
SUPPLEMENT D Additional Java 1.5
features

There are a number of Java features not touched upon in the text. In particular, JDK 1.5
introduces several extensions to the core language. We briefly examine the most important
of these extensions in this supplement.1

d.1 Generics

The most significant addition to the language in JDK 1.5 is the inclusion of generic struc-
tures. As we have seen in Chapter 12, genericity allows us to define classes, interfaces, and
methods with type parameters. There are two additional aspects of generic structures we
should mention.

• Generic structures can have more than one type parameter.

Consider the class KeyValueTable defined in Listing d.1. The class is defined with two
type parameters, Key and Value. Instantiating the generic class requires two type argu-
ments. For example,

KeyValueTable<String, Integer> grades =
new KeyValueTable<String, Integer>();

The method grades.add requires a String and an Integer as arguments, and the method
grades.lookUp requires a String argument and returns an Integer:

grades.add("Henry", new Integer(97));
Integer henrysGrade = grades.lookUp("Henry");

• Type parameters can be “bounded” by another type.

Suppose Keyed is an interface defined as

public interface Keyed {
public String getKey ();

}

1. As this is written, JDK 1.5 is available in beta release only and the specification document has
not been published.
901

902 Supplement d Additional Java 1.5 features
Listing d.1 The class KeyValueTable

/**
 * A simple (key, value) table.
 */
public class KeyValueTable<Key, Value> {

private List<Key> keys; // the keys
private List<Value> values; // the values

/**
 * Create a new empty table.
 */
public KeyValueTable () {

keys = new DefaultList<Key>();
values = new DefaultList<Value>();

}

/**
 * Add the specified (key, value) to this table. If the
 * key is already in the table, replace the associated
 * value with the one specified.
 */
public void add (Key key, Value value) {

int i = keys.indexOf(key);
if (i = -1) {

keys.add(key);
values.add(value);

} else
values.set(i,value);

}

/**
 * The value associated with the specified key. Returns
 * null if the key is not in the table.
 */
public Value lookUp (Key key) {

int i = keys.indexOf(key);
if (i != -1)

return values.get(i);
else

return null;
}

}

d.1 Generics 903
Then the following version of the generic class KeyValueTable requires its argument to be
a subtype of Keyed.

public class KeyValueTable<Entry extends Keyed> {

private List<String> keys;
private List<Entry> entries;
…
public void add (Entry entry) {

String key = entry.getKey();
…

}

public Entry lookUp (String key) {
…

}
}

Note that the keyword for bounding a type is extends, regardless of whether the
bounding type is defined by an interface or by a class.

The add method takes advantage of the fact that a generic argument will be a subtype
of Keyed, and thus define the method getKey. If Student implements Keyed,

public class Student implements Keyed …

we can instantiate the generic class with Student as argument:

KeyValueTable<Student> grades =
new KeyValueTable<Student>();

Student henry = …;
grades.add(henry);

Since henry is a Student, and Student implements Keyed, henry supports the method
getKey.

Now suppose Keyed is a generic interface:

public interface Keyed<Key> {
public Key getKey ();

}

The following version has two type parameters, the second depending on the first.

public class KeyValueTable
<Key, Entry extends Keyed<Key>> {

private List<Key> keys;
private List<Entry> entries;
…
public void add (Entry entry) {

Key key = entry.getKey();
…

}

904 Supplement d Additional Java 1.5 features
public Entry lookUp (Key key) {
…

}
}

If the first generic argument is String, for example, the second must be a subtype of
Keyed<String>. Assuming that Student implements Keyed<String>, and so defines a
method String getKey(), we can instantiate the generic class as follows.

KeyValueTable<String, Student> grades =
new KeyValueTable<String, Student>();

Student henry = …;
grades.add(henry);

d.1.1 Wildcard types

Generics and subtyping, revisited

We have seen, in Section 9.2.3, that the fundamental rule of subtyping states that if A is a
subtype of B, then an A value can be provided wherever a B value is required. For instance,
the Object method equals requires an Object argument:

public boolean equals (Object obj) …

Since Student is a subtype of Object, we can invoke the method with a Student as argu-
ment:

if (someObject.equals(henry)) …

In Section 12.2.2 we learned that A a subtype of B does not imply that List<A> is a
subtype of List. If it were, the fundamental rule of subtyping would be violated. For
instance, we could write a method that adds a String to a List<Object>,

public void addString (List<Object> list) {
list.add("end"); // OK: String a subtype of Object

}

and then invoke the method with a List<Integer> as argument:

List<Integer> numbers = new DefaultList<Integer>();
addString(numbers);
 // OK if List<Integer> is a subtype of List<Object>!

 The rule is true in general for generic types: if T<E> is a generic type (with parame-
ter E), then A a subtype of B does not imply that T<A> is a subtype of T.

An example

Suppose we have an interface ClosedFigure that specifies a method for computing area:

d.1 Generics 905
public interface ClosedFigure
A regular closed two-dimensional geometric figure.

public double area ()
The area of this figure.

We can write a method that takes a List<ClosedFigure> and produces the total area of
the elements of the list.

public double totalArea (List<ClosedFigure> list) {
double sum = 0.0;
for (int i = 0; i < list.size(); i = i+1)

sum = sum + list.get(i).area();
return sum;

}

If Circle is a ClosedFigure, we should be able to invoke the method with a List<Cir-
cle> as argument. All the method does is query each list element for its area, and certainly
a Circle can be queried for its area. But if hoops is a List<Circle>, the invocation

totalArea(hoops)

fails to compile because List<Circle> is not a subtype of List<ClosedFigure>.

Wildcards

Wildcards are an extension to the type system intended to improve the flexibility of
generic structures. Syntactically, a wildcard is an expression of the form ?, ? extends T,
or ? super T, where T is a type. Wildcards denote types, and can be read as follows:

? — “some type”
? extends T — “T or some subtype of T”
? super T — “T or some super type of T”

The first form is called an “unbounded wildcard” and is essentially equivalent to
? extends Object.

Wildcards can only be used as type arguments in generic instantiations. For example,
we can write variable declarations like these

List<?> list;
List<? extends Exception> exceptionList;

but not like these:

? something;
? extends Exception someException;

Consider the simple generic class shown in Listing d.2. The expression Item<?>
denotes “Item<some type>,” while Item<? extends Exception> denotes
“Item<some type of Exception>.” For example, the parameter of the following method

906 Supplement d Additional Java 1.5 features
(I) public Object getItemValue (Item<?> item) {
return item.value();

}

specifies that the argument must be “an Item of some type.” The method can be invoked
with any kind of Item as argument, for example

Item<String> i1 = new Item<String>("hello");
Item<Integer> i2 = new Item<Integer>(new Integer(2));
Object o1 = getItemValue(i1);
Object o2 = getItemValue(i2);

Since the argument of getItemValue can be any type of Item, the only thing we
can conclude about the value returned by item.value() is that it is an Object. Thus the
method getItemValue is specified as returning an Object.

Now consider the method

public String getString (
Item<? extends Exception> item) {
return item.value().getMessage();

}

We can be sure that the argument supplied to this method will be an Item<T>, where T is
some type of Exception. Thus the value returned by item.value() is an Exception and
has a method getMessage that returns a String.

Finally, consider the method

public boolean sameValue (Item<?> one, Item<?> two) {
return one.value().equals(two.value());

}

Listing d.2 The class Item

public class Item<Element> {

private Element value;

public Item (Element value) {
this.value = value;

}

public Element value () {
return value;

}

public void setValue (Element value) {
this.value = value;

}
}

d.1 Generics 907
The first argument must be an Item of some type and the second argument must be an Item
of some type. But there is no requirement that the types of the Items be the same. That is,
we cannot assert that one.value() and two.value() have the same type. The
method can be invoked, for instance, with an Item<String> first argument and an
Item<Integer> second argument.

By now, you probably wonder what we have bought with all this new syntax. Why
could we not just write

(II) public Object getItemValue (Item<Object> item) {
return item.value();

}

public String getString (Item<Exception> item) { …
return item.value().getMessage();

}

and so on. To see the difference consider the invocation of the getItemValue shown
above:

Item<String> i1 = new Item<String>("hello");
Object o1 = getItemValue(i1);

If getItemValue is defined as (II), this invocation will not compile because
Item<String> is not a subtype of Item<Object>. If it were, we could write a method

public void setNumber (Item<Object> item) {
Integer integer = new Integer(1);
item.setValue(integer);

}

and invoke it with

Item<String> i1 = new Item<String>("hello");
setString(i1);

But we have seen that if getItemValue is defined as (I), the invocation

Object o1 = getItemValue(i1);

succeeds, where i1 is an Item<String>. So Item<String> must be a subtype of Item<?>,
even though it is not a subtype of Item<Object>.

What if we write

public void setNumber (Item<?> item) {
item.setValue(new Integer(1));

}

This method will not compile. Since item is of type Item<?>, all we know is that
item.setValue requires “some type” of argument. We cannot conclude that Integer is
an appropriate type. That is, inside setNumber, the signature if item.setValue is
essentially void setValue(?). There are no (proper) subtypes of ?.

908 Supplement d Additional Java 1.5 features
On the other hand, suppose we define

public void setRTE (Item<? super Exception> item) {
item.setValue(new RuntimeException());

}

Now we can be sure that the argument supplied to setRTE is of type Item<T> where T is
Exception or a supertype of Exception. Thus item.setValue will require an argument
of type T, where T is Exception or an Exception supertype. Now RuntimeException is a
subtype of Exception, and so of any Exception supertype. Hence RuntimeException is a
subtype of whatever type item.setValue expects, and the invocation is legal. Inside
setNumber, the signature of item.setValue is void setValue(? super
Exception). Exception and its subtypes are subtypes of ? super Exception.

Figure 4.1 illustrates the subtype relationship between wildcard types. In the figure, T
is a type, SubT is a subtype of T, and SuperT is a supertype of T. Remember that wildcard
type expressions, such as ? and ? extends T, can only be written as type arguments for
generic types.

Returning to the ClosedFigure example, the solution is to use a wildcard type in the
definition of totalArea:

public double totalArea (
List<? extends ClosedFigure> list) {
double sum = 0.0;
for (int i = 0; i < list.size(); i = i+1)

sum = sum + list.get(i).area();
return sum;

}

Since Circle is a subtype of ClosedFigure, List<Circle> is a subtype of List<? extends
ClosedFigure>. The invocation totalArea(hoops), where hoops is a List<Circle>,
is legal.

Finally, we should mention that a wildcard type can be the type of a variable. For
example, suppose we wanted to keep a list of all the Item instances ever created. (Don’t
ask why.) We can write the following

public class Item<Element> {

private Element value;
public static List<Item<?>> items =

new DefaultList<Item<?>>();

public Item (Element value) {
this.value = value;
items.add(this);

}
…

The static variable items is of type List<Item<?>>. This means that an Item of any type
can be added to the list.

d.1 Generics 909
Figure 4.1 Subtype relationship between types and wildcard types.

? extends T

? super T

T

SubT

Object

? SuperT

Item<? extends T>

Object

Item<SuperT>

Item<? super T>

Item<T>

Item<?>

Item<SubT>

910 Supplement d Additional Java 1.5 features
Wildcards and generic methods

Some of the methods written above with wildcards could have been written as generic
methods. For example,

public <Type> Object getItemValue (Item<Type> item) {
return item.value();

}

public <Type extends Exception> String getString (
Item<Type> item) {
return item.value().getMessage();

}

public <Type1, Type2> boolean sameValue (
Item<Type1> one, Item<Type2> two) {
return one.value().equals(two.value());

}

public <Type extends ClosedFigure> double totalArea (
List<Type> list) {
double sum = 0.0;
for (int i = 0; i < list.size(); i = i+1)

sum = sum + list.get(i).area();
return sum;

}

(We cannot write setRTE as a generic method.)
When should we use wildcard types and when should we write generic methods?

Wildcards are considered clearer and easier to understand than generic methods. The gen-
eral guideline is to use wildcards if we want to express polymorphism. That is, we want to
express the fact that the method can be invoked with different argument types. If we want
to express dependencies between arguments, or between arguments and return type, we
write a generic method. For example, we can write a tighter version of getItemValue
as a generic method:

public <Type> Type getItemValue (Item<Type> item) {
return item.value();

}

Here we have expressed a dependency between the argument type and the return type.
With the argument type expressed as a wildcard, the most we can say about the returned
value is that it is an Object.

Similarly, we can use a generic method to require that the arguments of sameValue
be of the same type. If we write

public <Type> boolean sameValue (
Item<Type> one, Item<Type> two) {
return one.value().equals(two.value());

}

d.2 Autoboxing and unboxing 911
then sameValue cannot be invoked, for instance, with an Item<String> first argument
and an Item<Integer> second argument.

Opening wildcards

Occasionally we want to use a wildcard parameter for purposes of expression, but need a
name for the type in the implementation. For example, suppose we are writing a method
that swaps two items of a list. It is natural to express the method with a wildcard list type:

public void swap (List<?> list, int i, int j)
Swap the elements with indexes i and j.

But when we implement the method, we find that we need to name the list element
type:

public void swap (List<?> list, int i, int j) {

✘ ? temp = list.get(i); // whoops! Can’t do this
list.set(i, list.get(j));
list.set(j, temp);

}

One approach is to define the public method with a wildcard, and have it call a private
generic version. The generic version, which must have a different name, “captures” the list
element type with a name.

public void swap (List<?> list, int i, int j) {
swapImp(list, i, j);

}

private <Type> void swapImp (
List<Type> list, int i, int j) {
Type temp = list.get(i);
list.set(i, list.get(j));
list.set(j, temp);

}

d.2 Autoboxing and unboxing

Recall that there is a wrapper class defined in java.lang for each primitive type. For
instance, the wrapper class for the primitive type int is the class Integer. An Integer
instance wraps an int value in an immutable object. An Integer can be created by provid-
ing the int value as a constructor argument,

public Integer (int value)
Create an Integer that represents the specified int value.

and the int value can be retrieved with the Integer method intValue,

912 Supplement d Additional Java 1.5 features
public int intValue ()
The value of this Integer as an int

Thus, after

Integer obj = new Integer(3);
int i = obj.intValue();

i will contain the int value 3.
Boxing is simply wrapping a primitive value in an object,

new Integer(3)

an unboxing is retrieving the wrapped value,

obj.intValue()

With JDK 1.5, the compiler will automatically box a primitive value that appears in a
context requiring an object, and will automatically unbox an object that appears in a con-
text requiring a primitive value.

For example, suppose grades is defined as a List<Integer>:

List<Integer> grades = new DefaultList<Integer>();

The List<Integer> method add requires an Integer as argument. If we write

grades.add(100);

the compiler will automatically box the value 100 in an Integer. That is, the method invo-
cation will be effectively translated into

grades.add(new Integer(100));

Conversely, an Integer will be unboxed if an int is required. For example, we can
write

int sum = grades.get(0) + grades.get(1);

even though the method grades.get returns an Integer. The code is effectively trans-
lated into

int sum = grades.get(0).intValue() +
grades.get(1).intValue();

d.3 Enumeration types

The enumeration type mechanism (the enum facility) provides a convenient way for defin-
ing a class that has a small fixed number of instances. Such classes are sometimes useful in
situations where we have previously used named int constants.

For example, recall the class PlayingCard, defined in Section 2.6. A PlayingCard has
two attributes, suit and rank. Suits were defined by four named constants,

public static final int CLUB = 1;

d.3 Enumeration types 913
public static final int HEART = 2;
public static final int DIAMOND = 3;
public static final int SPADE = 4;

The PlayingCard constructor required the argument specifying suit to be one of these four
values,

/**
 * Create a new PlayingCard with the specified suit and
 * rank.
 * @require suit == PlayingCard.CLUB ||
 * suit == PlayingCard.DIAMOND ||
 * suit == PlayingCard.HEART ||
 * suit == PlayingCard.SPADE
 * …
 */
public PlayingCard (int suit, int rank) { …

and the query suit promised to return one of these values,

/**
 * The suit of this PlayingCard.
 * @ensure this.suit() == PlayingCard.CLUB ||
 * this.suit() == PlayingCard.DIAMOND ||
 * this.suit() == PlayingCard.HEART ||
 * this.suit() == PlayingCard.SPADE
 */
public int suit () { …

The problem is that there is no way for the compiler to verify that a client will provide
appropriate arguments when the constructor is invoked. The best we can do is to include a
run-time check in the constructor:

public PlayingCard (int suit, int rank) {
assert suit == CLUB || suit == DIAMOND ||

suit == HEART || suit == SPADE;
…

Furthermore, the value returned by suit is just an int, and not particularly helpful
in testing or debugging. For instance, given

PlayingCard c = new PlayingCard(PlayingCard.CLUB,2);

the statement

System.out.println(c.suit());

displays 1.
With the enumeration facility, we can easily define a class that contains only four

objects modeling the suits. We write in the class PlayingCard

public enum Suit {clubs, diamonds, hearts, spades}

914 Supplement d Additional Java 1.5 features
This defines a public, static, PlayingCard member class named Suit. Suit has four
instances, referenced by named constants clubs, diamonds, hearts, and spades. It
is roughly equivalent to the following:

public static class Suit {

private final String name;

public static final Suit clubs =
new Suit("clubs");

public static final Suit diamonds =
new Suit("diamonds");

public static final Suit hearts =
new Suit("hearts");

public static final Suit spades =
new Suit("spades");

private Suit (String name) {
this.name = name;

}

public String toString () {
return this.name;

}
}

Suit is a public static class defined in PlayingCard. Thus PlayingCard.Suit is a class.
clubs is a named constant defined in the class and referencing one of the four instances
of the class Suit. Thus PlayingCard.Suit.clubs references an instance of Playing-
Card.Suit. Since the constructor for PlayingCard.Suit is private, a client cannot create new
Suit instances.

Now the PlayingCard constructor can require an argument of type PlayingCard.Suit,
and the method suit can return a value of this type:

/**
 * Create a new PlayingCard with the specified suit and
 * rank.
 * …
 */
public PlayingCard (PlayingCard.Suit suit, int rank)…
/**
 * The suit of this PlayingCard.
 */
public PlayingCard.Suit suit () …

The type of the argument in a constructor invocation can be verified by the compiler.
The client must write something like this:

PlayingCard c =
new PlayingCard(PlayingCard.Suit.clubs,2);

d.3 Enumeration types 915
Of course, the same approach can be taken with the PlayingCard rank: The class is
shown, with comments omitted, in Listing d.3.

As suggested above, the method toString returns the name of the constant. For
instance,

PlayingCard.Suit.clubs.toString() ⇒ "clubs"

Other methods defined for an enum class include

public int compareTo (EnumClass obj)
Compare this enum constant with the specified object for order. Returns
a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object. Enum constants are com-
parable only to other enum constants of the same enum class. The natu-
ral order implemented by this method is the order in which the constants
are declared.

public final int ordinal ()
The ordinal of this enumeration constant (its position in its enum decla-
ration, where the initial constant is assigned an ordinal of zero).

Listing d.3 The class PlayingCard

public class PlayingCard {

public enum Suit {clubs, diamonds, hearts, spades}
public enum Rank {two, three, four, five, six, seven,

eight, nine, ten, jack, queen, king, ace}

private Suit suit;
private Rank rank;

public PlayingCard (Suit suit, Rank rank) {
this.suit = suit;
this.rank = rank;

}

public Suit suit () {
return suit;

}

public Rank rank () {
return rank;

}

public String toString () {
return rank + " of " + suit;

}
}

916 Supplement d Additional Java 1.5 features
public static final EnumClass[] values ()
An array containing the elements of the enum type in the order in which
they were declared.

For example,

Suit.clubs.compareTo(Suit.hearts)⇒ a negative value
Suit.clubs.compareTo(Suit.clubs) ⇒ 0
Suit.hearts.compareTo(Suit.clubs)⇒ a positive values
Suit.clubs.ordinal() ⇒ 0
Suit.spades.ordinal() ⇒ 3
Suit.values[0] ⇒ clubs
Suit.values[3] ⇒ spades

The array returned by values can be used to iterate through the elements of an
enum class. (But see Section d.4 for a cleaner approach.) For example,

List<PlayingCard> deck =
new DefaultList<PlayingCard>();

for (int i = 0; i < Suit.values().length; i = i+1)
for (int j = 0; j < Rank.values().length; j = j+1)

deck.add(new PlayingCard(Suit.values()[i],
Rank.values()[j]));

Adding features to an enum type

An enum declaration defines a class with a set of predefined features. However, it is possi-
ble to define additional features for the class. For example, suppose we want a class that
model coins. We might define an enum class as

public enum Coin {penny, nickel, dime, quarter, half}

But suppose we want the Coin objects to know their monetary value. We can create an
enum class with additional features:

public enum Coin {
penny(1),
nickle(5),
dime(10),
quarter(25),
half(50);

private int monetaryValue;
private Coin (int monetaryValue) {

this.monetaryValue = monetaryValue;
}

public int monetaryValue () {
return monetaryValue;

}
}

d.3 Enumeration types 917
A Coin now has a private instance variable monetaryValue, and a public query
with the same name. We have also explicitly defined a constructor requiring an int argu-
ment. The numbers in the definition of the enum constants, 10 in dime(10) for instance,
are constructor arguments. For example,

Coin.dime.monetaryValue() ⇒ 10

Modifying the behavior of enum instances

Let’s take a look at the class TrafficSignal, specified in Listing 2.3. Recall that this class
defines three named constants,

public static final int GREEN = 0;
public static final int YELLOW = 1;
public static final int RED = 2;

It includes a query for the current light and a command to change to the next light.

public int light ()
The light currently on.

ensure:
this.light() == TrafficSignal.GREEN ||
this.light() == TrafficSignal.YELLOW ||
this.light() == TrafficSignal.RED.

public void change ()
Change to the next light.

Clearly we can use an enum type rather than int constants to define the lights:

public enum Light {green, yellow, red}
…
/**
 * The Light currently on.
 */
public Light light () …

Rather than implementing the method change as a cascade of if statements (see Sec-
tion 4.3), we can produce a cleaner solution if we let each Light instance know which
Light follows it. We add this functionality to the class Light:

public enum Light {
green, yellow, red;

private Light next () {
return values()[this.ordinal()+1];

}
}

When queried for next, a Light returns the next Light in the enumeration. Thus

Light.green.next() ⇒ Light.yellow
Light.yellow.next() ⇒ Light.red

918 Supplement d Additional Java 1.5 features
But if we query red for next, we generate an ArrayIndexOutOfBoundsException,
since Light.red.ordinal() is 2, and Light.values() contains only three ele-
ments, with indexes 0, 1, and 2. There is no enum value with index 3.

We want the next method for red to return the first enum value, green. We accom-
plish this by making red an instance of an anonymous Light subclass that overrides the
implementation of next. The enum syntax makes this easy:

public enum Light {
green,
yellow,
red {

protected Light next () {
return values()[0];

}
};

protected Light next () {
return values()[this.ordinal()+1];

}
}

The method next cannot now be private, since it is to be overridden in the anony-
mous subclass of red. The complete implementation of TrafficSignal is shown in
Listing d.4.

Listing d.4 The class TrafficSignal

/**
 * A simple green-yellow-red traffic signal.
 */
public class TrafficSignal {

private Light current; // The Light currently on.

/**
 * The signal lights.
 */
public enum Light {

green,
yellow,
red {

protected Light next () {
return values()[0];

}
};

continued

d.4 Enhanced for statement 919
d.4 Enhanced for statement

The for statement has been enhanced in JDK 1.5 to make iteration over a container easier.
The format of the enhanced for statement is:

for (type identifier : expression)
bodyStatement

Expression denotes the container to be iterated over. Its type must implement or
extend the new interface, java.lang.Iterable, or it must be an array. (Every container type,

/**
 * The light that comes on after this one.
 */
protected Light next () {

return values()[this.ordinal()+1];
}

}

/**
 * Create a new TrafficSignal, initially green.
 * @ensure this.light() == Light.green
 */
public TrafficSignal () {

current = Light.green;
}

/**
 * The light currently on.
 */
public Light light () {

return current;
}

/**
 * Change to the next light.
 */
public void change () {

current = current.next();
}

}

Listing d.4 The class TrafficSignal (cont’d)

920 Supplement d Additional Java 1.5 features
such as List, should implement or extend the interface.) Type denotes the type of the ele-
ments in the container. Identifier is used in the body to refer to a container element.

For example, the method to compute the average final exam grade for a nonempty list
of Students (Section 12.5.1) can be written as follows:

public double average (List<Student> students) {
int sum = 0;
for (Student s : students)

sum = sum + s.finalExam();
return (double)sum / (double)students.size();

}

In each iteration of the body of the for loop, s denotes a different element of the list
students. The code is essentially equivalent to

public double average (List<Student> students) {
int sum = 0;
for (int i = 0; i < student.size(); i = i +1) {

Student s = students.get(i);
sum = sum + s.finalExam();

}
return (double)sum / (double)students.size();

}

Note that we can iterate over an enum type by using the values method. For exam-
ple,

for (Suit suit : Suit.values())
for (Rank rank : Rank.values())

deck.add(new PlayingCard(suit,rank));

d.5 Importing static methods and named constants

The import statement has been enhanced so that it is now possible to import static methods
and constants into a compilation unit. The formats are:

import static type.identifier ;
import static type.* ;

Identifier must be a static member of the class or interface named by type. The first format
imports the name into the compilation unit. The second format imports the names of all
static members of the class or interface.

For example,

import static java.lang.Math.*;

imports into a compilation unit all the static functions defined in the class Math. For exam-
ple, we can then write sqrt(2) rather than Math.sqrt(2).

d.6 The class java.util.Scanner 921
If the class cardGame.PlayingCard defines enumeration types

public enum Suit {clubs, diamonds, hearts, spades}
public enum Rank {two, three, four, five, six, seven,

eight, nine, ten, jack, queen, king, ace}

we can import the enumeration constants into a compilation unit by including

import static cardGame.PlayingCard.Suit.*;
import static cardGame.PlayingCard.Rank.*;

We can then invoke the constructor by writing, for instance

new cardGame.PlayingCard(spades,ace)

d.6 The class java.util.Scanner

The class java.util.Scanner provides a means for reading character input, similar to our
BasicFileReader. The class Scanner offers more flexibility, and so is much more complex,
than our class. We consider only the most elemental features here.

A Scanner is created with a static factory method named create. There are eight
overloaded versions of the method. The most basic require a single argument, the source
of the input:

public static Scanner create (InputSource source)
Create a Scanner to read from source.

InputSource possibilities include, among others, java.io.File, java.io.InputStream, and
java.io.Reader.

A Scanner views its input stream as a sequence of tokens, separated by delimiters. By
default, a token is a sequence of nonwhite characters, and delimiters are whitespace.
(Recall that whitespace includes characters such as space, line feed, horizontal tab, etc.)
For example, if the input stream consisted of

(I) •••+12345a••↵ •bac••xyz↵ ••↵ •••12.3e+2••↵ zzz↵

 where “•” represents a space and “↵ ” represents the line termination character(s), a Scan-
ner would see five tokens: +12345a, bac, xyz, 12.3e+2, and zzz.

The basic Scanner method next reads and returns the next token from its input
source:

public String next ()
Find and return the next complete token from the input source. A com-
plete token is preceded and followed by delimiters. This method may
block while waiting for input.

Throws java.util.NoSuchElementException if no more tokens are avail-
able. Throws java.lang.IllegalStateException if this Scanner is closed

922 Supplement d Additional Java 1.5 features
Note that this method is neither a proper command nor a proper query. It both returns
a value and changes the state of the Scanner.

To determine whether or not there are tokens remaining in the input, Scanner provides
the query

public boolean hasNext ()
This scanner has another token in its input. This method may block
while waiting for input.

Throws java.lang.IllegalStateException if this Scanner is closed.

Assume that scanner is a Scanner with input as shown in (I) above. Then the fol-
lowing iteration

while (scanner.hasNext()) {
String token = scanner.next();
System.out.println(token);

}

produces five lines of output:

+12345a
bac
xyz
12.3e+2
zzz

Note that this.hasNext() is a precondition for the method next.
Scanner also has methods for recognizing whether or not the next token can be inter-

preted as an int, float, double, boolean, etc. For example,

public boolean hasNextBoolean ()
The next token in this Scanner’s input can be interpreted as a boolean.
That is, it is the string "true" or "false" ignoring case.

public boolean hasNextInt ()
The next token in this Scanner’s input can be interpreted as an int
value.

public boolean hasNextDouble ()
The next token in this Scanner’s input can be interpreted as a double
value.

(All these methods throw a java.lang.IllegalStateException if the Scanner is closed.)
If the method hasNextInt is invoked with the input shown above in (I), it will

return false because the next token, +12345a, does not have the format of an int.
There are corresponding “next” methods that read the next token, and return the prim-

itive value denoted by the token. For example,

public boolean nextBoolean ()
Read the next token from the input source and return the boolean
denoted by the token.

d.6 The class java.util.Scanner 923
require:
this.hasNextBoolean()

public int nextInt ()
Read the next token from the input source and return the int denoted
by the token.

require:
this.hasNextInt()

public double nextDouble ()
Read the next token from the input source and return the double
denoted by the token.

require:
this.hasNextDouble()

Finally, the method close closes the input:

public void close()
Closes this Scanner and its associated input stream.

	supplement d Additional Java 1.5 features
	d.1 Generics
	Listing d.1 The class KeyValueTable
	/**
	* A simple (key, value) table.
	*/
	public class KeyValueTable<Key, Value> {
	private List<Key> keys; // the keys
	private List<Value> values; // the values
	/**
	* Create a new empty table.
	*/
	public KeyValueTable () {
	keys = new DefaultList<Key>();
	values = new DefaultList<Value>();
	}
	/**
	* Add the specified (key, value) to this table. If the
	* key is already in the table, replace the associated
	* value with the one specified.
	*/
	public void add (Key key, Value value) {
	int i = keys.indexOf(key);
	if (i = -1) {
	keys.add(key);
	values.add(value);
	} else
	values.set(i,value);
	}
	/**
	* The value associated with the specified key. Returns
	* null if the key is not in the table.
	*/
	public Value lookUp (Key key) {
	int i = keys.indexOf(key);
	if (i != -1)
	return values.get(i);
	else
	return null;
	}
	}

	d.1.1 Wildcard types
	Generics and subtyping, revisited
	An example
	Wildcards
	Listing d.2 The class Item
	public class Item<Element> {
	private Element value;
	public Item (Element value) {
	this.value = value;
	}
	public Element value () {
	return value;
	}
	public void setValue (Element value) {
	this.value = value;
	}
	}
	Figure 4.1 Subtype relationship between types and wildcard types.

	Wildcards and generic methods
	Opening wildcards

	d.2 Autoboxing and unboxing
	d.3 Enumeration types
	Listing d.3 The class PlayingCard
	public class PlayingCard {
	public enum Suit {clubs, diamonds, hearts, spades}
	public enum Rank {two, three, four, five, six, seven,
	eight, nine, ten, jack, queen, king, ace}
	private Suit suit;
	private Rank rank;
	public PlayingCard (Suit suit, Rank rank) {
	this.suit = suit;
	this.rank = rank;
	}
	public Suit suit () {
	return suit;
	}
	public Rank rank () {
	return rank;
	}
	public String toString () {
	return rank + " of " + suit;
	}
	}
	Adding features to an enum type
	Modifying the behavior of enum instances
	The light currently on.
	Listing d.4 The class TrafficSignal
	/**
	* A simple green-yellow-red traffic signal.
	*/
	public class TrafficSignal {
	private Light current; // The Light currently on.
	/**
	* The signal lights.
	*/
	public enum Light {
	green,
	yellow,
	red {
	protected Light next () {
	return values()[0];
	}
	};
	continued
	/**
	* The light that comes on after this one.
	*/
	protected Light next () {
	return values()[this.ordinal()+1];
	}
	}
	/**
	* Create a new TrafficSignal, initially green.
	* @ensure this.light() == Light.green
	*/
	public TrafficSignal () {
	current = Light.green;
	}
	/**
	* The light currently on.
	*/
	public Light light () {
	return current;
	}
	/**
	* Change to the next light.
	*/
	public void change () {
	current = current.next();
	}
	}

	d.4 Enhanced for statement
	d.5 Importing static methods and named constants
	d.6 The class java.util.Scanner
	Find and return the next complete token from the input source. A com plete token is preceded and followed by delimiters. This method may block while waiting for input.
	This scanner has another token in its input. This method may block while waiting for input.
	Read the next token from the input source and return the boolean denoted by the token.
	Read the next token from the input source and return the int denoted by the token.
	Read the next token from the input source and return the double denoted by the token.

