HY-370 Fall rorr-23
7 th Assistant Lecture
TA: George Manes csd4333
Exercise 1
Find the coefficients of the $F \mathbb{R}$ linear phase system:

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-l]
$$

where $b_{0}, b_{1}, b_{2} \neq 0$, so that
i) Completely cuts off frequency $w_{0}=\frac{C \Pi}{3}$
ii) $H\left(e^{j e}\right)=1$

Also calculate the amplitude response and the phase response.
Solution
First, we need to calculate $Y\left(e^{j-}\right)$.

$$
\begin{aligned}
Y\left(e^{--}\right) & =b_{0} \cdot X\left(e^{j o-}\right)+b_{2} \cdot x\left(e^{j-}\right) \cdot e^{-j-}+b_{2} \cdot X\left(e^{j-}\right) \cdot e^{-j 2 \omega} \\
& =\left(b_{0}+b_{2} e^{-j-}+b_{i} e^{-j-\infty}\right) \cdot X\left(e^{j-}\right) \Rightarrow \\
H\left(e^{j-}\right) & =\frac{Y\left(e^{j-}\right)}{X\left(e^{j-}\right)}=b_{0}+b_{2} \cdot e^{-j-}+b_{2} e^{-j 2-}
\end{aligned}
$$

we know that $H\left(e^{\text {io }}\right)=1$, so $H\left(e^{0}\right)=b_{0}+b_{1}+b_{c}=1$ (1)

$$
\begin{aligned}
& \operatorname{tram}(i): H\left(e^{j \frac{\pi \pi}{3}}\right)=0 \Rightarrow b_{0}+b_{1} e^{-j \frac{2 \pi}{3}}+b_{2} \cdot e^{-j \frac{4 \pi}{3}}=0 \\
& \Leftrightarrow b_{0}+b_{1} \cdot\left(\cos \left(\frac{2 \pi}{3}\right)-j \sin \left(\frac{2 \pi}{3}\right)\right)+b_{2}\left(\left(\cos \left(\frac{4 \pi}{3}\right)-j \sin \left(\frac{4 \pi}{3}\right)\right)=0\right. \\
& \Leftrightarrow b_{0}+b_{1}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}\right)+b_{2}\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)=0 \\
& \Leftrightarrow \underline{2 b_{0}}-b_{1}-j b_{1} \sqrt{3}-b_{2}+b_{1} j \sqrt{3}=0 \\
& \Leftrightarrow R\left\{\begin{array}{l}
2 b_{0}-b_{1}-b_{2}=0 \\
-\sqrt{3} b_{2}+\sqrt{3} b_{2}=0
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
b_{0}=b_{1}=b_{2} \\
b_{1}=b_{2}
\end{array}\right\} \Leftrightarrow\left(\frac{1}{2}\right) b_{0}=b_{2}=b_{2}=\frac{1}{3}
\end{aligned}
$$

So:

$$
\begin{aligned}
& H\left(e^{j-}\right)=\frac{1}{3}+\frac{1}{3} e^{-j-}+\frac{1}{3} \cdot e^{-j w}=\frac{1}{3} \cdot e^{-\omega}\left(e^{j-}+1+e^{-j-}\right) \\
& =\frac{1}{3} \cdot e^{-j-} \cdot(2(\cos (-)+1)
\end{aligned}
$$

The amplitude response:

$$
\left|H\left(e^{j-}\right)\right|=\frac{1}{3} \cdot 1 \cdot|2 \cos (-)+1|
$$

and the phase repose:

$$
\begin{aligned}
x H\left(e^{2}\right) & =x \frac{1}{3}+x e^{-2}+x(2 \cos (-)+2) \\
& =0-r+x(2 \cos (-)+1) \Gamma)=0 \text { for } w= \pm \frac{2 \pi}{3}
\end{aligned}
$$

different sign on either side of root

So:

$$
\Varangle(2 \cos v+1)=\left\{\begin{array}{cc}
0, & \omega \varepsilon\left(-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right) \\
\pi_{1} & \text { we }\left(\frac{2 \pi}{3}, \pi\right) \\
-\pi_{1} & \omega \in\left(-\pi,-\frac{2 \pi}{3}\right)
\end{array} \quad\binom{2(0 \cos w+1<0}{\omega>0}\right.
$$

Finally:

$$
\left\langle H\left(e^{j-}\right)= \begin{cases}-w, & w \varepsilon\left(-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right) \\ -w+n, & w c\left(\frac{2 \pi}{3}, n\right) \\ -w-\pi, & w c\left(-n,-\frac{2 n}{3}\right)\end{cases}\right.
$$

Exercise 2
A linear phase filter:

$$
H_{1}(1)=1-z^{-1}
$$

(i) factorize $H_{L}\left(e^{j n}\right)$ as:

$$
H_{1}\left(e^{j-}\right)=A\left(e^{j-}\right) \cdot e^{i \phi\left(e^{j-}\right)}
$$

Where $A\left(e^{--}\right) \in \mathbb{R}$
(ii) The $H_{1}(e)$ system is connected in series with a generalized linear phase system $H_{c}\left(e^{j-}\right)=$ $A_{L}\left(e^{j-}\right) \cdot e^{-j-\mu_{L}}$, type II.

Show that the overall system is linear phase of type TIT.

Solution

$$
\begin{aligned}
& \text { a) } H\left(e^{j}\right)=1-e^{-j-}=e^{-j \tau} \cdot\left(e^{j \bar{\tau}}-e^{-j \bar{\tau}}\right)=e^{-j \tilde{\tau}} \cdot j \cdot l \cdot \sin (\bar{\varepsilon}) \\
& \left.=e^{-j \bar{\tau}} \cdot e^{j \tilde{\imath}} \cdot r \cdot \sin (\bar{\tau})=e^{j-\bar{\tau}+\frac{\Gamma}{2}}\right) 2 \cdot \sin (\bar{\tau})
\end{aligned}
$$

So $H\left(e^{j-}\right)=A\left(e^{j-}\right): e^{j d\left(e^{j-}\right)}$
where $A\left(e^{j-}\right)=2 \sin \left(\frac{\pi}{2}\right)$ and $\phi\left(e^{j-}\right)=-\frac{\pi}{2}+\frac{\pi}{2}$
So its an FIR type IV linear phase System
b) Since they are connected in series, the on impulse repanse is:

$$
\begin{aligned}
& h[n]=h_{1}[n] * h_{2}[n] \Leftrightarrow \\
& H\left(e^{j-}\right)=H_{1}\left(e^{j-}\right) \cdot H_{2}\left(e^{j-}\right)=A_{1}\left(e^{j-}\right) \cdot A_{2}\left(e^{j-}\right) \cdot e^{j\left(\phi_{1}\left(e^{j}\right)+\phi_{2}\left(e^{j-}\right)\right)} \\
& =\frac{\left.2 \sin \left(\frac{-}{2}\right) \cdot A_{2}\left(e^{j-}\right) \cdot e^{j\left(\phi_{1}\left(e^{j}\right)+\phi_{d} e^{-j}\right)}\right)}{L} \\
& A_{3}\left(e^{j-}\right) L \mathbb{R}, \quad \frac{-\omega+\Pi-\omega M}{2}=\frac{-\omega\left(M_{1}\right)}{2}+\frac{\Pi}{2}
\end{aligned}
$$

Since $H_{2}\left(e^{2-}\right)$ is type $I_{1} M$ is odd, so $\frac{M_{11}}{t}$ is ${ }^{\text {an }}$ integer So the total system $h[n]$ is a type III linear phase

Exercise 3
Given the frequency response of an LTI system as:

$$
H\left(e^{i-}\right)=e^{-3 \omega}\left(1+\cos (\omega)+\frac{2}{5} \cos (2 \omega)-\frac{1}{5} \cos (3-)\right)
$$

i) Classity the tilter as $F \mathbb{R}$ or \mathbb{R}.
ii) Find the impulse response $h[n]$
iii) Dram a graph that implements the system.

Solution
i) Using Euler, the cosines are refactored to exponentials, which in turn correspond to delta functions in domain. So, the system is FIR.

$$
\text { ii) } \begin{aligned}
& H\left(e^{j-}\right)=e^{-j 3 c}\left(1+\frac{e^{j-}+e^{-j-}}{2}+\frac{2}{5} \frac{e^{i-}+e^{-j i-}}{8}-\frac{1}{5} \cdot \frac{e^{3-}+e^{-j 3-}}{2}\right) \\
& =e^{-j 3-}-0.1 \cdot\left[1+e^{-j b-}\right]+0 \cdot 2 \cdot\left[e^{-j-}+e^{-j 5-}\right]+0.5\left[e^{-j L}+\right. \\
& \left.e^{-j 4-}\right]
\end{aligned}
$$

So.

$$
\begin{aligned}
h[n]= & \delta[n-3]-0.1 \cdot \delta[n]-0.1 \cdot \delta[n-6]+0.2 \cdot \delta[n-1]+0.2 \\
\delta[n-5] & +0.5 \cdot \delta[n-2]+0.5 \cdot \delta[n-4] \Rightarrow \\
h[n]= & -0.1 \cdot \delta[n]+0.2 \cdot \delta[n-1]+0.5 \cdot \delta[n-t]+\delta[n-3] \\
& +0.5 \cdot \delta[n-4]+0.2 \cdot \delta[n-5]-0.1 \cdot \delta[n-6]
\end{aligned}
$$

iii) Its a linear phase type I system.

$\mathbb{H} \rightarrow$ A日ponres/Adders
Exercise 4
Draw the graph of the following LT I system:

$$
H(1)=\frac{16+9 z^{-1}-z^{-2}}{1+\frac{1}{4} \cdot z^{-1}-\frac{1}{8} \cdot z^{-2}}
$$

as a parallel form with first order Subsystems in Direly form.

Solution
We need to refactor before drawing in farmed form systems. The polynomint order of the dividend is equal to the order of the divisor, so we need to perform a polynomial division.

$$
H(L)=8+\frac{8+7 z^{-1}}{1+\frac{1}{4} \cdot z^{-2}-\frac{1}{8} \cdot 2^{-2}}=8+\frac{8+7 z^{-1}}{\left(1-\frac{1}{4} \cdot 2^{-2}\right)\left(1+\frac{1}{2} z^{-1}\right)}
$$

$$
=8+\frac{A}{1-\frac{1}{4} \cdot z^{-2}}+\frac{B}{1+\frac{1}{2} \cdot z^{-2}}
$$

Simple fractions decomposition: $A=12, B=-4$
So:

$$
H(z)=8+\frac{12}{1-\frac{1}{4} \cdot z^{-1}}-\frac{4}{1+\frac{1}{2} \cdot z^{-1}}
$$

Parallel form:

$\oplus \rightarrow$ Adders

Exercise 5
An $F \mathbb{R}$ tilter of third order has a transfer function $G(z)$

$$
G(c)=\left(6-z^{-2}-18 z^{-8}\right)\left(2+5 z^{-2}\right)
$$

i) Find all $H_{i}(z)$ of $f \mathbb{R}$ filters so that

$$
\left|H_{i}\left(e^{j-}\right)\right|=\left|G\left(e^{j-}\right)\right|
$$

ii) Which one is a minimen phase and which is maxi-ym phase?

Solution
i) $\quad G(z)=\left(6-z^{-1}-2 z z^{-2}\right)\left(2+5 z^{-2}\right)=$

$$
30 \cdot\left(1-\frac{3}{2} \cdot 2^{-2}\right)\left(1+\frac{4}{3} \cdot 2^{-1}\right)\left(\frac{2}{5}+2^{-2}\right)
$$

So:

$$
\begin{aligned}
& H_{1}(2)=30\left(-\frac{3}{2}+2^{-2}\right) \cdot\left(\frac{4}{3}+z^{-2}\right) \cdot\left(1+\frac{2}{5} \cdot 2^{-2}\right) \\
& H_{2}(z)=30\left(-\frac{3}{2}+z^{-1}\right) \cdot\left(\frac{4}{3}+z^{-1}\right) \cdot\left(\frac{2}{5}+z^{-2}\right) \text {. } \\
& H_{3}(z)=39\left(-\frac{3}{2}+z^{-1}\right)\left(1+\frac{4}{3} z^{-2}\right) \cdot\left(1+\frac{2}{5} \cdot z^{-2}\right) \\
& H_{4}(z)=30\left(-\frac{3}{2}+z^{-1}\right) \cdot\left(1+\frac{4}{3} z^{-1}\right) \cdot\left(\frac{1}{5}+z^{-1}\right) \\
& H_{5}(z)=30\left(1-\frac{3}{2} \cdot z^{-1}\right) \cdot\left(\frac{4}{3}+z^{-2}\right) \cdot\left(\frac{1}{2}+\frac{2}{5} z^{-2}\right) \\
& H_{6}(z)=30\left(1-\frac{3}{2} \cdot 2^{-2}\right)\left(\frac{4}{3}+2^{-1}\right) \cdot\left(\frac{2}{5}+2^{-1}\right) \\
& H_{7}(z)=30\left(1-\frac{3}{2}-z^{-2}\right)\left(1+\frac{4}{3} z^{-1}\right) \cdot\left(1+\frac{2}{5} z^{-2}\right) \\
& H_{8}(z)=G(z)
\end{aligned}
$$

ii) $H_{2}(z)$ is the minimus phase and $H_{8}(z)=G(z)$ is the maximin phase

Exercise 6
The polezero plats of the following figure describe six different causal LTI systems. Show which of them are:
(a) $\| R$?
(b) $F I R$?
(${ }^{\prime}$) Stable?
(δ^{\prime}) Minimum phase?
((') Generalized Linear Phase?
($\left.\Gamma^{\prime}\right)\left|H\left(e^{j}\right)\right|=a$, a constant $\forall \omega([-\Pi, \Pi]$?
$\left(\zeta^{\prime}\right)$ stable and causal $H^{-1}\left(e^{j-}\right)$ (inverse system)?
(n^{\prime}) minimum -
duration - impulse repose?
(θ^{\prime})
spectral response with low-pass
behavior?
(c) Minimum group denny?

Solution:

a) B, C, D, E

乃) A, F
v) A, B, C, E, F
8) E

ع) A, F
a) C

ち) E
ๆ) F
9) C, F
i) E

