Java performance
Reducing time and space consumption

Peter Sestoft (sestoft@dina.kvl.dk)

Royal Veterinary and Agricultural University, Copenhagen, Denmark
and
IT University of Copenhagen, Denmark

Version 1.0 of 2003-03-31

Abstract: We give some advice on improving the execution of Java programs by reducing their time and
space (memory) consumption. There are no magic tricks, only advice on common problems to avoid.

1 Reducing time consumption

1.1 Standard code optimizations

Do not expect the Java compiler (such as j avac orj i kes) to perform many clever optimizations. Due to
Java’s rather strict sequencing and thread semantics there is little the compiler can safely do to improve a
Java program, in contrast to compilers for less strictly defined languages such as C or Fortran. But you can
improve your Java source code yourself.

e Move loop-invariant computations out of loops. For example, avoid repeatedly computing the loop
bound in a f or -loop, like this:

for (int i=0; i<size()*2; i++) { ... }
Instead, compute the loop bound only once and bind it to a local variable, like this:
for (int i=0, stop=size()*2; i<stop; i++) { ... }
e Do not compute the same subexpression twice:

if (birds.elenentAt(i).isGower()) ...
if (birds.elenmentAt(i).isPullet()) ...

Instead, compute the subexpression once, bind the result to a variable, and reuse it:

Bird bird = birds. elementAt(i);
if (bird.isGower()) ...
if (bird.isPullet())

Every array access requires an index check, so it is worth-while to reduce the number of array ac-
cesses. Moreover, usually the Java compiler cannot automatically optimize indexing into multidi-
mensional arrays. For instance, every iteration of the inner (j) loop below recomputes the indexing
rowsuni i] aswell as the indexing arr[i] into the first dimension of arr :

doubl e[] rowsum = new doubl e[n];
for (int i=0; i<n; i++)
for (int j=0; j<m j+4)
rowsunfi] +=arr[i][j];

Instead, compute these indexings only once for each iteration of the outer loop:

doubl e[] rowsum = new doubl e[n];
for (int i=0; i<n; i++) {
doubl e[] arri = arr[i];
doubl e sum = 0. 0;
for (int j=0; j<m j++)
sum+= arri[j];
rowsunfi] = sum

}

Note that the initializationarri = arr[i] does not copy row i of the array; it simply assigns an
array reference (four bytes) toarri .

Declare constant fields as fi nal stati c so that the compiler can inline them and precompute
constant expressions.

Declare constant variables as f i nal so that the compiler can inline them and precompute constant
expressions.

Replacealongi f - el se-i f chain by aswi t ch if possible; this is much faster.

Ifalongif-else-if chain cannot be replaced by a swi t ch (because it tests a St ri ng, for
instance), and if it is executed many times, it is often worthwhile to replace it by afi nal static
HashMap or similar.

Nothing (except obscurity) is achieved by using ‘clever’ C idioms such as performing the entire com-
putation of a while-loop in the loop condition:

int year = 0;

doubl e sum = 200. 0;

doubl e[] bal ance = new doubl e[100] ;

whil e ((bal ance[year++] = sum *= 1.05) < 1000.0);

1.2

1.3

String manipulation

e Do not build strings by repeated string concatenation; this takes time quadratic in the number of

iterations and most likely causes heap fragmentation as well (see Section 2):

String s ="";
for (int i=0; i<n; i++) {
s += "#" + i;

}

Instead, use a St r i ngBuf f er objectand its append method. This takes time linear in the number
of iterations, and may be several orders of magnitude faster:

StringBuffer sbuf = new StringBuffer();
for (int i=0; i<n; i++) {
sbuf . append("#") . append(i);

}
String s = sbuf.toString();

On the other hand, an expression containing a sequence of string concatenations automatically gets
compiled to use St ri ngBuf f er. append(...), so thisis OK:

String s = "(" + x + ", "4y + ")

Do not process strings by repeatedly searching or modifying a Stri ng or St ri ngBuf f er. Re-
peated use of methods substri ng and i ndex from Stri ng may be legitimate but should be
looked upon with suspicion.

Arrays and tables of constants

Declaring an initialized array variable inside a method causes a new array to be allocated at every
execution of the method:

public static int nmonthdays(int y, int n {
int[] nonthlengths =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
return m== 2 & | eapyear(y) ? 29 : nonthl engths[m1];
}

Instead, an initialized array variable or similar table should be declared and allocated once and for all
asafinal stati c field in the enclosing class:

private final static int[] nonthlengths =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

public static int monthdays(int y, int nm ({
return m== 2 && |l eapyear(y) ? 29 : nonthlengths[m1];

}

e More complicated initializations can use a static initializer block static { ... } toprecompute
the contents of an array like this:

private final static double[] |ogFac = new doubl e[100];
static {

doubl e | ogRes = 0. 0;

for (int i=1, stop=logFac.length; i<stop; i++)

| ogFac[i] = |l ogRes += Math.log(i);
}
public static double [ogBinom(int n, int k) {
return |l ogFac[n] - logFac[n-k] - |ogFac[K];
}

The static initializer is executed when the enclosing class is loaded. In this example it precomputes
a table | ogFac of logarithms of the factorial functionn! = 1-2---(n — 1) - n, so that method
| ogBi non{ n, k) can efficiently compute the logarithm of a binomial coefficient. For instance, the
number of ways to choose 7 cards out of 52 is Mat h. exp(| ogBi non(52, 7)) =133 784 560.

1.4 Fields and variables

e Access to local variables and parameters in a method is much faster than access to static or instance
fields. For a field accessed in a loop, it may be worthwhile to copy the field’s value to a local variable
before the loop, and refer only to the local variable inside the loop.

e There is no runtime overhead for declaring variables inside nested blocks or loops in a method. It
usually improves clarity to declare variables as locally as possible (with as small a scope as possible),
and this may even help the compiler improve your program.

1.5 Methods

e Declaringamethod as pri vat e, fi nal ,orstati c makes calls to it faster. Of course, you should
only do this when it makes sense in the application.

e For instance, often an accessor method such as get Si ze can reasonably be made f i nal ina class,
when there would be no point in overriding it in a subclass:

class Foo {
private int size;

public final int getSize() {
return size;

}
}

Thiscan make acall 0. get Si ze() justas fastas adirectaccesstoapubl i ¢ field 0. si ze. Hence
there need not be any performance penalty for proper encapsulation (making fields pri vat e).

o Virtual method calls (to instance methods) are very fast and should be used instead of i nst anceof
tests and casts.

1.6

e In modern Java Virtual Machine implementations, such as Sun’s HotSpot JVM and IBM’s JVM, in-

terface method calls are just as fast as virtual method calls to instance methods. Hence there is no
performance penalty for maintenance-friendly programming, using interfaces instead of their imple-
menting classes for method parameters and so on.

Sorting and searching

Never use selection sort, bubblesort or insertion sort, except on very short arrays or lists. Use heapsort
(for arrays) or mergesort (for doubly linked lists) or quicksort (for arrays; but you must make a good
choice of pivot element).

Even better, use the built-in sorting routines, which are guaranteed to be fast: O(nlog(n)) time for n
elements, and sometimes faster if the data are nearly sorted already:

For arrays, usej ava. uti |l . Arrays. sort, which is an improved quicksort; it uses no additional
memory, but is not stable (does not preserve the order of equal elements). There are overloaded
versions for all primitive types and for objects.

For ArrayLi st and Li nkedLi st , which implement interface j ava. uti |l . Li st, use
java. util. Coll ections. sort, which is stable (preserves the order of equal elements) and
smooth (near-linear time for nearly sorted lists) but uses additional memory.

Avoid linear search in arrays and lists, except when you know that they are very short. If your program
needs to look up something frequently, use one of these approaches:

— Binary search on sorted data:
For arrays, use j ava. uti |l . Arrays. bi nar ySear ch. The array must be sorted, as if by
java.util.Arrays. sort. There are overloaded versions for all primitive types and for
objects.
For ArraylLi st, use java. util. Col |l ections. bi narySearch. The ArraylLi st
must be sorted, as if by j ava. util. Col | ecti ons. sort.
If you need also to insert or remove elements from the set or map, use one of the approaches
below instead.

— Hashing: Use HashSet or HashMap from package j ava. uti | if your key objects have a
good hash functionhashCode. This s the case for St r i ng and the wrapper classes | nt eger,
Doubl e, ..., for the primitive types.

— Binary search trees: Use Tr eeSet or Tr eeMap from package j ava. uti | if your key objects
have a good comparison function conpar eTo. This is the case for St r i ng and the wrapper
classes | nt eger, Doubl e, ..., for the primitive types.

1.7 Collection classes

Java’s collection classes in package j ava. uti | . * are well-designed and well-implemented. Using these
classes can improve the speed of your program considerably, but you must beware of a few pitfalls.

1.8

If you use HashSet or HashMap, make sure that your key objects have a good (uniform) and fast
hashCode method, and that it agrees with the equal s method.

If youuse Tr eeSet or Tr eeMap, make sure that your key objects have a good and fast conpar eTo
method; or provide a Conpar at or object explicitly when creating the Tr eeSet or Tr eeMap.

Beware that indexing into a Li nkedLi st is not a constant-time operation. Hence this takes time
guadratic in the size of the list | st ifitisaLi nkedLi st, and should not be used:

int size = |st.size();
for (int i=0; i<size; i++)
Systemout.println(lst.get(i));

Instead, use an | t er at or . Then the traversal takes linear time;

final Iterator iter = Ist.iterator();
while (iter.hasNext())
Systemout.println(iter.next());

Repeated calls to r enove(Cbj ect 0) on Li nkedLi st or ArrayLi st should be avoided,; it
performs a linear search.

Repeated calls to add(int i, Object o) orrenpve(int i) onLinkedLi st should be
avoided, except when i is at the end or beginning of the Li nkedLi st ; it performs a linear search
for the i "th element.

Repeated calls to add(int i, Cbject o) orrenove(int i) on ArrayLi st should be
avoided, except when i is at the end of the Arr ayLi st ; it needs to move all elements after i .

Preferably avoid the legacy collection classes Vect or , Hasht abl e, and St ack in which all meth-
ods are synchr oni zed, and every method call has a runtime overhead for obtain a lock on the col-
lection. (If you do need a synchronized collection, create one using synchr oni zedCol | ecti on
and similar methods from class j ava. uti |l . Col | ecti on).

The collection classes can store only reference type data, so a primitive type value (i nt, doubl e,
...) must be wrapped as | nt eger, Doubl e, ... object before it can be stored or used as a key in
a collection. This takes time and space and may be unacceptable in memory-constrained embedded
applications. Note that strings and arrays are reference type data and need not be wrapped.

Input and output

Using buffered input and output (Buf f er edReader, Buf f eredWi t er, Buf f er edl nput -
St ream Buf f er edQut put St r eamfrom package j ava. i 0) can speed up input/output by a
factor of 20.

1.9

1.10

111

Using the compressed streams Zi pl nput St r eamand Zi pQut put St r eamfrom package
java. util.zip may speed up the input and output of verbose data formats such as XML. Com-
pression and decompression takes CPU time, but the compressed data may be so much smaller than
the uncompressed data that it saves time anyway, because less data must be read from disk or network.
In any case, it saves space on disk.

Exceptions

The creation new Excepti on(...) of anexception object builds a stack trace, which is costly in
time and space, and especially so in deeply recursive method calls. The creation of an object of class
Except i on or a subclass of Except i on may be between 30 and 100 times slower than creation
of an ordinary object. On the other hand, using at r y- cat ch block or throwing an exception is fast.

Thus you should create an exception object only if you actually intend to throw it. Also, do not use
exceptions to implement control flow (end of data, termination of loops); use exceptions only to signal
errors and exceptional circumstances (file not found, illegal input format, and so on). If your program
does need to throw exceptions very frequently, reuse a single pre-created exception object.

Space and object creation

If your program uses too much space (memory), it will also use too much time: Object allocation and
garbage collection take time, and using too much memory leads to poor cache utilization and possibly
even the need to use virtual memory (disk instead of RAM). Moreover, depending on the JVM’s
garbage collector, using much memory may lead to long collection pauses, which can be irritating in
interactive systems and catastrophic in real-time applications.

Obiject creation takes time (allocation, initialization, garbage collection), so do not unnecessarily cre-
ate objects. However, do not introduce object pools (in factory classes) unless absolutely necessary.
Most likely, you will just add code and maintenance problems, and your object pool may introduce
subtle errors by recycling an object in the pool although it is still being referred to and modified from
other parts of the program.

Be careful that you do not create objects that are never used. For instance, it is a common mistake to
build an error message string that is never actually used, because the exception in which the message
is embedded gets caught by at r y- cat ch that ignores the message.

GUI components (created by AWT or Swing) may claim much space and may not be deallocated
aggressively enough. Do not create GUI components that you do not necessarily need.
Reflection

A reflective method call, reflective field access, and reflective object creation (using package
j ava. | ang. r ef | ect) are far slower than ordinary method call, field access, and object creation.

Access checks may further slow down such reflective calls; some of this cost may be avoided by
declaring the class of the called method to be publ i c. This has been seen to speed up reflective calls
by a factor of 8.

1.12 Compiler and execution platform

e As mentioned above, a Java compiler cannot perform many of the optimizations that a C or Fortran
compiler can. On the other hand, a just-in-time (JIT) compiler in the Java Virtual Machine (JVM) that
executes the bytecode can perform many optimizations that a traditional compiler cannot perform.

e Forexample, atest (x i nstanceof C) conditionally followed by a cast (C) x may be optimized
by a JVM so that at most one test is performed. Hence it is not worth the trouble to rewrite your
program to avoid either the i nst anceof test or the cast.

e There are many different Java Virtual Machines (JVMs) with very different characteristics:

— Sun’s HotSpot Client JVM performs some optimizations, but generally prioritizes fast startup
over aggressive optimizations.

— Sun’s HotSpot Server JVM (option - ser ver, not available for Microsoft Windows) performs
very aggressive optimizations at the expense of a longer startup delay.

— IBM’s JVM performs very aggressive optimizations, comparable to Sun’s HotSpot Server JVM.

— The JVMs in implementations of J2ME (mobile phones) and PersonalJava (some PDAS) do not
include JIT compilation and probably perform no optimizations at all. Hence in this case it is
even more important that you do as many optimizations as possible in the Java code yourself.

— 1 do not know the optimization characteristics of Oracle’s JVM, the Kaffe JVM, Intel’s Open
Runtime Platform, IBM’s Jikes RVM, ...

You can see what JVM you are using by typing j ava -ver si on atacommand-line prompt.

1.13 Profiling

If a Java program appears to be too slow, try to profile some runs of the program. Assume that the example
that performs repeated string concatenation in Section 1.2 is in file MyExanpl e. j ava. Then one can
compile and profile it using Sun’s HotSpot JVM as follows:

javac -g MyExanpl e.java
java -prof MyExanpl e 10000

The result of the profiling is shown on standard output (the console); here is part of it:

Conpi l ed + native Met hod
59. 5% 79 + 128 java. |l ang. Stri ngBuf f er. expandCapacity

0.3% 1 + 0 J ava. |l ang. Stri ng. get Chars
G obal sumary of 40.99 seconds:
100. 0% 1682 Recei ved ticks
76.9% 1293 Recei ved CC ticks

0. 8% 14 Q her VM operations

It says that 59 per cent of the computation time was spent in St ri ngBuf f er, so the culprit is + and +=
on St ri ng, which is compiled into use of St r i ngBuf f er . Next it says that 77 per cent of the total time
was spent in garbage collection. This indicates a serious problem with allocation of too much data (that
soon becomes garbage).

2 Reducing space consumption

Ina JVM, data are allocated on a call stack (for method parameters and local variables) and on a heap
(for objects, including strings and arrays). There is a separate stack for every thread of execution,
and a joint heap for all the threads. The stack of a thread grows and shrinks with the depth of method
calls. Object, strings and arrays are allocated in the heap by the executing threads; they are deallocated
(garbage-collected) by an autonomous garbage collector.

Three important aspects of space usage are allocation rate, retention and fragmentation:

— Allocation rate is the rate at which your program creates new objects, strings, and arrays. A
high allocation rate costs time (for allocation, object initialization, and deallocation) and space
(because the garbage collector may set aside more memory for efficiency reasons) even when
the allocated data has a very short lifetime.

— Retention is the amount of live heap data, that is, the heap data transitively reachable from the
call stacks at any point in time. A high retention costs space (obviously) and time (the garbage
collector must perform more administrative work both for allocation and deallocation).

— Fragmentation is the creation of fragments: small unusable chunks of memory. Allocation of
increasingly larger objects, such as increasingly longer strings or arrays, may cause memory
fragmentation, leaving many small memory fragments that cannot be used. Such fragmentation
costs time (to search for a sufficiently large hole at allocation) and space (because the fragments
go unused). Most garbage collectors take care to avoid fragmentation, but that itself may cost
time and space, and may not be done in embedded JVM implementations.

A space leak is unwanted or unexpected retention, which usually causes memory consumption to grow
linearly with execution time. A space leak is caused by objects, strings or arrays being reachable from
live variables although those objects will actually never be used again. For instance, this may happen
if you cache computation results in a HashMap: the results remain reachable from the HashMap
even if you will never need them again. This can be avoided by using a Weak HashMap instead.

A space leak may be caused by a deeply tail-recursive method that should have been written as a
loop. A Java compiler does not automatically optimize a tail-recursive method to a loop, so all data
reachable from the execution stack will be retained until the method returns.

The kind of garbage collector (generational, mark-sweep, reference counting, two-space, incremental,
compacting, ...) strongly influences the time and space effects of allocation rate, retention, and
fragmentation. However, a functioning garbage collector will never in itself cause a space leak. Space
leaks are caused by mistakes in your program.

Make sure that constant fields shared among all objects of a class are st at i c, so that only one field
is ever created. When all Car objects have the same icon, do not do this:

public class Car {
| magel con synbol = new | magel con("porsche.gif");

Instead, do this:

public class Car {
final static |Imagelcon synmbol = new | magel con("porsche.gif");

e When you are not sure that an object will actually be needed, then allocate it lazily: postpone its
allocation until needed, but allocate it only once. This will unconditionally create a But t on for every
Car object, although the But t on may never be requested by a call to the get But t on method:

public class Car {
private Button button = new JButton();

public Car() {
initialize button ..

}

public final JButton getButton() {
return button;

}
}

Instead, you can allocate the But t on lazily in get But t on:

public class Car {
private Button button = null

public Car() { ... }

public final JButton getButton() {
if (button == null) { // button not yet created, so create it
button = new JButton();
initialize button ..
}

return button;

}
}

This saves space (for the But t on object) as well as time (for allocating and initializing it). On the
other hand, if the button is known to be needed, it is more efficient to allocate and initialize it early
and avoid the test in get But t on.

3 Other resources
The book J. Noble and C. Weir: Small Memory Software, Addison-Wesley 2001, presents a number of

design patterns for systems with limited memory. Not all of the advice is applicable to Java (for instance,
because it requires pointer arithmetics), but most of it is useful albeit somewhat marred by pattern-speak.

10

