Lecture 16: Main Memory

Vassilis Papaefstathiou
Iakovos Mavroidis

Computer Science Department
University of Crete
Memory Hierarchy

Capacity
- **CPU Registers**
 - 100s Bytes
 - <10s ns
- **Cache**
 - K Bytes
 - 10-100 ns
 - 1-0.1 cents/bit
- **Main Memory**
 - M Bytes
 - 200ns-500ns
 - $.0001-.0001 cents/bit
- **Disk**
 - G Bytes, 10 ms
 - (10,000,000 ns)
 - -5 to -6
 - 10 - 10 cents/bit
- **Tape**
 - infinite sec-min
 - -8 to -10

Access Time
- **CPU Registers**
 - <10s ns
- **Cache**
 - 10-100 ns
- **Main Memory**
 - 200ns-500ns
- **Disk**
 - 10 ms
 - (10,000,000 ns)
- **Tape**
 - infinite sec-min

Cost
- **CPU Registers**
 - <10s ns
- **Cache**
 - 10-100 ns
 - 1-0.1 cents/bit
- **Main Memory**
 - 200ns-500ns
 - $.0001-.0001 cents/bit
- **Disk**
 - 10 ms
 - (10,000,000 ns)
 - -5 to -6
 - 10 - 10 cents/bit
- **Tape**
 - infinite sec-min
 - -8 to -10

Staging Xfer Unit
- prog./compiler
 - 1-8 bytes
- cache cntl
 - 8-128 bytes

Upper Level
- faster

Lower Level
- Larger

Diagram
- Registers
 - Instr. Operands
- Cache
 - Blocks
- Memory
 - Pages
- Disk
 - Files
- Tape
Computer System Overview
Typical Chipset Layout
Main Memory Overview
SRAM vs. DRAM

Static Random Access Mem.
- 6T vs. 1T1C
 - Large (~6-10x)
- Bitlines driven by transistors
 - Fast (~10x)

Dynamic Random Access Mem.
- Bits stored as charges on node capacitance (non-restorative)
 - Bit cell loses charge when read
 - Bit cell loses charge over time
- Must periodically refresh
 - Once every 10s of ms
Memory Bank Organization

Read access sequence:
- Decode row address & drive word-lines
- Selected bits drive bit-lines
 - Entire row read
- Amplify row data
- Decode column address & select subset of row
- Send to output
- Precharge bit-lines for next access
Memory Terminology

- **Access time (latency)**
 - Time from issuing and address to data out

- **Cycle time**
 - Minimum time between two request (repeat rate)

- **Bandwidth**
 - Bytes/unit of time we can extract from the memory
 - Peak: ignore initial latency
 - Sustained: include initial latency

- **Concurrency**
 - Number of accesses executing in parallel or overlapped manner
 - Can help increase bandwidth or improve latency
DRAM Basic Operation

DRAM ORGANIZATION

- Word Line
- Bit Line
- Storage element (capacitor)
- Switching element
- Data In/Out Buffers
- Sense Amps
- Column Decoder
- Memory Array
- ...Bit Lines...
Basic DRAM operation (1)
Basic DRAM Operation (2)

[PRECHARGE and] ROW ACCESS

AKA: OPEN a DRAM Page/Row
or
ACT (Activate a DRAM Page/Row)
or
RAS (Row Address Strobe)
Basic DRAM Operation (3)

COLUMN ACCESS

CPU

MEMORY CONTROLLER

BUS

DRAM

Column Decoder

Data In/Out Buffers

Sense Amps

... Bit Lines...

Row Decoder

Memory Array

READ Command

or

CAS: Column Address Strobe
Basic DRAM Operation (4)

DATA TRANSFER

- Not shown: precharge time, refresh time

CAS: Column Address Strobe
DRAM: Basic Operation

Addresses
- (Row 0, Column 0)
- (Row 0, Column 1)
- (Row 0, Column 85)
- (Row 1, Column 0)

Row address 0

Commands
- ACTIVATE 0
- READ 0
- READ 1
- READ 85
- PRECHARGE
- ACTIVATE 1
- READ 0

Column address 05

Row Buffer CONFLICT!
(aka sense amps)
(aka page)

Data
DRAM: Basic Operation

- Access to an “open row”
 - No need for ACTIVATE command
 - READ/WRITE to access row buffer

- Access to a “closed row”
 - If another row already active, must first issue PRECHARGE
 - ACTIVATE to open new row
 - READ/WRITE to access row buffer
 - Optional: PRECHARGE after READ/WRITEs finished
DRAM: Burst

- Each READ/WRITE command can transfer multiple words (8 in DDR3)
- DRAM channel clocked faster than DRAM core

- Critical word first?
DRAM: Banks

- Banks are independent arrays **WITHIN** a chip
 - DRAMs today have 4 to 32 banks
 - SDR/DDR SDRAM system: 4 banks
 - RDRAM system: 16-32 banks
- Advantages
 - Lower latency
 - Higher bandwidth by overlapping
 - Finer-grain power management
- Disadvantages
 - Bank area overhead
 - More complicated control
How Do Banks Help?

Before: No Overlapping
Assuming accesses to different DRAM rows

After: Overlapped Accesses
Assuming no bank conflicts
2Gb x 8 DDR3 Chip (Micron)

Observe: bank organization
2Gb x 8 DDR3 Chip (Micron)

Observe: row width, 64 → 8 bit datapath
DDR3 SDRAM: Current Standard

- Introduced in 2007
- SDRAM = Synchronous DRAM = **Clocked**
- DDR = Double Data Rate
 - Data transferred on both clock edges
 - 400 MHz = 800 MT/s
- x4, x8, x16 datapath widths
- Minimum burst length of 8
- 8 banks
- 1Gb, 2Gb, 4Gb capacity common
- Relative to SDR/DDR/DDR2: + bandwidth, ~ latency
DRAM Modules

- DRAM chips have narrow interface (typically x4, x8, x16)
- Multiple chips are put together to form a wide interface
 - DIMM: Dual Inline Memory Module
 - To get a 64-bit DIMM, we need to access 8 chips with 8-bit interfaces
 - Share command/address lines, but not data

- Advantages
 - Acts like a high-capacity DRAM chip with a wide interface
 - 8x capacity, 8x bandwidth, same latency

- Disadvantages
 - Granularity: Accesses cannot be smaller than the interface width
 - 8x power
DRAM DIMMs

- **Dual Inline Memory Module (DIMM)**
 - A PCB with 8 to 16 DRAM chips
 - All chips receive identical control and addresses
 - Data pins from all chips are directly connected to PCB pins

- **Advantages:**
 - A DIMM acts like a high-capacity DRAM chip with a wide interface
 - E.g. use 8 chips with 8-bit interfaces to connect to a 64-bit memory bus
 - Easier to replace/add memory in a system
 - No need to solder/remove individual chips

- **Disadvantage:** memory granularity problem
64-bit Wide DIMM
Multiple DIMMs on a Channel

Advantages:
- Enables even higher capacity

Disadvantages:
- Interconnect latency, complexity, and energy get higher
- Addr/Cmd signal integrity is a challenge

“Mesh Topology”
- Blue: Addr & Cmd
- Red: Data Bus
- Green: Chip (DIMM) Select
DRAM Ranks

- A DIMM may include multiple Ranks
 - A 64-bit DIMM using 8 chips with x16 interfaces has 2 ranks

- Each 64-bit group of chips is called a rank
 - All chips in a rank respond to a single command
 - Different ranks share command/address/data lines
 - Select between ranks with “Chip Select” signal
 - Ranks provide more “banks” across multiple chips
 (but don’t confuse rank and bank!)
Traditional Memory Hierarchy
State of the art

• **DDR3**
 - Transfer data at rising and falling edge
 - Regular DRAM – 200MHz (or 800MHz IO bus), 8-byte width, 6.4GBytes/sec
 - Double data rate 12.8GBytes/sec
 - 8-burst-deep prefetch buffer

• **GDDR5 (Graphics Double Data Rate)**
 - High performance designed for high bandwidth.
 - Based on DDR3 double data lines
 - GDDR5 has 8-bit wide prefetch buffers

• **RAMBUS (RDRAM)**
 - Split transaction bus, byte wide
 - More complicated electrical interface on DRAM and CPU
 - 800 MHz, 18 bits, 1.6GB/sec per chip

• **DDR4**
 - (1600-3200MHz IO bus), 8 byte width, 17-25GBytes/sec
 - 16 banks

• **Hybrid Memory Cube (HMC)**
Figure 8. Bank counts: a 32-Mbyte, 64M SDRAM system with four large banks (a) versus a 32-Mbyte, 64M Direct RDRAM system with 32 small banks (b).

- Many banks/chip (4-32)
- Narrow fast interconnect (pipelined)
- High bandwidth
- Latency & area penalty
Fully Buffered DIMM (FB-DIMM)

- The DDR problem
 - Higher capacity ▶️ more DIMMs ▼️ lower data-rate (multidrop bus)
- FBDIMM approach: use point-to-point links
 - While still using commodity DRAM chips
 - Network with 12-beat packages, separate up/downstream wires
3D-Stacked DRAM

- Place wafers on top of one another
- Vias complete paths between different wafers through small pads on the wafers
Micron HMC
“Hybrid Memory Cube”

- 3D-stacked device with memory+logic
- High capacity, low power, high bandwidth
- Can move functionalities to the memory package
HMC Details

- 32 banks per die x 8 dies = 256 banks per package
- 2 banks x 8 dies form 1 vertical slice (shared data bus)
- High internal data bandwidth (TSVs) → entire cache line from a single array (2 banks) that is 256 bytes wide
- Future generations: eight links that can connect to the processor or other HMCs – each link (40 GBps) has 16 up and 16 down lanes (each lane has 2 differential wires)
- 1866 TSVs at 60 um pitch and 2 Gb/s (50 nm 1Gb DRAMs)
- 3.7 pJ/bit for DRAM layers and 6.78 pJ/bit for logic layer (existing DDR3 modules are 65 pJ/bit)