
ChapterChapter

171

INHERITANCE

▼ CLASSES, SUPERCLASSES, AND SUBCLASSES 
▼ Object: THE COSMIC SUPERCLASS

▼ GENERIC ARRAY LISTS

▼ OBJECT WRAPPERS AND AUTOBOXING

▼ METHODS WITH A VARIABLE NUMBER OF PARAMETERS

▼ ENUMERATION CLASSES

▼ REFLECTION

▼ DESIGN HINTS FOR INHERITANCE 

ch05.fm  Page 171  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance172

Chapter 4 introduced you to classes and objects. In this chapter, you learn about 
inheritance, another fundamental concept of object-oriented programming. The idea 
behind inheritance is that you can create new classes that are built on existing classes. 
When you inherit from an existing class, you reuse (or inherit) its methods and fields 
and you add new methods and fields to adapt your new class to new situations. This 
technique is essential in Java programming. 

As with the previous chapter, if you are coming from a procedure-oriented language 
like C, Visual Basic, or COBOL, you will want to read this chapter carefully. For experi-
enced C++ programmers or those coming from another object-oriented language like 
Smalltalk, this chapter will seem largely familiar, but there are many differences 
between how inheritance is implemented in Java and how it is done in C++ or in other 
object-oriented languages. 

This chapter also covers reflection, the ability to find out more about classes and their 
properties in a running program. Reflection is a powerful feature, but it is undeniably 
complex. Because reflection is of greater interest to tool builders than to application pro-
grammers, you can probably glance over that part of the chapter upon first reading and 
come back to it later. 

Classes, Superclasses, and Subclasses
Let’s return to the Employee class that we discussed in the previous chapter. Suppose (alas) 
you work for a company at which managers are treated differently from other employees. 
Managers are, of course, just like employees in many respects. Both employees and man-
agers are paid a salary. However, while employees are expected to complete their 
assigned tasks in return for receiving their salary, managers get bonuses if they actually 
achieve what they are supposed to do. This is the kind of situation that cries out for 
inheritance. Why? Well, you need to define a new class, Manager, and add functionality. 
But you can retain some of what you have already programmed in the Employee class, 
and all the fields of the original class can be preserved. More abstractly, there is an obvi-
ous “is–a” relationship between Manager and Employee. Every manager is an employee: This 
“is–a” relationship is the hallmark of inheritance. 

Here is how you define a Manager class that inherits from the Employee class. You use the 
Java keyword extends to denote inheritance.

class Manager extends Employee
{  
   added methods and fields
}

C++ NOTE: Inheritance is similar in Java and C++. Java uses the extends keyword instead of 
the : token. All inheritance in Java is public inheritance; there is no analog to the C++ fea-
tures of private and protected inheritance. 

The keyword extends indicates that you are making a new class that derives from an 
existing class. The existing class is called the superclass, base class, or parent class. The new 
class is called the subclass, derived class, or child class. The terms superclass and subclass 
are those most commonly used by Java programmers, although some programmers pre-
fer the parent/child analogy, which also ties in nicely with the “inheritance” theme. 

ch05.fm  Page 172  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 173

The Employee class is a superclass, but not because it is superior to its subclass or contains 
more functionality. In fact, the opposite is true: subclasses have more functionality than 
their superclasses. For example, as you will see when we go over the rest of the Manager 
class code, the Manager class encapsulates more data and has more functionality than its 
superclass Employee.  

NOTE: The prefixes super and sub come from the language of sets used in theoretical com-
puter science and mathematics. The set of all employees contains the set of all managers, 
and this is described by saying it is a superset of the set of managers. Or, put it another way, 
the set of all managers is a subset of the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to set it:
class Manager extends Employee
{  
   . . .

   public void setBonus(double b)
   {  
      bonus = b;
   }

   private double bonus;
}

There is nothing special about these methods and fields. If you have a Manager object, you 
can simply apply the setBonus method. 

Manager boss = . . .;
boss.setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus method—it is not 
among the methods that are defined in the Employee class.

However, you can use methods such as getName and getHireDay with Manager objects. Even 
though these methods are not explicitly defined in the Manager class, they are automati-
cally inherited from the Employee superclass. 

Similarly, the fields name, salary, and hireDay are inherited from the superclass. Every Manager 
object has four fields: name, salary, hireDay, and bonus.

When defining a subclass by extending its superclass, you only need to indicate the 
differences between the subclass and the superclass. When designing classes, you place 
the most general methods into the superclass and more specialized methods in the sub-
class. Factoring out common functionality by moving it to a superclass is common in 
object-oriented programming.

However, some of the superclass methods are not appropriate for the Manager subclass. In 
particular, the getSalary method should return the sum of the base salary and the bonus. 
You need to supply a new method to override the superclass method:

class Manager extends Employee
{  
   . . .

ch05.fm  Page 173  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance174

   public double getSalary()
   { 
      . . .
   }
   . . .
}

How can you implement this method? At first glance, it appears to be simple—just 
return the sum of the salary and bonus fields:

public double getSalary()
{  
   return salary + bonus; // won't work
}

However, that won’t work. The getSalary method of the Manager class has no direct access to the 
private fields of the superclass. This means that the getSalary method of the Manager class cannot 
directly access the salary field, even though every Manager object has a field called salary. Only 
the methods of the Employee class have access to the private fields. If the Manager methods want 
to access those private fields, they have to do what every other method does—use the public 
interface, in this case, the public getSalary method of the Employee class. 

So, let’s try this again. You need to call getSalary instead of simply accessing the salary field.
public double getSalary()
{  
   double baseSalary = getSalary(); // still won't work
   return baseSalary + bonus; 
}

The problem is that the call to getSalary simply calls itself, because the Manager class has a 
getSalary method (namely, the method we are trying to implement). The consequence is 
an infinite set of calls to the same method, leading to a program crash.

We need to indicate that we want to call the getSalary method of the Employee superclass, 
not the current class. You use the special keyword super for this purpose. The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct version of the getSalary 
method for the Manager class:

public double getSalary()
{  
   double baseSalary = super.getSalary();
   return baseSalary + bonus; 
}

NOTE: Some people think of super as being analogous to the this reference. However, that 
analogy is not quite accurate—super is not a reference to an object. For example, you cannot 
assign the value super to another object variable. Instead, super is a special keyword that 
directs the compiler to invoke the superclass method. 

As you saw, a subclass can add fields, and it can add or override methods of the super-
class. However, inheritance can never take away any fields or methods. 

ch05.fm  Page 174  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 175

C++ NOTE: Java uses the keyword super to call a superclass method. In C++, you would use 
the name of the superclass with the :: operator instead. For example, the getSalary method 
of the Manager class would call Employee::getSalary instead of super.getSalary. 

Finally, let us supply a constructor. 
public Manager(String n, double s, int year, int month, int day)
{  
   super(n, s, year, month, day);
   bonus = 0;
}

Here, the keyword super has a different meaning. The instruction
super(n, s, year, month, day);

is shorthand for “call the constructor of the Employee superclass with n, s, year, month, and day 
as parameters.” 

Because the Manager constructor cannot access the private fields of the Employee class, it 
must initialize them through a constructor. The constructor is invoked with the special 
super syntax. The call using super must be the first statement in the constructor for the 
subclass.

If the subclass constructor does not call a superclass constructor explicitly, then the 
default (no-parameter) constructor of the superclass is invoked. If the superclass has no 
default constructor and the subclass constructor does not call another superclass con-
structor explicitly, then the Java compiler reports an error. 

NOTE: Recall that the this keyword has two meanings: to denote a reference to the implicit 
parameter and to call another constructor of the same class. Likewise, the super keyword 
has two meanings: to invoke a superclass method and to invoke a superclass constructor. 
When used to invoke constructors, the this and super keywords are closely related. The con-
structor calls can only occur as the first statement in another constructor. The construction 
parameters are either passed to another constructor of the same class (this) or a construc-
tor of the superclass (super). 

C++ NOTE: In a C++ constructor, you do not call super, but you use the initializer list syntax 
to construct the superclass. The Manager constructor looks like this in C++:

Manager::Manager(String n, double s, int year, int month, int day) // C++
: Employee(n, s, year, month, day)
{  
   bonus = 0;
}

Having redefined the getSalary method for Manager objects, managers will automatically 
have the bonus added to their salaries. 

ch05.fm  Page 175  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance176

Here’s an example of this at work: we make a new manager and set the manager’s 
bonus:

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss.setBonus(5000);

We make an array of three employees:
Employee[] staff = new Employee[3];

We populate the array with a mix of managers and employees:
staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

We print out everyone’s salary:
for (Employee e : staff)
   System.out.println(e.getName() + " " + e.getSalary());

This loop prints the following data:
Carl Cracker 85000.0
Harry Hacker 50000.0
Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are Employee objects. 
However, staff[0] is a Manager object and its getSalary method adds the bonus to the base 
salary. 

What is remarkable is that the call
e.getSalary() 

picks out the correct getSalary method. Note that the declared type of e is Employee, but the 
actual type of the object to which e refers can be either Employee or Manager. 

When e refers to an Employee object, then the call e.getSalary() calls the getSalary method 
of the Employee class. However, when e refers to a Manager object, then the getSalary 
method of the Manager class is called instead. The virtual machine knows about the 
actual type of the object to which e refers, and therefore can invoke the correct 
method. 

The fact that an object variable (such as the variable e) can refer to multiple actual types 
is called polymorphism. Automatically selecting the appropriate method at runtime is 
called dynamic binding. We discuss both topics in more detail in this chapter.

C++ NOTE: In Java, you do not need to declare a method as virtual. Dynamic binding is the 
default behavior. If you do not want a method to be virtual, you tag it as final. (We discuss 
the final keyword later in this chapter.) 

Listing 5–1 contains a program that shows how the salary computation differs for 
Employee and Manager objects. 

ch05.fm  Page 176  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 177

Listing 5–1 ManagerTest.java

1. import java.util.*;
2.

3. /**
4.  * This program demonstrates inheritance.
5.  * @version 1.21 2004-02-21
6.  * @author Cay Horstmann
7.  */
8. public class ManagerTest
9. {

10.    public static void main(String[] args)
11.    {
12.       // construct a Manager object
13.       Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
14.       boss.setBonus(5000);
15.

16.       Employee[] staff = new Employee[3];
17.

18.       // fill the staff array with Manager and Employee objects
19.

20.       staff[0] = boss;
21.       staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
22.       staff[2] = new Employee("Tommy Tester", 40000, 1990, 3, 15);
23.

24.       // print out information about all Employee objects
25.       for (Employee e : staff)
26.          System.out.println("name=" + e.getName() + ",salary=" + e.getSalary());
27.    }
28. }
29.

30. class Employee
31. {
32.    public Employee(String n, double s, int year, int month, int day)
33.    {
34.       name = n;
35.       salary = s;
36.       GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
37.       hireDay = calendar.getTime();
38.    }
39.

40.    public String getName()
41.    {
42.       return name;
43.    }
44.

45.    public double getSalary()
46.    {
47.       return salary;
48.    }
49.

ch05.fm  Page 177  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance178

50.    public Date getHireDay()
51.    {
52.       return hireDay;
53.    }
54.

55.    public void raiseSalary(double byPercent)
56.    {
57.       double raise = salary * byPercent / 100;
58.       salary += raise;
59.    }
60.

61.    private String name;
62.    private double salary;
63.    private Date hireDay;
64. }
65.

66. class Manager extends Employee
67. {
68.    /**
69.     * @param n the employee's name
70.     * @param s the salary
71.     * @param year the hire year
72.     * @param month the hire month
73.     * @param day the hire day
74.     */
75.    public Manager(String n, double s, int year, int month, int day)
76.    {
77.       super(n, s, year, month, day);
78.       bonus = 0;
79.    }
80.

81.    public double getSalary()
82.    {
83.       double baseSalary = super.getSalary();
84.       return baseSalary + bonus;
85.    }
86.

87.    public void setBonus(double b)
88.    {
89.       bonus = b;
90.    }
91.

92.    private double bonus;
93. }

Listing 5–1 ManagerTest.java (continued)

ch05.fm  Page 178  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 179

Inheritance Hierarchies
Inheritance need not stop at deriving one layer of classes. We could have an Executive 
class that extends Manager, for example. The collection of all classes extending from a com-
mon superclass is called an inheritance hierarchy, as shown in Figure 5–1. The path from a 
particular class to its ancestors in the inheritance hierarchy is its inheritance chain. 

There is usually more than one chain of descent from a distant ancestor class. You 
could form a subclass Programmer or Secretary that extends Employee, and they would have 
nothing to do with the Manager class (or with each other). This process can continue as 
long as is necessary.

C++ NOTE: Java does not support multiple inheritance. (For ways to recover much of the 
functionality of multiple inheritance, see the section on Interfaces in the next chapter.)

Figure 5–1  Employee inheritance hierarchy

Polymorphism
A simple rule enables you to know whether or not inheritance is the right design for 
your data. The “is–a” rule states that every object of the subclass is an object of the 
superclass. For example, every manager is an employee. Thus, it makes sense for the 
Manager class to be a subclass of the Employee class. Naturally, the opposite is not true—not 
every employee is a manager. 

Another way of formulating the “is–a” rule is the substitution principle. That principle states 
that you can use a subclass object whenever the program expects a superclass object. 

Manager Secretary Programmer

Executive

Employee

ch05.fm  Page 179  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance180

For example, you can assign a subclass object to a superclass variable. 
Employee e;
e = new Employee(. . .);  // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A variable of type 
Employee can refer to an object of type Employee or to an object of any subclass of the Employee 
class (such as Manager, Executive, Secretary, and so on). 

We took advantage of this principle in Listing 5–1: 
Manager boss = new Manager(. . .);
Employee[] staff = new Employee[3];
staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object. However, staff[0] is 
considered to be only an Employee object by the compiler.

That means, you can call
boss.setBonus(5000); // OK

but you can’t call 
staff[0].setBonus(5000); // ERROR

The declared type of staff[0] is Employee, and the setBonus method is not a method of the 
Employee class.  

However, you cannot assign a superclass reference to a subclass variable. For example, 
it is not legal to make the assignment

Manager m = staff[i]; // ERROR

The reason is clear: Not all employees are managers. If this assignment were to succeed 
and m were to refer to an Employee object that is not a manager, then it would later be pos-
sible to call m.setBonus(...) and a runtime error would occur. 

CAUTION: In Java, arrays of subclass references can be converted to arrays of superclass 
references without a cast. For example, consider this array of managers:

Manager[] managers = new Manager[10];

It is legal to convert this array to an Employee[] array:

Employee[] staff = managers; // OK

Sure, why not, you may think. After all, if manager[i] is a Manager, it is also an Employee. But 
actually, something surprising is going on. Keep in mind that managers and staff are refer-
ences to the same array. Now consider the statement

staff[0] = new Employee("Harry Hacker", ...); 

The compiler will cheerfully allow this assignment. But staff[0] and manager[0] are the same 
reference, so it looks as if we managed to smuggle a mere employee into the management 
ranks. That would be very bad—calling managers[0].setBonus(1000) would try to access a 
nonexistent instance field and would corrupt neighboring memory. 

To make sure no such corruption can occur, all arrays remember the element type with 
which they were created, and they monitor that only compatible references are stored into 
them. For example, the array created as new Manager[10] remembers that it is an array of 
managers. Attempting to store an Employee reference causes an ArrayStoreException.

ch05.fm  Page 180  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 181

Dynamic Binding
It is important to understand what happens when a method call is applied to an object. 
Here are the details:

1. The compiler looks at the declared type of the object and the method name. Let’s say 
we call x.f(param), and the implicit parameter x is declared to be an object of class C. 
Note that there may be multiple methods, all with the same name, f, but with different 
parameter types. For example, there may be a method f(int) and a method f(String). 
The compiler enumerates all methods called f in the class C and all public methods 
called f in the superclasses of C. 
Now the compiler knows all possible candidates for the method to be called.

2. Next, the compiler determines the types of the parameters that are supplied in the 
method call. If among all the methods called f there is a unique method whose 
parameter types are a best match for the supplied parameters, then that method is 
chosen to be called. This process is called overloading resolution. For example, in a call 
x.f("Hello"), the compiler picks f(String) and not f(int). The situation can get complex 
because of type conversions (int to double, Manager to Employee, and so on). If the com-
piler cannot find any method with matching parameter types or if multiple methods 
all match after applying conversions, then the compiler reports an error.
Now the compiler knows the name and parameter types of the method that needs to 
be called. 

NOTE: Recall that the name and parameter type list for a method is called the method’s 
signature. For example, f(int) and f(String) are two methods with the same name but dif-
ferent signatures. If you define a method in a subclass that has the same signature as a 
superclass method, then you override that method. 

The return type is not part of the signature. However, when you override a method, you need 
to keep the return type compatible. Prior to Java SE 5.0, the return types had to be identical. 
However, it is now legal for the subclass to change the return type of an overridden method 
to a subtype of the original type. For example, suppose that the Employee class has a 

public Employee getBuddy() { ... }

Then the Manager subclass can override this method as

public Manager getBuddy() { ... } // OK in Java SE 5.0

We say that the two getBuddy methods have covariant return types.

3. If the method is private, static, final, or a constructor, then the compiler knows exactly 
which method to call. (The final modifier is explained in the next section.) This is 
called static binding. Otherwise, the method to be called depends on the actual type of 
the implicit parameter, and dynamic binding must be used at runtimeruntime. In our 
example, the compiler would generate an instruction to call f(String) with dynamic 
binding.

4. When the program runs and uses dynamic binding to call a method, then the virtual 
machine must call the version of the method that is appropriate for the actual type of 
the object to which x refers. Let’s say the actual type is D, a subclass of C. If the class D 

ch05.fm  Page 181  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance182

defines a method f(String), that method is called. If not, D’s superclass is searched for 
a method f(String), and so on. 
It would be time consuming to carry out this search every time a method is called. 
Therefore, the virtual machine precomputes for each class a method table that lists all 
method signatures and the actual methods to be called. When a method is actually 
called, the virtual machine simply makes a table lookup. In our example, the virtual 
machine consults the method table for the class D and looks up the method to call for 
f(String). That method may be D.f(String) or X.f(String), where X is some superclass of D. 
There is one twist to this scenario. If the call is super.f(param), then the compiler con-
sults the method table of the superclass of the implicit parameter. 

Let’s look at this process in detail in the call e.getSalary() in Listing 5–1. The declared type of 
e is Employee. The Employee class has a single method, called getSalary, with no method parame-
ters. Therefore, in this case, we don’t worry about overloading resolution. 

Because the getSalary method is not private, static, or final, it is dynamically bound. The 
virtual machine produces method tables for the Employee and Manager classes. The Employee 
table shows that all methods are defined in the Employee class itself:

Employee:
   getName() -> Employee.getName()
   getSalary() -> Employee.getSalary()
   getHireDay() -> Employee.getHireDay()
   raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that isn’t the whole story—as you will see later in this chapter, the Employee class 
has a superclass Object from which it inherits a number of methods. We ignore the Object 
methods for now.

The Manager method table is slightly different. Three methods are inherited, one method 
is redefined, and one method is added. 

Manager:
   getName() -> Employee.getName()
   getSalary() -> Manager.getSalary()
   getHireDay() -> Employee.getHireDay()
   raiseSalary(double) -> Employee.raiseSalary(double)
   setBonus(double) -> Manager.setBonus(double)

At runtime, the call e.getSalary() is resolved as follows: 
1. First, the virtual machine fetches the method table for the actual type of e. That may be 

the table for Employee, Manager, or another subclass of Employee.
2. Then, the virtual machine looks up the defining class for the getSalary() signature. 

Now it knows which method to call. 
3. Finally, the virtual machine calls the method. 

Dynamic binding has a very important property: it makes programs extensible without 
the need for modifying existing code. Suppose a new class Executive is added and there is 
the possibility that the variable e refers to an object of that class. The code containing the 
call e.getSalary() need not be recompiled. The Executive.getSalary() method is called auto-
matically if e happens to refer to an object of type Executive.

ch05.fm  Page 182  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 183

CAUTION: When you override a method, the subclass method must be at least as visible as 
the superclass method. In particular, if the superclass method is public, then the subclass 
method must also be declared as public. It is a common error to accidentally omit the public 
specifier for the subclass method. The compiler then complains that you try to supply a weaker 
access privilege. 

Preventing Inheritance: Final Classes and Methods
Occasionally, you want to prevent someone from forming a subclass from one of your 
classes. Classes that cannot be extended are called final classes, and you use the final 
modifier in the definition of the class to indicate this. For example, let us suppose we 
want to prevent others from subclassing the Executive class. Then, we simply declare the 
class by using the final modifier as follows:

final class Executive extends Manager
{  
   . . .
}

You can also make a specific method in a class final. If you do this, then no subclass can 
override that method. (All methods in a final class are automatically final.) For example:

class Employee
{  
   . . .
   public final String getName()
   {  
      return name;
   }
   . . .
}

NOTE: Recall that fields can also be declared as final. A final field cannot be changed after 
the object has been constructed. However, if a class is declared as final, only the methods, 
not the fields, are automatically final.

There is only one good reason to make a method or class final: to make sure that the 
semantics cannot be changed in a subclass. For example, the getTime and setTime methods 
of the Calendar class are final. This indicates that the designers of the Calendar class have 
taken over responsibility for the conversion between the Date class and the calendar 
state. No subclass should be allowed to mess up this arrangement. Similarly, the String 
class is a final class. That means nobody can define a subclass of String. In other words, if 
you have a String reference, then you know it refers to a String and nothing but a String. 

Some programmers believe that you should declare all methods as final unless you have 
a good reason that you want polymorphism. In fact, in C++ and C#, methods do not use 
polymorphism unless you specifically request it. That may be a bit extreme, but we 
agree that it is a good idea to think carefully about final methods and classes when you 
design a class hierarchy. 

ch05.fm  Page 183  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance184

In the early days of Java, some programmers used the final keyword in the hope of avoid-
ing the overhead of dynamic binding. If a method is not overridden, and it is short, then a 
compiler can optimize the method call away—a process called inlining. For example, inlin-
ing the call e.getName() replaces it with the field access e.name. This is a worthwhile improve-
ment—CPUs hate branching because it interferes with their strategy of prefetching 
instructions while processing the current one. However, if getName can be overridden in 
another class, then the compiler cannot inline it because it has no way of knowing what the 
overriding code may do. 

Fortunately, the just-in-time compiler in the virtual machine can do a better job than a 
traditional compiler. It knows exactly which classes extend a given class, and it can 
check whether any class actually overrides a given method. If a method is short, fre-
quently called, and not actually overridden, the just-in-time compiler can inline the 
method. What happens if the virtual machine loads another subclass that overrides an 
inlined method? Then the optimizer must undo the inlining. That’s slow, but it happens 
rarely.

C++ NOTE: In C++, a method is not dynamically bound by default, and you can tag it as 
inline to have method calls replaced with the method source code. However, there is no 
mechanism that would prevent a subclass from overriding a superclass method. In C++, you 
can write classes from which no other class can derive, but doing so requires an obscure 
trick, and there are few reasons to write such a class. (The obscure trick is left as an exer-
cise to the reader. Hint: Use a virtual base class.)

Casting
Recall from Chapter 3 that the process of forcing a conversion from one type to 
another is called casting. The Java programming language has a special notation for 
casts. For example,

double x = 3.405;
int nx = (int) x;

converts the value of the expression x into an integer, discarding the fractional part.

Just as you occasionally need to convert a floating-point number to an integer, you also 
need to convert an object reference from one class to another. To actually make a cast of 
an object reference, you use a syntax similar to what you use for casting a numeric 
expression. Surround the target class name with parentheses and place it before the 
object reference you want to cast. For example:

Manager boss = (Manager) staff[0]; 

There is only one reason why you would want to make a cast—to use an object in its full 
capacity after its actual type has been temporarily forgotten. For example, in the ManagerTest 
class, the staff array had to be an array of Employee objects because some of its entries were 
regular employees. We would need to cast the managerial elements of the array back to 
Manager to access any of its new variables. (Note that in the sample code for the first section, 
we made a special effort to avoid the cast. We initialized the boss variable with a Manager 
object before storing it in the array. We needed the correct type to set the bonus of the 
manager.)

ch05.fm  Page 184  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 185

As you know, in Java every object variable has a type. The type describes the kind of 
object the variable refers to and what it can do. For example, staff[i] refers to an Employee 
object (so it can also refer to a Manager object).

The compiler checks that you do not promise too much when you store a value in a vari-
able. If you assign a subclass reference to a superclass variable, you are promising less, 
and the compiler will simply let you do it. If you assign a superclass reference to a sub-
class variable, you are promising more. Then you must use a cast so that your promise 
can be checked at runtimeruntime. 

What happens if you try to cast down an inheritance chain and you are “lying” about 
what an object contains?

Manager boss = (Manager) staff[1]; // ERROR

When the program runs, the Java runtime system notices the broken promise and gener-
ates a ClassCastException. If you do not catch the exception, your program terminates. 
Thus, it is good programming practice to find out whether a cast will succeed before 
attempting it. Simply use the instanceof operator. For example:

if (staff[1] instanceof Manager)
{  
   boss = (Manager) staff[1]; 
   . . .
}

Finally, the compiler will not let you make a cast if there is no chance for the cast to 
succeed. For example, the cast 

Date c = (Date) staff[1];

is a compile-time error because Date is not a subclass of Employee.

To sum up:

• You can cast only within an inheritance hierarchy.
• Use instanceof to check before casting from a superclass to a subclass.

NOTE: The test

x instanceof C

does not generate an exception if x is null. It simply returns false. That makes sense. 
Because null refers to no object, it certainly doesn’t refer to an object of type C.

Actually, converting the type of an object by performing a cast is not usually a good idea. In 
our example, you do not need to cast an Employee object to a Manager object for most purposes. 
The getSalary method will work correctly on both objects of both classes. The dynamic bind-
ing that makes polymorphism work locates the correct method automatically. 

The only reason to make the cast is to use a method that is unique to managers, such as 
setBonus. If for some reason you find yourself wanting to call setBonus on Employee objects, 
ask yourself whether this is an indication of a design flaw in the superclass. It may make 
sense to redesign the superclass and add a setBonus method. Remember, it takes only one 
uncaught ClassCastException to terminate your program. In general, it is best to minimize 
the use of casts and the instanceof operator.

ch05.fm  Page 185  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance186

C++ NOTE: Java uses the cast syntax from the “bad old days” of C, but it works like the safe 
dynamic_cast operation of C++. For example,

Manager boss = (Manager) staff[1]; // Java

is the same as 

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++

with one important difference. If the cast fails, it does not yield a null object but throws an 
exception. In this sense, it is like a C++ cast of references. This is a pain in the neck. In C++, 
you can take care of the type test and type conversion in one operation.

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++
if (boss != NULL) . . .

In Java, you use a combination of the instanceof operator and a cast.

if (staff[1] instanceof Manager)
{  
   Manager boss = (Manager) staff[1];
   . . .
}

Abstract Classes
As you move up the inheritance hierarchy, classes become more general and probably 
more abstract. At some point, the ancestor class becomes so general that you think of it 
more as a basis for other classes than as a class with specific instances you want to use. 
Consider, for example, an extension of our Employee class hierarchy. An employee is a per-
son, and so is a student. Let us extend our class hierarchy to include classes Person and 
Student. Figure 5–2 shows the inheritance relationships between these classes.

Figure 5–2  Inheritance diagram for Person and its subclasses

Why bother with so high a level of abstraction? There are some attributes that make 
sense for every person, such as the name. Both students and employees have names, 

Employee Student

Person

ch05.fm  Page 186  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 187

and introducing a common superclass lets us factor out the getName method to a higher 
level in the inheritance hierarchy. 

Now let’s add another method, getDescription, whose purpose is to return a brief descrip-
tion of the person, such as

an employee with a salary of $50,000.00
a student majoring in computer science

It is easy to implement this method for the Employee and Student classes. But what informa-
tion can you provide in the Person class? The Person class knows nothing about the person 
except the name. Of course, you could implement Person.getDescription() to return an 
empty string. But there is a better way. If you use the abstract keyword, you do not need 
to implement the method at all.

public abstract String getDescription(); 
   // no implementation required

For added clarity, a class with one or more abstract methods must itself be declared 
abstract. 

abstract class Person
{  . . .
   public abstract String getDescription();
}

In addition to abstract methods, abstract classes can have fields and concrete methods. 
For example, the Person class stores the name of the person and has a concrete method 
that returns it. 

abstract class Person
{  
   public Person(String n)
   {  
      name = n;
   }

   public abstract String getDescription();

   public String getName()
   {  
       return name;
   }

   private String name;
}

TIP: Some programmers don’t realize that abstract classes can have concrete methods. You 
should always move common fields and methods (whether abstract or not) to the superclass 
(whether abstract or not). 

Abstract methods act as placeholders for methods that are implemented in the sub-
classes. When you extend an abstract class, you have two choices. You can leave some or 
all of the abstract methods undefined. Then you must tag the subclass as abstract as 
well. Or you can define all methods. Then the subclass is no longer abstract. 

ch05.fm  Page 187  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance188

For example, we will define a Student class that extends the abstract Person class and 
implements the getDescription method. Because none of the methods of the Student class 
are abstract, it does not need to be declared as an abstract class.

A class can even be declared as abstract even though it has no abstract methods. 

Abstract classes cannot be instantiated. That is, if a class is declared as abstract, no 
objects of that class can be created. For example, the expression

new Person("Vince Vu")

is an error. However, you can create objects of concrete subclasses. 

Note that you can still create object variables of an abstract class, but such a variable must 
refer to an object of a nonabstract subclass. For example: 

Person p = new Student("Vince Vu", "Economics");

Here p is a variable of the abstract type Person that refers to an instance of the nonabstract 
subclass Student.

C++ NOTE: In C++, an abstract method is called a pure virtual function and is tagged with a 
trailing = 0, such as in

class Person // C++
{  
public:
   virtual string getDescription() = 0;
   . . .
};

A C++ class is abstract if it has at least one pure virtual function. In C++, there is no special 
keyword to denote abstract classes. 

Let us define a concrete subclass Student that extends the abstract Person class:
class Student extends Person
{  
   public Student(String n, String m)
   {  
      super(n);
      major = m;
   }

   public String getDescription()
   {  
      return "a student majoring in " + major;
   }

   private String major;
}

The Student class defines the getDescription method. Therefore, all methods in the Student 
class are concrete, and the class is no longer an abstract class. 

ch05.fm  Page 188  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 189

The program shown in Listing 5–2 defines the abstract superclass Person and two 
concrete subclasses, Employee and Student. We fill an array of Person references with 
employee and student objects: 

Person[] people = new Person[2];
people[0] = new Employee(. . .);
people[1] = new Student(. . .);

We then print the names and descriptions of these objects:
for (Person p : people)
   System.out.println(p.getName() + ", " + p.getDescription());

Some people are baffled by the call
p.getDescription()

Isn’t this call an undefined method? Keep in mind that the variable p never refers to a 
Person object because it is impossible to construct an object of the abstract Person class. The 
variable p always refers to an object of a concrete subclass such as Employee or Student. For 
these objects, the getDescription method is defined. 

Could you have omitted the abstract method altogether from the Person superclass and 
simply defined the getDescription methods in the Employee and Student subclasses? If you 
did that, then you wouldn’t have been able to invoke the getDescription method on the 
variable p. The compiler ensures that you invoke only methods that are declared in the 
class. 

Abstract methods are an important concept in the Java programming language. You will 
encounter them most commonly inside interfaces. For more information about inter-
faces, turn to Chapter 6.

Listing 5–2 PersonTest.java

1. import java.util.*;
2.

3. /**
4.  * This program demonstrates abstract classes.
5.  * @version 1.01 2004-02-21
6.  * @author Cay Horstmann
7.  */
8. public class PersonTest
9. {

10.    public static void main(String[] args)
11.    {
12.       Person[] people = new Person[2];
13.

14.       // fill the people array with Student and Employee objects
15.       people[0] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
16.       people[1] = new Student("Maria Morris", "computer science");
17.

18.       // print out names and descriptions of all Person objects
19.       for (Person p : people)
20.          System.out.println(p.getName() + ", " + p.getDescription());
21.    }

ch05.fm  Page 189  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance190

22. }
23.

24. abstract class Person
25. {
26.    public Person(String n)
27.    {
28.       name = n;
29.    }
30.

31.    public abstract String getDescription();
32.

33.    public String getName()
34.    {
35.       return name;
36.    }
37.

38.    private String name;
39. }
40.

41. class Employee extends Person
42. {
43.    public Employee(String n, double s, int year, int month, int day)
44.    {
45.       super(n);
46.       salary = s;
47.       GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
48.       hireDay = calendar.getTime();
49.    }
50.

51.    public double getSalary()
52.    {
53.       return salary;
54.    }
55.

56.    public Date getHireDay()
57.    {
58.       return hireDay;
59.    }
60.

61.    public String getDescription()
62.    {
63.       return String.format("an employee with a salary of $%.2f", salary);
64.    }
65.

66.    public void raiseSalary(double byPercent)
67.    {
68.       double raise = salary * byPercent / 100;
69.       salary += raise;
70.    }

Listing 5–2 PersonTest.java (continued)

ch05.fm  Page 190  Wednesday, August 8, 2007  4:16 PM



Classes, Superclasses, and Subclasses 191

Protected Access
As you know, fields in a class are best tagged as private, and methods are usually tagged 
as public. Any features declared private won’t be visible to other classes. As we said at the 
beginning of this chapter, this is also true for subclasses: a subclass cannot access the pri-
vate fields of its superclass. 

There are times, however, when you want to restrict a method to subclasses only or, less 
commonly, to allow subclass methods to access a superclass field. In that case, you 
declare a class feature as protected. For example, if the superclass Employee declares the 
hireDay field as protected instead of private, then the Manager methods can access it directly. 

However, the Manager class methods can peek inside the hireDay field of Manager objects only, 
not of other Employee objects. This restriction is made so that you can’t abuse the protected 
mechanism and form subclasses just to gain access to the protected fields. 

In practice, use protected fields with caution. Suppose your class is used by other pro-
grammers and you designed it with protected fields. Unknown to you, other pro-
grammers may inherit classes from your class and then start accessing your protected 
fields. In this case, you can no longer change the implementation of your class without 
upsetting the other programmers. That is against the spirit of OOP, which encourages 
data encapsulation.

71.

72.    private double salary;
73.    private Date hireDay;
74. }
75.

76. class Student extends Person
77. {
78.    /**
79.     * @param n the student's name
80.     * @param m the student's major
81.     */
82.    public Student(String n, String m)
83.    {
84.       // pass n to superclass constructor
85.       super(n);
86.       major = m;
87.    }
88.

89.    public String getDescription()
90.    {
91.       return "a student majoring in " + major;
92.    }
93.

94.    private String major;
95. }

Listing 5–2 PersonTest.java (continued)

ch05.fm  Page 191  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance192

Protected methods make more sense. A class may declare a method as protected if it is 
tricky to use. This indicates that the subclasses (which, presumably, know their ances-
tors well) can be trusted to use the method correctly, but other classes cannot. 

A good example of this kind of method is the clone method of the Object class—see Chap-
ter 6 for more details. 

C++ NOTE: As it happens, protected features in Java are visible to all subclasses as well as 
to all other classes in the same package. This is slightly different from the C++ meaning of 
protected, and it makes the notion of protected in Java even less safe than in C++.

Here is a summary of the four access modifiers in Java that control visibility: 

1. Visible to the class only (private).
2. Visible to the world (public).
3. Visible to the package and all subclasses (protected).
4. Visible to the package—the (unfortunate) default. No modifiers are needed.

Object: The Cosmic Superclass
The Object class is the ultimate ancestor—every class in Java extends Object. However, 
you never have to write

class Employee extends Object

The ultimate superclass Object is taken for granted if no superclass is explicitly men-
tioned. Because every class in Java extends Object, it is important to be familiar with the 
services provided by the Object class. We go over the basic ones in this chapter and refer 
you to later chapters or to the on-line documentation for what is not covered here. (Sev-
eral methods of Object come up only when dealing with threads—see Volume II for more 
on threads.)

You can use a variable of type Object to refer to objects of any type:
Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for arbitrary values. 
To do anything specific with the value, you need to have some knowledge about the 
original type and then apply a cast: 

Employee e = (Employee) obj;

In Java, only the primitive types (numbers, characters, and boolean values) are not objects. 

All array types, no matter whether they are arrays of objects or arrays of primitive 
types, are class types that extend the Object class.

Employee[] staff = new Employee[10];
obj = staff; // OK
obj = new int[10]; // OK

C++ NOTE: In C++, there is no cosmic root class. However, every pointer can be converted 
to a void* pointer. 

ch05.fm  Page 192  Wednesday, August 8, 2007  4:16 PM



Object: The Cosmic Superclass 193

The equals Method
The equals method in the Object class tests whether one object is considered equal to another. 
The equals method, as implemented in the Object class, determines whether two object refer-
ences are identical. This is a pretty reasonable default—if two objects are identical, they 
should certainly be equal. For quite a few classes, nothing else is required. For example, it 
makes little sense to compare two PrintStream objects for equality. However, you will often 
want to implement state-based equality testing, in which two objects are considered equal 
when they have the same state.

For example, let us consider two employees equal if they have the same name, salary, 
and hire date. (In an actual employee database, it would be more sensible to compare 
IDs instead. We use this example to demonstrate the mechanics of implementing the 
equals method.) 

class Employee
{ 
   . . .
   public boolean equals(Object otherObject)
   {  
      // a quick test to see if the objects are identical
      if (this == otherObject) return true;
 
      // must return false if the explicit parameter is null
      if (otherObject == null) return false;

      // if the classes don't match, they can't be equal
      if (getClass() != otherObject.getClass()) 
         return false;
 
      // now we know otherObject is a non-null Employee
      Employee other = (Employee) otherObject;

      // test whether the fields have identical values
      return name.equals(other.name) 
         && salary == other.salary
         && hireDay.equals(other.hireDay);
   }
}

The getClass method returns the class of an object—we discuss this method in detail later 
in this chapter. In our test, two objects can only be equal when they belong to the same 
class.

When you define the equals method for a subclass, first call equals on the superclass. If that 
test doesn’t pass, then the objects can’t be equal. If the superclass fields are equal, then you 
are ready to compare the instance fields of the subclass.

class Manager extends Employee
{
   . . .
   public boolean equals(Object otherObject)
   {
      if (!super.equals(otherObject)) return false;

ch05.fm  Page 193  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance194

      // super.equals checked that this and otherObject belong to the same class
      Manager other = (Manager) otherObject; 
      return bonus == other.bonus;
   }
} 

Equality Testing and Inheritance
How should the equals method behave if the implicit and explicit parameters don’t 
belong to the same class? This has been an area of some controversy. In the preceding 
example, the equals method returns false if the classes don’t match exactly. But many pro-
grammers use an instanceof test instead:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility that otherObject can belong to a subclass. However, this 
approach can get you into trouble. Here is why. The Java Language Specification 
requires that the equals method has the following properties:

1. It is reflexive: For any non-null reference x, x.equals(x) should return true.
2. It is symmetric: For any references x and y, x.equals(y) should return true if and only if 

y.equals(x) returns true.
3. It is transitive: For any references x, y, and z, if x.equals(y) returns true and y.equals(z) 

returns true, then x.equals(z) should return true.
4. It is consistent: If the objects to which x and y refer haven’t changed, then repeated 

calls to x.equals(y) return the same value.
5. For any non-null reference x, x.equals(null) should return false.

These rules are certainly reasonable. You wouldn’t want a library implementor to pon-
der whether to call x.equals(y) or y.equals(x) when locating an element in a data structure.

However, the symmetry rule has subtle consequences when the parameters belong to 
different classes. Consider a call

e.equals(m)

where e is an Employee object and m is a Manager object, both of which happen to have the 
same name, salary, and hire date. If Employee.equals uses an instanceof test, the call returns 
true. But that means that the reverse call

m.equals(e)

also needs to return true—the symmetry rule does not allow it to return false or to throw 
an exception.

That leaves the Manager class in a bind. Its equals method must be willing to compare itself 
to any Employee, without taking manager-specific information into account! All of a sud-
den, the instanceof test looks less attractive! 

Some authors have gone on record that the getClass test is wrong because it violates the 
substitution principle. A commonly cited example is the equals method in the AbstractSet 
class that tests whether two sets have the same elements. The AbstractSet class has two 
concrete subclasses, TreeSet and HashSet, that use different algorithms for locating set ele-
ments. You really want to be able to compare any two sets, no matter how they are 
implemented. 

ch05.fm  Page 194  Wednesday, August 8, 2007  4:16 PM



Object: The Cosmic Superclass 195

However, the set example is rather specialized. It would make sense to declare Abstract-
Set.equals as final, because nobody should redefine the semantics of set equality. (The 
method is not actually final. This allows a subclass to implement a more efficient algo-
rithm for the equality test.)

The way we see it, there are two distinct scenarios: 

• If subclasses can have their own notion of equality, then the symmetry requirement 
forces you to use the getClass test.

• If the notion of equality is fixed in the superclass, then you can use the instanceof test 
and allow objects of different subclasses to be equal to another. 

In the example of the employees and managers, we consider two objects to be equal 
when they have matching fields. If we have two Manager objects with the same name, sal-
ary, and hire date, but with different bonuses, we want them to be different. Therefore, 
we used the getClass test. 

But suppose we used an employee ID for equality testing. This notion of equality makes 
sense for all subclasses. Then we could use the instanceof test, and we should declare 
Employee.equals as final.

NOTE: The standard Java library contains over 150 implementations of equals methods, with 
a mishmash of using instanceof, calling getClass, catching a ClassCastException, or doing 
nothing at all. 

Here is a recipe for writing the perfect equals method:

1. Name the explicit parameter otherObject—later, you need to cast it to another variable 
that you should call other.

2. Test whether this happens to be identical to otherObject:
if (this == otherObject) return true;

This statement is just an optimization. In practice, this is a common case. It is much 
cheaper to check for identity than to compare the fields. 

3. Test whether otherObject is null and return false if it is. This test is required.
if (otherObject == null) return false; 

4. Compare the classes of this and otherObject. If the semantics of equals can change in 
subclasses, use the getClass test:

if (getClass() != otherObject.getClass()) return false;

If the same semantics holds for all subclasses, you can use an instanceof test:
if (!(otherObject instanceof ClassName)) return false; 

5. Cast otherObject to a variable of your class type:
ClassName other = (ClassName) otherObject

6. Now compare the fields, as required by your notion of equality. Use == for primitive 
type fields, equals for object fields. Return true if all fields match, false otherwise.

return field1 == other.field1
   && field2.equals(other.field2)
   && . . .;

If you redefine equals in a subclass, include a call to super.equals(other).

ch05.fm  Page 195  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance196

TIP: If you have fields of array type, you can use the static Arrays.equals method to check 
that corresponding array elements are equal. 

CAUTION: Here is a common mistake when implementing the equals method. Can you spot 
the problem? 

public class Employee
{
   public boolean equals(Employee other)
   {
      return name.equals(other.name) 
         && salary == other.salary
         && hireDay.equals(other.hireDay); 
   }
   ...
}

This method declares the explicit parameter type as Employee. As a result, it does not over-
ride the equals method of the Object class but defines a completely unrelated method. 

Starting with Java SE 5.0, you can protect yourself against this type of error by tagging 
methods that are intended to override superclass methods with @Override:

@Override public boolean equals(Object other) 

If you made a mistake and you are defining a new method, the compiler reports an error. For 
example, suppose you add the following declaration to the Employee class:

@Override public boolean equals(Employee other)

An error is reported because this method doesn’t override any method from the Object 
superclass.

• static boolean equals(type[] a, type[] b) 5.0
returns true if the arrays have equal lengths and equal elements in corresponding 
positions. The arrays can have component types Object, int, long, short, char, byte, 
boolean, float, or double.

The hashCode Method
A hash code is an integer that is derived from an object. Hash codes should be scram-
bled—if x and y are two distinct objects, there should be a high probability that x.hash-
Code() and y.hashCode() are different. Table 5–1 lists a few examples of hash codes that 
result from the hashCode method of the String class.

The String class uses the following algorithm to compute the hash code:
int hash = 0;
for (int i = 0; i < length(); i++) 
   hash = 31 * hash + charAt(i);

 

java.util.Arrays 1.2

ch05.fm  Page 196  Wednesday, August 8, 2007  4:16 PM



Object: The Cosmic Superclass 197

The hashCode method is defined in the Object class. Therefore, every object has a default 
hash code. That hash code is derived from the object’s memory address. Consider this 
example: 

String s = "Ok";
StringBuilder sb = new StringBuilder(s);
System.out.println(s.hashCode() + " " + sb.hashCode());
String t = new String("Ok");
StringBuilder tb = new StringBuilder(t);
System.out.println(t.hashCode() + " " + tb.hashCode());

Table 5–2 shows the result. 

Note that the strings s and t have the same hash code because, for strings, the hash 
codes are derived from their contents. The string builders sb and tb have different hash 
codes because no hashCode method has been defined for the StringBuilder class, and the 
default hashCode method in the Object class derives the hash code from the object’s mem-
ory address.

If you redefine the equals method, you will also need to redefine the hashCode method for 
objects that users might insert into a hash table. (We discuss hash tables in Chapter 2 
of Volume II.) 

The hashCode method should return an integer (which can be negative). Just combine the 
hash codes of the instance fields so that the hash codes for different objects are likely to 
be widely scattered. 

For example, here is a hashCode method for the Employee class:
class Employee
{  
   public int hashCode()
   {   

Table 5–1  Hash Codes Resulting from the hashCode Function

String Hash Code

Hello 69609650

Harry 69496448

Hacker –2141031506

Table 5–2  Hash Codes of Strings and String Builders

Object Hash Code

s 2556

sb 20526976

t 2556

tb 20527144

ch05.fm  Page 197  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance198

      return 7 * name.hashCode() 
         + 11 * new Double(salary).hashCode()
         + 13 * hireDay.hashCode();
   }
   . . .
}

Your definitions of equals and hashCode must be compatible: if x.equals(y) is true, then 
x.hashCode() must be the same value as y.hashCode(). For example, if you define 
Employee.equals to compare employee IDs, then the hashCode method needs to hash 
the IDs, not employee names or memory addresses.

TIP: If you have fields of array type, you can use the static Arrays.hashCode method to com-
pute a hash code that is composed of the hash codes of the array elements.  

• int hashCode()
returns a hash code for this object. A hash code can be any integer, positive or 
negative. Equal objects need to return identical hash codes.  

• static int hashCode(type[] a) 5.0
computes the hash code of the array a, which can have component type Object, int, 
long, short, char, byte, boolean, float, or double.

The toString Method
Another important method in Object is the toString method that returns a string repre-
senting the value of this object. Here is a typical example. The toString method of the 
Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the class, followed by 
the field values enclosed in square brackets. Here is an implementation of the toString 
method for the Employee class:

public String toString()
{  
   return "Employee[name=" + name
      + ",salary=" + salary
      + ",hireDay=" + hireDay
      + "]";
}

Actually, you can do a little better. Rather than hardwiring the class name into the 
toString method, call getClass().getName() to obtain a string with the class name.

public String toString()
{  
   return getClass().getName()

java.lang.Object 1.0

java.util.Arrays 1.2

ch05.fm  Page 198  Wednesday, August 8, 2007  4:16 PM



Object: The Cosmic Superclass 199

      + "[name=" + name
      + ",salary=" + salary
      + ",hireDay=" + hireDay
      + "]";
}

The toString method then also works for subclasses. 

Of course, the subclass programmer should define its own toString method and add the 
subclass fields. If the superclass uses getClass().getName(), then the subclass can simply 
call super.toString(). For example, here is a toString method for the Manager class:

class Manager extends Employee
{
   . . .
   public String toString()
   {
      return super.toString()
        + "[bonus=" + bonus
        + "]";
   }
}

Now a Manager object is printed as
Manager[name=...,salary=...,hireDay=...][bonus=...]

The toString method is ubiquitous for an important reason: whenever an object is concat-
enated with a string by the “+” operator, the Java compiler automatically invokes the 
toString method to obtain a string representation of the object. For example: 

Point p = new Point(10, 20);
String message = "The current position is " + p;
   // automatically invokes p.toString()

TIP: Instead of writing x.toString(), you can write "" + x. This statement concatenates the 
empty string with the string representation of x that is exactly x.toString(). Unlike toString, 
this statement even works if x is of primitive type.

If x is any object and you call 
System.out.println(x);

then the println method simply calls x.toString() and prints the resulting string. 

The Object class defines the toString method to print the class name and the hash code of 
the object. For example, the call

System.out.println(System.out)

produces an output that looks like this:
java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStream class didn’t bother to override the 
toString method.

ch05.fm  Page 199  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance200

CAUTION: Annoyingly, arrays inherit the toString method from Object, with the added twist 
that the array type is printed in an archaic format. For example,

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
String s = "" + luckyNumbers;

yields the string "[I@1a46e30". (The prefix [I denotes an array of integers.) The remedy is to 
call the static Arrays.toString method instead. The code

String s = Arrays.toString(luckyNumbers);

yields the string "[2, 3, 5, 7, 11, 13]". 

To correctly print multidimensional arrays (that is, arrays of arrays), use Arrays.deepToString.

The toString method is a great tool for logging. Many classes in the standard class library 
define the toString method so that you can get useful information about the state of an 
object. This is particularly useful in logging messages like this:

System.out.println("Current position = " + position);

As we explain in Chapter 11, an even better solution is
Logger.global.info("Current position = " + position);

TIP: We strongly recommend that you add a toString method to each class that you write. 
You, as well as other programmers who use your classes, will be grateful for the logging 
support.

The program in Listing 5–3 implements the equals, hashCode, and toString methods for the 
Employee and Manager classes. 

Listing 5–3 EqualsTest.java

1. import java.util.*;
2.

3. /**
4.  * This program demonstrates the equals method.
5.  * @version 1.11 2004-02-21
6.  * @author Cay Horstmann
7.  */
8. public class EqualsTest
9. {

10.    public static void main(String[] args)
11.    {
12.       Employee alice1 = new Employee("Alice Adams", 75000, 1987, 12, 15);
13.       Employee alice2 = alice1;
14.       Employee alice3 = new Employee("Alice Adams", 75000, 1987, 12, 15);
15.       Employee bob = new Employee("Bob Brandson", 50000, 1989, 10, 1);
16.

17.       System.out.println("alice1 == alice2: " + (alice1 == alice2));
18.

ch05.fm  Page 200  Wednesday, August 8, 2007  4:16 PM



Object: The Cosmic Superclass 201

19.       System.out.println("alice1 == alice3: " + (alice1 == alice3));
20.

21.       System.out.println("alice1.equals(alice3): " + alice1.equals(alice3));
22.

23.       System.out.println("alice1.equals(bob): " + alice1.equals(bob));
24.

25.       System.out.println("bob.toString(): " + bob);
26.

27.       Manager carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);
28.       Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
29.       boss.setBonus(5000);
30.       System.out.println("boss.toString(): " + boss);
31.       System.out.println("carl.equals(boss): " + carl.equals(boss));
32.       System.out.println("alice1.hashCode(): " + alice1.hashCode());
33.       System.out.println("alice3.hashCode(): " + alice3.hashCode());
34.       System.out.println("bob.hashCode(): " + bob.hashCode());
35.       System.out.println("carl.hashCode(): " + carl.hashCode());
36.    }
37. }
38.

39. class Employee
40. {
41.    public Employee(String n, double s, int year, int month, int day)
42.    {
43.       name = n;
44.       salary = s;
45.       GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
46.       hireDay = calendar.getTime();
47.    }
48.

49.    public String getName()
50.    {
51.       return name;
52.    }
53.

54.    public double getSalary()
55.    {
56.       return salary;
57.    }
58.

59.    public Date getHireDay()
60.    {
61.       return hireDay;
62.    }
63.

64.    public void raiseSalary(double byPercent)
65.    {
66.       double raise = salary * byPercent / 100;
67.       salary += raise;
68.    }

Listing 5–3 EqualsTest.java (continued)

ch05.fm  Page 201  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance202

69.

70.    public boolean equals(Object otherObject)
71.    {
72.       // a quick test to see if the objects are identical
73.       if (this == otherObject) return true;
74.

75.       // must return false if the explicit parameter is null
76.       if (otherObject == null) return false;
77.

78.       // if the classes don't match, they can't be equal
79.       if (getClass() != otherObject.getClass()) return false;
80.

81.       // now we know otherObject is a non-null Employee
82.       Employee other = (Employee) otherObject;
83.

84.       // test whether the fields have identical values
85.       return name.equals(other.name) && salary == other.salary && hireDay.equals(other.hireDay);
86.    }
87.

88.    public int hashCode()
89.    {
90.       return 7 * name.hashCode() + 11 * new Double(salary).hashCode() + 13 * hireDay.hashCode();
91.    }
92.

93.    public String toString()
94.    {
95.       return getClass().getName() + "[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay
96.             + "]";
97.    }
98.

99.    private String name;
100.    private double salary;
101.    private Date hireDay;
102. }
103.

104. class Manager extends Employee
105. {
106.    public Manager(String n, double s, int year, int month, int day)
107.    {
108.       super(n, s, year, month, day);
109.       bonus = 0;
110.    }
111.

112.    public double getSalary()
113.    {
114.       double baseSalary = super.getSalary();
115.       return baseSalary + bonus;
116.    }
117.

Listing 5–3 EqualsTest.java (continued)

ch05.fm  Page 202  Wednesday, August 8, 2007  4:16 PM



Object: The Cosmic Superclass 203

• Class getClass() 
returns a class object that contains information about the object. As you see later 
in this chapter, Java has a runtime representation for classes that is encapsulated 
in the Class class. 

• boolean equals(Object otherObject) 
compares two objects for equality; returns true if the objects point to the same area 
of memory, and false otherwise. You should override this method in your own 
classes.

• String toString() 
returns a string that represents the value of this object. You should override this 
method in your own classes.

• Object clone() 
creates a clone of the object. The Java runtime system allocates memory for the 
new instance and copies the memory allocated for the current object. 

118.

119.    public void setBonus(double b)
120.    {
121.       bonus = b;
122.    }
123.

124.    public boolean equals(Object otherObject)
125.    {
126.       if (!super.equals(otherObject)) return false;
127.       Manager other = (Manager) otherObject;
128.       // super.equals checked that this and other belong to the same class
129.       return bonus == other.bonus;
130.    }
131.

132.    public int hashCode()
133.    {
134.       return super.hashCode() + 17 * new Double(bonus).hashCode();
135.    }
136.

137.    public String toString()
138.    {
139.       return super.toString() + "[bonus=" + bonus + "]";
140.    }
141.

142.    private double bonus;
143. }

java.lang.Object 1.0

Listing 5–3 EqualsTest.java (continued)

ch05.fm  Page 203  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance204

NOTE: Cloning an object is important, but it also turns out to be a fairly subtle process filled 
with potential pitfalls for the unwary. We will have a lot more to say about the clone method in 
Chapter 6.

• String getName() 
returns the name of this class.

• Class getSuperclass() 
returns the superclass of this class as a Class object.

Generic Array Lists
In many programming languages—in particular, in C—you have to fix the sizes of all 
arrays at compile time. Programmers hate this because it forces them into uncomfort-
able trade-offs. How many employees will be in a department? Surely no more than 100. 
What if there is a humongous department with 150 employees? Do we want to waste 90 
entries for every department with just 10 employees? 

In Java, the situation is much better. You can set the size of an array at runtime.
int actualSize = . . .;
Employee[] staff = new Employee[actualSize];

Of course, this code does not completely solve the problem of dynamically modifying 
arrays at runtime. Once you set the array size, you cannot change it easily. Instead, the 
easiest way in Java to deal with this common situation is to use another Java class, called 
ArrayList. The ArrayList class is similar to an array, but it automatically adjusts its capacity 
as you add and remove elements, without your needing to write any code. 

As of Java SE 5.0, ArrayList is a generic class with a type parameter. To specify the type of the 
element objects that the array list holds, you append a class name enclosed in angle brack-
ets, such as ArrayList<Employee>. You will see in Chapter 13 how to define your own generic 
class, but you don’t need to know any of those technicalities to use the ArrayList type.

Here we declare and construct an array list that holds Employee objects:
ArrayList<Employee> staff = new ArrayList<Employee>();

NOTE: Before Java SE 5.0, there were no generic classes. Instead, there was a single 
ArrayList class, a “one size fits all” collection that holds elements of type Object. If you must 
use an older version of Java, simply drop all <...> suffixes. You can still use ArrayList without 
a <...> suffix in Java SE 5.0 and beyond. It is considered a “raw” type, with the type param-
eter erased. 

NOTE: In even older versions of the Java programming language, programmers used the 
Vector class for dynamic arrays. However, the ArrayList class is more efficient, and there is 
no longer any good reason to use the Vector class. 

java.lang.Class 1.0

ch05.fm  Page 204  Wednesday, August 8, 2007  4:16 PM



Generic Array Lists 205

You use the add method to add new elements to an array list. For example, here is how 
you populate an array list with employee objects:

staff.add(new Employee("Harry Hacker", . . .));
staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually, that array will 
run out of space. This is where array lists work their magic: If you call add and the inter-
nal array is full, the array list automatically creates a bigger array and copies all the 
objects from the smaller to the bigger array. 

If you already know, or have a good guess, how many elements you want to store, then 
call the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects. Then, the first 100 calls to add do not 
involve any costly reallocation.

You can also pass an initial capacity to the ArrayList constructor:
ArrayList<Employee> staff = new ArrayList<Employee>(100);

CAUTION: Allocating an array list as 

new ArrayList<Employee>(100) // capacity is 100

is not the same as allocating a new array as

new Employee[100] // size is 100

There is an important distinction between the capacity of an array list and the size of an 
array. If you allocate an array with 100 entries, then the array has 100 slots, ready for use. 
An array list with a capacity of 100 elements has the potential of holding 100 elements (and, 
in fact, more than 100, at the cost of additional reallocations); but at the beginning, even 
after its initial construction, an array list holds no elements at all. 

The size method returns the actual number of elements in the array list. For example, 
staff.size() 

returns the current number of elements in the staff array list. This is the equivalent of 
a.length 

for an array a. 

Once you are reasonably sure that the array list is at its permanent size, you can call the 
trimToSize method. This method adjusts the size of the memory block to use exactly as 
much storage space as is required to hold the current number of elements. The garbage 
collector will reclaim any excess memory. 

Once you trim the size of an array list, adding new elements will move the block again, 
which takes time. You should only use trimToSize when you are sure you won’t add any 
more elements to the array list.

ch05.fm  Page 205  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance206

C++ NOTE: The ArrayList class is similar to the C++ vector template. Both ArrayList and 
vector are generic types. But the C++ vector template overloads the [] operator for conve-
nient element access. Because Java does not have operator overloading, it must use explicit 
method calls instead. Moreover, C++ vectors are copied by value. If a and b are two vectors, 
then the assignment a = b makes a into a new vector with the same length as b, and all 
elements are copied from b to a. The same assignment in Java makes both a and b refer to 
the same array list.

• ArrayList<T>() 
constructs an empty array list.

• ArrayList<T>(int initialCapacity) 
constructs an empty array list with the specified capacity.

• boolean add(T obj) 
appends an element at the end of the array list. Always returns true.

• int size() 
returns the number of elements currently stored in the array list. (Of course, this is 
never larger than the array list’s capacity.)

• void ensureCapacity(int capacity) 
ensures that the array list has the capacity to store the given number of elements 
without reallocating its internal storage array. 

• void trimToSize() 
reduces the storage capacity of the array list to its current size.

Accessing Array List Elements 
Unfortunately, nothing comes for free. The automatic growth convenience that array 
lists give requires a more complicated syntax for accessing the elements. The reason is 
that the ArrayList class is not a part of the Java programming language; it is just a utility 
class programmed by someone and supplied in the standard library. 

Instead of using the pleasant [] syntax to access or change the element of an array, you 
use the get and set methods.

For example, to set the ith element, you use
staff.set(i, harry);

This is equivalent to 
a[i] = harry;

for an array a. (As with arrays, the index values are zero-based.)

java.util.ArrayList<T> 1.2

Parameters: initialCapacity the initial storage capacity of the array list 

Parameters: obj the element to be added 

Parameters: capacity the desired storage capacity

ch05.fm  Page 206  Wednesday, August 8, 2007  4:16 PM



Generic Array Lists 207

CAUTION: Do not call list.set(i, x) until the size of the array list is larger than i. For exam-
ple, the following code is wrong:

ArrayList<Employee> list = new ArrayList<Employee>(100); // capacity 100, size 0
list.set(0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set only to replace a previously 
added element. 

To get an array list element, use
Employee e = staff.get(i);

This is equivalent to 
Employee e = a[i];

NOTE: Before Java SE 5.0, there were no generic classes, and the get method of the raw 
ArrayList class had no choice but to return an Object. Consequently, callers of get had to 
cast the returned value to the desired type:

Employee e = (Employee) staff.get(i);

The raw ArrayList is also a bit dangerous. Its add and set methods accept objects of any 
type. A call

staff.set(i, new Date());

compiles without so much as a warning, and you run into grief only when you retrieve the 
object and try to cast it. If you use an ArrayList<Employee> instead, the compiler will detect 
this error.

You can sometimes get the best of both worlds—flexible growth and convenient ele-
ment access—with the following trick. First, make an array list and add all the elements:

ArrayList<X> list = new ArrayList<X>();
while (. . .) 
{  
   x = . . .;
   list.add(x);
}

When you are done, use the toArray method to copy the elements into an array:
X[] a = new X[list.size()];
list.toArray(a);

Sometimes, you need to add elements in the middle of an array list. Use the add method 
with an index parameter: 

int n = staff.size() / 2;
staff.add(n, e);

The elements at locations n and above are shifted up to make room for the new entry. If 
the new size of the array list after the insertion exceeds the capacity, then the array list 
reallocates its storage array. 

ch05.fm  Page 207  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance208

Similarly, you can remove an element from the middle of an array list:
Employee e = staff.remove(n);

The elements located above it are copied down, and the size of the array is reduced by 
one. 

Inserting and removing elements is not terribly efficient. It is probably not worth worry-
ing about for small array lists. But if you store many elements and frequently insert and 
remove in the middle of a collection, consider using a linked list instead. We explain 
how to program with linked lists in Chapter 13.

As of Java SE 5.0, you can use the “for each” loop to traverse the contents of an array list:
for (Employee e : staff) 
   do something with e

This loop has the same effect as 
for (int i = 0; i < staff.size(); i++)
{
   Employee e = staff.get(i);
   do something with e
}

Listing 5–4 is a modification of the EmployeeTest program of Chapter 4. The Employee[] array 
is replaced by an ArrayList<Employee>. Note the following changes:

• You don’t have to specify the array size.
• You use add to add as many elements as you like.
• You use size() instead of length to count the number of elements.
• You use a.get(i) instead of a[i] to access an element.

Listing 5–4 ArrayListTest.java

1. import java.util.*;
2.

3. /**
4.  * This program demonstrates the ArrayList class.
5.  * @version 1.1 2004-02-21
6.  * @author Cay Horstmann
7.  */
8. public class ArrayListTest
9. {

10.    public static void main(String[] args)
11.    {
12.       // fill the staff array list with three Employee objects
13.       ArrayList<Employee> staff = new ArrayList<Employee>();
14.

15.       staff.add(new Employee("Carl Cracker", 75000, 1987, 12, 15));
16.       staff.add(new Employee("Harry Hacker", 50000, 1989, 10, 1));
17.       staff.add(new Employee("Tony Tester", 40000, 1990, 3, 15));
18.

ch05.fm  Page 208  Wednesday, August 8, 2007  4:16 PM



Generic Array Lists 209

19.       // raise everyone's salary by 5%
20.       for (Employee e : staff)
21.          e.raiseSalary(5);
22.

23.       // print out information about all Employee objects
24.       for (Employee e : staff)
25.          System.out.println("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
26.                + e.getHireDay());
27.    }
28. }
29.

30. class Employee
31. {
32.    public Employee(String n, double s, int year, int month, int day)
33.    {
34.       name = n;
35.       salary = s;
36.       GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
37.       hireDay = calendar.getTime();
38.    }
39.

40.    public String getName()
41.    {
42.       return name;
43.    }
44.

45.    public double getSalary()
46.    {
47.       return salary;
48.    }
49.

50.    public Date getHireDay()
51.    {
52.       return hireDay;
53.    }
54.

55.    public void raiseSalary(double byPercent)
56.    {
57.       double raise = salary * byPercent / 100;
58.       salary += raise;
59.    }
60.

61.    private String name;
62.    private double salary;
63.    private Date hireDay;
64. }

Listing 5–4 ArrayListTest.java (continued)

ch05.fm  Page 209  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance210

• void set(int index, T obj) 
puts a value in the array list at the specified index, overwriting the previous 
contents. 

• T get(int index) 
gets the value stored at a specified index. 

• void add(int index, T obj) 
shifts up elements to insert an element.

• T remove(int index) 
removes an element and shifts down all elements above it. The removed element 
is returned.

Compatibility between Typed and Raw Array Lists
When you write new code with Java SE 5.0 and beyond, you should use type parame-
ters, such as ArrayList<Employee>, for array lists. However, you may need to interoperate 
with existing code that uses the raw ArrayList type.

Suppose that you have the following legacy class:
public class EmployeeDB
{
   public void update(ArrayList list) { ... }
   public ArrayList find(String query) { ... }
}

You can pass a typed array list to the update method without any casts.
ArrayList<Employee> staff = ...;
employeeDB.update(staff);

The staff object is simply passed to the update method. 

CAUTION: Even though you get no error or warning from the compiler, this call is not com-
pletely safe. The update method might add elements into the array list that are not of type 
Employee. When these elements are retrieved, an exception occurs. This sounds scary, but if 
you think about it, the behavior is simply as it was before Java SE 5.0. The integrity of the 
virtual machine is never jeopardized. In this situation, you do not lose security, but you also 
do not benefit from the compile-time checks. 

java.util.ArrayList<T> 1.2

Parameters: index the position (must be between 0 and size() - 1)

obj the new value

Parameters: index the index of the element to get (must be between 0 and 
size() - 1)

Parameters: index the insertion position (must be between 0 and size())

obj the new element

Parameters: index the position of the element to be removed (must be 
between 0 and size() - 1)

ch05.fm  Page 210  Wednesday, August 8, 2007  4:16 PM



Object Wrappers and Autoboxing 211

Conversely, when you assign a raw ArrayList to a typed one, you get a warning. 
ArrayList<Employee> result = employeeDB.find(query); // yields warning

NOTE: To see the text of the warning, compile with the option -Xlint:unchecked.

Using a cast does not make the warning go away. 
ArrayList<Employee> result = (ArrayList<Employee>) 
   employeeDB.find(query); // yields another warning

Instead, you get a different warning, telling you that the cast is misleading.

This is the consequence of a somewhat unfortunate limitation of generic types in Java. 
For compatibility, the compiler translates all typed array lists into raw ArrayList objects 
after checking that the type rules were not violated. In a running program, all array lists 
are the same—there are no type parameters in the virtual machine. Thus, the casts 
(ArrayList) and (ArrayList<Employee>) carry out identical runtime checks.

There isn’t much you can do about that situation. When you interact with legacy code, 
study the compiler warnings and satisfy yourself that the warnings are not serious. 

Object Wrappers and Autoboxing
Occasionally, you need to convert a primitive type like int to an object. All primitive types 
have class counterparts. For example, a class Integer corresponds to the primitive type int. 
These kinds of classes are usually called wrappers. The wrapper classes have obvious 
names: Integer, Long, Float, Double, Short, Byte, Character, Void, and Boolean. (The first six inherit 
from the common superclass Number.) The wrapper classes are immutable—you cannot 
change a wrapped value after the wrapper has been constructed. They are also final, so 
you cannot subclass them.

Suppose we want an array list of integers. Unfortunately, the type parameter inside the 
angle brackets cannot be a primitive type. It is not possible to form an ArrayList<int>. 
Here, the Integer wrapper class comes in. It is ok to declare an array list of Integer objects.

ArrayList<Integer> list = new ArrayList<Integer>(); 

CAUTION: An ArrayList<Integer> is far less efficient than an int[] array because each value 
is separately wrapped inside an object. You would only want to use this construct for small 
collections when programmer convenience is more important than efficiency.

Another Java SE 5.0 innovation makes it easy to add and get array elements. The call
list.add(3);

is automatically translated to
list.add(new Integer(3));

This conversion is called autoboxing.

NOTE: You might think that autowrapping would be more consistent, but the “boxing” meta-
phor was taken from C#. 

ch05.fm  Page 211  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance212

Conversely, when you assign an Integer object to an int value, it is automatically 
unboxed. That is, the compiler translates 

int n = list.get(i);

into 
int n = list.get(i).intValue();

Automatic boxing and unboxing even works with arithmetic expressions. For example, 
you can apply the increment operator to a wrapper reference:

Integer n = 3;
n++;

The compiler automatically inserts instructions to unbox the object, increment the 
resulting value, and box it back.

In most cases, you get the illusion that the primitive types and their wrappers are one 
and the same. There is just one point in which they differ considerably: identity. As you 
know, the == operator, applied to wrapper objects, only tests whether the objects have 
identical memory locations. The following comparison would therefore probably fail:

Integer a = 1000;
Integer b = 1000;
if (a == b) ... 

However, a Java implementation may, if it chooses, wrap commonly occurring values 
into identical objects, and thus the comparison might succeed. This ambiguity is not 
what you want. The remedy is to call the equals method when comparing wrapper 
objects. 

NOTE: The autoboxing specification requires that boolean, byte, char � 127, and short and 
int between –128 and 127 are wrapped into fixed objects. For example, if a and b had been 
initialized with 100 in the preceding example, then the comparison would have had to 
succeed.

Finally, let us emphasize that boxing and unboxing is a courtesy of the compiler, not the 
virtual machine. The compiler inserts the necessary calls when it generates the byte-
codes of a class. The virtual machine simply executes those bytecodes.

You will often see the number wrappers for another reason. The designers of Java found 
the wrappers a convenient place to put certain basic methods, like the ones for convert-
ing strings of digits to numbers. 

To convert a string to an integer, you use the following statement:
int x = Integer.parseInt(s);

This has nothing to do with Integer objects—parseInt is a static method. But the Integer 
class was a good place to put it. 

The API notes show some of the more important methods of the Integer class. The other 
number classes implement corresponding methods.

ch05.fm  Page 212  Wednesday, August 8, 2007  4:16 PM



Object Wrappers and Autoboxing 213

CAUTION: Some people think that the wrapper classes can be used to implement methods 
that can modify numeric parameters. However, that is not correct. Recall from Chapter 4 that 
it is impossible to write a Java method that increments an integer parameter because 
parameters to Java methods are always passed by value.

public static void triple(int x) // won't work
{  
   x = 3 * x; // modifies local variable
}

Could we overcome this by using an Integer instead of an int? 

public static void triple(Integer x) // won't work
{  
   ...
}

The problem is that Integer objects are immutable: the information contained inside the 
wrapper can’t change. You cannot use these wrapper classes to create a method that modi-
fies numeric parameters.

If you do want to write a method to change numeric parameters, you can use one of the 
holder types defined in the org.omg.CORBA package. There are types IntHolder, BooleanHolder, 
and so on. Each holder type has a public (!) field value through which you can access the 
stored value.

public static void triple(IntHolder x) 
{  
   x.value = 3 * x.value;
}

• int intValue() 
returns the value of this Integer object as an int (overrides the intValue method in 
the Number class).

• static String toString(int i) 
returns a new String object representing the number i in base 10.

• static String toString(int i, int radix)
lets you return a representation of the number i in the base specified by the radix 
parameter.

• static int parseInt(String s) 
• static int parseInt(String s, int radix) 

returns the integer whose digits are contained in the string s. The string must 
represent an integer in base 10 (for the first method) or in the  base given by the 
radix parameter (for the second method). 

• static Integer valueOf(String s) 
• static Integer valueOf(String s, int radix) 

returns a new Integer object initialized to the integer whose digits are contained in 
the string s. The string must represent an integer in base 10 (for the first method) 
or in the  base given by the radix parameter (for the second method).   

java.lang.Integer 1.0

ch05.fm  Page 213  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance214

• Number parse(String s) 
returns the numeric value, assuming the specified String represents a number. 

Methods with a Variable Number of Parameters
Before Java SE 5.0, every Java method had a fixed number of parameters. However, it is 
now possible to provide methods that can be called with a variable number of parame-
ters. (These are sometimes called “varargs” methods.)

You have already seen such a method: printf. For example, the calls
System.out.printf("%d", n);

and
System.out.printf("%d %s", n, "widgets");

both call the same method, even though one call has two parameters and the other has 
three. 

The printf method is defined like this:
public class PrintStream
{
   public PrintStream printf(String fmt, Object... args) { return format(fmt, args); } 
}

Here, the ellipsis ... is a part of the Java code. It denotes that the method can receive an 
arbitrary number of objects (in addition to the fmt parameter).

The printf method actually receives two parameters, the format string, and an Object[] 
array that holds all other parameters. (If the caller supplies integers or other primitive 
type values, autoboxing turns them into objects.) It now has the unenviable task of scan-
ning the fmt string and matching up the ith format specifier with the value args[i].

In other words, for the implementor of printf, the Object... parameter type is exactly the 
same as Object[]. 

The compiler needs to transform each call to printf, bundling the parameters into an 
array and autoboxing as necessary:

System.out.printf("%d %s", new Object[] { new Integer(n), "widgets" } );

You can define your own methods with variable parameters, and you can specify any 
type for the parameters, even a primitive type. Here is a simple example: a function that 
computes the maximum of a variable number of values.

public static double max(double... values)
{
   double largest = Double.MIN_VALUE;
   for (double v : values) if (v > largest) largest = v;
   return largest;
}

Simply call the function like this:
double m = max(3.1, 40.4, -5);

The compiler passes a new double[] { 3.1, 40.4, -5 } to the max function. 

java.text.NumberFormat 1.1

ch05.fm  Page 214  Wednesday, August 8, 2007  4:16 PM



Enumeration Classes 215

NOTE: It is legal to pass an array as the last parameter of a method with variable parame-
ters. For example:

System.out.printf("%d %s", new Object[] { new Integer(1), "widgets" } );

Therefore, you can redefine an existing function whose last parameter is an array to a 
method with variable parameters, without breaking any existing code. For example, Message-
Format.format was enhanced in this way in Java SE 5.0. If you like, you can even declare the 
main method as

public static void main(String... args)

Enumeration Classes
You saw in Chapter 3 how to define enumerated types in Java SE 5.0 and beyond. Here 
is a typical example:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

The type defined by this declaration is actually a class. The class has exactly four 
instances—it is not possible to construct new objects. 

Therefore, you never need to use equals for values of enumerated types. Simply use == to 
compare them. 

You can, if you like, add constructors, methods, and fields to an enumerated type. Of 
course, the constructors are only invoked when the enumerated constants are con-
structed. Here is an example.

enum Size
{
   SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");

   private Size(String abbreviation) { this.abbreviation = abbreviation; }
   public String getAbbreviation() { return abbreviation; }

   private String abbreviation;
}

All enumerated types are subclasses of the class Enum. They inherit a number of methods 
from that class. The most useful one is toString, which returns the name of the enumer-
ated constant. For example, Size.SMALL.toString() returns the string "SMALL". 

The converse of toString is the static valueOf method. For example, the statement
Size s = (Size) Enum.valueOf(Size.class, "SMALL");

sets s to Size.SMALL.

Each enumerated type has a static values method that returns an array of all values of the 
enumeration. For example, the call

Size[] values = Size.values();

returns the array with elements Size.SMALL, Size.MEDIUM, Size.LARGE, and Size.EXTRA_LARGE.

The ordinal method yields the position of an enumerated constant in the enum declaration, 
counting from zero. For example, Size.MEDIUM.ordinal() returns 1. 

The short program in Listing 5–5 demonstrates how to work with enumerated types.

ch05.fm  Page 215  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance216

NOTE: The Enum class has a type parameter that we have ignored for simplicity. For example, 
the enumerated type Size actually extends Enum<Size>. The type parameter is used in the 
compareTo method. (We discuss the compareTo method in Chapter 6 and type parameters in 
Chapter 12.)

• static Enum valueOf(Class enumClass, String name)
returns the enumerated constant of the given class with the given name.

• String toString()
returns the name of this enumerated constant.

• int ordinal()
returns the zero-based position of this enumerated constant in the enum declaration. 

Listing 5–5 EnumTest.java

1. import java.util.*;
2.

3. /**
4.  * This program demonstrates enumerated types.
5.  * @version 1.0 2004-05-24
6.  * @author Cay Horstmann
7.  */
8. public class EnumTest
9. {  

10.    public static void main(String[] args)
11.    {  
12.       Scanner in = new Scanner(System.in);
13.       System.out.print("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE) ");
14.       String input = in.next().toUpperCase();
15.       Size size = Enum.valueOf(Size.class, input);
16.       System.out.println("size=" + size);
17.       System.out.println("abbreviation=" + size.getAbbreviation());
18.       if (size == Size.EXTRA_LARGE)
19.          System.out.println("Good job--you paid attention to the _.");      
20.    }
21. }
22.

23. enum Size
24. {
25.    SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
26.

27.    private Size(String abbreviation) { this.abbreviation = abbreviation; }
28.    public String getAbbreviation() { return abbreviation; }
29.

30.    private String abbreviation;
31. }

java.lang.Enum<E> 5.0

ch05.fm  Page 216  Wednesday, August 8, 2007  4:16 PM



Reflection 217

• int compareTo(E other)
returns a negative integer if this enumerated constant comes before other, zero if 
this == other, and a positive integer otherwise. The ordering of the constants is 
given by the enum declaration.

Reflection
The reflection library gives you a very rich and elaborate toolset to write programs 
that manipulate Java code dynamically. This feature is heavily used in JavaBeans, the 
component architecture for Java (see Volume II for more on JavaBeans). Using reflec-
tion, Java can support tools like the ones to which users of Visual Basic have grown 
accustomed. In particular, when new classes are added at design or runtime, rapid 
application development tools can dynamically inquire about the capabilities of the 
classes that were added. 

A program that can analyze the capabilities of classes is called reflective. The reflection 
mechanism is extremely powerful. As the next sections show, you can use it to

• Analyze the capabilities of classes at runtime;
• Inspect objects at runtime, for example, to write a single toString method that works 

for all classes;
• Implement generic array manipulation code; and
• Take advantage of Method objects that work just like function pointers in languages 

such as C++.

Reflection is a powerful and complex mechanism; however, it is of interest mainly to 
tool builders, not application programmers. If you are interested in programming appli-
cations rather than tools for other Java programmers, you can safely skip the remainder 
of this chapter and return to it later.

The Class Class
While your program is running, the Java runtime system always maintains what is 
called runtime type identification on all objects. This information keeps track of the class 
to which each object belongs. Runtime type information is used by the virtual machine 
to select the correct methods to execute. 

However, you can also access this information by working with a special Java class. The 
class that holds this information is called, somewhat confusingly, Class. The getClass() 
method in the Object class returns an instance of Class type. 

Employee e;
. . .
Class cl = e.getClass();

Just like an Employee object describes the properties of a particular employee, a Class object 
describes the properties of a particular class. Probably the most commonly used method 
of Class is getName. This returns the name of the class. For example, the statement

System.out.println(e.getClass().getName() + " " + e.getName());

prints 
Employee Harry Hacker

if e is an employee, or
Manager Harry Hacker

ch05.fm  Page 217  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance218

if e is a manager. 

If the class is in a package, the package name is part of the class name:
Date d = new Date();
Class cl = d.getClass();
String name = cl.getName(); // name is set to "java.util.Date"

You can obtain a Class object corresponding to a class name by using the static forName 
method.

String className = "java.util.Date";
Class cl = Class.forName(className);

You would use this method if the class name is stored in a string that varies at runtim-
eruntime. This works if className is the name of a class or interface. Otherwise, the forName 
method throws a checked exception. See the section “A Primer on Catching Exceptions” 
on page 219 to see how to supply an exception handler whenever you use this method. 

TIP: At startup, the class containing your main method is loaded. It loads all classes that it 
needs. Each of those loaded classes loads the classes that it needs, and so on. That can 
take a long time for a big application, frustrating the user. You can give users of your pro-
gram the illusion of a faster start with the following trick. Make sure that the class containing 
the main method does not explicitly refer to other classes. First display a splash screen. Then 
manually force the loading of other classes by calling Class.forName. 

A third method for obtaining an object of type Class is a convenient shorthand. If T is any 
Java type, then T.class is the matching class object. For example:

Class cl1 = Date.class; // if you import java.util.*; 
Class cl2 = int.class;
Class cl3 = Double[].class;

Note that a Class object really describes a type, which may or may not be a class. For 
example, int is not a class, but int.class is nevertheless an object of type Class.

NOTE: As of Java SE 5.0, the Class class is parameterized. For example, Employee.class is of 
type Class<Employee>. We are not dwelling on this issue because it would further complicate 
an already abstract concept. For most practical purposes, you can ignore the type parame-
ter and work with the raw Class type. See Chapter 13 for more information on this issue.

CAUTION: For historical reasons, the getName method returns somewhat strange names for 
array types:

• Double[].class.getName() returns "[Ljava.lang.Double;"
• int[].class.getName() returns "[I"

The virtual machine manages a unique Class object for each type. Therefore, you can use 
the == operator to compare class objects. For example:

if (e.getClass() == Employee.class) . . .

ch05.fm  Page 218  Wednesday, August 8, 2007  4:16 PM



Reflection 219

Another example of a useful method is one that lets you create an instance of a class on 
the fly. This method is called, naturally enough, newInstance(). For example, 

e.getClass().newInstance();

creates a new instance of the same class type as e. The newInstance method calls the default 
constructor (the one that takes no parameters) to initialize the newly created object. An 
exception is thrown if the class has no default constructor.

Using a combination of forName and newInstance lets you create an object from a class name 
stored in a string.

String s = "java.util.Date";
Object m = Class.forName(s).newInstance();

NOTE: If you need to provide parameters for the constructor of a class you want to create by 
name in this manner, then you can’t use statements like the preceding. Instead, you must 
use the newInstance method in the Constructor class.

C++ NOTE: The newInstance method corresponds to the idiom of a virtual constructor in C++. 
However, virtual constructors in C++ are not a language feature but just an idiom that needs 
to be supported by a specialized library. The Class class is similar to the type_info class in 
C++, and the getClass method is equivalent to the typeid operator. The Java Class is quite a 
bit more versatile than type_info, though. The C++ type_info can only reveal a string with the 
name of the type, not create new objects of that type.   

A Primer on Catching Exceptions
We cover exception handling fully in Chapter 11, but in the meantime you will occasion-
ally encounter methods that threaten to throw exceptions.

When an error occurs at runtime, a program can “throw an exception.” Throwing an 
exception is more flexible than terminating the program because you can provide a han-
dler that “catches” the exception and deals with it. 

If you don’t provide a handler, the program still terminates and prints a message to the 
console, giving the type of the exception. You may already have seen exception reports 
when you accidentally used a null reference or overstepped the bounds of an array.

There are two kinds of exceptions: unchecked exceptions and checked exceptions. With 
checked exceptions, the compiler checks that you provide a handler. However, many 
common exceptions, such as accessing a null reference, are unchecked. The compiler 
does not check whether you provide a handler for these errors—after all, you should 
spend your mental energy on avoiding these mistakes rather than coding handlers for 
them.

But not all errors are avoidable. If an exception can occur despite your best efforts, 
then the compiler insists that you provide a handler. The Class.forName method is an 
example of a method that throws a checked exception. In Chapter 11, you will see sev-
eral exception handling strategies. For now, we just show you the simplest handler 
implementation.

ch05.fm  Page 219  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance220

Place one or more statements that might throw checked exceptions inside a try block. 
Then provide the handler code in the catch clause.

try
{  
   statements that might throw exceptions
}  
catch(Exception e)
{  
   handler action
}

Here is an example: 
try
{  
   String name = . . .; // get class name
   Class cl = Class.forName(name); // might throw exception
   . . . // do something with cl
}
catch(Exception e)
{  
   e.printStackTrace();
}

If the class name doesn’t exist, the remainder of the code in the try block is skipped and 
the program enters the catch clause. (Here, we print a stack trace by using the printStack-
Trace method of the Throwable class. Throwable is the superclass of the Exception class.) If none 
of the methods in the try block throws an exception, the handler code in the catch clause 
is skipped.

You only need to supply an exception handler for checked exceptions. It is easy to find 
out which methods throw checked exceptions—the compiler will complain whenever 
you call a method that threatens to throw a checked exception and you don’t supply a 
handler.

• static Class forName(String className) 
returns the Class object representing the class with name className.

• Object newInstance() 
returns a new instance of this class.

• Object newInstance(Object[] args) 
constructs a new instance of the constructor’s declaring class. 

java.lang.Class 1.0

java.lang.reflect.Constructor 1.1

Parameters: args the parameters supplied to the constructor. See the 
section on reflection for more information on how to 
supply parameters.

ch05.fm  Page 220  Wednesday, August 8, 2007  4:16 PM



Reflection 221

• void printStackTrace()
prints the Throwable object and the stack trace to the standard error stream.

Using Reflection to Analyze the Capabilities of Classes
Here is a brief overview of the most important parts of the reflection mechanism for let-
ting you examine the structure of a class. 

The three classes Field, Method, and Constructor in the java.lang.reflect package describe the 
fields, methods, and constructors of a class, respectively. All three classes have a 
method called getName that returns the name of the item. The Field class has a method 
getType that returns an object, again of type Class, that describes the field type. The Method 
and Constructor classes have methods to report the types of the parameters, and the 
Method class also reports the return type. All three of these classes also have a method 
called getModifiers that returns an integer, with various bits turned on and off, that 
describes the modifiers used, such as public and static. You can then use the static 
methods in the Modifier class in the java.lang.reflect package to analyze the integer that 
getModifiers returns. Use methods like isPublic, isPrivate, or isFinal in the Modifier class to 
tell whether a method or constructor was public, private, or final. All you have to do is 
have the appropriate method in the Modifier class work on the integer that getModifiers 
returns. You can also use the Modifier.toString method to print the modifiers.
The getFields, getMethods, and getConstructors methods of the Class class return arrays of the 
public fields, methods, and constructors that the class supports. This includes public 
members of superclasses. The getDeclaredFields, getDeclaredMethods, and getDeclaredConstruc-
tors methods of the Class class return arrays consisting of all fields, methods, and con-
structors that are declared in the class. This includes private and protected members, 
but not members of superclasses. 
Listing 5–6 shows you how to print out all information about a class. The program 
prompts you for the name of a class and then writes out the signatures of all methods 
and constructors as well as the names of all data fields of a class. For example, if you 
enter 

java.lang.Double

the program prints
public class java.lang.Double extends java.lang.Number
{
   public java.lang.Double(java.lang.String);
   public java.lang.Double(double);

   public int hashCode();
   public int compareTo(java.lang.Object);
   public int compareTo(java.lang.Double);
   public boolean equals(java.lang.Object);
   public java.lang.String toString();
   public static java.lang.String toString(double);
   public static java.lang.Double valueOf(java.lang.String);
   public static boolean isNaN(double);
   public boolean isNaN();
   public static boolean isInfinite(double);
   public boolean isInfinite();

java.lang.Throwable 1.0

ch05.fm  Page 221  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance222

   public byte byteValue();
   public short shortValue();
   public int intValue();
   public long longValue();
   public float floatValue();
   public double doubleValue();
   public static double parseDouble(java.lang.String);
   public static native long doubleToLongBits(double);
   public static native long doubleToRawLongBits(double);
   public static native double longBitsToDouble(long);

   public static final double POSITIVE_INFINITY;
   public static final double NEGATIVE_INFINITY;
   public static final double NaN;
   public static final double MAX_VALUE;
   public static final double MIN_VALUE;
   public static final java.lang.Class TYPE;
   private double value;
   private static final long serialVersionUID;
}

What is remarkable about this program is that it can analyze any class that the Java 
interpreter can load, not just the classes that were available when the program was com-
piled. We use this program in the next chapter to peek inside the inner classes that the 
Java compiler generates automatically.
      

Listing 5–6 ReflectionTest.java

1. import java.util.*;
2. import java.lang.reflect.*;
3.

4. /**
5.  * This program uses reflection to print all features of a class.
6.  * @version 1.1 2004-02-21
7.  * @author Cay Horstmann
8.  */
9. public class ReflectionTest

10. {
11.    public static void main(String[] args)
12.    {
13.       // read class name from command line args or user input
14.       String name;
15.       if (args.length > 0) name = args[0];
16.       else
17.       {
18.          Scanner in = new Scanner(System.in);
19.          System.out.println("Enter class name (e.g. java.util.Date): ");
20.          name = in.next();
21.       }
22.

23.       try
24.       {

ch05.fm  Page 222  Wednesday, August 8, 2007  4:16 PM



Reflection 223

25.          // print class name and superclass name (if != Object)
26.          Class cl = Class.forName(name);
27.          Class supercl = cl.getSuperclass();
28.          String modifiers = Modifier.toString(cl.getModifiers());
29.          if (modifiers.length() > 0) System.out.print(modifiers + " ");
30.          System.out.print("class " + name);
31.          if (supercl != null && supercl != Object.class) System.out.print(" extends "
32.                + supercl.getName());
33.

34.          System.out.print("\n{\n");
35.          printConstructors(cl);
36.          System.out.println();
37.          printMethods(cl);
38.          System.out.println();
39.          printFields(cl);
40.          System.out.println("}");
41.       }
42.       catch (ClassNotFoundException e)
43.       {
44.          e.printStackTrace();
45.       }
46.       System.exit(0);
47.    }
48.

49.    /**
50.     * Prints all constructors of a class
51.     * @param cl a class
52.     */
53.    public static void printConstructors(Class cl)
54.    {
55.       Constructor[] constructors = cl.getDeclaredConstructors();
56.

57.       for (Constructor c : constructors)
58.       {
59.          String name = c.getName();
60.          System.out.print("   ");
61.          String modifiers = Modifier.toString(c.getModifiers());
62.          if (modifiers.length() > 0) System.out.print(modifiers + " ");         
63.          System.out.print(name + "(");
64.

65.          // print parameter types
66.          Class[] paramTypes = c.getParameterTypes();
67.          for (int j = 0; j < paramTypes.length; j++)
68.          {
69.             if (j > 0) System.out.print(", ");
70.             System.out.print(paramTypes[j].getName());
71.          }
72.          System.out.println(");");
73.       }

Listing 5–6 ReflectionTest.java (continued)

ch05.fm  Page 223  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance224

74.    }
75.

76.    /**
77.     * Prints all methods of a class
78.     * @param cl a class
79.     */
80.    public static void printMethods(Class cl)
81.    {
82.       Method[] methods = cl.getDeclaredMethods();
83.

84.       for (Method m : methods)
85.       {
86.          Class retType = m.getReturnType();
87.          String name = m.getName();
88.

89.          System.out.print("   ");
90.          // print modifiers, return type, and method name
91.          String modifiers = Modifier.toString(m.getModifiers());
92.          if (modifiers.length() > 0) System.out.print(modifiers + " ");         
93.          System.out.print(retType.getName() + " " + name + "(");
94.

95.          // print parameter types
96.          Class[] paramTypes = m.getParameterTypes();
97.          for (int j = 0; j < paramTypes.length; j++)
98.          {
99.             if (j > 0) System.out.print(", ");

100.             System.out.print(paramTypes[j].getName());
101.          }
102.          System.out.println(");");
103.       }
104.    }
105.

106.    /**
107.     * Prints all fields of a class
108.     * @param cl a class
109.     */
110.    public static void printFields(Class cl)
111.    {
112.       Field[] fields = cl.getDeclaredFields();
113.

114.       for (Field f : fields)
115.       {
116.          Class type = f.getType();
117.          String name = f.getName();
118.          System.out.print("   ");
119.          String modifiers = Modifier.toString(f.getModifiers());
120.          if (modifiers.length() > 0) System.out.print(modifiers + " ");         
121.          System.out.println(type.getName() + " " + name + ";");
122.       }
123.    }
124. }

Listing 5–6 ReflectionTest.java (continued)

ch05.fm  Page 224  Wednesday, August 8, 2007  4:16 PM



Reflection 225

• Field[] getFields() 1.1
• Field[] getDeclaredFields() 1.1 

getFields returns an array containing Field objects for the public fields of this class 
or its superclasses; getDeclaredField returns an array of Field objects for all fields of 
this class. The methods return an array of length 0 if there are no such fields or if 
the Class object represents a primitive or array type.

• Method[] getMethods() 1.1
• Method[] getDeclaredMethods() 1.1 

returns an array containing Method objects: getMethods returns public methods and 
includes inherited methods; getDeclaredMethods returns all methods of this class or 
interface but does not include inherited methods. 

• Constructor[] getConstructors() 1.1 
• Constructor[] getDeclaredConstructors() 1.1 

returns an array containing Constructor objects that give you all the public 
constructors (for getConstructors) or all constructors (for getDeclaredConstructors) of the 
class represented by this Class object.   

• Class getDeclaringClass() 
returns the Class object for the class that defines this constructor, method, or field.

• Class[] getExceptionTypes() (in Constructor and Method classes) 
returns an array of Class objects that represent the types of the exceptions thrown 
by the method. 

• int getModifiers() 
returns an integer that describes the modifiers of this constructor, method, or 
field. Use the methods in the Modifier class to analyze the return value.

• String getName() 
returns a string that is the name of the constructor, method, or field. 

• Class[] getParameterTypes() (in Constructor and Method classes) 
returns an array of Class objects that represent the types of the parameters.

• Class getReturnType() (in Method classes) 
returns a Class object that represents the return type.   

• static String toString(int modifiers)
returns a string with the modifiers that correspond to the bits set in modifiers.

java.lang.Class 1.0

java.lang.reflect.Field 1.1

java.lang.reflect.Method 1.1

java.lang.reflect.Constructor 1.1

java.lang.reflect.Modifier 1.1

ch05.fm  Page 225  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance226

• static boolean isAbstract(int modifiers)
• static boolean isFinal(int modifiers)
• static boolean isInterface(int modifiers)
• static boolean isNative(int modifiers)
• static boolean isPrivate(int modifiers)
• static boolean isProtected(int modifiers)
• static boolean isPublic(int modifiers)
• static boolean isStatic(int modifiers)
• static boolean isStrict(int modifiers)
• static boolean isSynchronized(int modifiers)
• static boolean isVolatile(int modifiers)

tests the bit in the modifiers value that corresponds to the modifier in the method 
name.

Using Reflection to Analyze Objects at Runtime
In the preceding section, we saw how we can find out the names and types of the data 
fields of any object: 

• Get the corresponding Class object.
• Call getDeclaredFields on the Class object. 

In this section, we go one step further and actually look at the contents of the data fields. 
Of course, it is easy to look at the contents of a specific field of an object whose name 
and type are known when you write a program. But reflection lets you look at fields of 
objects that were not known at compile time.

The key method to achieve this examination is the get method in the Field class. If f is 
an object of type Field (for example, one obtained from getDeclaredFields) and obj is an 
object of the class of which f is a field, then f.get(obj) returns an object whose value 
is the current value of the field of obj. This is all a bit abstract, so let’s run through an 
example. 

Employee harry = new Employee("Harry Hacker", 35000, 10, 1, 1989);
Class cl = harry.getClass(); 
   // the class object representing Employee
Field f = cl.getDeclaredField("name"); 
   // the name field of the Employee class
Object v = f.get(harry); 
   // the value of the name field of the harry object
   // i.e., the String object "Harry Hacker"

Actually, there is a problem with this code. Because the name field is a private field, 
the get method will throw an IllegalAccessException. You can only use the get method to 
get the values of accessible fields. The security mechanism of Java lets you find out 
what fields any object has, but it won’t let you read the values of those fields unless 
you have access permission. 

The default behavior of the reflection mechanism is to respect Java access control. How-
ever, if a Java program is not controlled by a security manager that disallows it, you can 
override access control. To do this, invoke the setAccessible method on a Field, Method, or 
Constructor object. For example:

f.setAccessible(true); // now OK to call f.get(harry);

ch05.fm  Page 226  Wednesday, August 8, 2007  4:16 PM



Reflection 227

The setAccessible method is a method of the AccessibleObject class, the common superclass of 
the Field, Method, and Constructor classes. This feature is provided for debuggers, persistent 
storage, and similar mechanisms. We use it for a generic toString method later in this section.

There is another issue with the get method that we need to deal with. The name field is a 
String, and so it is not a problem to return the value as an Object. But suppose we want to 
look at the salary field. That is a double, and in Java, number types are not objects. To han-
dle this, you can either use the getDouble method of the Field class, or you can call get, 
whereby the reflection mechanism automatically wraps the field value into the appro-
priate wrapper class, in this case, Double. 

Of course, you can also set the values that you can get. The call f.set(obj, value) sets the 
field represented by f of the object obj to the new value. 

Listing 5–7 shows how to write a generic toString method that works for any class. It 
uses getDeclaredFields to obtain all data fields. It then uses the setAccessible convenience 
method to make all fields accessible. For each field, it obtains the name and the value. 
Listing 5–7 turns each value into a string by recursively invoking toString. 

class ObjectAnalyzer
{  
  public String toString(Object obj)
  {  
      Class cl = obj.getClass();
      . . .
      String r = cl.getName();
      // inspect the fields of this class and all superclasses
      do
      {
         r += "[";
         Field[] fields = cl.getDeclaredFields();
         AccessibleObject.setAccessible(fields, true);
         // get the names and values of all fields
         for (Field f : fields)
         {  
            if (!Modifier.isStatic(f.getModifiers()))
            {
               if (!r.endsWith("[")) r += ","
               r += f.getName() + "=";
               try
               {  
                  Object val = f.get(obj);
                  r += toString(val);
               } 
               catch (Exception e) { e.printStackTrace(); }
            }
         }
         r += "]";
         cl = cl.getSuperclass();
      }
      while (cl != null);
      return r;
   }
   . . .
}

ch05.fm  Page 227  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance228

The complete code in Listing 5–7 needs to address a couple of complexities. Cycles of 
references could cause an infinite recursion. Therefore, the ObjectAnalyzer keeps track of 
objects that were already visited. Also, to peek inside arrays, you need a different 
approach. You’ll learn about the details in the next section. 

You can use this toString method to peek inside any object. For example, the call
ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 1; i <= 5; i++) squares.add(i * i);
System.out.println(new ObjectAnalyzer().toString(squares));

yields the printout
java.util.ArrayList[elementData=class java.lang.Object[]{java.lang.Integer[value=1][][],
java.lang.Integer[value=4][][],java.lang.Integer[value=9][][],java.lang.Integer[value=16][][],
java.lang.Integer[value=25][][],null,null,null,null,null},size=5][modCount=5][][]

You can use this generic toString method to implement the toString methods of your own 
classes, like this: 

public String toString()
{  
   return new ObjectAnalyzer().toString(this);
}

This is a hassle-free method for supplying a toString method that you may find useful in 
your own programs.

Listing 5–7 ObjectAnalyzerTest.java

1. import java.lang.reflect.*;
2. import java.util.*;
3.

4. /**
5.  * This program uses reflection to spy on objects.
6.  * @version 1.11 2004-02-21
7.  * @author Cay Horstmann
8.  */
9. public class ObjectAnalyzerTest

10. {
11.    public static void main(String[] args)
12.    {
13.       ArrayList<Integer> squares = new ArrayList<Integer>();
14.       for (int i = 1; i <= 5; i++)
15.          squares.add(i * i);
16.       System.out.println(new ObjectAnalyzer().toString(squares));
17.    }
18. }
19.

20. class ObjectAnalyzer
21. {

ch05.fm  Page 228  Wednesday, August 8, 2007  4:16 PM



Reflection 229

22.    /**
23.     * Converts an object to a string representation that lists all fields.
24.     * @param obj an object
25.     * @return a string with the object's class name and all field names and
26.     * values
27.     */
28.    public String toString(Object obj)
29.    {
30.       if (obj == null) return "null";
31.       if (visited.contains(obj)) return "...";
32.       visited.add(obj);
33.       Class cl = obj.getClass();
34.       if (cl == String.class) return (String) obj;
35.       if (cl.isArray())
36.       {
37.          String r = cl.getComponentType() + "[]{";
38.          for (int i = 0; i < Array.getLength(obj); i++)
39.          {
40.             if (i > 0) r += ",";
41.             Object val = Array.get(obj, i);
42.             if (cl.getComponentType().isPrimitive()) r += val;
43.             else r += toString(val);
44.          }
45.          return r + "}";
46.       }
47.

48.       String r = cl.getName();
49.       // inspect the fields of this class and all superclasses
50.       do
51.       {
52.          r += "[";
53.          Field[] fields = cl.getDeclaredFields();
54.          AccessibleObject.setAccessible(fields, true);
55.          // get the names and values of all fields
56.          for (Field f : fields)
57.          {
58.             if (!Modifier.isStatic(f.getModifiers()))
59.             {
60.                if (!r.endsWith("[")) r += ",";
61.                r += f.getName() + "=";
62.                try
63.                {
64.                   Class t = f.getType();
65.                   Object val = f.get(obj);
66.                   if (t.isPrimitive()) r += val;
67.                   else r += toString(val);
68.                }
69.                catch (Exception e)

Listing 5–7 ObjectAnalyzerTest.java (continued)

ch05.fm  Page 229  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance230

• void setAccessible(boolean flag) 
sets the accessibility flag for this reflection object. A value of true indicates that 
Java language access checking is suppressed and that the private properties of the 
object can be queried and set.

• boolean isAccessible() 
gets the value of the accessibility flag for this reflection object. 

• static void setAccessible(AccessibleObject[] array, boolean flag) 
is a convenience method to set the accessibility flag for an array of objects.  

• Field getField(String name)
• Field[] getFields()

gets the public field with the given name, or an array of all fields.
• Field getDeclaredField(String name)
• Field[] getDeclaredFields()

gets the field that is declared in this class with the given name, or an array of all 
fields.  

• Object get(Object obj) 
gets the value of the field described by this Field object in the object obj.

• void set(Object obj, Object newValue)
sets the field described by this Field object in the object obj to a new value.

70.                {
71.                   e.printStackTrace();
72.                }
73.             }
74.          }
75.          r += "]";
76.          cl = cl.getSuperclass();
77.       }
78.       while (cl != null);
79.

80.       return r;
81.    }
82.

83.    private ArrayList<Object> visited = new ArrayList<Object>();
84. }

java.lang.reflect.AccessibleObject 1.2

java.lang.Class 1.1

java.lang.reflect.Field 1.1

Listing 5–7 ObjectAnalyzerTest.java (continued)

ch05.fm  Page 230  Wednesday, August 8, 2007  4:16 PM



Reflection 231

Using Reflection to Write Generic Array Code
The Array class in the java.lang.reflect package allows you to create arrays dynamically. 
For example, when you use this feature with the arraycopy method from Chapter 3, you 
can dynamically expand an existing array while preserving the current contents. 

The problem we want to solve is pretty typical. Suppose you have an array of some type 
that is full and you want to grow it. And suppose you are sick of writing the grow-and-
copy code by hand. You want to write a generic method to grow an array. 

Employee[] a = new Employee[100];
. . .
// array is full
a = (Employee[]) arrayGrow(a);

How can we write such a generic method? It helps that an Employee[] array can be con-
verted to an Object[] array. That sounds promising. Here is a first attempt to write a 
generic method. We simply grow the array by 10% + 10 elements (because the 10 per-
cent growth is not substantial enough for small arrays). 

static Object[] badArrayGrow(Object[] a) // not useful
{  
   int newLength = a.length * 11 / 10 + 10;
   Object[] newArray = new Object[newLength];
   System.arraycopy(a, 0, newArray, 0, a.length);
   return newArray;
}

However, there is a problem with actually using the resulting array. The type of array 
that this code returns is an array of objects (Object[]) because we created the array using 
the line of code

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]). Java would gen-
erate a ClassCastException at runtime. The point is, as we mentioned earlier, that a Java 
array remembers the type of its entries, that is, the element type used in the new expres-
sion that created it. It is legal to cast an Employee[] temporarily to an Object[] array and 
then cast it back, but an array that started its life as an Object[] array can never be cast 
into an Employee[] array. To write this kind of generic array code, we need to be able to 
make a new array of the same type as the original array. For this, we need the methods of 
the Array class in the java.lang.reflect package. The key is the static newInstance method of 
the Array class that constructs a new array. You must supply the type for the entries and 
the desired length as parameters to this method. 

Object newArray = Array.newInstance(componentType, newLength);

To actually carry this out, we need to get the length and component type of the new array.

We obtain the length by calling Array.getLength(a). The static getLength method of the Array 
class returns the length of any array. To get the component type of the new array: 

1. First, get the class object of a.
2. Confirm that it is indeed an array.
3. Use the getComponentType method of the Class class (which is defined only for class 

objects that represent arrays) to find the right type for the array. 

ch05.fm  Page 231  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance232

Why is getLength a method of Array but getComponentType a method of Class? We don’t know—
the distribution of the reflection methods seems a bit ad hoc at times.

Here’s the code:
static Object goodArrayGrow(Object a) // useful
{  
   Class cl = a.getClass();
   if (!cl.isArray()) return null;
   Class componentType = cl.getComponentType();
   int length = Array.getLength(a);
   int newLength = length * 11 / 10 + 10;
   Object newArray = Array.newInstance(componentType, newLength);
   System.arraycopy(a, 0, newArray, 0, length);
   return newArray;
}

Note that this arrayGrow method can be used to grow arrays of any type, not just arrays 
of objects.

int[] a = { 1, 2, 3, 4 };
a = (int[]) goodArrayGrow(a);

To make this possible, the parameter of goodArrayGrow is declared to be of type Object, not an 
array of objects (Object[]). The integer array type int[] can be converted to an Object, but 
not to an array of objects!

Listing 5–8 shows both array grow methods in action. Note that the cast of the return 
value of badArrayGrow will throw an exception.

NOTE: We present this program to illustrate how to work with arrays through reflection. If 
you just want to grow an array, use the copyOf method in the Arrays class. 

Employee[] a = new Employee[100];
. . .
// array is full
a = Arrays.copyOf(a, a.length * 11 / 10 + 10);

Listing 5–8 ArrayGrowTest.java

1. import java.lang.reflect.*;
2.

3. /**
4.  * This program demonstrates the use of reflection for manipulating arrays.
5.  * @version 1.01 2004-02-21
6.  * @author Cay Horstmann
7.  */
8. public class ArrayGrowTest
9. {

10.    public static void main(String[] args)
11.    {
12.       int[] a = { 1, 2, 3 };
13.       a = (int[]) goodArrayGrow(a);

ch05.fm  Page 232  Wednesday, August 8, 2007  4:16 PM



Reflection 233

14.       arrayPrint(a);
15.

16.       String[] b = { "Tom", "Dick", "Harry" };
17.       b = (String[]) goodArrayGrow(b);
18.       arrayPrint(b);
19.

20.       System.out.println("The following call will generate an exception.");
21.       b = (String[]) badArrayGrow(b);
22.    }
23.

24.    /**
25.     * This method attempts to grow an array by allocating a new array and copying all elements.
26.     * @param a the array to grow
27.     * @return a larger array that contains all elements of a. However, the returned array has 
28.     * type Object[], not the same type as a
29.     */
30.    static Object[] badArrayGrow(Object[] a)
31.    {
32.       int newLength = a.length * 11 / 10 + 10;
33.       Object[] newArray = new Object[newLength];
34.       System.arraycopy(a, 0, newArray, 0, a.length);
35.       return newArray;
36.    }
37.

38.    /**
39.     * This method grows an array by allocating a new array of the same type and
40.     * copying all elements.
41.     * @param a the array to grow. This can be an object array or a primitive
42.     * type array
43.     * @return a larger array that contains all elements of a.
44.     */
45.    static Object goodArrayGrow(Object a)
46.    {
47.       Class cl = a.getClass();
48.       if (!cl.isArray()) return null;
49.       Class componentType = cl.getComponentType();
50.       int length = Array.getLength(a);
51.       int newLength = length * 11 / 10 + 10;
52.

53.       Object newArray = Array.newInstance(componentType, newLength);
54.       System.arraycopy(a, 0, newArray, 0, length);
55.       return newArray;
56.    }
57.

58.    /**
59.     * A convenience method to print all elements in an array
60.     * @param a the array to print. It can be an object array or a primitive type array
61.     */
62.    static void arrayPrint(Object a)

Listing 5–8 ArrayGrowTest.java (continued)

ch05.fm  Page 233  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance234

• static Object get(Object array, int index)
• static xxx getXxx(Object array, int index)

(xxx is one of the primitive types boolean, byte, char, double, float, int, long, short.) These 
methods return the value of the given array that is stored at the given index.

• static void set(Object array, int index, Object newValue)
• static setXxx(Object array, int index, xxx newValue)

(xxx is one of the primitive types boolean, byte, char, double, float, int, long, short.) These 
methods store a new value into the given array at the given index.

• static int getLength(Object array)
returns the length of the given array.

• static Object newInstance(Class componentType, int length)
• static Object newInstance(Class componentType, int[] lengths)

returns a new array of the given component type with the given dimensions.

Method Pointers!
On the surface, Java does not have method pointers—ways of giving the location of a 
method to another method so that the second method can invoke it later. In fact, the 
designers of Java have said that method pointers are dangerous and error prone and 
that Java interfaces (discussed in the next chapter) are a superior solution. However, as of 
Java 1.1, it turns out that Java does have method pointers, as a (perhaps accidental) by-
product of the reflection package. 

NOTE: Among the nonstandard language extensions that Microsoft added to its Java deriva-
tive J++ (and its successor, C#) is another method pointer type, called a delegate, that is dif-
ferent from the Method class that we discuss in this section. However, inner classes (which 
we will introduce in the next chapter) are a more useful construct than delegates.

To see method pointers at work, recall that you can inspect a field of an object with the 
get method of the Field class. Similarly, the Method class has an invoke method that lets you 
call the method that is wrapped in the current Method object. The signature for the invoke 
method is

63.    {
64.       Class cl = a.getClass();
65.       if (!cl.isArray()) return;
66.       Class componentType = cl.getComponentType();
67.       int length = Array.getLength(a);
68.       System.out.print(componentType.getName() + "[" + length + "] = { ");
69.       for (int i = 0; i < Array.getLength(a); i++)
70.          System.out.print(Array.get(a, i) + " ");
71.       System.out.println("}");
72.    }
73. }

java.lang.reflect.Array 1.1

Listing 5–8 ArrayGrowTest.java (continued)

ch05.fm  Page 234  Wednesday, August 8, 2007  4:16 PM



Reflection 235

Object invoke(Object obj, Object... args)

The first parameter is the implicit parameter, and the remaining objects provide the 
explicit parameters. (Before Java SE 5.0, you had to pass an array of objects or null if the 
method had no explicit parameters.) 

For a static method, the first parameter is ignored—you can set it to null. 

For example, if m1 represents the getName method of the Employee class, the following code 
shows how you can call it:

String n = (String) m1.invoke(harry);

As with the get and set methods of the Field type, there’s a problem if the parameter or 
return type is not a class but a primitive type. You either rely on autoboxing or, before 
Java SE 5.0, wrap primitive types into their corresponding wrappers. 

Conversely, if the return type is a primitive type, the invoke method will return the wrap-
per type instead. For example, suppose that m2 represents the getSalary method of the 
Employee class. Then, the returned object is actually a Double, and you must cast it accord-
ingly. As of Java SE 5.0, automatic unboxing takes care of the rest.

double s = (Double) m2.invoke(harry);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and search 
through the returned array of Method objects until you find the method that you want. Or, 
you can call the getMethod method of the Class class. This is similar to the getField method 
that takes a string with the field name and returns a Field object. However, there may be 
several methods with the same name, so you need to be careful that you get the right 
one. For that reason, you must also supply the parameter types of the desired method. 
The signature of getMethod is

Method getMethod(String name, Class... parameterTypes)

For example, here is how you can get method pointers to the getName and raiseSalary meth-
ods of the Employee class:

Method m1 = Employee.class.getMethod("getName");
Method m2 = Employee.class.getMethod("raiseSalary", double.class);

(Before Java SE 5.0, you had to package the Class objects into an array or to supply null if 
there were no parameters.)

Now that you have seen the rules for using Method objects, let’s put them to work. Listing 
5–9 is a program that prints a table of values for a mathematical function such as 
Math.sqrt or Math.sin. The printout looks like this:

public static native double java.lang.Math.sqrt(double)
      1.0000 |      1.0000
      2.0000 |      1.4142
      3.0000 |      1.7321
      4.0000 |      2.0000
      5.0000 |      2.2361
      6.0000 |      2.4495
      7.0000 |      2.6458
      8.0000 |      2.8284
      9.0000 |      3.0000
      10.0000 |      3.1623

ch05.fm  Page 235  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance236

The code for printing a table is, of course, independent of the actual function that is 
being tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{  
   double y = (Double) f.invoke(null, x); 
   System.out.printf("%10.4f | %10.4f%n", x, y);
}

Here, f is an object of type Method. The first parameter of invoke is null because we are call-
ing a static method.

To tabulate the Math.sqrt function, we set f to 
Math.class.getMethod("sqrt", double.class)

That is the method of the Math class that has the name sqrt and a single parameter of type 
double. 

Listing 5–9 shows the complete code of the generic tabulator and a couple of test runs.

Listing 5–9 MethodPointerTest.java

1. import java.lang.reflect.*;
2.

3. /**
4.  * This program shows how to invoke methods through reflection.
5.  * @version 1.1 2004-02-21
6.  * @author Cay Horstmann
7.  */
8. public class MethodPointerTest
9. {

10.    public static void main(String[] args) throws Exception
11.    {
12.       // get method pointers to the square and sqrt methods
13.       Method square = MethodPointerTest.class.getMethod("square", double.class);
14.       Method sqrt = Math.class.getMethod("sqrt", double.class);
15.

16.       // print tables of x- and y-values
17.

18.       printTable(1, 10, 10, square);
19.       printTable(1, 10, 10, sqrt);
20.    }
21.

22.    /**
23.     * Returns the square of a number
24.     * @param x a number
25.     * @return x squared
26.     */
27.    public static double square(double x)
28.    {
29.       return x * x;
30.    }

ch05.fm  Page 236  Wednesday, August 8, 2007  4:16 PM



Reflection 237

As this example shows clearly, you can do anything with Method objects that you can do 
with function pointers in C (or delegates in C#). Just as in C, this style of programming 
is usually quite inconvenient and always error prone. What happens if you invoke a 
method with the wrong parameters? The invoke method throws an exception. 

Also, the parameters and return values of invoke are necessarily of type Object. That 
means you must cast back and forth a lot. As a result, the compiler is deprived of the 
chance to check your code. Therefore, errors surface only during testing, when they are 
more tedious to find and fix. Moreover, code that uses reflection to get at method point-
ers is significantly slower than code that simply calls methods directly. 

For that reason, we suggest that you use Method objects in your own programs only when 
absolutely necessary. Using interfaces and inner classes (the subject of the next chapter) 
is almost always a better idea. In particular, we echo the developers of Java and suggest 
not using Method objects for callback functions. Using interfaces for the callbacks (see the 
next chapter as well) leads to code that runs faster and is a lot more maintainable.

  

31.

32.    /**
33.     * Prints a table with x- and y-values for a method
34.     * @param from the lower bound for the x-values
35.     * @param to the upper bound for the x-values
36.     * @param n the number of rows in the table
37.     * @param f a method with a double parameter and double return value
38.     */
39.    public static void printTable(double from, double to, int n, Method f)
40.    {
41.       // print out the method as table header
42.       System.out.println(f);
43.

44.       double dx = (to - from) / (n - 1);
45.

46.       for (double x = from; x <= to; x += dx)
47.       {
48.          try
49.          {
50.             double y = (Double) f.invoke(null, x);
51.             System.out.printf("%10.4f | %10.4f%n", x, y);
52.          }
53.          catch (Exception e)
54.          {
55.             e.printStackTrace();
56.          }
57.       }
58.    }
59. }

Listing 5–9 MethodPointerTest.java (continued)

ch05.fm  Page 237  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance238

• public Object invoke(Object implicitParameter, Object[] explicitParameters)
invokes the method described by this object, passing the given parameters and 
returning the value that the method returns. For static methods, pass null as the 
implicit parameter. Pass primitive type values by using wrappers. Primitive type 
return values must be unwrapped.

Design Hints for Inheritance
We want to end this chapter with some hints that we have found useful when using 
inheritance.

1. Place common operations and fields in the superclass. 
This is why we put the name field into the Person class rather than replicating it in the 
Employee and Student classes. 

2. Don’t use protected fields.
Some programmers think it is a good idea to define most instance fields as protected, 
“just in case,” so that subclasses can access these fields if they need to. However, the 
protected mechanism doesn’t give much protection, for two reasons. First, the set of 
subclasses is unbounded—anyone can form a subclass of your classes and then 
write code that directly accesses protected instance fields, thereby breaking encapsu-
lation. And second, in the Java programming language, all classes in the same pack-
age have access to protected fields, whether or not they are subclasses. 
However, protected methods can be useful to indicate methods that are not ready 
for general use and should be redefined in subclasses. The clone method is a good 
example. 

3. Use inheritance to model the “is–a” relationship. 
Inheritance is a handy code-saver, and sometimes people overuse it. For example, 
suppose we need a Contractor class. Contractors have names and hire dates, but they 
do not have salaries. Instead, they are paid by the hour, and they do not stay around 
long enough to get a raise. There is the temptation to form a subclass Contractor from 
Employee and add an hourlyWage field.

class Contractor extends Employee
{  . . .
   private double hourlyWage;
}

This is not a good idea, however, because now each contractor object has both a sal-
ary and hourly wage field. It will cause you no end of grief when you implement 
methods for printing paychecks or tax forms. You will end up writing more code 
than you would have by not inheriting in the first place.
The contractor/employee relationship fails the “is–a” test. A contractor is not a spe-
cial case of an employee. 

4. Don’t use inheritance unless all inherited methods make sense. 
Suppose we want to write a Holiday class. Surely every holiday is a day, and days can 
be expressed as instances of the GregorianCalendar class, so we can use inheritance.

class Holiday extends GregorianCalendar { . . . }

java.lang.reflect.Method 1.1

ch05.fm  Page 238  Wednesday, August 8, 2007  4:16 PM



Design Hints for Inheritance 239

Unfortunately, the set of holidays is not closed under the inherited operations. One of the 
public methods of GregorianCalendar is add. And add can turn holidays into nonholidays:

Holiday christmas;
christmas.add(Calendar.DAY_OF_MONTH, 12);

Therefore, inheritance is not appropriate in this example.
5. Don’t change the expected behavior when you override a method.

The substitution principle applies not just to syntax but, more important, to behav-
ior. When you override a method, you should not unreasonably change its behavior. 
The compiler can’t help you—it cannot check whether your redefinitions make 
sense. For example, you can “fix” the issue of the add method in the Holiday class by 
redefining add, perhaps to do nothing, or to throw an exception, or to move on to the 
next holiday. 
However, such a fix violates the substitution principle. The sequence of statements

int d1 = x.get(Calendar.DAY_OF_MONTH);
x.add(Calendar.DAY_OF_MONTH, 1);
int d2 = x.get(Calendar.DAY_OF_MONTH);
System.out.println(d2 - d1);

should have the expected behavior, no matter whether x is of type GregorianCalendar or 
Holiday. 
Of course, therein lies the rub. Reasonable and unreasonable people can argue 
at length what the expected behavior is. For example, some authors argue that 
the substitution principle requires Manager.equals to ignore the bonus field because 
Employee.equals ignores it. These discussions are always pointless if they occur in a 
vacuum. Ultimately, what matters is that you do not circumvent the intent of the 
original design when you override methods in subclasses. 

6. Use polymorphism, not type information. 
Whenever you find code of the form

if (x is of type 1)
   action1(x);
else if (x is of type 2)
   action2(x);

think polymorphism. 
Do action1 and action2 represent a common concept? If so, make the concept a method 
of a common superclass or interface of both types. Then, you can simply call

x.action();

and have the dynamic dispatch mechanism inherent in polymorphism launch the 
correct action.
Code using polymorphic methods or interface implementations is much easier to 
maintain and extend than code that uses multiple type tests.

7. Don’t overuse reflection. 
The reflection mechanism lets you write programs with amazing generality, by 
detecting fields and methods at runtime. This capability can be extremely useful for 
systems programming, but it is usually not appropriate in applications. Reflection is 
fragile—the compiler cannot help you find programming errors. Any errors are 
found at runtime and result in exceptions.

ch05.fm  Page 239  Wednesday, August 8, 2007  4:16 PM



Chapter  5 ■ Inheritance240

You have now seen how Java supports the fundamentals of object-oriented program-
ming: classes, inheritance, and polymorphism. In the next chapter, we will tackle two 
advanced topics that are very important for using Java effectively: interfaces and inner 
classes.

ch05.fm  Page 240  Wednesday, August 8, 2007  4:16 PM



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


