James Finn Handout #8
CPE 470 1/2008

JUnit and Eclipse

JUnit

JUnit is an open-source Java framework for writing and running unit tests.

JUnit documentation can be found at http://junit.sourceforge.net/. You should read:

® JUnit Cookbook: http://junit.sourceforge.net/doc/cookbook/cookbook.htm.

® The section in the FAQ on writing tests is also good:
http://junit.sourceforge.net/doc/fag/fag.htm#tests.

To use JUnit, you need the JUnit jar file. This is included with Eclipse. If you are
using a different Java development environment, you can download it from
http://www.junit.org.

Eclipse

To use JUnit in an Eclipse project, you must add the JUnit jar file to the project. The
easiest way to do this is to cheat and get Eclipse to do it for you:

1. Start to create a Test class in your project. Put
import org.junit.*;

at the top of the file. This will produce the error message “The import org.junit
cannot be resolved.” This is because the JUnit jar file is not in the project.

2. Right-click on the red X error icon, and select the item “Quick Fix” from the
popup menu. Note: Quick Fix is a very useful feature. For many basic syntax
errors, Eclipse can guess correctly what the problem is and fix it for you!

3. The resulting dialog box contains Eclipse’s guesses for the cause of the error and
how to fix it. One item says (depending on what version of Eclipse you are
running) “Fix project setup...” or “Add JUnit 4 to the build path”. Double-click
on this item and Eclipse will add the JUnit jar file to your project.

The JUnit documentation explains how to write a main program that runs JUnit tests.
Eclipse makes life a little easier. The Eclipse Run As... item lets you run the unit
tests:

CPE 470 1/2008 Handout #8—Page 1 of 3

U
¥Ss
4

- - 1l LTI = (LIILy \UCHUI " (UCIHIUII 22> 2L,

: esult = 37 * result + temp;

— gturn result;

Open F3

Open With P ic String toString()

Open Type Hierarchy F4

Show In T®W p f (denom == 1) return num + "";
Lse return num + "/" 4+ denom;

= Copy 3#C

== Copy Qualified Name Section 4: Comparable Interface */

= Paste #V

lic int compareTo(Rational r)

¥ Delete ®
- long diff = num*r.denom - denom*r.num;
Build Path P if (diff < @) return -1;
Source L3S P else if (diff > @) return 1;
Refactor 8T p Else return 9;
)
e Import... Section 5: testing */
e2y Export...
References P Freturn true if representation invariant

Invariant: denominator is positive and
Ls reduced to lowest terms.

v

Declarations

«* Refresh

5
lic bool heckR
Assign Working Sets... e b

. s ' ~

71 1Java Application 0XXJ -1;

Debug As $ 2)UnitTest [\ ONXXT
Team J» b
Compare With [(2 Open Run Dialog... |
Replace With = Wh
Restore from Local History... nings, 0 infos
, Soe

Properties e

e ———

Click on JUnit Test. The tests will be run. Test results appear in a JUnit view (in the
same frame as the Navigator and Package views). A green bar will appear if all tests
succeeded:, and a red bar appears if there are any failures. A Failure Trace pane will
show which test failed; double click on the line and the editor will open with that line
selected.

CPE 470 1/2008 Handout #8—Page 2 of 3

(1% Packa ﬁ: Hierar (du JUnit S@@

Finished after 0.255 seconds -
OO0 PREIQE ® -
Runs: 9/9 B Errors: 0 Failures: 1

v 'EE} RationalTest [Runner: JUnit 4]
e testRep
E testBasics
#’j testZeroDiv

f’j testToString
drE] testAdd

#’j testSubtract
#’j testMultiply
£i testDivide

Failure Trace =| £8

java.lang.AssertionError:

.
o

tEquals(

= m Rational.java 1

when a known error occurs. The Ratio
throws an ArithmeticException if the

You can write "@Test(expected= excep
a method that you excpet to throw an
is not thrown, the test fails.

- @Test(expected- ArithmeticException.cla

{
@SuppressWarnings("unused")
Rational r = new Rational(l, @);

}

// test Equals and hashCode

= @Test public void testEquals()

assertTrueha f.equals(twoFourths));

ael | ! tworoL

// test toString
- @Test public void testToString()

{
assertTrue(twoFourths.toString().equ
assertTrue(two.toString().equals("2"
assertTrue(zero.toString().equals("d
assertTrue(negThreeFourths.toString(
}

// four functions test arithmetic

= @Test public void testAdd()

{
}

assertTrue(one.equalsChalf.add(twoFo

@Test public void testSubtract()
{

}

assertTrue(thirteenTenths.equalsChal

@Test public void testMultiply()

{
assertTrue(negThreetighths.equalsCha

CPE 470 1/2008 Handout #8—Page 3 of 3

