitchell, 1993)
is shown in Fig. 18.

Each quantized value Q(�i,j) is represented by a label

li,j �  � .5
where Qij is the step size in the ith row and jth column
and   indicates truncation to an integer value. The
reconstruction is obtained from the label by multi-
plying it with the step size.

The final step involves coding the quantization 
levels. The JPEG image compression standard uses a

�ij�
Qij
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Figure 17 Basis set for the DCT. The numbers in the circles correspond to the row of the transform matrix.



minor variation of a scheme by Chen and Pratt (1984).
The lowest order coefficient, commonly referred to as
the DC coefficient, has been found to be correlated
from block to block. It is therefore coded differen-
tially. The remaining coefficients are scanned in zigzag
order as shown in Fig. 19. As most of the higher fre-
quency coefficients are generally small and the step
sizes used to quantize them are relatively large, most
of the labels at the tail end of the scan are zero. We
take advantage of this fact by sending an end of block
symbol after the last nonzero label on the scan. Thus,
a large number of coefficients are represented using
a single code word. We represent the remaining co-
efficients using a code which is indexed by the mag-
nitude of the coefficient and the number of zero val-
ued labels preceding it. Details of the coding can be
found in a number of places including Pennebaker
and Mitchell (1993) and Sayood (2000).

In Fig. 20 we show the sensin image coded at 0.5
bits per pixel using JPEG.

D. Subband/Wavelet Coding

Transform coding at low rates tends to give the re-
constructed image a blocky appearance. The image in
Fig. 21 has been coded at 0.25 bits per pixel using the
JPEG algorithm. The blocky appearance is clearly ap-
parent. This has led to the increasing popularity of
subband and wavelet-based schemes. The implemen-
tation for both subband and wavelet-based schemes is
similar. The input is filtered through a bank of filters,
called the analysis filterbank. The filters cover the en-
tire frequency range of the signal. As the bandwidth
of each filter is only a fraction of the bandwidth of the
original signal, the Nyquist criterion dictates that the
number of samples required at the output of the fil-
ter be less than the number of samples per second re-
quired at the input of the filter. The output of the fil-
ters is subsampled or decimated and encoded. The
decimated output values are quantized, and the quan-
tization labels are encoded. At the decoder, after the
received samples are decoded they are upsampled by
the insertion of zeros between the received samples
and filtered using a bank of reconstruction filters. A
two-band subband coding scheme is shown in Fig. 22.
The major components of the design of subband cod-
ing schemes are the selection of the filters and the en-
coding method used for the subbands. In order to de-
termine the latter, it may be necessary to allocate a
predetermined bit budget between the various bands.

Notice that in the system shown in Fig. 22 if the fil-
ters are not ideal filters then at least one of the two
analysis filters will have a bandwidth greater than half
the bandwidth of the source output. If the source is
initially sampled at the Nyquist rate, then when we
subsample by two that particular filter output will ef-
fectively be sampled at less the Nyquist rate, thus in-
troducing aliasing. One of the objectives of the design
of the analysis and synthesis filterbanks is to remove
the effect of aliasing.

If we ignore the quantization and coding for the
moment, we can determine conditions on the analy-
sis and synthesis filterbanks such that the reconstruc-
tion is a delayed version of the source output. If we
represent the samples of the source sequence by x(n)
and the reconstruction sequence by x(n), then this re-
quirement known as the perfect reconstruction (PR) re-
quirement can be written as

x(n) � cx(n � n0) (8)

where c is a constant. In terms of the Z transforms of
the sequences, we can write the PR requirement as

X(z) � cz�n0X(z) (9)
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Figure 18 Sample quantization table.

Figure 19 The zigzag scanning pattern for an 8 
 8 
transform.



Let H1(z) and H2(z) be the transfer functions for the
analysis filters and K1(z) and K2(z) be the transfer
functions of the synthesis filters. Then we can show
(Sayood, 2000) that

X(z) � �
1
2

� [H1(z)K1(z) � H2(z)K2(z)]X(z)

� �
1
2

� [H1(�z)K1(z) � H2(�z)K2(z)]X(�z) (10)

Examining this equation we can see that in order for
the perfect reconstruction condition to be satisfied,
we need

H1(�z)K1(z) � H2(�z)K2(z) � 0 (11)

H1(z)K1(z) � H2(z)K2(z) � cz�n0 (12)

The first equation is satisfied if we pick the synthesis
filters as

K1(z) � �H2(z) (13)

K2(z) � H1(�z) (14)

To satisfy the second equation we can select H2(z) as
(Mintzer, 1985; Smith and Barnwell, 1984)

H2(z) � z�N H1(�z�1) (15)

Thus, all four filters can be expressed in terms of one
prototype filter. We can show that this prototype filter
should have an impulse response satisfying

�
N

k�0
hkhk�2n � �n (16)

We can arrive at the same requirement on the filter
coefficients using a wavelet formulation. Once we
have obtained the coefficients for the filters, the com-
pression approach using wavelets is similar. After the
source output has been decomposed the next step is
the quantization and coding of the coefficients. The
two most popular approaches to quantization and
coding for image compression are the embedded ze-
rotree (EZW) (Shapiro, 1993) and the set partition-
ing in hierarchical trees (SPIHT) (Said and Pearl-
man, 1996) approaches.

Both these approaches make use of the fact that
there is a relationship between the various subbands.
A natural image is essentially a low-pass signal. There-
fore, most of the energy in a wavelet or subband de-
composition is concentrated in the LL band. One ef-
fect of this is that if the coefficient representing a
particular pixel in the LL band is less than a specified
threshold, the coefficients corresponding to the same
pixel in the other bands will also have a magnitude
smaller than that threshold. Thus, during coding we
can scan the coefficients in the LL band first and
compare them against a sequence of decreasing
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Figure 20 (a) The original sensin image and (b) the sensin image coded at 0.5 bits per pixel using JPEG.

Figure 21 The sensin image coded at 0.25 bits per pixel using
JPEG.



thresholds. If the coefficient is less than the threshold
we can check to see if the corresponding coefficients
in the other bands are also less than this threshold.
This information is then transmitted to the decoder.
If the coefficients in the other band are also less than
the threshold this is a highly efficient code. Note that
the efficiency is dependent on the image being low
pass. For more high-pass images, such as remotely
sensed images, this strategy is not very effective.

In Fig. 23 we have the sensin image coded at rates
of 0.5 bits per pixel and 0.25 bits per pixel using the
SPIHT algorithm. Comparing the 0.25 bits per pixel
reconstruction to Fig. 21 we can see the absence of
blockiness. However, there are different artifacts that
have taken the place of the blockiness. Neither re-
construction is very good at this rate.

A descendant of these techniques, known as
EBCOT (Taubman, 2000), is the basis for the new
JPEG 2000 image compression standard. Detailed in-
formation about these techniques can be found in
Said and Pearlman (1996), Sayood (2000), and
Shapiro (1993).

E. Analysis-Synthesis Schemes

When possible, one of the most effective means of
compression is to transmit instructions on how to re-
construct the source rather than transmitting the
source samples. In order to do this we should have a
fairly good idea about how the source samples were
generated. One particular source for which this is
true is human speech.

Human speech can be modeled as the output of a
linear filter which is excited by either white noise or
a periodic input or a combination of the two. One of
the earliest modern compression algorithms made
use of this fact to provide a very high compression of
speech. The technique, known as linear predictive
coding, has its best known embodiment in the (now
outdated) U.S. Government standard LPC-10. Some
of the basic aspects of this standard are still alive, al-
beit in modified form in today’s standards.

The LPC-10 standard assumes a model of speech
pictured in Fig. 24. The speech is divided into frames.
Each frame is classified as voiced or unvoiced. For the
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Figure 22 A two-band subband coding scheme.

Figure 23 The sensin image coded at (a) 0.5 bits per pixel and (b) 0.25 bits per pixel using SPIHT.



voiced speech the pitch period for the speech sample
is extracted. The parameters of the vocal tract filter
are also extracted and quantized. All this information
is sent to the decoder. The decoder synthesizes the
speech samples yn as

yn � �
M

i�1
biyn�i � G�n (17)

where {bi} is the coefficient of the vocal tract filter. The
input to the filter, the sequence {�n}, is either the out-
put of a noise generator or a periodic pulse train,
where the period of the pulse train is the pitch period.

Since the introduction of the LPC-10 standard there
has been a considerable increase in the sophistication
of speech coders. In code excited linear prediction
(CELP) the vocal tract filter is excited by elements of
an excitation codebook. The entries of the codebook
are used as input to a vocal filter of the form

yn � �
10

i�1
biyn�i � �yn�P � G�n (18)

where P is the pitch period. The synthesized speech
is compared with the actual speech, and the code-
book entry that provides the closest perceptual match
is selected. The index for this entry is sent to the de-
coder along with the vocal tract filter parameters.

Mixed excitation linear prediction (MELP) uses a
somewhat more complex approach to generating the
excitation signal. The input is subjected to a multi-
band voicing analysis using five filters. The results of
the analysis are used with a complex pitch detection
strategy to obtain a rich excitation signal.

F. Video Compression

Currently, the source that requires the most resources
in terms of bits and, therefore, has benefitted the most
from compression is video. We can think of video as a
sequence of images. With this view video compression
becomes repetitive image compression and we can

compress each frame separately. This is the point of
view adopted by M-JPEG, or motion JPEG, in which
each frame is compressed using the JPEG algorithm.

However, we know that in most video sequences
there is a substantial amount of correlation between
frames. It is much more efficient to send differences
between the frames rather than the frames themselves.
This idea is the basis for several international stan-
dards in video compression. In the following we briefly
look at some of the compression algorithms used in
these standards. Note that the standards contain much
more than just the compression algorithms.

The ITU H.261 and its descendant ITU H.2631 are
international standards developed by the ITU, which
is a part of the United Nations organization. A block
diagram of the H.261 video coding algorithm is shown
in Fig. 25. The image is divided into blocks of size 8

 8. The previous frame is used to predict the values
of the pixels in the block being encoded. As the ob-
jects in each frame may have been offset from the pre-
vious frame, the block in the identical location is not
always used. Instead the block of size 8 
 8 in the pre-
vious frame which is closest to the block being en-
coded in the current frame is used as the predicted
value. In order to reduce computations the search
area for the closest match is restricted to lie within a
prescribed region around the location of the block
being encoded. This form of prediction is known as
motion compensated prediction. The offset of the block
used for prediction from the block being encoded is
referred to as the motion vector and is transmitted to
the decoder. The loop filter is used to prevent sharp
transitions in the previous frame from generating
high frequency components in the difference.

The difference is encoded using transform coding.
The DCT is used followed by uniform quantization.
The DC coefficient is quantized using a scalar quan-
tizer with a step size of 8. The other coefficients are
quantized with 1 of 31 other quantizers, all of which
are midtread quantizers, with step sizes between 2
and 62. The selection of the quantizer depends in
part on the availability of transmission resources. If
higher compression is needed (fewer bits available),
a larger step size is selected. If less compression is ac-
ceptable, a smaller step size is selected. The quantiza-
tion labels are scanned in a zigzag fashion and en-
coded in a manner similar to (though not the same
as) JPEG.
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Figure 24 Speech synthesis model used by LPC-10.

1Originally published in 1996; an update published in 1998 is
commonly referred to as H.263�.



The coding algorithm for ITU-T H.263 is similar to
that used for H.261 with some improvements. The im-
provements include:

• Better motion compensated prediction
• Better coding
• Increased number of formats
• Increased error resilience

There are a number of other improvements that are
not essential for the compression algorithm. As men-
tioned before, there are two versions of H.263. As the
earlier version is a subset of the latter one; we only de-
scribe the later version.

The prediction is enhanced in H.263 in a number
of ways. By interpolating between neighboring pixels
in the frame being searched, a “larger image” is cre-
ated. This essentially allows motion compensation dis-
placement of half pixel steps rather than integer num-
ber of pixels. There is an unrestricted motion vector
mode that allows references to areas outside the pic-
ture, where the outside areas are generated by dupli-
cating the pixels at the image boundaries. Finally, in
H.263� the prediction can be generated by a frame
that is not the previous frame. An independent seg-
ment decoding mode allows the frame to be broken
into segments where each segment can be decoded
independently. This prevents error propagation and

also allows for greater control over quality of regions
in the reconstruction. The H.263 standard also allows
for bidirectional prediction.

As the H.261 algorithm was designed for video-
conferencing, there was no consideration given to the
need for random access. The MPEG standards incor-
porate this need by requiring that at fixed intervals a
frame of an image be encoded without reference to
past frames. The MPEG-1 standard defines three dif-
ferent kinds of frames: I frames, P frames, and B
frames. An I frame is coded without reference to pre-
vious frames, that is, no use is made of prediction
from previous frames. The use of the I frames allows
random access. If such frames did not exist in the
video sequence, then to view any given frame we would
have to decompress all previous frames, as the recon-
struction of each frame would be dependent on the
prediction from previous frames. The use of periodic
I frames is also necessary if the standard is to be used
for compressing television programming. A viewer
should have the ability to turn on the television (and
the MPEG decoder) at more or less any time during
the broadcast. If there are periodic I frames available,
then the decoder can start decoding from the first I
frame. Without the redundancy removal provided via
prediction the compression obtained with I frames is
less than would have been possible if prediction had
been used.
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Figure 25 Block diagram of the ITU-T H.261 video compression algorithm.



The P frame is similar to frames in the H.261 stan-
dard in that it is generated based on prediction from
previous reconstructed frames. The similarity is closer
to H.263, as the MPEG-1 standard allows for half pixel
shifts during motion compensated prediction.

The B frame was introduced in the MPEG-1 stan-
dard to offset the loss of compression efficiency occa-
sioned by the I frames. The B frame is generated us-
ing prediction from the previous P or I frame and the
nearest future P or I frame. This results in extremely
good prediction and a high level of compression. The
B frames are not used to predict other frames, there-
fore, the B frames can tolerate more error. This also
permits higher levels of compression.

The various frames are organized together in a
group of pictures (GOP). A GOP is the smallest random
access unit in the video sequence. Therefore, it has to
contain at least one I frame. Furthermore, the first I
frame in a GOP is either the first frame of the GOP
or is preceded by B frames which use motion com-
pensated prediction only from this I frame. A possible
GOP is shown in Fig. 26. Notice that in order to re-
construct frames 2, 3, and 4, which are B frames, we
need to have the I and P frames. Therefore, the or-
der in which these frames are transmitted is different
from the order in which they are displayed.

The MPEG-2 standard extends the MPEG-1 stan-
dard to higher bit rates, bigger picture sizes, and in-
terlaced frames. Where MPEG-1 allows half pixel dis-
placements, the MPEG-2 standard requires half pixel
displacements for motion compensation. Further-
more, the MPEG-2 standard contains several addi-
tional modes of prediction. A full description of any
of these standards is well beyond the scope of this ar-
ticle. For details the readers are referred to the stan-
dards ISO/IEC IS 11172, 13818, and 14496 and books
Gibson et al. (1998), Mitchell et al. (1997), and Sayood
(2000).

IV. FURTHER INFORMATION

We have described a number of compression techniques.
How they compare relative to each other depends on
the performance criteria, which in turn depend on the
application. An excellent resource for people interested
in comparisons between the multitude of compression
programs available for different applications is the
Archive Compression Test maintained by Jeff Gilchrist at
http://act.by.net. Another excellent resource on the In-
ternet is the data compression page maintained by Mark
Nelson at http://dogma.net/DataCompression/. This
page contains links to many other data compression re-
sources, including programs and a set of informative ar-
ticles by Mark Nelson. Programs implementing some of
the techniques described here can also be obtained at
ftp://ftp.mkp.com/pub/Sayood/.
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