
Appendix B

Debugging†

There are a few different kinds of errors that can occur in a program, and it is
useful to distinguish between them in order to track them down more quickly.

• Compile-time errors are produced by the compiler and usually indicate
that there is something wrong with the syntax of the program. Example:
omitting the semi-colon at the end of a statement.

• Run-time errors are produced by the run-time system if something goes
wrong while the program is running. Most run-time errors are Exceptions.
Example: an infinite recursion eventually causes a StackOverflowExcep-
tion.

• Semantic errors are problems with a program that compiles and runs, but
doesn’t do the right thing. Example: an expression may not be evaluated
in the order you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of error you are
dealing with. Although the following sections are organized by error type, there
are some techniques that are applicable in more than one situation.

B.1 Compile-time errors

The compiler is spewing error messages.

If the compiler reports 100 error messages, that doesn’t mean there are 100
errors in your program. When the compiler encounters an error, it gets thrown
off track for a while. It tries to recover and pick up again after the first error,
but sometimes it fails, and it reports spurious errors.

In general, only the first error message is reliable. I suggest that you only
fix one error at a time, and then recompile the program. You may find that

†This appendix appears in Allen B. Downey, How to Think Like a Computer Scientist:

Java Version, 2002.

1



2 APPENDIX B. DEBUGGING†

one semi-colon “fixes” 100 errors. Of course, if you see several legitimate error
messages, you might as well fix more than one bug per compilation attempt.

I’m getting a weird compiler message and it won’t go away.

First of all, read the error message carefully. It is written in terse jargon, but
often there is a kernel of information there that is carefully hidden.

If nothing else, the message will tell you where in the program the prob-
lem occurred. Actually, it tells you where the compiler was when it noticed
a problem, which is not necessarily where the error is. Use the information
the compiler gives you as a guideline, but if you don’t see an error where the
compiler is pointing, broaden the search.

Generally the error will be prior to the location of the error message, but
there are cases where it will be somewhere else entirely. For example, if you
get an error message at a method invocation, the actual error may be in the
method definition.

If you are building the program incrementally, you should have a good idea
about where the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the
book’s code very carefully. Check every character. At the same time, remember
that the book might be wrong, so if you see something that looks like a syntax
error, it might be.

If you don’t find the error quickly, take a breath and look more broadly at
the entire program. Now is a good time to go through the whole program and
make sure it is indented properly. I won’t say that good indentation makes it
easy to find syntax errors, but bad indentation sure makes it harder.

Now, start examining the code for the common syntax errors.

1. Check that all parentheses and brackets are balanced and properly nested.
All method definitions should be nested within a class definition. All
program statements should be within a method definition.

2. Remember that upper case letters are not the same as lower case letters.

3. Check for semi-colons at the end of statements (and no semi-colons after
squiggly-braces).

4. Make sure that any strings in the code have matching quotation marks
(and that you use double-quotes, not single).

5. For each assignment statement, make sure that the type on the left is the
same as the type on the right.

6. For each method invocation, make sure that the arguments you provide
are in the right order, and have right type, and that the object you are
invoking the method on is the right type.



B.1. COMPILE-TIME ERRORS 3

7. If you are invoking a fruitful method, make sure you are doing something
with the result. If you are invoking a void method, make sure you are not
trying to do something with the result.

8. If you are invoking an object method, make sure you are invoking it on
an object with the right type. If you are invoking a class method from
outside the class where it is defined, make sure you specify the class name.

9. Inside an object method you can refer to the instance variables without
specifying an object. If you try that in a class method, you will get a
confusing message like, “Static reference to non-static variable.”

If nothing works, move on to the next section...

I can’t get my program to compile no matter what I do.

If the compiler says there is an error and you don’t see it, that might be because
you and the compiler are not looking at the same code. Check your develop-
ment environment to make sure the program you are editing is the program the
compiler is compiling. If you are not sure, try putting an obvious and deliberate
syntax error right at the beginning of the program. Now compile again. If the
compiler doesn’t find the new error, there is probably something wrong with
the way you set up the project.

Otherwise, if you have examined the code thoroughly, it is time for desperate
measures. You should start over with a program that you can compile and then
gradually add your code back.

• Make a copy of the file you are working on. If you are working on
Fred.java, make a copy called Fred.java.old.

• Delete about half the code from Fred.java. Try compiling again.

– If the program compiles now, then you know the error is in the other
half. Bring back about half of the code you deleted and repeat.

– If the program still doesn’t compile, the error must be in this half.
Delete about half of the code and repeat.

• Once you have found and fixed the error, start bringing back the code you
deleted, a little bit at a time.

This process is called “debugging by bisection.” As an alternative, you can
comment out chunks of code instead of deleting them. For really sticky syntax
problems, though, I think deleting is more reliable—you don’t have to worry
about the syntax of the comments, and by making the program smaller you
make it more readable.



4 APPENDIX B. DEBUGGING†

B.2 Run-time errors

My program hangs.

If a program stops and seems to be doing nothing, we say it is “hanging.” Often
that means that it is caught in an infinite loop or an infinite recursion.

• If there is a particular loop that you suspect is the problem, add a print
statement immediately before the loop that says “entering the loop” and
another immediately after that says “exiting the loop.”

Run the program. If you get the first message and not the second, you’ve
got an infinite loop. Go to the section titled “Infinite loop.”

• Most of the time an infinite recursion will cause the program to run for
a while and then produce a StackOverflowException. If that happens, go
to the section titled “Infinite recursion.”

If you are not getting a StackOverflowException, but you suspect there is
a problem with a recursive method, you can still use the techniques in the
infinite recursion section.

• If neither of those things works, start testing other loops and other recur-
sive methods.

• If none of those things works, then it is possible that you don’t understand
the flow of execution in your program. Go to the section titled “Flow of
execution.”

Infinite loop

If you think you have an infinite loop and think you know what loop is causing
the problem, add a print statement at the end of the loop that prints the values
of the variables in the condition, and the value of the condition.

For example,

while (x > 0 && y < 0) {

// do something to x

// do something to y

System.out.println ("x: " + x);

System.out.println ("y: " + y);

System.out.println ("condition: " + (x > 0 && y < 0));

}

Now when you run the program you will see three lines of output for each time
through the loop. The last time through the loop, the condition should be
false. If the loops keeps going, you will be able to see the values of x and y

and you might figure out why they are not being updated correctly.



B.2. RUN-TIME ERRORS 5

Infinite recursion

Most of the time an infinite recursion will cause the program to run for a while
and then produce a StackOverflowException.

If you suspect that method is causing an infinite recursion, start by checking
to make sure that there is a base case. In other words, there should be some
condition that will cause the method to return without making a recursive
invocation. If not, then you need to rethink the algorithm and identify a base
case.

If there is a base case, but the program doesn’t seem to be reaching it, add
a print statement at the beginning of the method that prints the parameters.
Now when you run the program you will see a few lines of output every time
the method is invoked, and you will see the parameters. If the parameters are
not moving toward the base case, you will get some ideas about why not.

Flow of execution

If you are not sure how the flow of execution is moving through your program,
add print statements to the beginning of each method with a message like “en-
tering method foo,” where foo is the name of the method.

Now when you run the program it will print a trace of each method as it is
invoked.

It is often useful to print the parameters each method receives when it is
invoked. When you run the program, check whether the parameters are reason-
able, and check for one of the classic errors—providing parameters in the wrong
order.

When I run the program I get an Exception.

If something goes wrong during run time, the Java run-time system prints a
message that includes the name of the exception, the line of the program where
the problem occurred, and a stack trace.

The stack trace includes the method that is currently running, and then the
method that invoked it, and then the method that invoked that, and so on. In
other words, it traces the path of method invocations that got you to where you
are.

The first step is to examine the place in the programwhere the error occurred
and see if you can figure out what happened.

NullPointerException: You tried to access an instance variable or invoke a
method on an object that is currently null. You should figure out what
variable is null and then figure out how it got to be that way.

Remember that when you declare a variable with an object type, it is
initially null, until you assign a value to it. For example, this code causes
a NullPointerException:



6 APPENDIX B. DEBUGGING†

Point blank;

System.out.println (blank.x);

ArrayIndexOutOfBoundsException: The index you are using to access an
array is either negative or greater than array.length-1. If you can find
the site where the problem is, add a print statement immediately before
it to print the value of the index and the length of the array. Is the array
the right size? Is the index the right value?

Now work your way backwards through the program and see where the
array and the index come from. Find the nearest assignment statement
and see if it is doing the right thing.

If either one is a parameter, go to the place where the method is invoked
and see where the values are coming from.

StackOverFlowException: See “Infinite recursion.”

I added so many print statements I get inundated with

output.

One of the problems with using print statements for debugging is that you can
end up buried in output. There are two ways to proceed: either simplify the
output or simplify the program.

To simplify the output, you can remove or comment out print statements
that aren’t helping, or combine them, or format the output so it is easier to
understand.

To simplify the program, there are several things you can do. First, scale
down the problem the program is working on. For example, if you are sorting
an array, sort a small array. If the program takes input from the user, give it
the simplest input that causes the error.

Second, clean up the program. Remove dead code and reorganize the pro-
gram to make it as easy to read as possible. For example, if you suspect that
the error is in a deeply-nested part of the program, try rewriting that part with
simpler structure. If you suspect a large method, try splitting it into smaller
methods and test them separately.

Often the process of finding the minimal test case leads you to the bug. For
example, if you find that a program works when the array has an even number
of elements, but not when it has an odd number, that gives you a clue about
what is going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you
make a change that you think doesn’t affect the program, and it does, that can
tip you off.



B.3. SEMANTIC ERRORS 7

B.3 Semantic errors

My program doesn’t work.

In some ways semantic errors are the hardest, because the compiler and the
run-time system provide no information about what is wrong. Only you know
what the program was supposed to do, and only you know that it isn’t doing it.

The first step is to make a connection between the program text and the
behavior you are seeing. You need a hypothesis about what the program is
actually doing. One of the things that makes this hard is that computers run
so fast. You will often wish that you could slow the program down to human
speed, but there is no straightforward way to do that, and even if there were, it
is not really a good way to debug.

Here are some questions to ask yourself:

• Is there something the program was supposed to do, but doesn’t seem to
be happening? Find the section of the code that performs that function
and make sure it is executing when you think it should. Add a print
statement to the beginning of the suspect methods.

• Is something happening that shouldn’t? Find code in your program that
performs that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected?
Make sure that you understand the code in question, especially if it in-
volves invocations to built-in Java methods. Read the documentation for
the methods you invoke. Try out the methods by invoking the methods
directly with simple test cases, and check the results.

In order to program, you need to have a mental model of how programs
work. If your program that doesn’t do what you expect, very often the problem
is not in the program; it’s in your mental model.

The best way to correct your mental model is to break the program into
its components (usually the classes and methods) and test each component
independently. Once you find the discrepancy between your model and reality,
you can solve the problem.

Of course, you should be building and testing components as you develop
the program. If you encounter a problem, there should be only a small amount
of new code that is not known to be correct.

Here are some common semantic errors that you might want to check for:

• If you use the assignment operator, =, instead of the equality operator,
==, in the condition of an if, while or for statement, you might get an
expression that is sytactically legal, but it doesn’t do what you expect.

• When you apply the equality operator, ==, to an object, it checks shallow
equality. If you meant to check deep equality, you should use the equals
method (or define one, for user-defined objects).



8 APPENDIX B. DEBUGGING†

• Some Java libraries expect user-defined objects to define methods like
equals. If you don’t define them yourself, you will inherit the default
behavior from the parent class, which may not be what you want.

• In general, inheritance can cause subtle semantic errors, because you may
be executing inherited code without realizing it. Again, make sure you
understand the flow of execution in your program.

I’ve got a big hairy expression and it doesn’t do what I

expect.

Writing complex expressions is fine as long as they are readable, but they can
be hard to debug. It is often a good idea to break a complex expression into a
series of assignments to temporary variables.

For example:

bobby.setColor (bobby.getColor().darker());

Can be rewritten as

Color bobbyColor = bobby.getColor();

Color darker = bobbyColor.darker ();

bobby.setColor (darker);

The explicit version is easier to read, because the variable names provide addi-
tional documentation, and easier to debug, because we can check the types of
the intermediate variables and display their values.

Another problem that can occur with big expressions is that the order of
evaluation may not be what you expect. For example, if you are translating the
expression x

2π
into Java, you might write

double y = x / 2 * Math.PI;

That is not correct, because multiplication and division have the same prece-
dence, and are evaluated from left to right. So this expression computes xπ/2.

A good way to debug expressions is to add parentheses to make the order of
evaluation explicit.

double y = x / (2 * Math.PI);

Any time you are not sure of the order of evaluation, use parentheses. Not
only will the program be correct (in the sense of doing what you intend); it
will also be more readable for other people who haven’t memorized the rules of
precedence.



B.3. SEMANTIC ERRORS 9

I’ve got a method that doesn’t return what I expect.

If you have a return statement with a complex expression, you don’t have a
chance to print the return value before returning. Again, you can use a tempo-
rary variable. For example, instead of

public Picture fourPics (Picture p1, Picture p2, Picture p3, Picture p4){

return above (beside (p1, p2), beside (p3, p4));

}

You could write

public Picture fourPics (Picture p1, Picture p2, Picture p3, Picture p4){

Picture row1 = beside (p1, p2);

Picture row2 = beside (p3, p4);

Picture grid = above (row1, row2);

return grid;

}

Now you have the opportunity to print (or display) any of row1, row2 or grid
before returning.

My print statement isn’t doing anything

If your use the println method, the output gets displayed immediately, but if
you use print (at least in some environments) the output gets stored without
being displayed until the next newline character gets output. If the program
terminates without producing a newline, you may never see the stored output.

If you suspect that this is happening to you, try changing all the print

statements to println.

I’m really, really stuck and I need help

First of all, try getting away from the computer for a few minutes. Computers
emit waves that affect the brain, causing the following symptoms:

• Frustration and/or rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking
(“the program only works when I wear my hat backwards”).

• Random walk programming (the attempt to program by writing every
possible program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for
a walk. When you are calm, think about the program. What is it doing? What
are some possible causes of that behavior? When was the last time you had a
working program, and what did you do next?

Sometimes it just takes time to find a bug. I often find bugs when I am away
from the computer and I let my mind wander. Some of the best places to find
bugs are trains, showers, and in bed, just before you fall asleep.



10 APPENDIX B. DEBUGGING†

No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you
work on a program so long that you can’t see the error. A fresh pair of eyes is
just the thing.

Before you bring someone else in, make sure you have exhausted the tech-
niques described here. You program should be as simple as possible, and you
should be working on the smallest input that causes the error. You should
have print statements in the appropriate places (and the output they produce
should be comprehensible). You should understand the problem well enough to
describe it concisely.

When you bring someone in to help, be sure to give them the information
they need.

• What kind of bug is it? Compile-time, run-time, or semantic?

• If the bug occurs at compile-time or run-time, what is the error message,
and what part of the program does it indicate?

• What was the last thing you did before this error occurred? What were
the last lines of code that you wrote, or what is the new test case that
fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have
done to find it faster. Next time you see something similar, you will be able to
find the bug more quickly.

Remember, in this class the goal is not to make the program work. The goal
is to learn how to make the program work.


