SUPPLEMENT D Additional Java 1.5
features

There are a number of Java features not touched upon in the text. In particular, JDK 1.5
introduces several extensions to the core language. We briefly examine the most important
of these extensions in this supplement.*

d.1l Generics

The most significant addition to the language in JDK 1.5 isthe inclusion of generic struc-
tures. Aswe have seen in Chapter 12, genericity allows usto define classes, interfaces, and
methods with type parameters. There are two additional aspects of generic structures we
should mention.

* Generic structures can have more than one type parameter.

Consider the class KeyValueTable defined in Listing d.1. The class is defined with two
type parameters, Key and Val ue. Instantiating the generic class requires two type argu-
ments. For example,

KeyVal ueTabl e<String, |nteger> grades =
new KeyVal ueTabl e<String, |nteger>();

The method gr ades. add requires a String and an Integer as arguments, and the method
gr ades. | ookUp requires a Sring argument and returns an Integer:

grades. add("Henry", new | nteger(97));

I nt eger henrysGrade = grades. | ookUp("Henry");

» Type parameters can be “bounded” by another type.

Suppose Keyed is an interface defined as

public interface Keyed {
public String getKey ();
}

1. Asthisiswritten, JDK 1.5isavailablein betarelease only and the specification document has
not been published.

901

902 Supplementd Additional Java 1.5 features

Listing d.1 The class KeyValueTable

/**
* A sinple (key, value) table.
*/
public class KeyVal ueTabl e<Key, Val ue> {

private List<Key> keys; /'l the keys
private List<Value> values; // the values
/**
* Create a new enpty table.
*
/
public KeyVal ueTable () {
keys = new Defaul tLi st <Key>();
val ues = new Def aul t Li st <Val ue>();

}

/**

* Add the specified (key, value) to this table. If the
* key is already in the table, replace the associated
* value with the one specified.

*/

public void add (Key key, Value value) {
int i = keys.indexO (key);
if (i =-1) {

keys. add(key) ;
val ues. add(val ue);
} else
val ues. set (i, val ue);

}
/**
* The val ue associated with the specified key. Returns
* null if the key is not in the table.
*/
public Value | ookUp (Key key) {
int i = keys.indexO (key);
if (i '=-1)
return val ues.get(i);
el se
return null;
}

d.1 Generics 903

Then the following version of the generic class KeyValueTable requires its argument to be
asubtype of Keyed.

public class KeyVal ueTabl e<Entry extends Keyed> {

private List<String> keys;
private List<Entry> entries;

public void add (Entry entry) {
String key = entry. getKey();

}
public Entry [ookUp (String key) {

}
}

Note that the keyword for bounding a type is ext ends, regardless of whether the
bounding type is defined by an interface or by a class.

The add method takes advantage of the fact that a generic argument will be a subtype
of Keyed, and thus define the method get Key. If Student implements Keyed,

public class Student inplenents Keyed ...

we can instantiate the generic class with Sudent as argument:

KeyVal ueTabl e<St udent > grades =
new KeyVal ueTabl e<St udent >();

Student henry = ..;

gr ades. add(henry);

Since henry is a Sudent, and Student implements Keyed, henr y supports the method
get Key.
Now suppose Keyed is a generic interface:
public interface Keyed<Key> {
public Key getKey ();
}

The following version has two type parameters, the second depending on the first.

public class KeyVal ueTabl e
<Key, Entry extends Keyed<Key>> {

private List<Key> keys;
private List<Entry> entries;

public void add (Entry entry) {
Key key = entry. get Key();

904 Supplementd Additional Java 1.5 features

public Entry | ookUp (Key key) {

}
}

If the first generic argument is Sring, for example, the second must be a subtype of
Keyed<String>. Assuming that Student implements Keyed<String>, and so defines a
method St ri ng get Key() , we can instantiate the generic class as follows.

KeyVal ueTabl e<String, Student> grades =
new KeyVal ueTabl e<String, Student>();

Student henry = ..;

gr ades. add(henry);

d.1.1 Wildcard types

Generics and subtyping, revisited

We have seen, in Section 9.2.3, that the fundamental rule of subtyping statesthat if Aisa
subtype of B, then an A value can be provided wherever a B valueis required. For instance,
the Object method equal s requires an Object argument:

public bool ean equal s (Object obj)

Since Sudent is a subtype of Object, we can invoke the method with a Sudent as argu-
ment:

if (someQbject.equal s(henry))

In Section 12.2.2 we learned that A a subtype of B does not imply that List<A> isa
subtype of List. If it were, the fundamental rule of subtyping would be violated. For
instance, we could write a method that adds a String to a List< Object>,

public void addString (List<Object> list) {
list.add("end"); // OK String a subtype of Object

}

and then invoke the method with a List<Integer> as argument:

Li st <l nteger> nunbers = new Def aul t Li st <l nteger>();
addStri ng(nunbers);
/1 OKif List<lnteger> is a subtype of List<Qbject>!

Theruleistruein general for generic types: if T<E> isageneric type (with parame-
ter E), then A a subtype of B does not imply that T<A> is a subtype of T.

An example

Suppose we have an interface ClosedFigure that specifies a method for computing area:

d.1 Generics 905

public interface C osedFigure
A regular closed two-dimensional geometric figure.

public double area ()
The area of thisfigure.

We can write amethod that takes a List< ClosedFigure> and produces the total area of
the elements of thelist.

public double total Area (List<C osedFigure> list) {
doubl e sum = 0. 0;
for (int i =0; i <list.size(); i =i+1)
sum = sum + list.get(i).area();
return sum

}

If Circleis a ClosedFigure, we should be able to invoke the method with a List<Cir-
cle> asargument. All the method does is query each list element for its area, and certainly
aCircle can be queried for itsarea. But if hoops isalList<Circle>, the invocation

t ot al Area(hoops)

fails to compile because List<Circle> is not a subtype of List<ClosedFigure>.

Wildcards

Wildcards are an extension to the type system intended to improve the flexibility of
generic structures. Syntactically, awildcard is an expression of theform ?, ? ext ends T,
or ? super T, whereT isatype. Wildcards denote types, and can be read as follows:

? — “sometype’
? extends T — “T or some subtypeof T”
? super T — “T or some super type of T"

The first form is caled an “unbounded wildcard” and is essentially equivalent to
? ext ends Obj ect .

Wildcards can only be used as type arguments in generic instantiations. For example,
we can write variable declarations like these

Li st<?> list;
Li st<? extends Exception> exceptionLi st;
but not like these:

? somet hi ng;
? extends Exception soneException;

Consider the simple generic class shown in Listing d.2. The expression | t enx?>
denotes “ltem<some type>,” while Itenxk? extends Exception> denotes
“Item< some type of Exception>." For example, the parameter of the following method

906

Supplementd Additional Java 1.5 features

(1)

Listing d.2 The class Item

public class Iten<El ement> {
private El enent val ue;

public Item (El ement val ue) {
t hi s. val ue = val ue;
}

public El enent value () {
return val ue;

}

public void setValue (El ement value) {
t his.val ue = val ue;
}

public Object getltenValue (Itenxk?> iten) {
return itemval ue();
}

specifies that the argument must be “an Item of some type” The method can be invoked
with any kind of Item as argument, for example

ItenxString> il = new ItenkString>("hello");
Itenxlnteger> i 2 = new | tenxl nteger>(new I nteger(2));
Obj ect 0l = getltenVal ue(il);

Obj ect 02 = getltenVal ue(i?2);

Since the argument of get | t enval ue can be any type of Item, the only thing we
can conclude about the valuereturned by i t em val ue() isthatitisan Object. Thusthe
method get | t enVal ue is specified as returning an Object.

Now consider the method

public String getString (
Itenx? extends Exception> iten) ({
return itemval ue(). get Message();

}

We can be sure that the argument supplied to this method will be an Item<T>, where T is
some type of Exception. Thusthe value returned by i t em val ue() isan Exception and
has a method get Message that returns a Sring.

Finally, consider the method

public bool ean saneVal ue (ltenk?> one, ltenk?> two) {
return one.val ue().equal s(two. val ue());
}

(I

d.1 Generics 907

Thefirst argument must be an Item of some type and the second argument must be an Item
of some type. But there is no requirement that the types of the Items be the same. That is,
we cannot assert that one. val ue() and two. val ue() have the same type. The
method can be invoked, for instance, with an ltem<Sring> first argument and an
Item<Integer> second argument.

By now, you probably wonder what we have bought with al this new syntax. Why
could we not just write

public Object getltenValue (ItenxkObject> iten) ({
return itemval ue();
}

public String getString (ItenxkException> iten) ({
return itemval ue(). get Message();
}

and so on. To see the difference consider the invocation of the get | t enal ue shown
above:

ItenxString> il = new ltenkString>("hello");
bj ect 01 = getltenval ue(il);

If getltenVal ue is defined as (1), this invocation will not compile because
Item< String> is not a subtype of Item<Object>. If it were, we could write a method

public void setNumber (ItenxObject> iten) {
I nteger integer = new Integer(1l);
i tem set Val ue(i nt eger);

}
and invoke it with
[tenxString> il = new ItenkString>("hello");
setString(il);
But we have seen that if get | t enal ue isdefined as (1), the invocation
bj ect 01 = getltenval ue(il);
succeeds, wherei 1 isan ltem<Sring>. So Item< Sring> must be a subtype of ltem<?>,

even though it is not a subtype of Item<Object>.
What if we write

public void setNumber (Itenx?> iten) {
item set Val ue(new Integer(1));
}

This method will not compile. Since i t emis of type Item<?>, al we know is that
i tem set Val ue requires“sometype” of argument. We cannot conclude that Integer is
an appropriate type. That is, inside set Nunber , the signature if i t em set Val ue is
essentially voi d set Val ue(?) . There are no (proper) subtypes of 2.

908

Supplementd Additional Java 1.5 features

On the other hand, suppose we define

public void setRTE (Itenx? super Exception> iten) ({
i tem set Val ue(new Runti neException());

}

Now we can be sure that the argument supplied to set RTE is of type Item<T> where T is
Exception or a supertype of Exception. Thusi t em set Val ue will require an argument
of type T, where T is Exception or an Exception supertype. Now RuntimeException is a
subtype of Exception, and so of any Exception supertype. Hence RuntimeException is a
subtype of whatever type i t em set Val ue expects, and the invocation is legal. Inside
set Nunber, the signature of item set Val ue is voi d set Val ue(? super
Except i on) . Exception and its subtypes are subtypes of ? super Exception.

Figure 4.1 illustrates the subtype rel ationship between wildcard types. In the figure, T
isatype, SuUbT isasubtype of T, and SuperT is a supertype of T. Remember that wildcard
type expressions, such as ? and ? ext ends T, can only be written as type arguments for
generic types.

Returning to the ClosedFigure example, the solution is to use a wildcard type in the
definition of t ot al Ar ea:

public double total Area (
Li st<? extends C osedFigure> list) {
doubl e sum = 0. 0;
for (int i =0; i <list.size(); i = i+1)
sum = sum + list.get(i).area();
return sum

}

Since Circle is a subtype of ClosedFigure, List<Circle> is a subtype of List<? extends
ClosedFigure>. The invocation t ot al Ar ea(hoops) , where hoops is a List<Circle>,
islegal.

Finally, we should mention that a wildcard type can be the type of a variable. For
example, suppose we wanted to keep alist of al the Item instances ever created. (Don't
ask why.) We can write the following

public class ItenxEl ement> {

private El enent val ue;
public static List<ltenk?>> itens =
new Def aul t Li st<ltenmx?>>();

public Item (El ement value) {
t his.val ue = val ue;
itens. add(this);

The static variable i t enrs is of type List<Item<?>>. This means that an Item of any type
can be added to the list.

d.1 Generics

Object

N

? ? super T SuperT

R/
-

SubT ? extends T
Object
Item<?>
/ \
Item<? extends T> Item<? super T>
ltem<SubT> Item<T> ltem<SuperT>

Figure 4.1 Subtype relationship between types and wildcard types.

909

910

Supplementd Additional Java 1.5 features

Wildcards and generic methods

Some of the methods written above with wildcards could have been written as generic
methods. For example,
public <Type> Cbject getltenValue (ItenxkType> item ({
return itemvalue();

}

public <Type extends Exception> String getString (
I tenkType> item {
return item val ue().get Message();

}

public <Typel, Type2> bool ean saneVal ue (
I tenxTypel> one, |tenxkType2> two) {
return one.val ue().equal s(two. val ue());

}

public <Type extends C osedFi gure> double total Area (
Li st<Type> list) {
doubl e sum = 0. 0;
for (int i =0; i <list.size(); i =i+1)
sum = sum + list.get(i).area();
return sum

}

(We cannot write set RTE as a generic method.)

When should we use wildcard types and when should we write generic methods?
Wildcards are considered clearer and easier to understand than generic methods. The gen-
eral guidelineisto use wildcards if we want to express polymorphism. That is, we want to
express the fact that the method can be invoked with different argument types. If we want
to express dependencies between arguments, or between arguments and return type, we
write a generic method. For example, we can write atighter version of get | t enVal ue
as a generic method:

public <Type> Type getltemval ue (ItenxType> iten) ({
return itemval ue();
}
Here we have expressed a dependency between the argument type and the return type.
With the argument type expressed as a wildcard, the most we can say about the returned

valueisthat it is an Object.
Similarly, we can use a generic method to require that the arguments of saneVal ue

be of the same type. If we write
public <Type> bool ean saneVal ue (
I tenxType> one, |tenkType> two) {
return one.val ue().equal s(two. val ue());

d.2 Autoboxing and unboxing 911

then sanmeVal ue cannot be invoked, for instance, with an Item<String> first argument
and an ltem<Integer> second argument.

Opening wildcards

Occasionally we want to use a wildcard parameter for purposes of expression, but need a
name for the type in the implementation. For example, suppose we are writing a method
that swapstwo items of alist. It is natural to express the method with awildcard list type:
public void swap (List<?> list, int i, int j)
Swap the elements with indexesi and j.

But when we implement the method, we find that we need to name the list element
type:
public void swap (List<?> list, int i, int j) {
tl ? temp = list.get(i); /'l whoops! Can’t do this
list.set(i, list.get(j));
list.set(j, temp);
}

One approach isto define the public method with awildcard, and have it call a private
generic version. The generic version, which must have a different name, “ captures’ the list
element type with a name.

public void swap (List<?> list, int i, int j) {
swapl mp(list, i, j);
}
private <Type> void swaplnm (
Li st<Type> list, int i, int j) {
Type temp = list.get(i);
list.set(i, list.get(j));

list.set(j, tenp);

d.2 Autoboxing and unboxing

Recall that there is a wrapper class defined in j ava. | ang for each primitive type. For
instance, the wrapper class for the primitive type i nt is the class Integer. An Integer
instance wrapsani nt vauein an immutable object. An Integer can be created by provid-
ing thei nt value as a constructor argument,

public Integer (int value)
Create an Integer that represents the specified int value.

and thei nt value can be retrieved with the Integer method i nt Val ue,

912

d.3

Supplementd Additional Java 1.5 features

public int intValue ()
The value of thisInteger asani nt

Thus, after
I nteger obj = new Integer(3);
int i = obj.intValue();

i will containthei nt value 3.
Boxing is simply wrapping a primitive value in an object,

new | nt eger (3)
an unboxing is retrieving the wrapped value,
obj . i ntVal ue()

With JDK 1.5, the compiler will automatically box a primitive value that appearsin a
context requiring an object, and will automatically unbox an object that appears in a con-
text requiring a primitive value.

For example, suppose gr ades isdefined as a List<Integer>:

Li st <l nteger> grades = new Defaul tList<Ilnteger>();
The List<Integer> method add requires an Integer as argument. If we write
gr ades. add(100) ;

the compiler will automatically box the value 100 in an Integer. That is, the method invo-
cation will be effectively trandated into

gr ades. add(new I nt eger (100));

Conversely, an Integer will be unboxed if an i nt isrequired. For example, we can
write

int sum = grades.get(0) + grades.get(1);
even though the method gr ades. get returns an Integer. The code is effectively trans-
lated into

int sum = grades.get(0).intValue() +
grades. get (1).intVal ue();

Enumeration types

The enumeration type mechanism (the enum facility) provides a convenient way for defin-
ing aclass that has asmall fixed number of instances. Such classes are sometimes useful in
situations where we have previously used named i nt constants.

For example, recall the class PlayingCard, defined in Section 2.6. A PlayingCard has
two attributes, suit and rank. Suits were defined by four named constants,

public static final int CLUB = 1;

d.3 Enumeration types 913

public static final int HEART = 2;
public static final int DIAMOND = 3;
public static final int SPADE = 4;

The PlayingCard constructor required the argument specifying suit to be one of these four
values,

suit == Pl ayi ngCar d. SPADE

/**
* Create a new PlayingCard with the specified suit and
* rank.
* @equire suit == PlayingCard. CLUB ||
* suit == Pl ayi ngCard. DI AMOND | |
* suit == Pl ayi ngCard. HEART | |
*
*
*

~

public PlayingCard (int suit, int rank) {

and the query sui t promised to return one of these values,

/**
* The suit of this PlayingCard.
* @nsure this.suit() == PlayingCard. CLUB ||
* this.suit() == PlayingCard. DI AMOND | |
* this.suit() == PlayingCard. HEART | |
* this.suit() == PlayingCard. SPADE

/
public int suit () {

The problem isthat there is no way for the compiler to verify that aclient will provide
appropriate arguments when the constructor is invoked. The best we can doisto include a
run-time check in the constructor:

public PlayingCard (int suit, int rank) {
assert suit == CLUB || suit == DI AMOND | |
suit == HEART || suit == SPADE;

Furthermore, the value returned by sui t isjust ani nt, and not particularly helpful
in testing or debugging. For instance, given

Pl ayi ngCard ¢ = new Pl ayi ngCar d(Pl ayi ngCard. CLUB, 2);
the statement

Systemout.println(c.suit());
displays 1.

With the enumeration facility, we can easily define a class that contains only four
objects modeling the suits. We write in the class PlayingCard

public enum Suit {clubs, dianonds, hearts, spades}

914 Supplementd Additional Java 1.5 features

This defines a public, static, PlayingCard member class named Suit. Suit has four
instances, referenced by named constantscl ubs, di anonds, heart s, and spades. It
isroughly equivalent to the following:

public static class Suit {
private final String nane;

public static final Suit clubs =
new Suit("cl ubs");

public static final Suit dianonds =
new Sui t ("di anonds");

public static final Suit hearts
new Suit("hearts");

public static final Suit spades
new Suit ("spades");

private Suit (String nane) {
t hi s. name = nane;

}

public String toString () {
return this.nane;

}
}

Suit isapublic static class defined in PlayingCard. Thus PlayingCard.Suit is a class.
cl ubs isanamed constant defined in the class and referencing one of the four instances
of the class Suit. Thus Pl ayi ngCar d. Sui t . cl ubs references an instance of Playing-
Card.Suit. Since the constructor for PlayingCard.Suit is private, a client cannot create new
Suit instances.

Now the PlayingCard constructor can require an argument of type PlayingCard.Suit,
and the method sui t can return avalue of thistype:

/**

* Create a new PlayingCard with the specified suit and
* rank.

*/

public PlayingCard (PlayingCard.Suit suit, int rank)...
/**

* The suit of this PlayingCard.

*/

public PlayingCard.Suit suit ()

The type of the argument in a constructor invocation can be verified by the compiler.
The client must write something like this:
Pl ayi ngCard c =
new Pl ayi ngCar d(Pl ayi ngCard. Sui t. cl ubs, 2);

d.3 Enumeration types 915

Of course, the same approach can be taken with the PlayingCard rank: The classis
shown, with comments omitted, in Listing d.3.

As suggested above, the method t oSt ri ng returns the name of the constant. For
instance,

Pl ayi ngCard. Suit.clubs.toString() O "clubs"

Other methods defined for an enum class include

public int conpareTo (EnunCl ass obj)
Compare this enum constant with the specified object for order. Returns
anegative integer, zero, or a positive integer asthis object is less than,
equal to, or greater than the specified object. Enum constants are com-
parable only to other enum constants of the same enum class. The natu-
ral order implemented by this method is the order in which the constants
are declared.

public final int ordinal ()
The ordinal of this enumeration constant (its position in its enum decla-
ration, where the initial constant is assigned an ordinal of zero).

Listing d.3 The class PlayingCard

public class PlayingCard {

public enum Suit {clubs, dianonds, hearts, spades}
public enum Rank {two, three, four, five, six, seven,
ei ght, nine, ten, jack, queen, king, ace}

private Suit suit;
private Rank rank;

public PlayingCard (Suit suit, Rank rank) {
this.suit = suit;
this.rank = rank;

}

public Suit suit () {
return suit;
}

public Rank rank () {
return rank;
}

public String toString () {
return rank + " of + suit;

}

916 Supplementd Additional Java 1.5 features

public static final EnunClass[] values ()
An array containing the elements of the enum typein the order in which
they were declared.

For example,

Sui t. cl ubs. compareTo(Suit. hearts)d anegativevaue
Sui t.cl ubs. compareTo(Suit.clubs) O O
Sui t. hearts. conpareTo(Suit.clubs)d apositivevaues

Sui t. cl ubs. ordi nal () o o

Sui t. spades. ordi nal () o 3

Sui t. val ues[0] O clubs
Sui t. val ues] 3] 0 spades

The array returned by val ues can be used to iterate through the elements of an
enum class. (But see Section d.4 for a cleaner approach.) For example,

Li st <Pl ayi ngCar d> deck =
new Def aul t Li st <Pl ayi ngCar d>() ;
for (int i =0; i < Suit.values().length; i =i+1)
for (int j =0; j < Rank.values().length; j = j+1)
deck. add(new Pl ayi ngCard(Suit.values()[i],
Rank. values()[j1));

Adding features to an enum type

An enum declaration defines a class with a set of predefined features. However, it is possi-
ble to define additional features for the class. For example, suppose we want a class that
model coins. We might define an enum class as

public enum Coin {penny, nickel, dinme, quarter, half}

But suppose we want the Coin objects to know their monetary value. We can create an
enum class with additional features:

public enum Coin {
penny(1),
ni ckl e(5),
di ne(10),
quarter(25),
hal f (50);

private int nonetaryVal ue;
private Coin (int nonetaryValue) {
t hi s. nonet aryVal ue = nonet aryVal ue;

}

public int nonetaryValue () {
return nonetaryVal ue;

}

d.3 Enumeration types 917

A Coin now has a private instance variable nonet ar yVal ue, and a public query
with the same name. We have also explicitly defined a constructor requiring an int argu-
ment. The numbersin the definition of the enum constants, 10 indi me(10) for instance,
are constructor arguments. For example,

Coi n. di ne. monet aryVal ue() O 10

Modifying the behavior of enum instances
Let's take alook at the class TrafficSgnal, specified in Listing 2.3. Recall that this class
defines three named constants,

public static final int GREEN = O;
public static final int YELLOWN= 1;
public static final int RED = 2;

It includes a query for the current light and a command to change to the next light.

public int light ()
Thelight currently on.

ensure:
this.light() == TrafficSignal.GREEN ||
this.light() == TrafficSignal.YELLOW | |
this.light() == TrafficSignal.RED.

public void change ()
Change to the next light.

Clearly we can use an enum type rather than i nt constants to define the lights:
public enum Light {green, yellow, red}
[xx
* The Light currently on.
*/
public Light Iight ()

Rather than implementing the method change as a cascade of if statements (see Sec-
tion 4.3), we can produce a cleaner solution if we let each Light instance know which
Light follows it. We add this functionality to the class Light:

public enum Light {
green, yellow, red;

private Light next () {
return values()[this.ordinal()+1];
}

}

When queried for next , a Light returns the next Light in the enumeration. Thus

Li ght.green.next() O Light.yellow
Li ght.yellow next() O Light.red

918 Supplementd Additional Java 1.5 features

But if we query r ed for next , we generate an ArraylndexOutOfBoundsException,
since Li ght . red. ordi nal () is2,andLi ght . val ues() containsonly three ele-
ments, with indexes 0, 1, and 2. Thereis no enum value with index 3.

We want the next method for r ed to return the first enum value, gr een. We accom-
plish this by making r ed an instance of an anonymous Light subclass that overrides the
implementation of next . The enum syntax makes this easy:

public enum Light {
green,
yel | ow,
red {
protected Light next () {
return values()[0];
}

i
protected Light next () {

return val ues()[this.ordinal()+1];
}

}

The method next cannot now be private, since it is to be overridden in the anony-

mous subclass of red. The complete implementation of TrafficSgnal is shown in
Listing d.4.

Listing d.4 The class TrafficSignal

/**

* A sinple green-yellowred traffic signal.
*/
public class TrafficSignal {

private Light current; // The Light currently on.
/**
* The signal lights.
*/
public enum Light {
gr een,
yel | ow,
red {

protected Light next () {
return val ues()[0];
}

b

continued

d.4 Enhanced for statement 919

Listing d.4 The class TrafficSignal (cont’d)

/**
* The light that cones on after this one.
*/
protected Light next () {
return values()[this.ordinal()+1];

}
}
/**
* Create a new TrafficSignal, initially green.
* @nsure this.light() == Light.green
*/

public TrafficSignal () {
current = Light.green;
}

/**

* The |ight currently on.

*/

public Light light () {
return current;

}

/**
* Change to the next light.
*/
public void change () {
current = current.next();

}

d.4 Enhanced for statement

The for statement has been enhanced in JDK 1.5 to make iteration over a container easier.
The format of the enhanced for statement is:

for (type identifier : expression)
bodySt at enmrent

Expression denotes the container to be iterated over. Its type must implement or
extend the new interface, java.lang.Iterable, or it must be an array. (Every container type,

920 Supplementd Additional Java 1.5 features

such as List, should implement or extend the interface.) Type denotes the type of the ele-
ments in the container. Identifier is used in the body to refer to a container element.

For example, the method to compute the average final exam grade for a nonempty list
of Students (Section 12.5.1) can be written as follows:

public doubl e average (List<Student> students) ({
int sum= 0;
for (Student s : students)
sum = sum + s. final Exan();
return (doubl e)sum/ (doubl e)students.size();

}

In each iteration of the body of the for loop, s denotes a different element of the list
st udent s. The codeis essentially equivalent to

public doubl e average (List<Student> students) {
int sum= 0;
for (int i = 0; i < student.size(); i =i +1) {
Student s = students.get(i);
sum = sum + s. fi nal Exan();

}
return (doubl e)sum/ (doubl e)students.size();
}
Note that we can iterate over an enum type by using the val ues method. For exam-

ple,

for (Suit suit : Suit.values())
for (Rank rank : Rank.val ues())
deck. add(new Pl ayi ngCard(suit,rank));

d.5 Importing static methods and named constants

The import statement has been enhanced so that it is now possible to import static methods
and constants into a compilation unit. The formats are;

i mport static type.identifier ;
i mport static type.* ;

Identifier must be a static member of the class or interface named by type. The first format
imports the name into the compilation unit. The second format imports the names of all
static members of the class or interface.

For example,

i mport static java.lang. Math. *;

imports into acompilation unit all the static functions defined in the class Math. For exam-
ple, we canthen writesqrt (2) rather than Mat h. sqrt (2).

d.6 The class java.util.Scanner 921

If the class cardGame.PlayingCard defines enumeration types

public enum Suit {clubs, dianonds, hearts, spades}
public enum Rank {two, three, four, five, six, seven,
ei ght, nine, ten, jack, queen, king, ace}
we can import the enumeration constants into a compilation unit by including

i mport static cardGane. Pl ayi ngCard. Suit.*;
i mport static cardGane. Pl ayi ngCard. Rank. *;

We can then invoke the constructor by writing, for instance
new car dGane. Pl ayi ngCar d(spades, ace)

d.6 The class java.util.Scanner

(1)

The class java.util.Scanner provides a means for reading character input, similar to our
BasicFileReader. The class Scanner offers more flexibility, and so is much more complex,
than our class. We consider only the most elemental features here.

A Scanner is created with a static factory method named cr eat e. There are eight
overloaded versions of the method. The most basic require a single argument, the source
of the input:

public static Scanner create (| nputSource source)
Create a Scanner to read from sour ce.

InputSource possibilities include, among others, java.io.File, java.io.lnputStream, and
java.io.Reader.

A Scanner views itsinput stream as a sequence of tokens, separated by delimiters. By
default, a token is a sequence of nonwhite characters, and delimiters are whitespace.
(Recdll that whitespace includes characters such as space, line feed, horizontal tab, etc.)
For example, if the input stream consisted of

eee+12345a0 e bace e xyzleedeee12. 3e+2¢¢[zzz 0

where “” represents a space and “[I” represents the line termination character(s), a Scan-
ner would see five tokens: +12345a, bac, xyz, 12. 3e+2,and zzz.

The basic Scanner method next reads and returns the next token from its input
source:

public String next ()
Find and return the next complete token from the input source. A com-
plete token is preceded and followed by delimiters. This method may
block while waiting for input.

Throws java.util.NoSuchElementException if no more tokens are avail-
able. Throws java.lang.lllegal SateException if this Scanner is closed

922 Supplementd Additional Java 1.5 features

Note that this method is neither a proper command nor a proper query. It both returns
avalue and changes the state of the Scanner.

To determine whether or not there are tokens remaining in the input, Scanner provides
the query

publ i c bool ean hasNext ()
This scanner has another token in its input. This method may block
while waiting for input.
Throws java.lang.|llegal SateException if this Scanner is closed.

Assume that scanner isa Scanner with input as shown in (1) above. Then the fol-
lowing iteration
whil e (scanner. hasNext()) {
String token = scanner.next();
System out. println(token);

}

produces five lines of outpult:

+12345a
bac
Xyz
12. 3e+2
222

Notethatt hi s. hasNext () isaprecondition for the method next .
Scanner also has methods for recognizing whether or not the next token can be inter-
pretedasani nt , f | oat, doubl e, bool ean, etc. For example,

publ i c bool ean hasNext Bool ean ()
The next token in this Scanner’sinput can be interpreted asabool ean.
Thatis, itisthestring"true" or"fal se" ignoring case.

public bool ean hasNextlnt ()
The next token in this Scanner’s input can be interpreted asan i nt
value.,

publ i ¢ bool ean hasNext Doubl e ()
The next token in this Scanner’s input can be interpreted asadoubl e
value,

(All these methods throw ajava.lang.lllegal SateException if the Scanner is closed.)
If the method hasNext | nt is invoked with the input shown above in (1), it will
return false because the next token, +12345a, does not have the format of ani nt .
There are corresponding “ next” methods that read the next token, and return the prim-
itive value denoted by the token. For example,

publ i ¢ bool ean next Bool ean ()
Read the next token from the input source and return the bool ean
denoted by the token.

d.6 The class java.util.Scanner 923

require:
t hi s. hasNext Bool ean()
public int nextlnt ()
Read the next token from the input source and return thei nt denoted
by the token.
require:
t hi s. hasNext I nt ()
publ i c doubl e next Double ()
Read the next token from the input source and return the doubl e
denoted by the token.
require
t hi s. hasNext Doubl e()

Finally, the method cl ose closes the input:

public void close()
Closes this Scanner and its associated input stream.

	supplement d Additional Java 1.5 features
	d.1 Generics
	Listing d.1 The class KeyValueTable
	/**
	* A simple (key, value) table.
	*/
	public class KeyValueTable<Key, Value> {
	private List<Key> keys; // the keys
	private List<Value> values; // the values
	/**
	* Create a new empty table.
	*/
	public KeyValueTable () {
	keys = new DefaultList<Key>();
	values = new DefaultList<Value>();
	}
	/**
	* Add the specified (key, value) to this table. If the
	* key is already in the table, replace the associated
	* value with the one specified.
	*/
	public void add (Key key, Value value) {
	int i = keys.indexOf(key);
	if (i = -1) {
	keys.add(key);
	values.add(value);
	} else
	values.set(i,value);
	}
	/**
	* The value associated with the specified key. Returns
	* null if the key is not in the table.
	*/
	public Value lookUp (Key key) {
	int i = keys.indexOf(key);
	if (i != -1)
	return values.get(i);
	else
	return null;
	}
	}

	d.1.1 Wildcard types
	Generics and subtyping, revisited
	An example
	Wildcards
	Listing d.2 The class Item
	public class Item<Element> {
	private Element value;
	public Item (Element value) {
	this.value = value;
	}
	public Element value () {
	return value;
	}
	public void setValue (Element value) {
	this.value = value;
	}
	}
	Figure 4.1 Subtype relationship between types and wildcard types.

	Wildcards and generic methods
	Opening wildcards

	d.2 Autoboxing and unboxing
	d.3 Enumeration types
	Listing d.3 The class PlayingCard
	public class PlayingCard {
	public enum Suit {clubs, diamonds, hearts, spades}
	public enum Rank {two, three, four, five, six, seven,
	eight, nine, ten, jack, queen, king, ace}
	private Suit suit;
	private Rank rank;
	public PlayingCard (Suit suit, Rank rank) {
	this.suit = suit;
	this.rank = rank;
	}
	public Suit suit () {
	return suit;
	}
	public Rank rank () {
	return rank;
	}
	public String toString () {
	return rank + " of " + suit;
	}
	}
	Adding features to an enum type
	Modifying the behavior of enum instances
	The light currently on.
	Listing d.4 The class TrafficSignal
	/**
	* A simple green-yellow-red traffic signal.
	*/
	public class TrafficSignal {
	private Light current; // The Light currently on.
	/**
	* The signal lights.
	*/
	public enum Light {
	green,
	yellow,
	red {
	protected Light next () {
	return values()[0];
	}
	};
	continued
	/**
	* The light that comes on after this one.
	*/
	protected Light next () {
	return values()[this.ordinal()+1];
	}
	}
	/**
	* Create a new TrafficSignal, initially green.
	* @ensure this.light() == Light.green
	*/
	public TrafficSignal () {
	current = Light.green;
	}
	/**
	* The light currently on.
	*/
	public Light light () {
	return current;
	}
	/**
	* Change to the next light.
	*/
	public void change () {
	current = current.next();
	}
	}

	d.4 Enhanced for statement
	d.5 Importing static methods and named constants
	d.6 The class java.util.Scanner
	Find and return the next complete token from the input source. A com plete token is preceded and followed by delimiters. This method may block while waiting for input.
	This scanner has another token in its input. This method may block while waiting for input.
	Read the next token from the input source and return the boolean denoted by the token.
	Read the next token from the input source and return the int denoted by the token.
	Read the next token from the input source and return the double denoted by the token.

