Chapter 1

Introduction

1.1 What is an operating system
1.2 History of operating systems
1.3 The operating system zoo
1.4 Computer hardware review
1.5 Operating system concepts
1.6 System calls

1.7 Operating system structure

Introduction

Banking Airline Web

system reservation | browser } Appiication prograsris

Command
interpreter System
programs

Compilers Editors

Operating system

Machine language

Microarchitecture Hardware

Physical devices

« A computer system consists of
— hardware
— system programs
— application programs

What is an Operating System

e |t is an extended machine
— Hides the messy details which must be performed
— Presents user with a virtual machine, easier to use

e Itis aresource manager
— Each program gets time with the resource
— Each program gets space on the resource

History of Operating Systems (1)

Tape System
drive Input tape Output

Card —— tape —— tape
reader |37 Bll&
A= IEE g

I (NHNRRA
1401 7094

(a) (b) (c) (d) (e)

Early batch system
— bring cards to 1401
— read cards to tape
— put tape on 7094 which does computing
— put tape on 1401 which prints output

o=,

(AR
1401

History of Operating Systems (2)

First generation 1945 - 1955
— vacuum tubes, plug boards

Second generation 1955 - 1965

History of Operating Systems (3)

— transistors, batch systems

Third generation 1965 — 1980

— ICs and multiprogramming
Fourth generation 1980 — present
— personal computers

Fortran Program

s

|
/SFORTRAN

$J0B, 10,6610802, MARVIN TANENBAUM

e Structure of a typical FMS job — 2" generation

History of Operating Systems (4)

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

« Multiprogramming system
— three jobs in memory — 3" generation

The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Real-time operating systems
Embedded operating systems

Smart card operating systems

Computer Hardware Review (1)

Monitor

Hard
Floppy . y
disk drive disk drive

— Pe——
¢ == [0oooo

Keyboard

CPU Memory Video Keyboard FI;;EIEN Ijlasr:
controller controller controller controller
Bus

» Components of a simple personal computer

Computer Hardware Review (2)

Execute
unit
Fetch Decode
unit - unit
Holding Execute
Fetch Decode Execute it
unit = unit B unit o
Fetch Decode
unit = unit
Execute
unit

(a) (b)

(a) A three-stage pipeline
(b) A superscalar CPU

10

Computer Hardware Review (3)

Typical access time Typical capacity

1 nsec | Registers | <1 KB

2 nsec | Cache I 1MB
10 nsec | Main memory | 64-512 MB
10 msec | Magnetic disk | 5-50 GB
100sec | Magnetic tape | 20-100GB

» Typical memory hierarchy
— numbers shown are rough approximations

11

Computer Hardware Review (4)

Read/write head (1 per surface)

Surface 7
¢

Surface 6

Surface 5
!

Surface 4

Surface 3

—

M

S
< Direction of arm motion

Surface 2

Surface 1

Surface 0

Structure of a disk drive

12

Computer Hardware Review (5)

Address

Registers
when
program 2
is running
User program Hﬁs‘:rs Limit-2
e ° User-2 data
program 1
is running Base-2
Limit Limit-2
User pregram Base-2 ~ User-1 data
and data L Lirmit-1
Limit-1 User program
L - Base-1 ~— Base-1
Operating Operating
System System
o
(a) (b)

One base-limit pair and two base-limit pairs

Computer Hardware Review (6)

Disk drive
4 Current instruction
,l' Next instruction
cPU _‘3_ Interrupt Disk
controller controller l 3. Return
1. Interrupt
S Y]
J ‘
-
2. Dispatch
to handler
Interrupt handler -
(@ (b)

(a) Steps in starting an 1/0O device and getting interrupt
(b) How the CPU is interrupted

Computer Hardware Review (7) Operating System Concepts (1)
l::eav;'lnez /:_L: CPU C__L:) bfiEe N— m:dr:igxy o
ﬁ /PCIhus O > e o
T LU T
SCsI UsB b:i%ge Gazjaéppht'ocrs pgcajl|::30flg
& - [T o) (8 (&)
T T = T L= * A process tree
] Soung e Avim — A created two child processes, B and C
— B created three child processes, D, E, and F

Structure of a large Pentium system

16

Operating System Concepts (2)

(a) A potential deadlock. (b) an actual deadlock.

17

Operating System Concepts (3)

File system for a university department

18

Operating System Concepts (4)

Root Floppy
A
A
(a) (b)

» Before mounting,
— files on floppy are inaccessible
» After mounting floppy on b,
— files on floppy are part of file hierarchy

19

Operating System Concepts (5)

Process Process
Pipe
A] 1 B

Two processes connected by a pipe

20

Steps in Making a System Call

Address

OxFFFFFFFF -
Return o caller Library
Trap to the kernel pr ure
5| Put code for read in register read
10,
4
User space
Increment SP 11
Call read
3| Pushfd User program
2| Push &buffer calling read
1|_Push nbytes
& 9
Kernel space
(Operating system)

o

There are 11 steps in making the system call
read (fd, buffer, nbytes)

Some System Calls For Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

2 2
Some System Calls For File Management Some System Calls For Directory Management
File management Directory and file system management
Call Description : Call _ Description
fd = open(file, how, ...) Open a file for reading, writing or both s = mkdir(name, mode) Create a new directory
s = close(fd) Close an open file s = rmdir(name) Remove an empty directory
n = read(fd, buffer, nbytes) Read data from a file into a buffer S= |inkﬁname1, name2) Create a ne\ju entry, name2, pointing to name1
n = write(fd, buffer, nbytes) Write data from a buffer into a file S = unlink(name) Remove a directory entry
position = Iseek(fd, offset, whence) Move the file pointer s = mount(special, name, flag) Mount a file system
s = stat(name, &buf) Get a file’s status information s = umount(special) Unmount a file system
23 24

Some System Calls For Miscellaneous Tasks System Calls (1)

A stripped down shell:

Miscellaneous

Call Description
s = chdir(dirname) Change the working directory)
s = chmod(name, mode) Change a file's protection bits while (TRUE) { /* repeat forever */
s = kill(pid, signal) Send a signal to a process type_prompt(); /* display prompt */
seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970 read_command (command, parameters) /* input from terminal */
if (fork() '=0) { /* fork off child process */
/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */
}else {
/* Child code */
execve (command, parameters, 0); /* execute command */
}
}
25 26

System Calls (2) System Calls (3)

Address (hex)

FFFF fusrfast fusrfjim fusr/ast fusrfjim

Stack | 16 | mail 31/ bin 16 | mail 31| bin
81| games 70 [memo 81| games 70 [memo

/// 40| test 59| fc 40 | test 59| fc.
38 | prog1 70| note 38 | prog1
/ Gap

(a) (b)
Da’[aI
(a) Two directories before linking
Text] .. -
0000 usr/jim/memo to ast's directory
« Processes have three segments: text, data, stack (b) The same directories after linking

27 28

System Calls (4)

bin dev lib mnt usr bﬁ%
(b)

(a)

(a) File system before the mount
(b) File system after the mount

System Calls (5)

UNIX Win32 Description

| fark CreateProcess Create a new process

| waitpid | WaitForSingleCbject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFila Read data from a file
write WiriteFile Write data to a file

| Iseek SetFilePointer Mave the file pointer

| stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file

[mount | (none) Win32 does not support mount

[umount | (none) Win32 does not support mount

| chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

Some Win32 API calls

Operating System Structure (1) Operating System Structure (2)
Main
procedure
Layer Function
""""""""""""""" 5 The operator
prjf:gﬁfss 4 User programs
3 Input/output management
"""""""""""" 2 Operator-process communication
Uiy 1 Memory and drum management
procedures 0 Processor allocation and multiprogramming
Simple structuring model for a monolithic system Structure of the THE operating system

Operating System Structure (3)

Operating System Structure (4)

Virtual 370s
A Client Client Process | Terminal v File Memory U g
process process server server server server 281 MoCe
1=~ System calls here T 7
I/O instructions here —p~¢ CMS CMS cms 1< Trap here Microkernel N Kemmal mode
Trap here —Y VM/370
P \ Client obtains
370 Bare hardware service by
sending messages
to server processes
Structure of VM/370 with CMS :
The client-server model
33 34
- - P - Exp. Explicit Prefix | Exp. Explicit Prefix
Machine 1 Machine 2 Machine 3 Machine 4 10° 0.001 mil 10° 1000 | Kio
Client File server Process server Terminal server 10 0.000001 micro | 10° 1,000,000 | Mega
Kernel Kernel Kernel Kernel 107 0.000000001 nano 10° 1,000,000,000 | Giga
102 | 0.000000000001 pico 10'2 1,000,000,000,000 | Tera
Y 1075 | 0.000000000000001 femto | 10" 1,000,000,000,000,000 | Peta
\ Network 107"® | 0.0000000000000000001 atto 10'® 1,000,000,000,000,000,000 | Exa
Message from 10" | 0.0000000000000000000001 zepto | 10% 1,000,000,000,000,000,000,000 | Zetta
client to server 107 | 0.0000000000000000000000001 | yocto | 10°* | 1,000,000,000,000,000,000,000,000 | Yotta
The client-server model in a distributed system The metric prefixes
35 36

