
Ira R. Forman
Nate Forman

M A N N I N G
 To order this book, visit
www.manning.com/forman
or your favorite bookseller

Free Excerpt

www.manning.com/forman

Using Java’s
dynamic proxy
In this chapter

■ How to use java.lang.reflect.Proxy
■ Using proxy to implement decorators
■ Chaining proxies
■ Pitfalls of using Proxy
73

74 CHAPTER 4

Using Java’s dynamic proxy
The dictionary [68] tells us that a proxy is an “agency, function, or office of a dep-
uty who acts as a substitute for another.” When this idea is applied to object-ori-
ented programming, the result is an object, a proxy, that supports the interface of
another object, its target, so that the proxy can substitute for the target for all prac-
tical purposes.

The keys to this arrangement are implementation and delegation. The proxy
implements the same interface as the target so that it can be used in exactly the
same way. The proxy delegates some or all of the calls that it receives to its target
and thus acts as either an intermediary or a substitute. In its role as an intermedi-
ary, the proxy may add functionality either before or after the method is for-
warded to the target. This gives the reflective programmer the capability to add
behavior to objects. This chapter discusses this and other uses of proxies.

4.1 Working with proxies

The sequence diagram in figure 4.1 depicts the most common situation where the
proxy instance receives a method call and forwards it to the target. Even this
arrangement has a use; it hides the location of the target from the client. If you
have used remote method invocation, you are familiar with proxies that are local
substitutes for remote objects.

The Java reflection API contains a dynamic proxy-creation facility,
java.lang.reflect.Proxy. This class is part of Java reflection because Proxy is
Java’s only way of approximating method invocation intercession. Let’s dissect the
previous phrase. Intercession is any reflective ability that modifies the behavior of
a program by directly taking control of that behavior. Method invocation interces-
sion is the ability to intercept method calls. The intercepting code can determine
the behavior that results from the method call.

We say approximating because Java does not support reflective facilities for inter-
ceding on method calls. Therefore, we must use proxies as an approximation.
Referring to figure 4.1, we see that proxies also allow the ability to pre- and post-
process method calls. Let’s examine the benefits achieved from doing this.

Programmers commonly discuss properties of classes. For example, a class that
records its method calls is often referred to as a tracing class. A class that ensures
that a failed operation does not leave an object in an intermediate state is often
referred to as an atomic class.

The code that implements such properties is usually spread among the defi-
nitions of each of the methods of the class, almost always at the beginning and
at the return points. The ability to intercede on method invocation permits the

Working with proxies 75
programmer to gather this property-implementing code together in one place.
This property can later combine with classes, yielding the desired effect.

The case for this combination of classes and properties is more real for soft-
ware projects than you would think. A colleague once observed that when an
object-oriented database is first brought into a programming shop, the number of
classes doubles. The shop has added one property, persistence, to their application.
Each class now requires a persistent and a nonpersistent version [18].

Developers get many key benefits from separating property-implementing
code. One benefit of this separation is low maintenance cost for applications.
Each such property can be modified by making a change in only one place in the
code base. Another benefit of separating properties is improved reusability. The
separated property can be used in many places in many applications.

There is also a compelling argument to present to management for such sepa-
ration. Consider George’s employer, Wildlife Components, which sells a class
library of n classes. There are p properties that they wish their classes to have in all
combinations. Both the number of classes and the number of properties grow as
the company evolves to meet the increasing business demands. WCI faces the
possibility of having to support a class library of at least n2p classes if they must
write new classes to implement and combine properties in their original classes.

method call forwarded

call to a target method

client

proxy target

Figure 4.1 Sequence diagram for the typical use of a proxy. The proxy forwards received method
calls to its target. The proxy may or may not do some pre- and post-processing.

76 CHAPTER 4

Using Java’s dynamic proxy
This additional maintenance is a serious enough concern to win management
over. Isolating properties into reusable components and composing them later, as
can be done with Proxy, yields a much smaller library of size n+p. This represents
an enormous savings to WCI or any other company. This effect may not be as pro-
nounced in other organizations, but it does exist.

Now that we have discussed the abstract benefits of Proxy, let’s pay a visit to
George and look at a simple example.

4.2 George’s tracing problem

George has been assigned the task of creating tracing versions of several of the
classes that he maintains. In a tracing class, each method records information
about its entry and, after method execution, records information about its return.
George’s employer, WCI, wants tracing available for their classes because tracing
helps with problem determination in deployed software.

Consider the following scenario. A customer calls WCI technical support with
a defect report. Tech support asks the customer to turn tracing on in their soft-
ware and follow the steps to reproduce the defect. Because tracing is turned on,
the customer can then send WCI a file containing the path through the WCI
source code.

This information solves many problems for the WCI technical team. It tells
them a great deal about the state of the program during the failure. It also may
prevent them from having to replicate their customer’s environment and data.

While tracing is a useful feature, it is also very I/O intensive. Therefore, classes
should be able to turn tracing on and off. However, including tracing code and
guards to turn it on and off in each class bloats the classes and makes them slower
because of the execution of the if statements. Due to these constraints, George
decides to make tracing and nontracing versions of his classes.

One option George considers is subclassing each nontraced class and over-
riding each method with traces and super calls. He can then set up a process
for either instantiating the traced or nontraced version depending upon some
command-line argument. George quickly realizes that this option has the fol-
lowing shortcomings:

■ Tedium—Executing this option is boring and mechanical. In fact, a com-
puter program can be written to do this job.

■ Error-proneness—George can easily misdeclare an override, misspelling the
method name or including the wrong parameter list. He could also forget

Exploring Proxy 77
or overlook a method. At best, he may have a compile error to warn him
that his process broke. Otherwise, the class may not behave as expected.

■ Fragility—If anyone in George’s department adds, deletes, or changes the
signature on a method in the superclass, the traced subclass breaks either
by not building or by not tracing as expected.

Clearly, George is in need of a better solution. George needs to separate the con-
cern of tracing from the rest of the source code and implement it in a separate
module. George reasons that this can be done with a proxy, where the proxy
traces the call before and after delegating the method invocation to the target.
Although there will be one proxy object for every target, with the use of reflec-
tion, all of the proxies can be instances of one proxy class, which addresses the
shortcomings raised previously. Before presenting George’s solution, let’s exam-
ine java.lang.reflect.Proxy.

4.3 Exploring Proxy

As stated previously, the two important tasks for any proxy are interface imple-
mentation and delegation. The Java Proxy class accomplishes implementation of
interfaces by dynamically creating a class that implements a set of given interfaces.
This dynamic class creation is accomplished with the static getProxyClass and
newProxyInstance factory methods, shown in listing 4.1.

public class Proxy implements java.io.Serializable {
 ...
 public static Class getProxyClass(ClassLoader loader,
 Class[] interfaces)
 throws IllegalArgumentException ...

public static Object newProxyInstance(ClassLoader loader,
 Class[] interfaces,
 InvocationHandler h)
 throws IllegalArgumentException ...

public static boolean isProxyClass(Class cl) ...

public static InvocationHandler getInvocationHandler(Object proxy)
 throws IllegalArgumentException ...
}

Listing 4.1 Partial declaration for java.lang.reflect.Proxy

78 CHAPTER 4

Using Java’s dynamic proxy
Each class constructed by these factory methods is a public final subclass of Proxy,
referred to as a proxy class. We refer to an instance of one of these dynamically
constructed proxies as a proxy instance. We call the interfaces that the proxy class
implements in this way proxied interfaces. A proxy instance is assignment-
compatible with all of its proxied interfaces.

The getProxyClass method retrieves the proxy class specified by a class loader
and an array of interfaces. If such a proxy class does not exist, it is dynamically
constructed. Because each Java class object is associated with a class loader, in
order to dynamically create a proxy class, getProxyClass must have a class loader
parameter (the reason for this requirement is explained in chapter 6). The name
of each proxy class begins with $Proxy followed by a number, which is the value of
an index that is increased each time a proxy class is created.

All proxy classes have a constructor that takes an InvocationHandler parame-
ter. InvocationHandler is an interface for objects that handle methods received
by proxy instances through their proxied interfaces. We discuss invocation han-
dlers further after we finish with the methods of Proxy. A combination of getCon-
structor and newInstance may be used to construct proxy instances, as in the
following lines

Proxy cl = getProxyClass(SomeInterface.getClassLoader(),
 Class[]{SomeInterface.class});
Constructor cons = cl.getConstructor(new Class[]{InvocationHandler.class});
Object proxy = cons.newInstance(new Object[] { new SomeIH(obj) });

where SomeIH is a class that implements InvocationHandler. Alternatively, this
sequence can be accomplished with a single call to newProxyInstance:

Object proxy = Proxy.newProxyInstance(SomeInterface.getClassLoader(),
 Class[]{SomeInterface.class},
 new SomeIH(obj));

This call implicitly creates the proxy class, which can be retrieved with getProxy-
Class.

The static method isProxyClass is used to determine if a class object repre-
sents a proxy class. The line

Proxy.isProxyClass(obj.getClass())

may be use to determine if obj refers to a proxy instance. If p refers to a proxy
instance,

Proxy.getInvocationHandler(p)

returns the InvocationHandler that was used to construct p.

Exploring Proxy 79
4.3.1 Understanding invocation handlers

Proxy allows programmers to accomplish the delegation task by providing the
InvocationHandler interface. Instances of InvocationHandler, also referred to as
invocation handlers, are objects that handle each method call for a proxy
instance. Invocation handlers are also responsible for holding any references to
targets of the proxy instance. Listing 4.2 shows the InvocationHandler interface.

public interface InvocationHandler {

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable;

}

A proxy instance forwards method calls to its invocation handler by calling
invoke. The original arguments for the method call are passed to invoke as an
object array. In addition, the proxy instance provides a reference to itself and to a
Method object representing the invoked method.

Notice that the parameters passed to invoke are exactly the objects needed to
forward a method call to another object reflectively. If target refers to the object
being proxied, the lines

public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
{
 return method.invoke(target, args);
}

implement an invoke method that passes every call transparently. More complex
invoke methods may perform pre- and post-processing on the arguments. Note
that invocation handlers may also forward to many targets or none at all.

Figure 4.1 depicts an abstraction of forwarding a method through a proxy. Fig-
ure 4.2 depicts that actual sequence of calls when the invocation handler is imple-
mented as shown previously. For clarity, UML is often used to present the minimal
relevant detail to convey understanding. With this idea in mind, our subsequent
diagrams for proxy present the abstraction rather than the implementation detail.

Listing 4.2 The InvocationHandler interface

80 CHAPTER 4

Using Java’s dynamic proxy
4.3.2 Handling the methods of Object

A proxy instance is an object, and so it responds to the methods declared by
java.lang.Object. This raises the issue of whether or not these methods should
be handled by invoke. The issue is resolved as follows:

■ hashCode, equals, and toString are dispatched to the invoke method in the
same manner as any other proxied method.

■ If a proxied interface extends Cloneable, then the invocation handler does
intercede on the invocations to clone. However, unless the proxied inter-
face makes clone public, it remains a protected method.

■ If any proxied interface declares an override to finalize, then invocation
handlers do intercede on calls to finalize.

■ Method intercession does not take place for the other methods declared by
java.lang.Object. Consequently, these methods behave as expected for any
instance of java.lang.Object. In other words, a call to wait on a proxy
instance waits on the proxy instance’s lock, rather than being forwarded to
an invocation handler.

The information in the last bullet is welcome because it means that an invocation
handler cannot make a proxy instance lie about its class or interfere with multi-

:Proxy :Method

client

I: nvocationHandler target

Figure 4.2 Sequence diagram illustrating the actual objects involved in forwarding a method
when the invocation handler of the proxy uses the invoke method of Method.

Implementing a tracing proxy 81
threaded locking. Now that you understand the basics of Proxy, let’s return to
George’s tracing problem.

4.4 Implementing a tracing proxy

George solves his tracing problem using Proxy. From his exploration of Proxy,
George readily understands that his solution must have an invocation handler in
which the invoke method forwards all method calls to the target. This forwarding
is readily accomplished with the invoke method of Method. The next design deci-
sion involves the creation of the proxy and the invocation handler. George
decides that all of his creation code can be located in the class written for the
invocation handler. This is accomplished with a static method, createProxy. This
static method is passed the target, which is examined introspectively to create an
appropriate proxy and invocation handler. Listing 4.3 shows the invocation han-
dler that George created. With this invocation handler, George can add tracing of
any interface to an individual object. Let’s examine the solution in detail.

import java.lang.reflect.*;
import java.io.PrintWriter;

public class TracingIH implements InvocationHandler {

 public static Object createProxy(Object obj, PrintWriter out) {
 return Proxy.newProxyInstance(obj.getClass().getClassLoader(),
 obj.getClass().getInterfaces(),
 new TracingIH(obj, out));
 }

 private Object target;
 private PrintWriter out;

 private TracingIH(Object obj, PrintWriter out) {
 target = obj;
 this.out = out;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {
 Object result = null;
 try {
 out.println(method.getName() + "(...) called");
 result = method.invoke(target, args);
 } catch (InvocationTargetException e) {
 out.println(method.getName() + " throws " + e.getCause());
 throw e.getCause();

Listing 4.3 An invocation handler for a proxy that traces calls

82 CHAPTER 4

Using Java’s dynamic proxy
 }
 out.println(method.getName() + " returns");
 return result;
 }
}

The implementation part of George’s solution happens in the createProxy
method. The static factory method createProxy wraps its argument in a proxy
that performs tracing. First, createProxy examines its argument object for the
direct interfaces that its class implements. It sends that array of interfaces to
Proxy.newProxyInstance, which constructs a proxy class for those interfaces.1

Next, a TracingIH is constructed with the argument as its target. Finally, create-
Proxy constructs and returns a new proxy that forwards its calls to the TracingIH.
This proxy implements all of the interfaces of the target object and is assignment-
compatible with those types.

The delegation part of George’s solution happens in the invoke method. The
invoke method in listing 4.3 first records the method name to a java.io.Print-
Writer. A more complete facility would also include the arguments, but we omit
them for brevity. Then the invoke method forwards the call to the target and, sub-
sequently, stores the return value. If an exception is thrown, the exception is
recorded with the print writer; otherwise, the return value is recorded. Finally, the
result of the call is returned.

When a proxied method is called on a proxy instance, control first passes to the
invoke method with the following arguments:

■ proxy—The proxy instance on which the method was invoked. TracingIH
happens to make no use of this parameter.

■ method—A Method object for the invoked method.

■ args—An array of objects containing the values of the arguments passed in
the method invocation on the proxy instance. args is null if the method

1 The getInterfaces method returns only the direct interfaces of a class. As George has written the invo-
cation handler, only methods declared by direct interfaces are traced. In chapter 8, we present a
method, Mopex.getAllInterfaces, that finds all of the interfaces implemented by a class. What about
methods that are not implemented in an interface? George might be asked to supply a tool that finds
those methods and puts them in an interface. Reflection can help here, too, but you will have to wait
until chapter 7 to read how.

Implementing a tracing proxy 83
takes no arguments. Arguments of primitive types are wrapped in instances
of the appropriate primitive wrapper class; for example, java.lang.Integer
wraps an int.

The declared return type of invoke is Object. The value returned by invoke is sub-
ject to the following rules:

■ If the called method has declared the return type void, the value returned
by invoke does not matter. Returning null is the simplest option.

■ If the declared return type of the interface method is a primitive type, the
value returned by invoke must be an instance of the corresponding primi-
tive wrapper class. Returning null in this case causes a NullPointer-
Exception to be thrown.

■ If the value returned by invoke is not compatible with the interface
method’s declared return type, a ClassCastException is thrown by the
method invocation on the proxy instance.

The exception UndeclaredThrowableException may be thrown by the execution of
the invoke method. UndeclaredThrowableException wraps non-runtime excep-
tions that are not declared by the interface for the method being called. The
cause of the wrapped exception may be accessed with getCause. This wrapping of
an exception may seem odd, but it is necessary when you consider the difficulty of
programming invocation handlers that are limited to throwing just those excep-
tions known at the origin of the call.

To fully understand the class TracingIH in listing 4.3, it is best to understand
how a using application is changed by the execution of the statement

 Dog proxyForRover = (Dog) TracingIH.createProxy(rover);

where Dog is a Java interface and rover contains an instance of a class DogImpl that
implements that interface. Note that the proxy facility ensures that the proxy
instance returned by createProxy can be cast to Dog. Figure 4.3 presents a dia-
gram that shows all of the objects and classes that are relevant to the previous line
of code. The objects created by that line of code are in the gray area.

This invocation handler in listing 4.3 provides the module that George wants.
Instead of having to change source code, he can wrap objects with proxies and
have the users of the objects reference the proxies. This technique avoids all of
the shortcomings of the process George would have to follow without Proxy.

84 CHAPTER 4

Using Java’s dynamic proxy
4.5 A note on factories

As mentioned earlier, the tracing invocation handler of listing 4.3 is missing a test
to turn tracing on and off dynamically. Instead, the application uses either traced
or nontraced versions of its classes. This is accomplished by applying the Abstract
Factory pattern for construction of the potentially traced objects. That is, a class is
declared that contains a method for creating new instances of Dog. This method
chooses whether to create instances of the Dog class that traces or instances of the
one that does not trace. An example factory for implementations of the Dog inter-
face is shown in listing 4.4.

import java.lang.reflect.*;
import java.io.PrintWriter;

public class DogFactory {

Proxy

i
n
s
t
a
n
c
e
O
f

i
n
s
t
a
n
c
e
O
f

target

i
n
s
t
a
n
c
e
O
f

$Proxy0 TracingIH

proxyForRover invocationHandler

«interface»
Dog

«interface»
InvocationHandler

DogImpl

rover

Figure 4.3 A class diagram illustrating the execution of the createProxy factory method
from listing 4.3.

Listing 4.4 A factory that chooses between traced and untraced versions of a class

A note on factories 85
 private Class dogClass;
 private boolean traceIsOn = false;

 public DogFactory(String className, boolean trace) {
 try {
 dogClass = Class.forName(className);
 } catch (ClassNotFoundException e){
 throw new RuntimeException(e); // or whatever is appropriate
 }
 traceIsOn = trace;
 }

 public Dog newInstance(String name, int size) {
 try {
 Dog d = (Dog)dogClass.newInstance();
 d.initialize(name,size);
 if (traceIsOn) {
 d = (Dog)TracingIH.createProxy(d,
 new PrintWriter(System.out));
 }
 return d;
 } catch(InstantiationException e){
 throw new RuntimeException(e); // or whatever is appropriate
 } catch(IllegalAccessException e){
 throw new RuntimeException(e); // or whatever is appropriate
 }
 }
}

Notice that the factory method newInstance is enhanced reflectively by using the
class object to create a new instance the same way as the factory method in the
previous chapter. The lines

if (traceIsOn) {
 d = (Dog) TracingIH.createProxy(d, new PrintWriter(System.out));
}

assure that each Dog is wrapped in a tracing proxy when required. This puts the
tests for tracing at construction time rather than during execution of the meth-
ods of Dog.

The factory method also conforms to design recommendations presented in
section 3.4.2. The newInstance method constructs instances using the new-
Instance method of Class. After construction, the new Dog is made ready for use
with a call to initialize.

86 CHAPTER 4

Using Java’s dynamic proxy
4.6 Chaining proxies

One of the strengths of using proxies is that they can be arranged in a chain, with
each proxy but the last having another proxy as its target. The last target in the
chain is the real target object. When done properly, this chaining has the effect of
composing the properties implemented by each proxy.

4.6.1 Structuring invocation handlers for chaining

Ensuring that proxies can be chained requires careful design. For example, the
invocation handler for tracing is programmed with the assumption that its target
is the real target and not another proxy. If the target is another proxy, the invoca-
tion handler may not perform the correct operation. To remedy this problem, we
present InvocationHandlerBase, an abstract class for deriving invocation handlers
for chainable proxies. The source code for InvocationHandlerBase is shown in
listing 4.5.

import java.lang.reflect.*;
import mopex.*;

public abstract class InvocationHandlerBase implements InvocationHandler {

 protected Object nextTarget;
 protected Object realTarget = null;

 InvocationHandlerBase(Object target) {
 nextTarget = target;
 if (nextTarget != null) {
 realTarget = findRealTarget(nextTarget);
 if (realTarget == null)
 throw new RuntimeException("findRealTarget failure");
 }
 }

 protected final Object getRealTarget() { return realTarget; }

 protected static final Object findRealTarget(Object t) {
 if (!Proxy.isProxyClass(t.getClass()))
 return t;
 InvocationHandler ih = Proxy.getInvocationHandler(t);
 if (InvocationHandlerBase.class.isInstance(ih)) {
 return ((InvocationHandlerBase)ih).getRealTarget();
 } else {
 try {
 Field f = Mopex.findField(ih.getClass(), "target");
 if (Object.class.isAssignableFrom(f.getType()) &&
 !f.getType().isArray()) {

Listing 4.5 InvocationHandlerBase

Chaining proxies 87
 f.setAccessible(true); // suppress access checks
 Object innerTarget = f.get(ih);
 return findRealTarget(innerTarget);
 }
 return null;
 } catch (NoSuchFieldException e){
 return null;
 } catch (SecurityException e){
 return null;
 } catch (IllegalAccessException e){
 return null;
 } // IllegalArgumentException cannot be raised
 }
 }
}

The service provided by InvocationHandlerBase is the recursive search findReal-
Target that traverses the chain of proxy instances and invocation handlers to
find the real target at the end of the chain. If each invocation handler in the
chain extends InvocationHandlerBase, the traversal is simply accomplished with
calls to getRealTarget, because findRealTarget is used in the constructor to ini-
tially set realTarget.

However, it is rather inflexible to assume that all of the invocation handlers
encountered will extend InvocationHandlerBase. For invocation handlers that do
not extend InvocationHandlerBase, we attempt to find a target using reflection.
The findRealTarget method searches the target proxy instance’s invocation han-
dler for an Object field named target. The search for the target field is accom-
plished using Mopex.findField, defined in listing 4.6. If that field exists and has a
non-array type assignable to Object, it is assumed that the field contains the next
link in the chain of proxies.

 public static Field findField(Class cls, String name)
 throws NoSuchFieldException {
 if (cls != null) {
 try {
 return cls.getDeclaredField(name);
 } catch(NoSuchFieldException e){
 return findField(cls.getSuperclass(), name);
 }
 } else {
 throw new NoSuchFieldException();
 }
 }

Listing 4.6 The findField method in Mopex

88 CHAPTER 4

Using Java’s dynamic proxy
The interface in the Java Reflection API for querying a class object for its members
is not always ideal. For example,

 X.class.getDeclaredField("foo")

throws a NoSuchFieldException if the sought field foo is declared by a superclass
of the target X. Mopex contains findField to make queries for fields more conve-
nient. It recursively searches up the inheritance hierarchy and returns the first
field with the specified name. This search furthers our goal of chaining invoca-
tion handlers that do not extend InvocationHandlerBase with those that do. Let’s
use it.

4.6.2 Implementing a synchronized proxy

To illustrate the concept of proxy chaining, we need another kind of proxy to
chain with the tracing proxy. In this section, we present a proxy for making an
object synchronized. This proxy has the effect of using the synchronized modifier
on a class declaration if Java allowed such a combination. Listing 4.7 presents an
invocation handler for synchronized access to its target object. All method for-
warding occurs inside a synchronized statement.

import java.lang.reflect.*;

public class SynchronizedIH extends InvocationHandlerBase {

 public static Object createProxy(Object obj) {
 return Proxy.newProxyInstance(obj.getClass().getClassLoader(),
 obj.getClass().getInterfaces(),
 new SynchronizedIH(obj));
 }

 private SynchronizedIH(Object obj) { super(obj); }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {
 Object result = null;
 synchronized (this.getRealTarget()) {
 result = method.invoke(nextTarget, args);

 }
 return result;
 }
}

Listing 4.7 An invocation handler for synchronized access

Chaining proxies 89
The lock acquired by the synchronized statement in listing 4.7 is the one belong-
ing to the real target, which is the better design decision. The alternative decision
is acquiring the lock associated with the proxy instance. This alternative is likely
the wrong design decision. For example, if there were multiple proxy instances
for a single target, each proxy instance would be acquiring a different lock. For
this reason, it is vital to discover the real target.

4.6.3 Chaining the two proxies

As mentioned previously, chaining is one of the more elegant properties of
Proxy. That is, by using a synchronizing proxy in front of a tracing proxy, we
achieve the effect of an object that both synchronizes and traces. As we did ear-
lier, suppose Dog is a Java interface and DogImpl is an implementation of that
interface. The statement

Dog rover = (Dog)SynchronizedIH.createProxy(
 TracingIH.createProxy(new DogImpl(),
 new PrintWriter(System.out)));

constructs a synchronized proxy instance for a tracing proxy instance for a Dog
object. For all practical purposes, this is a Dog object that synchronizes and traces.
This is illustrated in figure 4.4, which shows that a call is passed from one proxy to
the next until the call reaches the target.

When you chain proxies, the order usually makes a difference. That is, there is
a difference between a synchronized tracing object and tracing synchronized
object. The difference is whether or not the synchronization applies to the print-
ing of the trace. In any multithreaded application, this is an important nuance
because if the tracing is not conducted inside the synchronization, the trace out-
put of two threads might be mixed so as to appear that the synchronization were
not working. That is, the trace would not reflect the true behavior of the applica-
tion, which would be a poor outcome of the chaining of the proxies.

The chaining of proxies is one way to address the problem of exponential
growth in the size of the class hierarchy when you need to mix properties and
classes. More concretely, the above proxy constructions are much more conve-
nient than maintaining a synchronized version, a tracing version, and a synchro-
nized tracing version of each class that requires these properties. Chapter 7
discusses another way to address this problem.

Irrespective of the approach taken, the importance of the problem and the
fundamental reliance of the various solutions on reflection cannot be stressed

90 CHAPTER 4

Using Java’s dynamic proxy

ftware
e itself

synchronizedProxy target

client

tracingProxy
enough. In order to be the most flexible, both adaptive and reusable, so
must be able to examine itself and its environment (introspection), chang
(intercession), and combine with that environment.

Figure 4.4 Sequence diagram illustrating the chaining of the synchronized proxy and the
tracing proxy

 To order this book, visit

www.manning.com/forman

 or your favorite booksseller

www.manning.com/forman

ions

I
a r
ch
fea
of
ap

Jav
do
sta
th
in
rep
to
res
yo

Wh

■ P
■ E
■ H
■ W
■ P

Dr.
ref
M
wh
Na

JAVA

JAVA Reflection IN ACTION
Ira

y

on

JAVA

e

ng

;t;P
www.manning.com/forman

Authors respond to reader quest

Ebook edition available

AUTHOR
✔

ONLINE

✔

magine programs that are able to adapt—with no intervention
by you—to changes in their environment. With Java reflection
you can create just such programs. Reflection is the ability of

unning program to look at itself and its environment, and to
ange what it does depending on what it finds. This inbuilt
ture of the Java language lets you sidestep a significant source
your maintenance woes: the “hard-coding” between your core
plication and its various components.

a Reflection in Action shows you that reflection isn’t hard to
. It starts from the basics and carefully builds a complete under-
nding of the subject. It introduces you to the reflective way of
inking. And it tackles useful and common development tasks,
each case showing you the best-practice reflective solutions that
lace the usual “hard-coded” ones. You will learn the right way
use reflection to build flexible applications so you can nimbly
pond to your customers’ future needs. Master reflection and
u’ll add a versatile and powerful tool to your developer’s toolbox.

at’s Inside

ractical introduction to reflective programming
xamples from diverse areas of software engineering
ow to design flexible applications
hen to use reflection—and when not to

erformance analysis

Ira Forman is a computer scientist at IBM. He has worked on
lection since the early 1990s when he developed IBM’s SOM
etaclass Framework. Nate Forman works for Ticom Geomatics
ere he uses reflection to solve day-to-day problems. Ira and
te are father and son. They both live in Austin, Texas.

 R. Forman and Nate Forman

“Even occasional users [of
reflection] will immediatel
adopt the book’s patterns
and idioms to solve comm
problems.”

—DOUG LEA

SUNY Oswego, author of
CONCURRENT PROGRAMMING IN

“... guide[s] you through on
compelling example after
another, each one illustrati
reflection’s power while
avoiding its pitfalls.”

—JOHN VLISSIDES

IBM, coauthor of
DESIGN PATTERNS

,!7IB9D2-djebie!:p;o;O
 To order this book, visit

www.manning.com/forman

or your favorite bookseller
M A N N I N G $44.95 US/$67.95 Canada ISBN 1-932394-18-4

www.manning.com/forman
Dottie
Rectangle

