
 Minix – Mini Unix (Minix) basically, a UNIX -
compatible operating system.

 Minix is small in size, with microkernel-based
design.

 Minix has been kept (relatively) small and
simple.

 Minix is small, it is nevertheless a preemptive,
multitasking operating system.

 Modularity in Minix

 Source Code – C language

 Networking support – TCP/IP protocol

 The figure represents the internal architecture
of Minix.

User Processes

init, login, passwd, sh, ls, cp, cc,………..

Server Processes

File System (FS), Memory Manager (MM)

Kernel I/O Tasks

Floppy, tty, clock, system, …………

Kernel Process Management

Interrupt handlers

Different Layers

4

3

2

1

 central component of operating systems
 Manages the system's resources (the

communication between hardware and
software components).

 lowest-level abstraction layer for the
resources (especially memory, processors and
I/O devices) that application software must
control to perform its functions.

A kernel connects the application software to the hardware of a
computer.

•horizontal stucture
•System services are obtained by executing an IPC system call
addressed to a particular server.

 The flow of control in minix from the user
level to the kernel level is handled by system
calls.

 Because of its microkernel structure, it
actually only has three system calls: send,
receive, and sendrec.
 user processes are only allowed to use the last one

 If you want a subsystem to do something for
you, you send a message to the subsystem
you have in mind.

 Inter-process Communication

 Is handled by the kernel

 A process sends a destination and a message to
the kernel, which then copies the message to
destination process

 A process must be waiting for the message in
order to receive

 Minix has a set of system calls which are
located in the table.c file.

 The file system (fs) has its own table and so
does the memory manager(mm).

 A system call in minix is similar to a system
call in any system.

 A user-level process cannot directly access a
disk. Instead it asks the kernel to obtain data
from a file for it (the read system call).

 A user-level process cannot create another
process. Instead, it asks the kernel to create
one for it.

 User Program ==> Library ----> Kernel ==> MM/FS

 System calls are typically made via library
routines. Library routines are normal
procedure calls. They perform the setup for
the system call.

 In minix the system call functions in a similar
fashion.

 The prototype of the libraries are defined in
/usr/include/unistd.h or other header files
according to the system call

http://www.sju.edu/~tk098681/minix/unistd.h
http://www.sju.edu/~tk098681/minix/unistd.h
http://www.sju.edu/~tk098681/minix/unistd.h
http://www.sju.edu/~tk098681/minix/unistd.h

 To implement a system call in minix one needs to do
the following steps:

 Look for a free slot in the table.c file
 Follow the standard convention

no_sys, /* 0 = unused */
do_exit, /* 1 = exit */
do_fork, /* 2 = fork */
do_XXX /* 77 = XXX */  your system call entry

 The system call would be named in the
following manner

do_XXX
 Once the system call method has been

written, its declaration should be mentioned
in the function declaration header file:
“proto.h”

 _PROTOTYPE (return type do_XXX,
(arguments if any));

 The library should also be informed about the system call that
would be called by the user.

 The library file for the system call is written in the lib/posix
directory. The file naming convention is followed here it starts with
an underscore (_XXX)
Eg: - _fork.c (this code is defined in /lib/posix)

#include <lib.h>
#define fork _fork
#include <unistd.h>
PUBLIC pid_t fork() {

message m;
return(_syscall(MM, FORK, &m));

}

When you add a new system call, you need to add code as above.

 It calls _syscall (MM, FORK, &m);.
 The first parameter is the destination. This is always

MM/FS. When kernel receives a system call request,
what the kernel does is to send a message to MM/FS.
Actual work is done by MM/FS.

 The second parameter specifies the type of service.
The ID is defined in /usr/include/minix/callnr.h .

 User program cannot call _syscall() directly. The
structure of a message is defined in
/usr/include/minix/type.h.

http://www.sju.edu/~tk098681/minix/callnr.h
http://www.sju.edu/~tk098681/minix/callnr.h
http://www.sju.edu/~tk098681/minix/callnr.h
http://www.sju.edu/~tk098681/minix/callnr.h
http://www.sju.edu/~tk098681/minix/callnr.h
http://www.sju.edu/~tk098681/minix/callnr.h

 Once the code for the system call is written in the
"lib/other" directory a system file needs to be created.
The system file is present in the “/src/lib/syscall"
directory and instructs to jump to our _XXX code.

 A standard naming convention is followed here too.
The filename extension is ".s".

.global XXX

XXX:
ba _XXX
nop

 6 different types of message structs in Minix
 All part of a union

 Check: /usr/include/minix/type.h.

 To pass a message a variable of a specific data type is
defined, and the variable is added to the message
structure as shown in the example below.

 To add a message struct:

 The message structure defined is as follows:
 Typedef struct { datatype mnYY; } mess_n;

n => message number of the message
YY => variable name

 Typedef struct { char *m7sb; } mess_7;
#define m7_sb m_u.m_m7.m7sb;

 To add data in the message variable the following
needs to be done:
message m;
m.m7_sb = data;

Γενικά:
message m;
m.mx_yz, όπου:
x = 1..6, δηλώνει τη δομή που έχουμε επιλέξει
y = {i, p, l, f, ca, c}, δηλώνει τον τύπο δεδομένων του ςυγκεκριμένου

μέλουσ
i : int
p: pointer
l : long
f: function
ca: character array
c: char
z : αύξων αριθμόσ του τύπου y ςτο ςυγκεκριμένο είδοσ μηνύματοσ

 Linux

 Copy the minix archive from
~hy345/minix/minix204.tar.gz to your directory

 tar zxvf minix204.tar.gz

 Windows

 Copy the minix archive from
~hy345/minix/minix204_win32.zip to your
directory

 uncompress

 Linux

 type: ./startminix.sh

 Windows

 execute: qemu-win.bat

 emulator will launch in a new window
 hit '=' to boot minix without network support
 log in as root (no password required)

 http://www.csd.uoc.gr/~hy345/docs/assignm
ents.htm

 How to run minix (over QEMU or bochs)

 How to re-compile the kernel

 Create 2 new system calls
 getpnr()
 Dexetai san parametro ena process ID (PID) kai 8a

epistrefei to process number pou einai
apo8hkeumeno ston process table tou kernel

 prproct()
 8a emfanizei ta kathleimena slots tou process

table.
 Write a simple program that uses the 2

system calls

 Paradeigma e3odou:

PID P_NR P_NAME
0 -10 TTY
0 -9 DP8390
0 -8 SYN_AL
0 -7 IDLE
...

29 4 sh
18 5 update
30 6 getty
30 7 getty
30 8 getty
33 9 project5

Process number of PID #33 is 9 Process number of PID #29 is 4

 vi like editor: elvis
 pico like editor: elle

 Search for file: find . -name idle.c
 Use grep
 Update Makefiles.
 MUST check source code of similar calls

(HINT: check getset.c code)

i. υλοποίηςη ενόσ “dummy” system call που
εκτυπώνει απλά ένα μήνυμα

ii. επέκταςη του (i) έτςι ώςτε να εκτυπώνονται
τα ορίςματα που περιέχονται ςτο “μήνυμα
έκδοςησ” του system call

……….

 web.syr.edu/~ondsouza/SunOS-minix.ppt
 Wikipedia

