
Chapter 13

Introduction to Data Types and Structures
Abstract Data Types and the Java Collections Framework

Outline

Abstract data types

Implementing an ADT

Java Collections Framework (JCF)

Collection<E> and Set<E> interfaces

Set implementations and examples

List<E> and ListIterator<E> interfaces

List implementations and examples

Map data type

Map<K,V> interface

Map implementations and examples

Recursion examples using maps

Collections utility class

Sorting examples

723

724 Introduction to Data Types and Structures

13.1 Introduction

In this chapter we consider abstract data types and their implementations. Simple examples include
a fixed size bag ADT, a dynamic size bag ADT and a dynamic size array ADT. In each case
simple versions of these ADTs are designed using Java interfaces and implemented using array
data structures.

Next we give an overview of some of the important ADTs such as sets, lists and maps that are
part of the Java Collections Framework (JCF). Here we concentrate on using the ADTs and not on
how they are implemented, which is left for a course on data structures.

13.2 Abstract data types

A data type is a set of values (the data) and a set of operations defined on the data. Animplemen-
tation of a data type is an expression of the data and operations in terms of a specific programming
language such as Java or C++. Anabstract data type(ADT) is a specification of a data type in a
formal sense without regard to any particular implementation or programming language. Finally,
a realization of an ADT involves two parts

• the interface, specification, or documentation of the ADT: what is the purpose of each oper-
ation and what is the syntax for using it.

• the implementation of the ADT: how is each operation expressed using thedata structures
and statements of a programming language.

The ADT itself is concerned only with the specification or interface details, not the implementation
details. This separation is important. In order to use an ADTthe client or user needs to know only
what the operations do, not how they do it. Ideally this meansthat the implementation can be
changed, to be more efficient for example, and the user does not need to modify programs that use
the ADT since the interface has not changed.

With object-oriented programming languages such as Java and C++ there is a natural corre-
spondence between a data type and a class. The class defines the set of operations that are permis-
sible: they are the public methods of the class. The data is represented by the instance data fields.
Each object (instance of the class) encapsulates a particular state: set of values of the data fields.

In Java the separation of specification and implementation details can easily be obtained using
the Javadoc program which produces the specification (public interface) for each class. The user
can simply read this documenation to find out how to use the class. It is also possible to use
a Java interface for the specification of an ADT since this interface contains no implementation
details, only method prototypes: any class that implementsthe interface provides a particular
implementation of the ADT.

13.2.1 Classification of ADT operations

The various operations (methods) that are defined by an ADT can be grouped into several cate-
gories, depending on how they affect the data of an object:

13.2 Abstract data types 725

Create operation

It is always necessary to create an object before it can be used. In Java this is done using the class
constructors.

Copy operation

The availability of this operation depends on the particular ADT. In many cases it is not needed or
desired. If present, the meaning (semantics) of the operation also depends on the particular ADT.
In some cases copy means make a true copy of the object and all its data fields, and all their data
fields, and so on, and in other cases it may mean to simply make anew reference to an object.
In other words, the reference to the object is being copied, not the object itself. In this case there
is only one object and it is shared among all the references toit. This makes sense for objects
that occupy large amounts of memory and in many other cases aswell. Both types of operation
can even be included in the same ADT. In some languages the copy operation can have explicit
and implicit versions. In Java the implicit operation, defined by assignment or method argument
passing, always copies references but it is possible to makeother kinds of explicit copies using a
copy constructor or by overriding theclone method inherited from theObject class.

Destroy operation

Since objects take up space in memory it is necessary to reclaim this space when an object is no
longer needed. This operation is often called thedestroy operation. In Java there is no explicit
destroy operation since the built-in garbage collector takes on this responsibility: when there are
no more references to an object it is eventually garbage-collected.

Modification operations

Every object of an ADT encapsulates data and for some ADTs we need operations that can modify
this data. These operations act on objects and change one or more of their data fields. Sometimes
they are calledmutator operations. If an ADT has no mutator operations then the state cannot
be changed after an object has been created and the ADT is saidto beimmutable, otherwise it is
mutable.

Inquiry operations

An inquiry operation inspects or retrieves the value of a data field without modification. It is
possible to completely hide all or part of the internal stateof an object simply by not providing the
corresponding inquiry operations.

13.2.2 Pre- and post-conditions

To document the operations of an ADT pre-conditions and post-conditions can be used.

726 Introduction to Data Types and Structures

Pre-conditions They are the conditions that must be true before an operationis exe-
cuted in order that the operation is guaranteed to complete successfully. These condi-
tions can be expressed in terms of the state of the object before the operation is applied
to the object. A pre-condition may or may not be needed.

Post-conditions They are the conditions that will be true after an operation completes
successfully. These conditions can be expressed in terms ofthe state of the object after
the operation has been applied to the object.

Together the pre- and post-conditions form a contract between the implementer of the method and
the user of the method.

13.2.3 Simple ADT examples

The simplest examples of ADTs are the numeric, character, and boolean types. Most programming
languages have realizations of them as fundamental types which are used to build more complex
structured ADTs. Some typical types in these categories are

An integer ADT

Mathematically the data values here can be chosen as all integersn such that−∞ ≤ n ≤∞. Another
possibility is to consider only non-negative integersn satisfying 0≤ n ≤ ∞.

A typical set of operations might be the standard arithmeticoperationsadd, subtract, multiply,
integer quotient and integer remainder, boolean valued operations such asequal, notEqual, and
the relational operators<, ≤, >,≥. An assignment operation would also be needed.

These are infinite data types since there are an infinite number of integers. Therefore any
realization would need to restrict the data values to a finitesubset. Some common possibilities
are 8-bit, 16-bit, 32-bit, or 64-bit representations whichmay be signed or unsigned (non-negative
values).

For example, in Java there is an 8-bitbyte type with range−27 ≤ n ≤ 27−1, a 16-bitshort
type with range−215≤ n ≤ 215−1, a 32-bitint type with range−231≤ n ≤ 231−1, and a 64-bit
long type with range−263 ≤ n ≤ 263−1.

A floating point ADT

Here the data values are floating point numbers. In scientificnotation a floating point number
would have the formx = m×10e wherem is the mantissa ande is the exponent.

A typical set of operations would be similar to those for integers except the divide operation is
now a floating point division. An assignment operation wouldalso be needed.

For example, in Java there is a single precision 32-bitfloat type and a double precision 64-bit
double type. The standard IEEE representation is complicated but necessary to ensure that floating
point arithmetic is portable. Most processors support thisstandard. A single precision numberx is
either 0,−3.40×1038≤ x ≤−1.40×10−45 or 1.40×10−45≤ x ≤ 3.40×1038. A double precision
numberx is either 0,−1.80×10308≤ x ≤−4.94×10−324 or 4.94×10−324≤ x ≤ 1.80×10308.

13.2 Abstract data types 727

A character ADT

Here the data is the set of characters from some character setsuch as ASCII or Unicode. Internally
each character is represented by an unsigned integern in the range 0≤ n ≤ N for someN.

A typical set of operations might include operations to convert from upper case to lower case
and vice versa, operations to compare two characters to see if they are equal or to see if one pre-
cedes another in the lexicographical ordering defined on thecharacters, or an assignment operation.

For example, in Java thechar type is an unsigned 16-bit integer type with Unicode character
coden satisfying 0≤ n ≤ 65535.

A boolean ADT

Here there are only two data values which can be denoted by false and true. Other possibilities are
to use 0 for false and 1 for true, or 0 for false and any non-zeronumber for true.

A typical set of operations would be an assignment operation, an operation to test for false and
one to test for true.

13.2.4 Some common structured ADTs

A structured ADT is one that is defined in terms of another ADT using to some data structure. For
example, an array of integers would be defined in terms of an integer ADT and a string ADT would
be defined in terms of a character ADT. These two structured ADTs are the most common and are
available in most programming languages.

The array ADT

An array consists ofn elements[a0,a1, . . . ,an−1]. Here the data consists of these arrays and each
array elementak belongs to some other ADT. The subscriptk is called the array index. The starting
index may be 0, 1, or user defined. In C++ and Java array indicesbegin at index 0.

The basic array operations are toget the value of thek-th element andset a new value for the
k-th element. In C++ and Java theget operation is denoted byx = a[k] and theset operation is
denoted bya[k] = x. This also means that an array is a mutable ADT.

The standard array ADT is of fixed size: once created its size cannot be changed. The standard
arrays in C++ and Java are of this type. However we will see that it is easy to create a dynamic
array ADT (resizable) which can be expanded in size if neededto accommodate more elements.

The string ADT

Strings are like arrays of characters but the operations canbe quite different. Both mutable and im-
mutable string ADTs are common. For example, in Java theString class represents an immutable
fixed size ADT and theStringBuilder class represents a dynamic mutable ADT.

Some immutable string operations are toget thek-th character, construct a substring, construct
upper case or lower case versions, and compare two strings using the lexicographical order defined
on the underlying character set.

728 Introduction to Data Types and Structures

Some mutable operations are toset thek-th character to a new value, andappend a character
or string to the end of a string.

13.2.5 User defined ADT examples

We are not limited to the standard ADTs that have implementations already available in a computer
language or a system defined library of ADTs. We can write our own specifications for an ADT
and implement it in any language. Here we give two examples. We will show how to implement
them in Java.

A dynamic array ADT

Here the data elements are arrays[a0,a1, . . . ,an−1]. This is a mutable ADT and the basic oper-
ations would beget, to get thek-th array element, andset, to set a new value for thek-th array
element. Also the array size can be increased automaticallyas needed (doubled in size when full,
for example) or by applying some expand operation that increases the array size by a specified
amount.

A bag ADT

Here the data elements are bags. Each bag is a container that holds a collection of elements of
some type. There is no defined order on the bag elements as there are for arrays. In mathematics a
bag is often called a multi-set (no order, but duplicate elements are allowed) in contrast to sets for
which there can be no duplicates.

Bags are usually designed to be mutable and dynamic so a basicset of operations areadd, to
add another element to a bag,remove, to remove a specified element from a bag, andcontains
which tests if a specified element is in a bag.

13.3 Implementing an ADT

We now show how to implement the bag and dynamic array ADTs. The first step is to write a
specification or design of the data type, indicating what each operation does. This could be done
with a Java interface followed by the design of the class implementing the interface, indicating
each constructor and method body by{...}.

Whether an interface is being used or not the class design should always include constructor
prototypes since they are never included in an interface.

Once the design is finished it is possible to write some statements that use the ADT to ‘try out’
the syntax of the operations as given by the instance method prototypes. Finally, the implemen-
tation must be written (data fields, constructor and method bodies). This involves choosing some
data structure to represent the data encapsulated by the objects.

In Java all data types except for the eight primitive ones (byte, short, int, long, float,
double, boolean, char) are expressed as objects from some class. This presents a problem in the
design of a generic type since generic types must be object types (reference types) and we cannot

13.3 Implementing an ADT 729

directly use theint type as a generic type. To allow primitive types to be used as objects there are
wrapper classes in Java for each primitive type. For exampletheInteger class can be used as an
object version of theint type. In Java 5 auto boxing and unboxing make this easy.

Finally, when the implementation is complete, its operations must be tested.

13.3.1 Implementation of theBag<E> ADT

First we write a fixed size implementation of the bag ADT called FixedBag<E> using the generic
typeE for the elements in the bag. This means that once constructedfor a given maximum size
(number of elements) this size cannot be changed. Then we will make a simple modification to
obtain a dynamic version calledDynamicBag<E>.

Designing theBag<E> ADT

Here we illustrate the use of an interface to specify the design of an ADT. Both the fixed size and
dynamic versions of the ADT will implement the following interface.

Interface Bag<E>

book-project/chapter13/bags

package chapter13.bags;
/**
* A simple mutable generic bag ADT.
* @param <E> type of elements in the bag
*/
public interface Bag<E>
{

/**
* Return current number of elements in this bag.
* @return current number of elements in this bag
*/
int size();

/**
* Return true if this bag is empty else false.
* @return true if this bag is empty else false
*/
boolean isEmpty();

/**
* Add another element to this bag if there is room.
* @param element the element to add
* @return true if add was successful else false.
*/
boolean add(E element);

/**
* Remove a given element from this bag.
* @param element the element to remove

730 Introduction to Data Types and Structures

* @return true if the element was removed.
* A false return value occurs if element was
* not in this bag.
*/
boolean remove(E element);

/**
* Check if a given element is in this bag.
* @param element the element to check
* @return true if element is in this bag else false
*/
boolean contains(E element);

}

We have not included thepublic modifier on the method prototypes in the interface. It is redun-
dant since all methods in an interface are public.

Designing a fixed size implementation

The fixed size bag implementation has the form

public class FixedBag<E> implements Bag<E>
{

// instance data fields will go here

public FixedBag(int bagSize) {...}
public FixedBag() {...}
public FixedBag(FixedBag<E> b) {...}

public int size() {...}
public boolean isEmpty() {...}
public boolean add(E element) {...}
public boolean remove(E element) {...}
public boolean contains(E element) {...}

public String toString() {...}
}

Javadoc comments have been omitted. They are shown later in the final version of the class. Here
we have three constructors. The first specifies the maximum number of elements that can be added
to the bag and the no-arg constructor gives a bag with a maximum size of 10 elements. The third
constructor is called acopy constructor. Its purpose is to construct a copy of the bag given by the
argumentb.

ThetoString method is used to return a string representation of the elements in the bag. We
didn’t need to include thetoString prototype in theBag<E> interface since every class inherits a
toString method.

Also, for this fixed size implementation theadd method would return false if the bag is already
full.

13.3 Implementing an ADT 731

According to this design we can construct a bag containing a maximum of 5 integers and add
the integers 1, 2, and 3 to it using the statements

Bag<Integer> b = new FixedBag<Integer>(5);
b.add(1); b.add(2); b.add(3);
System.out.println(b);

Autoboxing is being used here: the compiler understands that b.add(1) means to replace1 by the
wrapper class objectnew Integer(1) and useb.add(new Integer(1)).

It is important to use the interface type on the left side of the constructor statement. This makes
it easier to switch to another implementation class, such asa dynamic one in this case. This is
sometimes called “programming to an interface”.

Our bag design is minimal. For example it is not possible withthis design to take a bag of
integers and remove all even integers or display the bag elements one per line. This would require
an iterator and will be discussed later.

EXAMPLE 13.1 (Filling a fixed size bag) The statements

Bag<Integer> bag = new FixedBag<Integer>(10);
for (int k = 1; k <= 10; k++)

bag.add(k);

construct a fixed bag of size 10 and fill it with the numbers 1 to 10.

EXAMPLE 13.2 (Filling a fixed size bag) The statements

Bag<Integer> bag = new FixedBag<Integer>(10);
int k = 1;
while (bag.add(k))

k++;

construct a fixed bag of size 10 and fill it with the numbers 1 to 10 using theadd method to detect
when the bag is full.

Choosing a data structure

The next step is to choose a data structure to hold the bag elements. Here we choose a fixed
size array calleddata such that if the number of elements currently in the bag issize then
these elements are stored indata[0], data[1], . . . ,data[size-1] and the remaining array ele-
mentsdata[size], . . . ,data[data.length-1] are free for storing more elements. Therefore we
choose the following instance data fields for the bag data.

private E[] data;
private int size;

As elements are added to the bag they are stored in the next available place in the array. Thus at
any stage the array consists of two parts: the used partdata[0] to data[size-1] and the unused
partdata[size] to data[data.length-1].

732 Introduction to Data Types and Structures

Implementing the constructors

The first constructor implementation is

public FixedBag(int bagSize)
{

data = (E[]) new Object[bagSize];
size = 0;

}

and the second constructor calls this one. When constructing an array of generic type it is necessary
to use the actualObject type for the array elements and typecast it to the typeE. For various
technical reasons related to the way generic types were added to the Java language the statement

data = (E[]) new E[bagSize];

is illegal.
Finally, the copy constructor is given by

public FixedBag(FixedBag<E> b)
{

size = b.size();
data = (E[]) new Object[b.data.length];
for (int k = 0; k < size; k++)

data[k] = b.data[k];
}

Here we first construct an array of the same maximum sizeb.data.length of the arrayb. Then
the bag elements inb are copied into this array.

Implementing the methods

The add method first checks if there is room for the new element. Sincesize represents the
number of elements currently in thedata array then the new element can usedata[size]. The
implementation is

public boolean add(E element)
{

if (size == data.length) // full bag
return false;

data[size] = element;
size = size + 1;
return true;

}

The remove method needs to use a loop to search for the element to remove.If the element is
found at positionk in the array then the obvious way to remove it is to use a for-loop to copy
the array elementsdata[k+1], . . . ,data[size-1] down one location to overwrite the element at
positionk. This requires another loop.

13.3 Implementing an ADT 733

A more efficient way is to realize that a bag is not an ordered structure so the array ordering
does not need to be preserved. Therefore we can just overwrite the element at positionk with the
last array element at positionsize-1. This effectively removes the element at positionk. This
gives the implementation

public boolean remove(E element)
{

for (int k = 0; k < size; k++)
{

if (data[k].equals(element))
{

data[k] = data[size-1];
size = size - 1;
return true;

}
}
return false; // not found

}

It is necessary to use theequals method defined for element typeE to properly test for element
equality. The testdata[k] == element will not work. A class that does not have a properly
definedequals method can not be used as the element type. The wrapper classes and theString
class all haveequals methods.

The remaining methods are easily implemented and the complete implementation class is

ClassFixedBag<E>

book-project/chapter13/bags

package chapter13.bags;
/**
* A simple fixed size bag implementation.
* @param <E> type of elements in the bag
*/
public class FixedBag<E> implements Bag<E>
{

// This version uses a fixed array for the bag

private E[] data;
private int size;

/**
* Create a bag for a given maximm number of elements.
* @param bagSize the maximum number of elements
*/
public FixedBag(int bagSize)
{

data = (E[]) new Object[bagSize];
size = 0;

}

734 Introduction to Data Types and Structures

/**
* Create a default bag for a maximum of 10 elements
*/
public FixedBag()
{

this(10);
}

/**
* Construct a bag that is a copy of a given bag.
* The copy has the same maximum size as bag b.
* @param b the bag to copy
*/
public FixedBag(FixedBag<E> b)
{

size = b.size();
data = (E[]) new Object[b.data.length];
for (int k = 0; k < size; k++)

data[k] = b.data[k];
}

public int size()
{

return size;
}

public boolean isEmpty()
{

return size == 0;
}

public boolean add(E element)
{

if (size == data.length)
return false;

data[size] = element;
size = size + 1;
return true;

}

public boolean remove(E element)
{

for (int k = 0; k < size; k++)
{

if (data[k].equals(element))
{

// nice trick
data[k] = data[size-1];
size = size - 1;
return true;

}

13.3 Implementing an ADT 735

}
return false; // not found

}

public boolean contains(E element)
{

for (int k = 0; k < size; k++)
if (data[k].equals(element))

return true;
return false; // not found

}

/**
* Return a string representation of this bag.
* @return a string representation of this bag.
*/
public String toString()
{

StringBuilder sb = new StringBuilder();
sb.append("[");
if (size != 0)
{

sb.append(data[0]);
for (int k = 1; k < size; k++)
{

sb.append(",");
sb.append(data[k]);

}
}
sb.append("]");
return sb.toString();

}
}

We have not included comments for the interface methods since they are already given in the
Bag<E> interface.

Converting to a dynamic implementation

We now convert the fixed size implementation to a dynamic one.This can easily be done by
modifying theadd method to automatically expand thedata array whenever it it is full. The new
version ofadd is

public boolean add(E element)
{

if (size == data.length)
resize();

data[size] = element;
size = size + 1;
return true;

}

736 Introduction to Data Types and Structures

Here we call aresize method that increases the capacity as follows: (1) make a newdata array
twice the size of the current one, (2) copy the current data array to the beginning of the new one,
(3) reassign thedata reference to the new array (the old one will be garbage collected).

This gives the following private method.

private void resize()
{

int newCapacity = 2 * data.length;
E[] newData = (E[]) new Object[newCapacity]; // step 1
for (int k = 0; k < data.length; k++) // step 2

newData[k] = data[k];
data = newData; // step 3

}

Here is the complete implementation.

ClassDynamicBag<E>

book-project/chapter13/bags

package chapter13.bags;
/**
* A simple dynamic bag implementation.
* @param <E> the type of elements in the bag
*/
public class DynamicBag<E> implements Bag<E>
{

private E[] data;
private int size;

/**
* Create a bag with a given initial capacity.
* @param initialCapacity the initial capacity of this bag
*/
public DynamicBag(int initialCapacity)
{

data = (E[]) new Object[initialCapacity];
size = 0;

}

/**
* Create a default bag with an initial capacity of 10 elements.
*/
public DynamicBag()
{

this(10);
}

/**
* Construct a bag that is a copy of a given bag.
* The copy has the same current maximum size as bag b.

13.3 Implementing an ADT 737

* @param b the bag to copy
*/
public DynamicBag(DynamicBag<E> b)
{

size = b.size();
data = (E[]) new Object[b.data.length];
for (int k = 0; k < size; k++)

data[k] = b.data[k];
}

public int size() {...} // same as for FixedBag
public boolean isEmpty() {...} // same as for FixedBag

public boolean add(E element)
{

if (size == data.length)
resize();

data[size] = element;
size = size + 1;
return true;

}

public boolean remove(E element) {...} // same as for FixedBag
public boolean contains(E element) {...} // same as for FixedBag

private void resize()
{

// Make a new array twice as big as current one,
// copy data to it and make data reference the new one.

int newCapacity = 2 * data.length;
E[] newData = (E[]) new Object[newCapacity];
for (int k = 0; k < data.length; k++)

newData[k] = data[k];
data = newData;

}

public String toString() {...} // same as for FixedBag
}

13.3.2 Implementation of theDynamicArray ADT

We have written aFixedBag<E> ADT but we will not consider aFixedArray<E> ADT since the
built-in array type is a fixed size implementation.

Unlike a bag, an array is an ordered ADT. There is a first element, a second element, and so on
so there is an index associated with each array element.

Designing theArray ADT

As for the Bag ADT we can use the following interface to designa simple array ADT

738 Introduction to Data Types and Structures

Interface Array<E>

book-project/chapter13/arrays

package chapter13.arrays;
/**
* A simple generic array ADT.
* @param <E> type of elements in the array
*/
public interface Array<E>
{

/**
* Return current number of elements in this array.
* @return current number of elements in this array
*/
int size();

/**
* Return true if this array is empty else false.
* @return true if this array is empty else false
*/
boolean isEmpty();

/**
* Add another element to end of this array.
* @param element the element to add to end at position size().
* @return true if add was successful else false.
*/
boolean add(E element);

/**
* Get the element at a given index (0,1,...).
* @param index the index of the element
* @return the element at the index
* @throws ArrayIndexOutOfBoundsException if the
* index is out of the range 0 <= index < size()
*/
E get(int index);

/**
* Set a new value for a given array element.
* @param index the index of the array element
* @param element the new value of the element
* @throws ArrayIndexOutOfBoundsException if the
* index is out of the range 0 <= index < size()
*/
void set(int index, E element);

}

Here we have anadd method that adds an element at the end of the array (positionsize()). It is
important that we specify that the element be added at the endof the array. This was not necessary
for the bag ADT.

13.3 Implementing an ADT 739

The element at positionk can be obtained using theget method and theset method can be
used to give a new value to the object associated with position k. If an indexk is outside the range
0 <= k < size() then anArrayIndexOutOfBounds exception is thrown.

The operations defined for an array ADT are quite different than those for a bag ADT since the
array ADT is an ordered collection of elements and there is noassumed order for the elements in
the bag. Theget andset methods were not part of the bag ADT since there is no concept of an
index for the elements in a bag.

This is a minimal array interface and there are many other methods such as aremove method
that removes the element at a given index, andindexOf that returns the index of a given elememt.

Designing a dynamic implementation

The dynamic array implementation has the form

public class DynamicArray<E> implements Array<E>
{

private E[] data;
private int size;

public DynamicArray(int initialCapacity) {...}
public DynamicArray() {...}
public DynamicArray(DynamicArray<E> a) {...}

public int size() {...}
public boolean isEmpty() {...}
public boolean add(E element) {...}
public E get(int index) {...}
public void set(int index, E element) {...}
public String toString() {...}

}

Here we use the same data structure, a fixed array, as for the bag implementations. The constructors
are very similar to theDynamicBag constructors.

Using the design

Now we can try out some statements for our dynamic array design.

EXAMPLE 13.3 (Resizing a dynamic array) The following statements test that an array is
resized when it becomes full. Autoboxing is used to convert integers to theInteger object type.

Array<Integer> a = new DynamicArray<Integer>(3);
a.add(1); a.add(2); a.add(3); a.add(4);
System.out.println("Array size is " + a.size());
System.out.println(a);

Here the initial capacity is 3. When we add the 4-th number thecapacity is doubled to 6 and the
number 4 is added to the array, which now has size 4 and room fortwo more elements.

740 Introduction to Data Types and Structures

EXAMPLE 13.4 (Summing the elements in a dynamic array) Unlike the bag we can loop
over the elements in the array by using theget method. Here we construct an integer array and
sum its elements using the following statements.

Array<Integer> a = new DynamicArray<Integer>(3);
a.add(1); a.add(2); a.add(3); a.add(4);
int sum = 0;
for (int k = 0; k < a.size(); k++)

sum = sum + a.get(k);
System.out.println("The sum of the elements is " + sum);

Compare these statements with the following ones that do thesame thing with a standard array:

int[] a = new int[4];
a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4;
int sum = 0;
for (int k = 0; k < a.length; k++)

sum = sum + a[k];

Here we need to use the exact size of 4.

EXAMPLE 13.5 (Swapping two elements of an array) Assuming thatstr is an array of
strings, the statements

String temp = str.get(i);
str.set(i, str.get(j));
str.set(j, temp);

swap the strings at positionsi andj.

Implementing the constructors and methods

This is the same as forDynamicBag<E> and the implementation of theget andset methods are
simple so we have the following class.

ClassDynamicArray<E>

book-project/chapter13/arrays

package chapter13.arrays;
/**
* A simple dynamic array implementation.
* @param <E> type of elements in the array
*/
public class DynamicArray<E> implements Array<E>
{

private E[] data;
private int size;

13.3 Implementing an ADT 741

/**
* Create an array for a given initial capacity.
* @param initialCapacity the initial capacity
*/
public DynamicArray(int initialCapacity)
{

data = (E[]) new Object[initialCapacity];
size = 0;

}

/**
* Create a default array for an initial capacity of 10 elements.
*/
public DynamicArray()
{

this(10);
}

/**
* Construct an array that is a copy of a given array.
* The copy has the same capacity as array a.
* @param a the array to copy
*/
public DynamicArray(DynamicArray<E> a)
{

size = a.size();
data = (E[]) new Object[a.data.length];
for (int k = 0; k < size; k++)

data[k] = a.data[k];
}

public int size()
{

return size;
}

public boolean isEmpty()
{

return size == 0;
}

public boolean add(E element) {...} // same as for DynamicBag

public E get(int index)
{

if (0 <= index && index < size)
return data[index];

else
throw new ArrayIndexOutOfBoundsException("index out of bounds");

}

public void set(int index, E element)

742 Introduction to Data Types and Structures

Iterable<E>

Collection<E>

Set<E> List<E>

SortedSet<E>

Map<K,V>

6

SortedMap<K,V>

Iterator<E>

6

ListIterator<E>

6

66

6

Figure 13.1: JCF related interface hierarchy

{
if (0 <= index && index < size)

data[index] = element;
else

throw new ArrayIndexOutOfBoundsException("index out of bounds");
}

private void resize() {...} // same as for DynamicBag
public String toString() {...} // same as for FixedBag

}

13.4 Java Collections Framework (JCF)

Many ADTs collect together elements of some data type. The simplest examples we have con-
sidered are the bag ADT and the array ADT. We define acollection as a data type that organizes
a group of related objects called the elements of the collection and provides operations on them.
There are often restrictions on the elements that belong to aspecific kind of collection and on the
way the elements can be accessed.

13.4.1 Interface hierarchy

In Java collections are represented by classes that implement theCollection<E> interface or one
of its extended interfaces such asSet<E> or List<E>. These interfaces and others make up what is
called the JCF (Java Collections Framework) and their relationship is shown in Figure 13.1. Here
the arrow means “extends”. For example theSet<E> interface extendsCollection<E>.

A set is an example of a collection whose elements have the following two properties: (1) no
defined order and (2) duplicate elements are not allowed. This corresponds to the mathematical
definition of a set.

13.4 Java Collections Framework (JCF) 743

public interface Collection<E> extends Iterable<E>
{

// Query operations
int size();
boolean isEmpty();
boolean contains(Object obj);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);

// Modification Operations
boolean add(E element); // optional
boolean remove(Object obj); // optional

// Bulk Operations
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c); // optional
boolean removeAll(Collection<?> c); // optional
boolean retainAll(Collection<?> c); // optional
void clear(); // optional

// Comparison and hashing
boolean equals(Object obj);
int hashCode();

}

Figure 13.2: TheCollection<E> interface

A bag is another example of a collection that, like a set, imposes no defined order on its ele-
ments but does allow duplicate elements. In mathematics a bag is called a multi-set. The bag is the
simplest kind of collection class since it imposes no restrictions or structure on its elements.

Arrays and lists are collections in which the elements do have a defined order. There is a first
element, a second element, and so on, and duplicates are allowed. In mathematics an array or list
is often called a sequence.

We shall give a survey of the most important classes in the Java Collections Framework (JCF).
Our goal is not to understand the implementation of these classes, which is left to a data structures
course, but to learn how to use them. Of course, we should not need to understand implementation
details in order to use a class.

The most important interface in the JCF is theCollection<E> interface which represents the
basic design and methods any collection class should have. Aclass that implements this interface
“is a” collection. A summary of this interface is given in Figure 13.2. It also extends another
interface calledIterable<E>, given in Figure 13.3 and this interface contains one methodcalled
iterator which returns an object from a class that implements theIterator<E> interface shown
in Figure 13.4. We now discuss these three interfaces.

744 Introduction to Data Types and Structures

public interface Iterable<E>
{

Iterator<E> iterator();
}

Figure 13.3: TheIterable<E> interface

public interface Iterator<E>
{

boolean hasNext();
E next();
void remove(); // optional

}

Figure 13.4: TheIterator<E> interface

13.4.2 Traversing a collection with an iterator

An important operation on a collection is to be able to traverse it. This means to examine or process
elements in the collection one at a time using some kind of loop. This is the purpose of aniterator .

Our simpleBag<E> interface did not define an iterator so for classes such asFixedBag<E> and
DynamicBag<E> there was no way to process the elements one by one in some order. We could do
this for theDynamicArray<E> class only because we had an indexed collection so we could use a
standard for-loop to traverse an array as shown in Example 13.4.

In the JCF an iterator is an object of some class that implements theIterator<E> interface
shown in Figure 13.4. A collection class will normally not implement this interface directly. In-
stead it will provide aniterator() method that returns an object of some class that implements
theIterator<E> interface. This is the case for theCollection<E> interface shown in Figure 13.2
(under query operations).

In theIterator<E> interface thehasNext() method is used to stop the iteration process and
thenext() method returns the current element in the collection and advances to the next one. This
means that we can callnext() repeatedly as long ashasNext() returns true.

EXAMPLE 13.6 (Using an iterator to traverse a collection) We can use statements such as
the following to process the elements.

Collection<E> c = new ACollectionClass<E>(...);
c.add(e1); c.add(e2); c.add(e3); // ...
Iterator<E> iter = c.iterator();
while(iter.hasNext())
{

E element = iter.next();
// do something here with element

}

13.4 Java Collections Framework (JCF) 745

HereACollectionClass is any class that implements theCollection<E> interface.

The Iterator<E> interface also contains aremove operation which is listed as optional. If
an implementing class does not support the removal of elements from the collection then an
UnsupportedOperationExceptionwill be thrown. Such an iterator is said to be immutable.

EXAMPLE 13.7 (Using an iterator as a filter) The following statements show how an iterator
can be used as afilter by removing elements from the collection that satisfy some condition.

Collection<E> c = new ACollectionClass<E>(...);
c.add(e1); c.add(e2); c.add(e3); // ...
Iterator<E> iter = c.iterator();
while(iter.hasNext())
{

E element = iter.next();
if (removal condition is true)
{

iter.remove();
}

}

Here it is important that theremove() method is used after a call tonext().

EXAMPLE 13.8 (Using an iterator as a filter without remove) If removal is not supported
then a filter can be written by creating a new collection containing only the elements that were not
removed:

Collection<E> c = new ACollectionClass<E>(...);
c.add(e1); c.add(e2); c.add(e3); // ...
// create a new empty collection
Collection<E> newCollection = new ACollectionClass<E>();
Iterator<E> iter = c.iterator();
while(iter.hasNext())
{

E element = iter.next();
if (removal condition is NOT true)

newCollection.add(element);
}

Here the original collection is not changed.

An important property of an iterator is that it does not expose any internal details of the collec-
tion and the data structures used in the implementation. This is important since it means that the
implementation of the collection class can be changed without changing the iterator.

746 Introduction to Data Types and Structures

13.4.3 Iterable<E> interface

TheIterable<E> interface is related to the for-each loop introduced in Java5. If a class imple-
ments this interface then it provides aniterator() method defining an iterator and the for-each
loop can be applied as follows

EXAMPLE 13.9 (Using a for-each loop as an immutable iterator)The for-each loop has the
syntax

for (E element : c)
{

// do something here with element
}

Herec is any object from a class that implements theIterable<E> interface. In particular it can
be of typeCollection<E>. The for-each loop cannot access theremove() method so it can only
be used for immutable traversals.

EXAMPLE 13.10 (Using an iterator with a standard array type) The built-in array type also
implementsIterable<E> so it is possible to process an array using statements such as

String[] s = new String[3];
s[0] = "one"; s[1] = "two"; s[2] = "three";
for (String str : s)
{

// do something here with the string str
}

This is useful as a replacement for the standard for-loop that does not actually use its index in the
body of the loop. The for-each loop requires no index.

13.5 Collection<E> and Set<E> interfaces

13.5.1 Collection<E> interface

We now summarize the methods in theCollection<E> interface in Figure 13.2. For more com-
plete descriptions see the Java API documentation. As shownin the figure the operations can be
divided into four categories: (1) Query operations, (2) Modification operations, (3) Bulk opera-
tions, and (4) Comparison and hashing.

Some methods are optional. If a class does not want to implement an optional method the
method must throw anUnsupportedOperationException if it is called. Note that the optional
operations are precisely the ones which may modify this collection, so if a class implements
none of these methods then it is implementing immutable collections. Here is a summary of the
Collection<E> methods.

Note that thecontains andremove methods have an argument of typeObject instead ofE.
This is conventional since these methods do not add new elements to the collection. However, the

13.5Collection<E> andSet<E> interfaces 747

add method must have an argument of typeE to guarantee that the collection will only contain
elements of typeE.

• int size()

Return the number of elements inthis collection.

• boolean isEmpty()

Returns true if there are no elements inthis collection else returns false.

• boolean contains(Object obj)

Returns true ifthis collection contains elementobj else returns false.

• Iterator<E> iterator()

Return an iterator of typeIterator<E> for this collection. This is the method that is
necessary to implement theIterable<E> interface.

• Object[] toArray()

Convert the elements inthis collection to an array ofObject type.

For example, ifc is a collection of strings then the statement

Object[] s = c.toArray();

converts the collection of strings to the arrays of objectss[0], . . . , s[s.length-1]. To
recover the strings it is necessary to use a typecast on each component such as

String str = (String) s[k];

• <T> T[] toArray(T[] a)

This is a parametrized method for typeT that returns an arrayT[] of typeT.

If the parametrized type of the collection isT as indicated by the argumenta then this method
converts the elements ofthis collection to an array of typeT which is the run-time type of
the array. If the collection does not contain elements of typeT an exception is thrown.

For example, ifc is a collection of strings then the statement

String[] s = c.toArray(new String[c.size()]);

converts the collection of strings to the arrays of stringss[0], . . . ,s[s.length-1].

• boolean add(E element)

Returns true ifthis collection was changed (elementwas added) after calling the method
else returns false. This is an optional operation.

• boolean remove(Object obj

Returns true ifthis collection was changed (obj was found and removed) after calling the
method else returns false. This is an optional operation.

748 Introduction to Data Types and Structures

public interface Set<E> extends Collection<E>
{

// The Collection<E> interface methods can go here
// The Set<E> interface introduces no new methods

}

Figure 13.5: TheSet<E> interface

• boolean containsAll(Collection<?> c)

Returns true ifthis collection contains all the elements in collectionc else returns false.
The notationCollection<?> means a collection of any type (? is a wild card).

• boolean addAll(Collection<? extends E> c)

Adds all of the elements ofc to this collection. Returns true ifthis collection was mod-
ified after calling the method else returns false. The notationCollection<? extends
E> means a collection of any type that extends or implements thetypeE. In this context
extends means “extends or implements”. This is an optional operation.

• boolean removeAll(Collection<?> c)

Returns true ifthis collection was modified (one or more elements ofcwere removed from
this collection) after calling the method else returns false. This is an optional operation.

• boolean retainAll(Collection<?> c)

Retains only the elements inthis collection that are also inc. Returns true if this collection
was modified after calling the method else returns false. This is an optional operation.

• void clear()

Remove all elements ofthis collection to give an empty collection. This is an optional
operation.

• boolean equals(Object obj)
int hashCode()

These are methods in theObject class that can be overridden. Theequals method tests
if two collections have the same elements.

13.5.2 Set<E> interface

TheCollection<E> interface describes what is called a bag or multi-set since there is no structure
imposed on the elements in the collection.

TheSet<E> interface is given in Figure 13.5. It extendsCollection<E> but does not introduce
any new methods. However the documentation of some of the methods changes since a set is a
collection that does not contain duplicates. For example, thecontains method will return false

13.6 Set Implementations and examples 749

if the elementobj is already inthis set and theadd method will not change the collection if the
elementobj is already inthis set.

Similarly theaddAll method will only add tothis set the elements of the collectionc that are
not already inthis set.

Set theory interpretation of the bulk set methods

The bulkSet<E> methods can be used to implement the basic set theory operations of subset, set
difference, intersection, and union.

subset/supersetIf a andb are two sets thena ⊆ b (or equivalentlyb ⊇ a) means thata is a
subset ofb (or equivalentlyb is a superset ofa). In other words every element ina is also an
element ofb.

This can be expressed usingcontainsAll. If a andb are two sets (objects from a class that
implementsSet<E>) thena.containsAll(b) returns true only ifa ⊇ b, socontainsAll
is the superset operation.

set differenceIf a andb are two sets thena−b is the difference: set of all elements ina that
are not inb. A destructive version is represented bya.removeAll(b), which replacesa by
a−b.

set union If a andb are two sets thena∪ b is their union: set of all elements ina or b or
both. A destructive version is represented bya.addAll(b), which replacesa by a∪b.

set intersectionIf a andb are two sets thena∩b is their intersection: set of all elements that
are ina and inb. A destructive version is represented bya.retainAll(b), which replaces
a by a∩b.

To obtain non-destructive versions (a is not changed) it is necessary to make a copy ofa and apply
the operation to the copy.

13.6 Set Implementations and examples

The JCF includes several implementations of theSet<E> interface. We will consider three of
them: HashSet<E>, LinkedHashSet<E>, andTreeSet<E>. TheHashSet<E> implementation is
the fastest but if a total order can be defined on the elements of the set thenTreeSet<E> can be used
to maintain the set in sorted order unlikeHashSet<E> which maintains no order. If the element
order is not important useHashSet<E>. TheLinkedHashSet<E> class maintains the elements in
the order they were added to the set.

13.6.1 HashSet<E> implementation of Set<E>

A summary of theHashSet<E> implementation is given in Figure 13.6. We will not discuss any
implementation details. There are four constructors. The first constructor with no arguments

750 Introduction to Data Types and Structures

public class HashSet<E> extends AbstractSet<E>
implements Set<E>, Cloneable, Serializable

{
public HashSet() {...}
public HashSet(int initialCapacity) {...}
public HashSet(Collection<? extends E> c) {...}
public HashSet(int initialCapacity, float loadFactor) {...}

public Object clone() {...}

// implementations of Set interface methods go here
}

Figure 13.6: TheHashSet<E> class

public class LinkedHashSet<E> extends HashSet<E>
implements Set<E>, Cloneable, Serializable

{
public LinkedHashSet() {...}
public LinkedHashSet(int initialCapacity) {...}
public LinkedHashSet(Collection<? extends E> c) {...}
public LinkedHashSet(int initialCapacity, float loadFactor) {...}

public Object clone() {...}

// implementations of Set interface methods go here
}

Figure 13.7: TheLinkedHashSet<E> class

constructs an empty set with a default initial capacity of 16elements. The second constructor
specifies a given initial capacity.

The third one is called aconversion constructorand is very useful. It creates a set of element
typeE from any given collectionc which may have any element type which extends or implements
the typeE. This constructor can also be used as a copy constructor ifc has typeE.

We will not use the fourth constructor. It is used to optimizethe hash table implementation.

13.6.2 LinkedHashSet<E> implementation of Set<E>

A summary of theLinkedHashSet<E> implementation is given in Figure 13.7. The constructors
are identical to the ones inHashSet<E>.

13.6.3 TreeSet<E> implementation of SortedSet<E> and Set<E>

A summary of theTreeSet<E> implementation is given in Figure 13.8. Note thatTreeSet<E>

13.6 Set Implementations and examples 751

public class TreeSet<E> extends AbstractSet<E>
implements SortedSet<E>, Cloneable, Serializable

{
public TreeSet() {...}
public TreeSet(Collection<? extends E> c) {...}
public TreeSet(Comparator<? super E> c) {...}
public TreeSet(SortedSet<E> s){...}

public Object clone() {...}

// implementations of SortedSet interface methods go here
// SortedSet extends the Set interface

}

Figure 13.8: TheTreeSet<E> class

implements theSortedSet<E> interface which extends theSet<E> interface soTreeSet<E> also
extendsSet<E>. We will not need the extra methods provided by theSortedSet<E> interface.

There are four constructors. The first provides an empty set.As elements are added they will
sorted according to the natural order of the elements of typeE (E must implementComparable<E>).

The second is aconversion constructorsimilar to the one inHashSet<E>. It creates a sorted
set of element typeE from any given collectionc which may have typeE or any element type which
extends or implements the typeE.

The third constructor provides aComparator argument which has typeE or any type that is
a super type ofE. It’s purpose is to define the total order to be used byTreeSet<E>. If this
constructor is not used then the natural ordering defined by the element typeE is used. In this case
the typeE must implement theComparable<E> interface.

The last constructor is a copy constructor which makes a copyof any sorted set.

13.6.4 Simple set examples

EXAMPLE 13.11 (Removing duplicates from a collection) Suppose we have a collectionc
of strings and we want to obtain a new collection that isc with duplicates removed. The following
statement does this

Set<String> noDups = new HashSet<String>(c);

using the conversion constructor.

EXAMPLE 13.12 (Random sets of elements)The following statements create a set of 10 inte-
gers generated randomly in the range 1 ton wheren > 9.

Random random = new Random();
Set<Integer> randomSet = new TreeSet<Integer>();
while (randomSet.size() < 10)
{

752 Introduction to Data Types and Structures

randomSet.add(random.nextInt(n) + 1);
}

Here we simply try to add elements until the set has size 10. Itis important to haven > 9 or
the loop will be infinite since there are no sets of size 10 containing only numbers in the range
1≤ k ≤ 9.

EXAMPLE 13.13 (Using HashSet to compute set union)The statements

Set<String> s1 = new HashSet<String>();
s1.add("one"); s1.add("two"); s1.add("three");
Set<String> s2 = new HashSet<String>();
s2.add("four"); s2.add("five"); s2.add("six");

define two sets of strings and the statements

Set<String> union = new HashSet<String>(s1);
union.addAll(s2);
System.out.println(union);

create a copy ofs1 and useaddAll to compute the union of the two sets without modifying either
s1 or s2. The result displayed is

[one, two, five, four, three, six]

The output shows there is no specific order.

If you replaceHashSet by LinkedHashSet everywhere the result displayed is

[one, two, three, four, five, six]

Now the order is the same as the order in which the strings wereadded to the set.

If you replaceHashSet by TreeSet everywhere the result displayed is

[five, four, one, six, three, two]

Now the elements appear in alphabetical order.

EXAMPLE 13.14 (Using an iterator as a filter) The statements

Set<Integer> s = new HashSet<Integer>();
s.add(1); s.add(2); s.add(3); s.add(3); s.add(4); // [1,2,3,4]
Iterator<Integer> iter = s.iterator(); // ask s for an iterator
while (iter.hasNext())
{

int k = iter.next();
if (k % 2 == 0)

iter.remove();
}
System.out.println(s);

13.6 Set Implementations and examples 753

use an iterator to remove all the even integers from the sets of integers. The print statement
displays[1,3].

EXAMPLE 13.15 (Use an iterator as a filter) The following statements

Set<Integer> s = new HashSet<Integer>();
s.add(1); s.add(2); s.add(3); s.add(3); s.add(4); // [1,2,3,4]
Iterator<Integer> iter = s.iterator(); // ask s for an iterator
Set<Integer> evenSet = new HashSet<Integer>();
Set<Integer> oddSet = new HashSet<Integer>();
while (iter.hasNext())
{

int k = iter.next();
if (k % 2 == 0)

evenSet.add(k);
else

oddSet.add(k);
}
System.out.println(evenSet);
System.out.println(oddSet);

use an iterator to create two new sets froms, one containing the even integers ins and the other
containing the odd integers ins. The print statements display[2,4] and[1,3]

13.6.5 Removing duplicates from a list of words

Using sets we can easily write a program that removes duplicate words in a list of words. Simply
read the words and add them to a set. Any duplicates will not beadded.

ClassRemoveDuplicateWords

book-project/chapter13/sets

package chapter13.sets;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Scanner;
import java.util.Set;

/**
* Remove duplicate words from a file of words.
*/
public class RemoveDuplicateWords
{

public void doTest() throws FileNotFoundException
{

Scanner input = new Scanner(new File("files/words.txt"));

754 Introduction to Data Types and Structures

Set<String> uniqueSet = new HashSet<String>();
Iterator<String> iter = input;
while(iter.hasNext())
{

uniqueSet.add(iter.next());
}
input.close();
System.out.println(uniqueSet.size() + " unique words found:");
System.out.println(uniqueSet);

}

public static void main(String[] args) throws FileNotFoundException
{

new RemoveDuplicateWords().doTest();
}

}

Here we use the fact that theScanner class implements theIterator<String> interface. As each
word is read an attempt is made to add it to the set. You can try this program using a file such as

all all
words words
are are duplicated duplicated

The output is

4 unique words found:
[words, all, duplicated, are]

You may get a different order since we are using aHashSet. For output in alphabetic order use
TreeSet. For a related problem see Exercise 13.10.

13.7 List<E> and ListIterator<E> interfaces

A list is a collection of elements arranged in some linear order. It has a first element, a second
element and so on. According to Figure 13.1 theList<E> interface extendsCollection<E> so
you can think of a list as an ordered collection of elements. TheList<E> interface is summarized in
Figure 13.9. As for theCollection<E> interface the operations that can modify a list are indicated
as optional so an implementation for immutable lists would not implement these operations.

For traversing lists theIterator<E> interface has been extended to provide a two way iterator
calledListIterator<E> summarized in Figure 13.10.

13.7.1 List<E> interface

The methods from theCollection<E> class have basically the same meaning in theList<E>
interface except that theadd andaddAll methods now specify that these operations append the
elements to the end of the list and theremove method specifically removes the first occurrence of
the element.

13.7List<E> andListIterator<E> interfaces 755

public interface List<E> extends Collection<E>
{

// The Collection<E> interface methods can go here

// Positional Access Operations
E get(int index);
E set(int index, E element); // optional
void add(int index, E element); // optional
E remove(int index); // optional
boolean addAll(int index, Collection<? extends E> c); // optional

// Search Operations
int indexOf(Object obj);
int lastIndexOf(Object obj);

// List Iterators
ListIterator<E> listIterator();
ListIterator<E> listIterator(int index);

// View
List<E> subList(int fromIndex, int toIndex);

}

Figure 13.9: TheList<E> interface

public interface ListIterator<E> extends Iterator<E>
{

// Query Operations
boolean hasNext();
E next();
boolean hasPrevious();
E previous();

int nextIndex();
int previousIndex();

// Modification Operations
void remove(); // optional
void set(E element); // optional
void add(E element); // optional

}

Figure 13.10: TheListIterator<E> interface

756 Introduction to Data Types and Structures

We now summarize the extra methods introduced by theList<E> interface of Figure 13.9.
The additional methods fall into four categories: (1) positional access operations that locate list
elements using an index, (2) search operations that find a list element given its index, (3) list
iterators that begin at the start of a list or at some other position, and (4) a view operation that
returns a sublist.

• E get(int index)

Return the element inthis list at position given byindex. If index < 0 orindex >=
size() an index out of bounds exception is thrown.

• E set(int index, E element)

Replace the element at positionindex by the given element. The element being replaced
is returned. Ifindex < 0 or index >= size() anIndexOutOfBoundsException is
thrown. This is an optional operation.

• void add(int index, E element)

Add a new element tothis list at positionindex. The elements originally beginning
at positionindex are moved up to higher indices to accommodate the new element. If
index < 0 orindex > size() an index out of bounds exception is thrown. Note that
index = size() is allowed here, corresponding to adding after the last element. This is
an optional operation.

• boolean addAll(int index, Collection<? extends E> c)

Add all the elements in the given collectionc to this list beginning at the given position
index. The elements originally beginning at positionindex are moved up to higher in-
dices to accommodate the new elements. The restrictions onindex are the same as for the
add method. This is an optional operation.

• int indexOf(Object obj)

Return the index of the first occurrence of the given objectobj in this list. If obj was
not found then−1 is returned.

• int lastIndexOf(Object obj)

Return the index of the last occurrence of the given objectobj in this list. If obj was not
found then−1 is returned.

• ListIterator<E> listIterator()
ListIterator<E> listIterator(int index)

Returns aListIterator<E> object. For the no-arg version the iterator will start at the
beginning ofthis list. The second version will start at positionindex in this list. The
restrictions onindex are the same as forget.

• List<E> subList(int fromIndex, int toIndex)

Returns a sublist ofthis list beginning and ending at the given indices. If the indices are
not in range anIndexOutOfBoundsException is thrown.

13.8List<E> implementations and examples 757

e0 e1 e2 en

6 6 6 6 6 6

0 1 2 3 n n+1

r r r

Figure 13.11: Indices for the list[e0,e1,e2, . . . ,en] lie between elements.

13.7.2 ListIterator<E> interface

As shown in Figure 13.10 theListIterator<E> interface extendsIterator<E> so that the list
can be traversed in either direction. TheIterator<E> part provides iteration in the forward direc-
tion usinghasNext() andnext() and the new methods provide iteration in the backward direction
usinghasPrevious() andprevious().

During iteration theadd, remove, andset methods are available. They operate on the current
element of the list (last element returned bynext() or previous()). For add the element is
inserted immediately before the next element that would be returned bynext(), if any, and after
the next element that would be returned byprevious().

When using a list iterator it is helpful to think of list indices as lying between the list elements
as shown in Figure 13.11. Thus, a call tonext() returns the element to the right of the index and
advances to the next higher index. Similarly, a call toprevious() returns the element to the left
of the index and advances to the next lower index.

13.8 List<E> implementations and examples

The JCF includes two general purpose implementations of theList<E> interface:ArrayList<E>
andLinkedList<E>.

13.8.1 ArrayList<E> implementation of List<E>

TheArrayList<E> class implements a dynamic array ADT and is the best implementation if you
need positional access to the list using a 0-based index. Accessing an element given its index
is anO(1) operation. Thus this is a random access structure like the built-in array class. The
ArrayList<E> class is summarized in Figure 13.12.

There are three constructors. The no-arg constructor provides a resizable list with initial space
for 10 elements and the second constructor provides a resizable list with the specified initial ca-
pacity.

The third constructor is a conversion constructor that creates anArrayList<E> from the given
collectionc in the order defined by the collection’s iterator.

The dynamic increase in the size of the list occurs automatically as needed. Two methods are

758 Introduction to Data Types and Structures

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

{
// Constructors
public ArrayList() {...}
public ArrayList(int initialCapacity) {...}
public ArrayList(Collection<? extends E> c) {...}

// Implementation of List<E> interface methods go here

// Extra methods
public Object clone() {...}
public void ensureCapacity(int minCapacity) {...}
public void trimToSize() {...}

}

Figure 13.12: TheArrayList<E> class

supplied for resizing the list under program control. TheensureCapacity method can be used
to expand the size to a specified amount if necessary and thetrimToSize method can be used to
downsize the list so that its capacity is the same as its size.

OurDynamicArray<E> class (see page 740) is a very simple version ofArrayList<E>.

13.8.2 LinkedList<E> implementation of List<E>

The LinkedList<E> implementation uses a linked list data structure (discussed in a data struc-
tures course). For random access (using an index) this implementation is inefficient (O(n)). If
you mostly want to add and remove elements using the list iterator (access relative to the current
element) then this implementation is efficient (O(1)) whereas theArrayList<E> implementation
would be inefficient. TheLinkedList<E> class is summarized in Figure 13.13.

There are two constructors. The no-arg constructor createsan empty list. There is no need to
specify a capacity since one of the properties of a linked list is that it can grow and shrink one
element at a time in a very efficient manner.

The second constructor is a conversion constructor that creates a linked list from the given
collectionc in the order defined by the collection’s iterator.

13.8.3 Simple list examples

EXAMPLE 13.16 (Converting a collection to a list) The statement

List<String> list = new ArrayList<String>(c);

uses the conversion constructor to convert any collectionc of strings to anArrayList of strings
in the order given by the collection’s iterator.

EXAMPLE 13.17 (Appending to a list) The statement

13.8List<E> implementations and examples 759

public class LinkedList<E> extends AbstractSequentialList<E>
implements List<E>, Queue<E>, Cloneable, Serializable

{
// Constructors
public LinkedList() {...}
public LinkedList(Collection<? extends E> c) {...}

// Implementation of List<E> interface methods go here
// Queue<E> related methods go here

// Extra methods
public Object clone() {...}
public void addFirst(E element) {...}
public void addLast(E element) {...}
public E getFirst() {...}
public E getLast() {...}
public E removeFirst() {...}
public E removeLast() {...}

}

Figure 13.13: TheLinkedList<E> class

list1.addAll(list2);

appendslist2 to the end oflist1.

The statements

List<String> list3 = new ArrayList<String>(list1);
list3.addAll(list2);

append two lists to create a new list without modifying either list1 or list2.

EXAMPLE 13.18 (Swapping (exchanging) two list elements)Given a list of strings the fol-
lowing statements

String temp = list.get(i); // String temp = list[i];
list.set(i, list.get(j)); // list[i] = list[j];
list.set(j, temp); // list[j] = temp;

use the indexed list operationsget andset to swap the elements at positionsi andj. The com-
ments show the statements that would be used iflist were an array instead of a list.

The polymorphic static method

public static <E> void swap(List<E> list, int i, int j)
{

E temp = list.get(i);
list.set(i, list.get(j));
list.set(j, temp);

760 Introduction to Data Types and Structures

}

can be used to swap two elements of any list.

13.8.4 Book inventory example

Here we create a simple book inventory system. Each book is represented as an object from aBook
class and the books in the store are represented as a list of typeArrayList<Book>,

Each book has data fields for a title, author, price, and the number of books in stock. We want
to process a list of books and remove books that are not in stock. The books removed can be stored
in another reorder list. TheBook class is given by

ClassBook

book-project/chapter13/lists

package chapter13.lists;
/**
* Book objects have a title, author, price, quantity in stock.
* Books can also be ordered by increasing order of title.
*/
public final class Book implements Comparable<Book>
{

private String title;
private String author;
private double price;
private int inStock;

/**
* Construct a book from given data.
* @param title the title of the book.
* @param author the author of the book.
* @param price the retail price of the book.
* @param inStock the number of books in stock.
*/
public Book(String title, String author, double price, int inStock)
{

this.title = title;
this.author = author;
this.price = price;
this.inStock = inStock;

}

/**
* Return the author of the book.
* @return the author of the book.
*/
public String getAuthor()
{

return author;
}

13.8List<E> implementations and examples 761

/**
* Return the number of books in stock.
* @return the number of books in stock.
*/
public int getInStock()
{

return inStock;
}

/**
* Return the retail price of the book.
* @return the retail price of the book.
*/
public double getPrice()
{

return price;
}

/**
* Return the title of the book.
* @return the title of the book.
*/
public String getTitle()
{

return title;
}

/**
* Return a string representation of a book.
* @return a string representation of a book.
*/
public String toString()
{

return "Book[" + title + "," +
author + "," + price + "," + inStock + "]";

}

/**
* Compare this book to another book using the title.
* @param b the book to compare with this book
* @return negative, zero, positive results
*/
public int compareTo(Book b)
{

return title.compareTo(b.title);
}

/**
* Return true if this book has the same title as obj.
* @param obj the book to compare with this book
* @return true if this book has same title as obj

762 Introduction to Data Types and Structures

*/
public boolean equals(Object obj)
{

if (obj == null || getClass() != obj.getClass())
return false;

return title.equals(((Book) obj).title);
}

public int hashCode()
{

return title.hashCode();
}

}

We have implemented theComparable<Book> interface that defines the natural order with the
compareTo method to be alphabetical order by title. Anequals method has also been provided
and the correspondinghashCode is obtained using the hash code of the title string. Choosinghash
codes is best left to a course on data structures. Here we use the hash code already defined in the
String class.

The following static method can be used to produce the two lists.

public static List<Book> reOrderBooks(List<Book> list)
{

List<Book> reOrderList = new LinkedList<Book>();
Iterator<Book> iter = list.iterator();
while (iter.hasNext())
{

Book b = iter.next();
if (b.getInStock() == 0)
{

reOrderList.add(b);
iter.remove();

}
}
return reOrderList;

}

Herelist is the given list to split. AreOrderList is created and the iteratoriter is used to
traverse the given list, removing elements with an in stock value of 0. Each element removed is
added toreOrderListwhich is returned by the method. Note that we have usedIterator<Book>
instead ofListIterator<Book> since the extra methods inListIterator<Book> are not used
here.

We have usedLinkedList here instead ofArrayList since we access the list only relatively
using the iterator’sadd andremove methods which are efficient.

Here is a short program that can be used to test the method.

ClassBookList

book-project/chapter13/lists

13.8List<E> implementations and examples 763

package chapter13.lists;
import java.util.LinkedList;
import java.util.Iterator;
import java.util.List;

public class BookList
{

/**
* Modify original list so it contains only books
* in stock and create a new list that contains books
* which are out of stock.
*/
public void processBookList()
{

List<Book> list = new LinkedList<Book>();
list.add(new Book("Dead Souls", "Ian Rankin", 25.95 ,10));
list.add(new Book("Stranger House", "Reginald Hill", 29.50 ,0));
list.add(new Book("Not Safe After Dark", "Peter Robinson", 32.99 ,10));
list.add(new Book("Original Sin", "P. D. James", 39.95 ,0));
list.add(new Book("Fleshmarket Close", "Ian Rankin", 25.00 ,0));

List<Book> reOrderList = reOrderBooks(list);
System.out.println("Re-order list:");
displayList(reOrderList);
System.out.println("List in stock:");
displayList(list);

}

/**
* Create lists of books in stock and reorder list.
* @param list the book list
* @return the list of books to be ordered.
* The original list now contains only books that are instock.
*/
public static List<Book> reOrderBooks(List<Book> list)
{

List<Book> reOrderList = new LinkedList<Book>();
Iterator<Book> iter = list.iterator();
while (iter.hasNext())
{

Book b = iter.next();
if (b.getInStock() == 0)
{

reOrderList.add(b);
iter.remove();

}
}
return reOrderList;

}

public static <E> void displayList(List<E> list)
{

764 Introduction to Data Types and Structures

for (E element : list)
System.out.println(element);

}

public static void main(String[] args)
{

BookList books = new BookList();
books.processBookList();

}
}

A for-each loop is used to display the books, one per line and the output is

Re-order list:
Book[Stranger House,Reginald Hill,29.5,0]
Book[Original Sin,P. D. James,39.95,0]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
List in stock:
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Not Safe After Dark,Peter Robinson,32.99,10]

13.8.5 Insertion in a sorted list

An easy way to maintain a list in some sorted order is to start with an empty list and as elements
are added to the list put them in the correct position so that the list remains sorted. In this way we
avoid sorting altogether.

To develop the algorithm suppose that[e0,e1, . . . ,en] is a list that is sorted in some order. If we
want to add an elemente to the list in its proper sorted position then we need to iterate through the
list and comparee with eachek. The iteration continues until we arrive at an elementek such that
e ≤ ek. Then the proper place fore is beforeek. There are two special cases: (1) list is empty so
create a one-element list, (2) we never find thate ≤ ek so the elemente must be added at the end
of the list.

Let us assume that we have a sorted list of integers. Then we can write the following method
to do the insertion.

public static void
insertInSortedIntegerList(List<Integer> list, Integer newElement)
{

ListIterator<Integer> iter = list.listIterator();

if (!iter.hasNext()) // empty list so make a 1-element list
{

iter.add(newElement);
return;

}

while(iter.hasNext())
{

13.8List<E> implementations and examples 765

int ek = iter.next();
if (newElement <= ek)
{

iter.previous(); // backup
iter.add(newElement);
return;

}
}
iter.add(newElement); // add after end of list

}

It is important to note thatprevious() is needed since to find the correct position usingnext()
we need to add the element at the position to its left soprevious() backs up the iterator. If we
come out of the while loop then we need to add the new element tothe end of the list.

Statements such as the following can be used to test the method:

List<Integer> list = new ArrayList<Integer>();
list.add(4); list.add(6); list.add(8);
System.out.println(list);
insertInSortedIntegerList(list,9);
System.out.println(list);

The result is the list[4,6,8,9].
We can convert this method to the following polymorphic generic one with typeE.

public static <E extends Comparable<E>>
void insertInSortedList(List<E> list, E newElement)
{

ListIterator<E> iter = list.listIterator();

if (!iter.hasNext()) // empty list so make a 1-element list
{

iter.add(newElement);
return;

}

while(iter.hasNext())
{

E element = iter.next();
if (newElement.compareTo(element) <= 0)
{

iter.previous(); // backup
iter.add(newElement);
return;

}
}
iter.add(newElement); // add after end of list

}

766 Introduction to Data Types and Structures

Here we specify that the generic type must extend or implement the Comparable<E> interface.
Then instead of using<= we use thecompareTo method of theComparable<E> interface.

This example can also be done using aLinkedList<E>, which may be more efficient than an
ArrayList<E> in this case, since any modifications to the input list are done using only relative
access and the list iterator operations areO(1).

Here is a short program that can be used to test the method for lists of typeString andBook
both of which implement theComparable interface.

ClassSortedListExample

book-project/chapter13/lists

package chapter13.lists;
import java.util.ArrayList;
import java.util.List;
import java.util.ListIterator;

public class SortedListExample
{

public void doTest()
{

// Try it on a list of strings

List<String> strList = new ArrayList<String>();
strList.add("Fred"); strList.add("Jane"); strList.add("Mike");
System.out.println(strList);
insertInSortedList(strList, "Gord");
System.out.println(strList);
insertInSortedList(strList,"Carol");
System.out.println(strList);
insertInSortedList(strList,"Bob");
System.out.println(strList);
insertInSortedList(strList,"Susan");
System.out.println(strList);

// Try it on a list of books

List<Book> list = new ArrayList<Book>();
insertInSortedList(list, new Book("Dead Souls", "Ian Rankin", 25.95 ,10));
insertInSortedList(list, new Book("Stranger House", "Reginald Hill", 29.50 ,0));
insertInSortedList(list,

new Book("Not Safe After Dark", "Peter Robinson", 32.99 ,10));
insertInSortedList(list, new Book("Original Sin", "P. D. James", 39.95 ,0));
insertInSortedList(list, new Book("Fleshmarket Close", "Ian Rankin", 25.00 ,0));
displayList(list);

}

public static <E extends Comparable<E>>
void insertInSortedList(List<E> list, E newElement)
{

ListIterator<E> iter = list.listIterator();

13.8List<E> implementations and examples 767

if (!iter.hasNext()) // empty list so make a 1-element list
{

iter.add(newElement);
return;

}
// Note: when we know where to insert
// the new element we have gone one
// position too far so previous is needed.
while(iter.hasNext())
{

E element = iter.next();
if (newElement.compareTo(element) <= 0)
{

iter.previous(); // backup
iter.add(newElement);
return;

}
}
iter.add(newElement); // add after end of list

}

public static <E> void displayList(List<E> list)
{

for (E element : list)
System.out.println(element);

}

public static void main(String[] args)
{

SortedListExample example = new SortedListExample();
example.doTest();

}
}

The sorted output is

[Fred, Jane, Mike]
[Fred, Gord, Jane, Mike]
[Carol, Fred, Gord, Jane, Mike]
[Bob, Carol, Fred, Gord, Jane, Mike]
[Bob, Carol, Fred, Gord, Jane, Mike, Susan]
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
Book[Not Safe After Dark,Peter Robinson,32.99,10]
Book[Original Sin,P. D. James,39.95,0]
Book[Stranger House,Reginald Hill,29.5,0]

768 Introduction to Data Types and Structures

13.9 Map data type

Maps are one of the most important data types. A map is a function f that associates elements of
one setK called the domain of the map to elements of another setV called the range of the map.
Each element of the domain is often called akey and the corresponding element of the range is
often called thevalue.

A map can be denoted byf : K → V or as a set ofkey-value pairs(k,v) denoted in the finite
case by the set

f = {(k1,v1),(k2,v2), . . . ,(kn,vn)}.

of n pairs. We can also denote the pair(k,v) by vk which looks like array notation except the
subscripts do not need to be integers.

The keys themselves form the setK = {k1,k2, . . . ,kn} since no two keys can be the same. Since
two or more keys can be associated with the same value, the values do not form a set, they form a
collection.

13.9.1 Name-age example

As a simple example consider a set of names as the domain and the set of ages as the range. Then
the following map associates names of people with their age.

age= {(Jane,12),(Fred,10),(Mary,15),(Bob,10)}.

Then, for example, using standard function notation, age(Fred) = 10 and age(Mary) = 15. A map
can be visualized as a two-column table as shown in Figure 13.14. Here the keys go in the first

Bob 10

Mary 15

Fred 10

Jane 12

Name Age

Figure 13.14: A two-column representation of the name-age map

column and the corresponding values go in the second column.

13.9.2 Basic map operations

The basic operations on a map are

add Add a new key-value pair to the map (a map should be resizable).

delete Remove a key-value pair given its key.

13.9 Map data type 769

replace Replace the value in a key-value pair with a new value given its key.

search Search for (“look up”) the value associated with a given key.

The most important operation on a map is to be able to efficiently “look up” the value associated
with a given key. A naive approach to this would be to use an array data structure to store the
key-value pairs and, given a key, use a linear search to find the ordered pair containing this key and
hence the value. This searching method would beO(n).

A much better approach is to use a data structure called a hashtable that uses a hash code to
make lookup much more efficient than linear search. In fact look up is normally anO(1) operation.

13.9.3 Hash tables and codes

We consider a very simple case of a hash table which is the implementation data structure for a
map. In our case the keys and values are both integers. Suppose we have an array with indices 0
to 10 as shown in Figure 13.15 that can hold the key-value pairs. Here we assume that each array

v132

0 1 2

v102

3

v15

4

v5

5

v257

6 7

v558

8 9

v32

10

Figure 13.15: A simple hash table of size 11 usingh(k) = k mod 11. Herevk is the value associated
with keyk.

location can hold one key-value pair and the notationvk indicates that the value associated with
keyk is vk and we assume that the values are non-negative integers. There is room for 11 pairs and
some of them are shown in the figure. Empty array locations areunused.

For each key we need a function to transform the key into an array index which can then be
used to obtain the value associated with this key.

In general the range of values (non-negative integers in this case) is much greater than the size
of the array so we cannot just store the pair with keyk in the location with indexk. To be specific
let us assume that each keyk satisfies 0≤ k ≤ 1000. What we need is a functionh(k) called a hash
function that produces an integer hash code for each keyk. This code can then be converted to an
array indexi in the range 0≤ i ≤ 10 usingi = h(k) mod 11. We consider only the simplest case
which ish(k) = k so that the array index of keyk is i = k mod 11.

Suppose we start with an empty array and begin inserting pairs with keys 15, 558, 32, 132, 102,
and 5. Then the corresponding array indices are 15 mod 11= 4, 558 mod 11= 8, 32 mod 11= 10,
132 mod 11= 0, 102 mod 11= 3, and 5 mod 11= 5, as shown in Figure 13.15.

No problems are encountered since all the remainders are different. However when we try to
insert a pair with key 257 then 257 mod 11= 4 and location 4 is already occupied by the pairv15
having key 15. This is inevitable as we insert new pairs sincethere are many more keys than array
indices. This situation is called acollision and we need acollision resolution policy to decide
where to store the pair. The simplest policy is to find the nexthighest empty location and store the

770 Introduction to Data Types and Structures

pair there. In our example this means that pairv257, which would have gone in the location with
index 4, now goes in the location with index 6, as shown in Figure 13.15. In general we would
assume that the array indices wrap around with index 0 following index 10. If there is no free
location this means that the array is full and would need to beexpanded by doubling its size for
example.

13.10 TheMap<K,V> interface

The JCF has aMap<K,V> interface that defines the basic operations on maps. This interface is
parametrized with two generic types. The typeK is the key type and the typeV is the value type.
They can be any object type. The methods in theMap<K,V> interface are shown in Figure 13.16.
An interesting feature of this interface is that it containsan inner interface to represent the entries
(pairs) in the map. Detailed descriptions of these operations are given in the Java API documenta-
tion which is summarized here.

• int size();

Return the number of pairs (entries) currently stored inthis map.

• boolean isEmpty();

Return true ifthis map is empty (contains no entries).

• boolean containsKey(Object key);

Return true if an entry with the givenkey is in this map.

• boolean containsValue(Object value);

Return true if an entry with the givenvalue is in this map.

• V get(Object key);

Return the value associated with the givenkey. This is the “look up” operation. A return
value ofnull either indicates that there is no entry with this key or thereis an entry but its
value isnull.

• V put(K key, V value);

Add a new pair (entry) to the map with givenkey andvalue. If the entry was already in
this map then the old value is replaced byvalue and the old value is returned. Otherwise
a new entry is added tothis map andnull is returned. This is an optional operation.

• V remove(Object key);

If the entry with the givenkey is in this map then it is removed and its value is returned.
Otherwisenull is returned. This is an optional operation.

• void putAll(Map<? extends K, ? extends V> t);

All the entries in the mapt are put intothis map. The types of the mapt can beK andV
or any types that extend or implementK andV. This is an optional operation.

13.10 TheMap<K,V> interface 771

public interface Map<K,V>
{

// Query Operations
int size();
boolean isEmpty();
boolean containsKey(Object key);
boolean containsValue(Object value);
V get(Object key);

// Modification Operations
V put(K key, V value); // optional
V remove(Object key); // optional

// Bulk Operations
void putAll(Map<? extends K,? extends V> t); // optional
void clear(); // optional

interface Entry<K,V>
{

K getKey();
V getValue();
V setValue(V value); // optional
boolean equals(Object obj);
int hashCode();

}

// Views
Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet();

// Comparison and hashing
boolean equals(Object obj);
int hashCode();

}

Figure 13.16:Map interface

772 Introduction to Data Types and Structures

• void clear();

Remove all the entries fromthis map. The result is the empty map. This is an optional
operation.

• interface Entry<K,V>

This is an inner interface that defines a map entry (pair). To refer to such an entry use the
typeMap.Entry<K,V>.

– K getKey();

Return the key ofthis entry.

– V getValue();

Return the value ofthis entry.

– V setValue(V value);

Set a new value forthis entry. This is an optional operation.

– boolean equals(Object obj);

Return true ifobj is equal tothis entry.

– int hashCode()

Return the hash code ofthis entry.

• Set<K> keySet();

Return the keys inthis map as a set.

• Collection<V> values();

Return the values inthis map as a collection.

• Set<Map.Entry<K,V>> entrySet();

Return the entries ofthis map as a set of elements of typeMap.Entry<K,V>.

• boolean equals(Object obj);

Return true ifobj is a map equal tothis map.

• int hashCode()

Return the hash code ofthis map.

13.11 Map implementations and examples

The JCF has several implementations of theMap<K,V> interface. We will consider three of them
that are similar to the corresponding ones for sets:HashMap<K,V>, LinkedHashMap<K,V>, and
TreeMap<K,V>.

13.11 Map implementations and examples 773

public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable

{
public HashMap() {...}
public HashMap(int initialCapacity) {...}
public HashMap(Map<? extends K,? extends V> m) {...}
public HashMap(int initialCapacity, float loadFactor) {...}

public Object clone() {...}

// Implementations of Map interface methods go here
}

Figure 13.17: TheHashMap<K,V> class

public class LinkedHashMap<E> extends HashMap<K,V>
implements Map<K,V>, Cloneable, Serializable

{
public LinkedHashMap() {...}
public LinkedHashMap(int initialCapacity) {...}
public LinkedHashMap(int initialCapacity, float loadFactor) {...}
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {...}
public LinkedHashMap(Map<? extends K,? extends V> m) {...}

public Object clone() {...}

// Implementations of Map interface methods go here
// Other methods go here

}

Figure 13.18: TheLinkedHashMap<K,V> class

13.11.1 HashMap<K,V> implementation of Map<K,V>

TheHashMap<K,V> implementation is the fastest but it does not maintain any order to the entries
in the map. A class summary is shown in Figure 13.17.

There are four constructors. The first constructor with no arguments constructs an empty map
with a default initial capacity of 16 elements. The second constructor specifies a given initial
capacity. The third one is called a conversion constructor and can be used as a copy constructor.
We will not use the fourth constructor. It is used to optimizethe hash table implementation.

13.11.2 LinkedHashMap<K,V> implementation of Map<K,V>

The LinkedHashMap<K,V> implementation maintains the order in which keys are added to the
map. A class summary is shown in Figure 13.18.

774 Introduction to Data Types and Structures

public class TreeMap<K,V> extends AbstractMap<K,V>
implements SortedMap<K,V>, Cloneable, Serializable

{
public TreeMap() {...}
public TreeMap(Comparator<? super K> c) {...}
public TreeMap(Map<? extends K,? extends V> m) {...}
public TreeMap(SortedMap<K,? extends V> m) {...}

public Object clone() {...}

// implementations of SortedMap interface go here
// SortedMap extends the Map interface

}

Figure 13.19: TheTreeMap<K,V> class

13.11.3 TreeMap<K,V> implementation of Map<K,V>

TheTreeMap<K,V> implementation provides a sorted order based on the naturalordering of the
keys as given by theComparable<K> interface implemented byK. A class summary is shown in
Figure 13.19. TheSortedMap<K,V> interface extends theMap<K,V> interface to provide extra
methods related to the sort order (See Java API documentation).

13.11.4 Simple map examples

Here we give some simple examples to illustrate map operations using the name-age example.

EXAMPLE 13.19 (Constructing a name-age map)The statements

Map<String,Integer> age = new HashMap<String,Integer>();
age.put("Jane", 12);
age.put("Fred", 10);
age.put("Mary", 15);
age.put("Bob", 10);
System.out.println(age);

create the name-age map shown in Figure 13.15 using autoboxing from int to Integer. The
no-arg constructor uses a default size of 16 entries for the map. The output is

{Bob=10, Jane=12, Fred=10, Mary=15}

and shows that the insertion order is not preserved by theHashMap implementation. If you change
the implementation toLinkedHashMap then the output is

{Jane=12, Fred=10, Mary=15, Bob=10}

which is in the order of insertion into the map. Finally, if you change the implementation to
TreeMap then the output is

13.11 Map implementations and examples 775

{Bob=10, Fred=10, Jane=12, Mary=15}

which is sorted in increasing order of the names (keys).

EXAMPLE 13.20 (Finding the age of a given person)The statements

String name = "Mary";
int a = age.get(name);
System.out.println("Age of " + name + " is " + a);

return the age of Mary.

EXAMPLE 13.21 (Using get if name is not in the map)The statements

String name = "Gord";
int a = age.get(name);

throw aNullPointerException. Since Gord is not in the mapget returnsnull which cannot be
unboxed to anint so the exception is thrown. This only happens with the primitive types. Without
the auto unboxing the statements

String name = "Gord";
Integer a = age.get(name);
System.out.println("Age of " + name + " is " + a);

return anull value fora and no exception is thrown.

EXAMPLE 13.22 (Checking if a map contains a key)The statements

String name = "Jill";
if (age.containsKey(name))

System.out.println(name + " was found");
else

System.out.println(name + " was not found");

show that Jill was not found in the map.

EXAMPLE 13.23 (Update a value given its key)The statements

String name = "Fred";
age.put(name, 15);
System.out.println("New age of " + name + " is " + age.get(name));

update the age of Fred from 10 to 15 and display it. The statements

String name = "Fred";
int currentAge = age.get(name);
age.put(name, currentAge + 1);
System.out.println("New age of " + name + " is " + age.get(name));

776 Introduction to Data Types and Structures

add 1 year to Fred’s age and display it.

EXAMPLE 13.24 (Deleting an entry given its key) The statements

String name = "Fred";
if (age.containsKey(name))

age.remove(name);
System.out.println(age);

delete Fred from the map and display the resulting map

{Bob=10, Jane=12, Mary=15}

which shows that Fred is no longer an entry in the map

EXAMPLE 13.25 (Iterating over the keys of a map) To get an iterator over the keys in a map
we first get the keys as a set and then ask this set for an iterator. The statements

Set<String> keys = age.keySet();
Iterator<String> iter = keys.iterator();
while (iter.hasNext())
{

String name = iter.next();
int a = age.get(name);
System.out.println(name + " -> " + a);

}

use the iterator to display the name-age pairs using an “arrow” notation, one per line.

EXAMPLE 13.26 (Iterating over the keys using a for-each loop)The statements

for (String name : age.keySet())
{

System.out.println(name + " -> " + age.get(name));
}

use the for-each loop to display the name-age pairs using an “arrow” notation, one per line.

EXAMPLE 13.27 (Use the for-each loop to compute average age)The statements

Set<String> keys = age.keySet();
double sum = 0.0;
for (String name : keys)
{

sum += age.get(name);
}
System.out.println("Average age is " + sum / keys.size());

compute the average age. Thesize method is used to find the number of keys in the map.

13.11 Map implementations and examples 777

EXAMPLE 13.28 (Use an iterator and theMap.Entry interface) The statements

Set<Map.Entry<String,Integer>> entries = age.entrySet();
Iterator<Map.Entry<String,Integer>> iter = entries.iterator();
while (iter.hasNext())
{

Map.Entry<String,Integer> entry = iter.next();
System.out.println(entry.getKey() + " -> " + entry.getValue());

}

iterate over the map entries. First we get theentries set of typeMap.Entry<String,Integer>
using the inner interface of theMap<String,Integer> interface. Then we ask it for an iterator
over the entries. Each entry hasgetKey() andgetValue()methods. The loop displays the entries
using arrow notation.

The for-each loop

for (Map.Entry<String,Integer> entry : age.entrySet())
{

System.out.println(entry.getKey() + " -> " + entry.getValue());
}

can be used as long as the mutable iterator operations are notrequired.

EXAMPLE 13.29 (Adding 1 year to all the ages)The statements

Set<Map.Entry<String,Integer>> entries = age.entrySet();
Iterator<Map.Entry<String,Integer>> iter = entries.iterator();
while (iter.hasNext())
{

Map.Entry<String,Integer> entry = iter.next();
entry.setValue(entry.getValue() + 1);

}
System.out.println(entries);

use theentrySet() iterator to add 1 to all the ages.

13.11.5 Hours worked example

As a useful example of a map suppose we have a file calledhours.txt whose lines contain a
person’s name and the number of hours they have worked. An example might be

Fred:10
Gord:20
Fred:30
Mary:15
Gord:13
Mary:4
Mary:6

778 Introduction to Data Types and Structures

There can be more than one entry per person and we want to display the total hours worked by
each person in the format

Fred -> 40.0
Mary -> 25.0
Gord -> 33.0

indicating that Fred has worked 40 hours (10 + 30), Gord has worked 33 hours (20 + 13), and Mary
has worked 25 hours (15 + 4 + 6).

We can produce this list by reading the file into a map with the names as keys and the hours
worked as the values. Each time we read a line we check if the name is already in the map. If it is
not we create a new entry, and if it is already in the map we update the number of hours by adding
the new value.

Before reading the file we create the following map:

Map<String,Double> map = new HashMap<String,Double>();

If you want the names to be ordered alphabetically then replaceHashMap by TreeMap.
Then ifname andhours are the values read from the file the map is updated using the statements

if (map.containsKey(name)) // update hours worked
{

double currentHours = map.get(name);
map.put(name, currentHours + hours);

}
else // new entry
{

map.put(name, hours);
}

To read the lines of the file we can use thesplit method in theString class, so ifline is a line
read from the file then

String[] s = line.split(":");

will read the name and hour values as strings intos[0] ands[1], using colon as the delimiter.
Here is the complete program.

ClassHoursWorked

book-project/chapter13/maps

package chapter13.maps;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

13.11 Map implementations and examples 779

/**
* A map example: file contains names and hours worked in the format
* name:hours
* A person may appear several times in the file and we want to
* determine the total hours each person has worked.
*
* We read this file a line at a time and separate the name and hours.
* The name is used as the key in a hash table and the hours is the
* value if the key is new else the hours are updated. The result
* is a map containing the total hours worked for each person.
*
* If a TreeMap is used instead of a HashMap the names will be
* ordered in increasing alphabetic order.
*/
public class HoursWorked
{

private static final File IN_FILE = new File("files/hours.txt");

public void processFile() throws IOException
{

Map<String,Double> map =
new HashMap<String,Double>();

BufferedReader in =
new BufferedReader(new FileReader(IN_FILE));

String line;

while ((line = in.readLine()) != null)
{

// Each line of the file contains a name and a number
// of hours worked separated by a colon which can be
// preceded by zero or more spaces.

String[] s = line.split(":");
String name = s[0].trim();
double hours = Double.parseDouble(s[1].trim());

// Echo for checking

System.out.println(name + ":" + hours);

// put entries in map and update hours

if (map.containsKey(name)) // update hours worked
{

double currentHours = map.get(name);
map.put(name, currentHours + hours);

}
else // new entry
{

map.put(name, hours);
}

780 Introduction to Data Types and Structures

}
in.close();

// Display the map, one entry per line

System.out.println("Map is");
for (String name : map.keySet())
{

double hours = map.get(name);
System.out.println(name + " -> " + hours);

}
}

public static void main(String[] args) throws IOException
{

HoursWorked tester = new HoursWorked();
tester.processFile();

}
}

13.11.6 Favorites map with maps as values

We now do an example of a map whose values are also maps. This example is extended in the end
of chapter exercises.

In our case we want a map structure that can record the favorite song, food, golfer, etc, asso-
ciated with each person. Thus, the key-value pairs of the primary map are names and references
to favorite maps. The key-value pairs of each favorite map are the category names, such as food,
song and golfer, and the values are the preferences.

Using set theory notation an example of such a map of maps is

favorites = {(Bob, f1),(Fred, f2),(Gord, f3)}

f1 = {(food,salad),(golfer,Vijay Singh),(song,White Wedding)}

f2 = {(food,steak),(golfer,Tiger Woods),(song,Satisfaction)}

f3 = {(food,spaghetti),(golfer,Phil Mickelson),(song,Money)}

This example is also shown using tables in Figure 13.20. It iseasy to construct these maps in Java.
The favorites map is given by

Map<String,Map<String,String>> favorites =
new HashMap<String, Map<String,String>>();

which is a map from strings to maps from strings to strings. Now the favorite maps are given by

Map<String,String> f1 = new HashMap<String,String>();
f1.put("golfer", "Vijay Singh");
f1.put("song", "White Wedding");
f1.put("food", "salad");

Map<String,String> f2 = new HashMap<String,String>();

13.11 Map implementations and examples 781

song Money

golfer Phil Mickelson

food spaghetti

song Satisfaction

golfer Tiger Woods

food steak

song White Wedding

golfer Vijay Singh

food salad

category preference

Gord HHHHHHHHHHj

Fred -

Bob ����������*

name favorite

favorites

6

Figure 13.20: A map of maps. The keys of the first map are names.The values are favorite maps
whose keys are the categories and values are the preferences.

f2.put("golfer", "Tiger Woods");
f2.put("song", "Satisfaction");
f2.put("food", "steak");

Map<String,String> f3 = new HashMap<String,String>();
f3.put("golfer", "Phil Mickelson");
f3.put("song", "Money");
f3.put("food", "spaghetti");

Finally we associate these maps as values of the favorites map:

favorites.put("Bob", f1);
favorites.put("Fred", f2);
favorites.put("Gord", f3);

It is easy to perform operations on this map. For example, to display Fred’s favorite map use

System.out.println(favorites.get("Fred"));

To display Bob’s favorite golfer use

System.out.println(favorites.get("Fred").get("golfer"));

To change Fred’s favorite food to chicken use

favorites.get("Fred").put("food", "chicken");

782 Introduction to Data Types and Structures

EXAMPLE 13.30 (For-each loop for favorites map) The statements

for (String name : favorites.keySet())
{

System.out.println(name);
System.out.println(favorites.get(name));

}

produce the output

Bob
{golfer=Vijay Singh, food=salad, song=White Wedding}
Fred
{golfer=Tiger Woods, food=steak, song=Satisfaction}
Gord
{golfer=Phil Mickelson, food=spaghetti, song=Money}

which show the favorite maps one per line. To obtain an alphabetical order replace theHashMap
implementation byTreeMap.

EXAMPLE 13.31 (Nested for-each loops for favorites map)The statements

for (String name : favorites.keySet())
{

System.out.println("favorites for " + name + ":");
Map<String,String> favorite = favorites.get(name);
for (String category : favorite.keySet())
{

String preference = favorite.get(category);
System.out.println(" " + category + ": " + preference);

}
}

produce the display

favorites for Bob:
food: salad
golfer: Vijay Singh
song: White Wedding

favorites for Fred:
food: steak
golfer: Tiger Woods
song: Satisfaction

favorites for Gord:
food: spaghetti
golfer: Phil Mickelson
song: Money

using nested for-each loops to iterate over the maps. The outer loop iterates over each person and
the inner loop iterates over all categories in each favoritemap.

13.12 Recursion examples using maps 783

13.12 Recursion examples using maps

Consider a sequence[sm,sm+1,sm+2, . . . ,sn,sn+1, . . .] with starting indexm which is often taken to
be 0. Such sequences are often defined by recurrence relations of the formsn = f (sn−1), which
is a first order recurrence relation since the calculation ofsn depends on the previous term in the
sequence, or of the formsn = f (sn−1,sn−2), which is a second-order recurrence relation since the
calculation ofsn depends on the previous two terms of the sequence. As a simpleexample, the
recurrence relationsn = nsn−1 with s0 = 1 can be solved to getsn = n!.

Here we consider two recurrence relations, the Fibonacci sequence and the Q-sequence.

13.12.1 The Fibonacci sequence

An important second-order sequence is the Fibonacci sequence defined recursively by

Fn = Fn−1 +Fn−2, whereF0 = F1 = 1.

There is a closed form expression for the general termFn but it is not useful for the calculation of
terms in the sequence. An efficient non-recursive method is easily written to calculate the terms in
the sequence and the following recursive method can also be used

public long fib(int n)
{

if (n == 0 || n == 1)
return 1L;

else
return fib(n-1) + fib(n-2);

}

This method is very inefficient because each term is calculated many times. For example, in the
calculation off30 the termf10 is calculated recursively 10,946 times.

We can avoid this duplication by a technique called memoization. In our case this means that
we can use a map to remember the terms as they are calculated. When we calculate a term for the
first time we store it in a map of typeMap<Integer,Long>. Then whenever this term is needed
again we simply look up its value in the map. Here is a class that calculates Fibonacci numbers
using a map:

ClassFibonacci

book-project/chapter13/maps

package chapter13.maps;
import java.util.Map;
import java.util.HashMap;
import java.util.Scanner;

public class Fibonacci
{

Map<Integer,Long> m;

784 Introduction to Data Types and Structures

public void calculate()
{

// Create map and initialize it
// for fib(0)= 1 and fib(1)= 1

m = new HashMap<Integer,Long>();
m.put(0,1L);
m.put(1,1L);

Scanner input = new Scanner(System.in);
System.out.println("Enter n");
int n = input.nextInt();

long startTime = System.nanoTime();
System.out.println(fib(n));
long time = System.nanoTime() - startTime;

double seconds = (double) time * 1e-9;
System.out.println(seconds);

}

public long fib(int n)
{

if (! m.containsKey(n))
m.put(n, fib(n-1) + fib(n-2));

return m.get(n);
}

public static void main(String[] args)
{

new Fibonacci().calculate();
}

}

Note that before callingfib we construct the map and initialize it by putting the entriesfor F0 = 1
andF1 = 1 into it.

Thefib method first checks to see if the termFn is in the map. If it isn’t the recursive formula
is used to calculate it and put it in the map, otherwise it is looked up in the map and returned.

We have included statements that determine the time in seconds taken to compute a Fibonacci
number. A similar class could be written for the recursive version without using a map. Of course
the results depend on the particular computer. In one test the calculation ofF46 took 53.8 seconds
without using a map and 3.43×10−4 seconds using a map.

13.12.2 The Q-sequence

As another more complicated example which doesn’t have a simple non-recursive algorithm con-
sider the sequence

Q(n) = Q(n−Q(n−1))+Q(n−Q(n−2)), whereQ(1) = 1,Q(2) = 1

13.12 Recursion examples using maps 785

where we use the more readable function notationQ(n) = Qn. The following recursive method can
be used to compute the terms in the sequence.

public int q(int n)
{

if (n <= 2)
return 1;

else
return q(n - q(n-1)) + q(n - q(n-2));

}

The following class uses a map to calculate the terms:

ClassQSequence

book-project/chapter13/maps

package chapter13.maps;
import java.util.Map;
import java.util.HashMap;
import java.util.Scanner;

public class QSequence
{

Map<Integer,Integer> m;

public void calculate()
{

// Create map and initialize it
// for q(1) = 1 and q(2) = 1

m = new HashMap<Integer,Integer>();
m.put(1,1);
m.put(2,1);

Scanner input = new Scanner(System.in);
System.out.println("Enter n");
int n = input.nextInt();
long startTime = System.nanoTime();
System.out.println(q(n));
long time = System.nanoTime() - startTime;
double seconds = (double) time * 1e-9;
System.out.println(seconds);

}

public int q(int n)
{

if (! m.containsKey(n))
m.put(n, q(n - q(n-1)) + q(n - q(n-2)));

return m.get(n);
}

786 Introduction to Data Types and Structures

public static void main(String[] args)
{

new QSequence().calculate();
}

}

In one test the calculation ofQ(45) took 75.8 seconds without using a map and 4.35×10−4 seconds
using a map.

13.13 Collections utility class

TheCollections class is like theMath class: it is a set of useful static methods such as sorting
and searching for operating on sets, lists, and maps in the JCF. There are 50 methods in this class
and we summarize only a few. For a complete description see the Java API documentation.

• static <T> int binarySearch(List<? extends
Comparable<? super T>> list, T key))

Searchlist of typeT for the givenkey. The list must be in the order specified by the
Comparable interface implemented by the list. Returns the zero-based index wherekey
was found or (-index - 1) whereindex is the location wherekey could be inserted.

• static <T> int binarySearch(List<? extends T> list, T key,
Comparator<? super T> c)

Like the above version ofbinarySearch except using the specified implementation of
Comparator to define the order. (list does not need to implementComparable in this
version).

• static <T extends Comparable<? super T>>
void sort(List<T> list)

Sort the givenlist into increasing order using the implementation of theComparable
interface provided bylist.

• static <T> void sort(List<T> list,
Comparator<? super T> c)

Like the above version ofsort except using the specified implementation ofComparator
to define the order. (list does not need to implementComparable in this version).

There is also anArrays class injava.util that provides a similar set of static methods that
operate on arrays instead of collections.

13.13.1 Book list sorting example

In this example we consider two ways to use thesort method in theCollections class to sort a
list of Book objects (see page 760).

13.13 Collections utility class 787

TheBook class implementsComparable<Book> which defines the natural order to be increas-
ing alphabetical order by book title. This means that we can sort a book list in this order simply by
using

Collections.sort(list);

wherelist is a list of books.
If we want to use an order other than the natural order it is necessary to write a class that imple-

ments theComparator<Book> interface. For example, if we want to sort in increasing alphabetic
order by author then following class can be used

ClassBookComparator

book-project/chapter13/lists

package chapter13.lists;
import java.util.Comparator;

public class BookComparator implements Comparator<Book>
{

/**
* Compare this book to another book using the author.
* @param b1 the first book
* @param b2 the second book
* @return negative, zero, positive results
*/
public int compare(Book b1, Book b2)
{

return b1.getAuthor().compareTo(b2.getAuthor());
}

}

Now we can use the statement

Collections.sort(list, new BookComparator());

to sort by author. Here is a class that illustrates these two sorting methods:

ClassSortBookList

book-project/chapter13/lists

package chapter13.lists;
import java.util.Collections;
import java.util.ArrayList;
import java.util.List;

public class SortBookList
{

public void processBookList()
{

788 Introduction to Data Types and Structures

// A simple list of books

List<Book> list = new ArrayList<Book>();
list.add(new Book("Dead Souls", "Ian Rankin", 25.95 ,10));
list.add(new Book("Stranger House", "Reginald Hill", 29.50 ,0));
list.add(new Book("Not Safe After Dark", "Peter Robinson", 32.99 ,10));
list.add(new Book("Original Sin", "P. D. James", 39.95 ,0));
list.add(new Book("Fleshmarket Close", "Ian Rankin", 25.00 ,0));

// Sort using the sort method in the Collections class
// The order uses titles (Book implements Comparable)

Collections.sort(list);
System.out.println("List sorted by title:");
displayList(list);

// Now use a Comparator the sorts using the author

Collections.sort(list, new BookComparator());
System.out.println("List sorted by author:");
displayList(list);

}

public static <E> void displayList(List<E> list)
{

for (E element : list)
System.out.println(element);

}

public static void main(String[] args)
{

SortBookList books = new SortBookList();
books.processBookList();

}
}

The output is

List sorted by title:
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
Book[Not Safe After Dark,Peter Robinson,32.99,10]
Book[Original Sin,P. D. James,39.95,0]
Book[Stranger House,Reginald Hill,29.5,0]
List sorted by author:
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
Book[Original Sin,P. D. James,39.95,0]
Book[Not Safe After Dark,Peter Robinson,32.99,10]
Book[Stranger House,Reginald Hill,29.5,0]

13.14 Programming exercises 789

13.14 Programming exercises

◮ Exercise 13.1 (A randomremove method)
Modify theBag<E> interface on page 729 by adding a randomremove method with prototype

E remove();

that removes a random element from this bag and returns it. Ifthe bag is empty thennull
is returned. Write the method implementation (it will be thesame for bothFixedBag<E> and
DynamicBag<E>). You can use theRandom class injava.util that has anextInt method.

◮ Exercise 13.2 (An indexedadd method)
For theArray<E> interface add a method with prototype

void add(int k, E element);

that adds the givenelement at indexk. The method should throwIndexOutOfBoundsException
if k < 0 or k > size().

The element originally at positionk and all following elements need to be moved up one place
to create a place for the new element. The special case whenk has the valuesize() corresponds
to adding the element at the end of the array.

Write the implementation of this method for theDynamicArray<E> implementation of the
Array<E> interface.

◮ Exercise 13.3 (An indexedremove method)
For theArray<E> interface add a method with prototype

E remove(int k);

that removes the element at indexk by shifting all following elements down one place. The element
removed is returned.

Write the implementation of this method for theDynamicArray<E> implementation of the
Array<E> interface.

◮ Exercise 13.4 (AnindexOf method)
Modify theArray<E> interface on page 738 to include anindexOf method with prototype

int indexOf(E element);

that returns the index of the first occurrence of the given elementE or −1 if the element is not
found. Write the method implementation forDynamicArray<E>.

◮ Exercise 13.5 (Generating random sets of numbers)
Using the idea in Example 13.12, write a method with prototype

Set<Integer> randomSet(int n, int a, int b, Random random);

that returns a set ofn integers randomly chosen in the rangea to b inclusive using theRandom class
in java.util.

790 Introduction to Data Types and Structures

◮ Exercise 13.6 (Generating Lotto 649 numbers using sets)
Using Exercise 13.5 write a class calledLotto649 that generatesn sets of 6 numbers in the range
1 to 49 and displays them.

◮ Exercise 13.7 (Generating Lotto 649 numbers without using sets)
Without using the JCF write a class calledLotto649NoSets that generates n sets of 6 numbers in
the range 1 to 49 and displays them.

◮ Exercise 13.8 (Password generator using sets)
We want to generate a set of unique passwords. Each password is made from the lower and
upper case letters and the digits and has a specified length. Write a class to do this. The input
is the number of passwords in the set and the number of characters in each password (same for all
passwords in the set). Some sample output is

d6rIH hX9Av Ki4SK wDAWx olWhW TVU7Y hGDSw VZecI ga7Sy 0DEij
7aDws T0urW MMjk9 JDAHZ vRb1x lGz3q ibiuE H7nbF CB6zY EGzuX
Dhiou mLtkI Eud22 wNbVo iIhLZ Zc73V taPFL wPJGZ nOy9x DPx9F
leJv3 KhmqQ y23g0 ey3Kr VQvq1

corresponding to a set size of 35 with 5 characters in each password. Display 10 passwords per
line except possibly for the last line.

◮ Exercise 13.9 (Printing a collection one element per line)
The standardtoString method creates a string which, when displayed, is all on one line. Write a
static polymorphic method with prototype

public static <E> void printCollection(Collection<E> c)

that prints the elements one per line.

◮ Exercise 13.10 (Removing duplicate words)
Write a class similar toRemoveDuplicateWordson Page 753 and calledUniqueWords that creates
two sets. The first is a set of unique words as defined in theRemoveDuplicateWords class, and
the second is a set of duplicate words (words that appeared more than once in the input file). From
these sets create a set of words that did not have any duplicates in the input. For example for the
input

a b c d a b e

the output should be

3 unique words found:
[c,d,e]
2 duplicate words found:
[a,b]

◮ Exercise 13.11 (Adapter class version of the Bag ADT)
Write an adapter class implementationArrayBag<E> of the Bag<E> interface on page 729 that
adapts anArrayList<E> object. The adapter class has the following structure

13.14 Programming exercises 791

import java.util.ArrayList;

/**
* An adapter class implementation of Bag<E>
*/
public class Bag<E>
{

// This is an adapter class version of the
// bag ADT that uses an ArrayList

private ArrayList<E> bag;

public Bag() {...}
public Bag(int initialCapacity) {...}

/**
* Copy constructor.
* @param b the bag to copy
*/
public Bag(Bag<E> b) {...}

public int size() {...}
public boolean isEmpty() {...}

public boolean add(E element) {...}
public boolean remove(E element) {...}
public boolean contains(E element) {...}

public String toString()
{

return "Bag" + bag.toString();
}

}

Here all methods are implemented using thebag object instance data field of typeArrayList<E>.

◮ Exercise 13.12 (Memory tester game)
Write a class calledMemoryTester that uses theDynamicBag<Integer> class and the algorithm
shown in Figure 13.21.

Here is some typical output assuming that there are 5 numbersto guess and the numbers are in
the range 1 to 10

Bag[9,9,8,5,4]
Enter guesses for the 5 numbers in range 1 to 10
9 9 7 5 3
You have 3 guesses correct
Enter guesses for the 5 numbers in range 1 to 10

792 Introduction to Data Types and Structures

ALGORITHM MemoryGame()
Make a bag that can hold 5 integers.
Generate 5 random integers in the range 1 to 10

and add them to the bag.
LOOP

Make a copy of the original bag
Ask user for 5 guesses of numbers in the bag

and remove the guesses from the bag copy if possible.
IF bag copy is now emptyTHEN

EXIT LOOP
END IF
Determine how many guesses are correct.
Tell user how many guesses are correct.

END LOOP
Congratulate user on winning the game.

Figure 13.21: Memory game algorithm

9 9 8 5 5
You have 4 guesses correct
Enter guesses for the 5 numbers in range 1 to 10
8 8 7 4 3
You have 2 guesses correct
Enter guesses for the 5 numbers in range 1 to 10
9 9 8 5 4
Congratulations all guesses are correct

Here the first line actually shows the answer so that you can check your class. When it is working
you can remove this display.

◮ Exercise 13.13 (Cities and Countries map)
We start with the following text filecities.txt

Toronto:Canada
Chicago:USA
Frankfort:Germany
Sudbury:Canada
Venice:Italy
Acapulco:Mexico
Berlin:Germany
Barcelona:Spain
Los Angeles:USA
Vancouver:Canada
Rome:Italy

13.14 Programming exercises 793

Miami:USA
London:UK
Mexico City:Mexico
Madrid:Spain
Florence:Italy

that is a list of cities and their countries. In general each country can appear several times.
We want to read this file a line at a time and produce a filecountries.txt having the form

Canada -> [Sudbury, Toronto, Vancouver]
Germany -> [Berlin, Frankfort]
Italy -> [Florence, Rome, Venice]
Mexico -> [Acapulco, Mexico City]
Spain -> [Barcelona, Madrid]
UK -> [London]
USA -> [Chicago, Los Angeles, Miami]

The output has the form of a map fromString to List<String>:

Map<String,List<String>> map = new TreeMap<String,List<String>>();

which will arrange the countries in sorted order.
Write a class calledCities to solve this problem. You can use anArrayList<String> for

each list. See Section 13.11.5 for a simpler example, To sortthe lists for each country, before using
PrintWriter to write the results to a file, use the staticsort method in theCollections class.

◮ Exercise 13.14 (Another version of the cities and countriesmap)
Write a version of theCities class from the previous exercise calledCities2 that produces the
same output but expects its input in the compact form

Toronto:Canada, Chicago:USA, Frankfort:Germany, Sudbury:Canada
Venice:Italy, Acapulco:Mexico, Berlin:Germany
Barcelona:Spain, Los Angeles:USA, Vancouver:Canada
Rome:Italy, Miami:USA, London:UK
Mexico City:Mexico, Madrid:Spain, Florence:Italy

that permits multiple entries per line in the input file separated by commas (use a nested loop with
the outer loop usingsplit(",") in the outer loop andsplit(":") in the inner loop.

◮ Exercise 13.15 (Favorites map using data file)
We want to read a text filefavorites.txt such as

Fred:golfer:Tiger Woods
Bob:food:salad
Fred:food:steak
Bob:song:White Wedding
Gord:golfer:Phil Mickelson
Fred:song:Satisfaction
Bob:golfer:Vijay Singh
Gord:song:Money
Gord:food:spaghetti

794 Introduction to Data Types and Structures

and produce the display shown in Example 13.31 which also corresponds to the favorites map
given in Figure 13.20.

Write a class calledFavorites that does the processing using the map structure of Sec-
tion 13.11.6. Also see Example 13.30 and Example 13.31.

◮ Exercise 13.16 (ArrayList version of an address book)
The purpose of this exercise is to write a GUI version of an address book program that uses an
ArrayList to hold the address book entries. Each entry is an object froman inner class called
AddressBookEntry. An entry is really two strings, one called thekey for the name of the person
and another called thevalue representing the address information.

Now we need to write a class calledAddressBook that manages the address book. This class
will be used by the GUI classAddressBookGUI. TheAddressBook class has the following struc-
ture which you must complete as indicated by theTODO lines.

public class AddressBook
{

private List<AddressBookEntry> list; // the list of address book entries
private String fileName; // name of file containing the list
private String fileStatus; // Status or error message or empty

/**
* Construct an empty address book with a given initial
* size. No attempt is made to read an address book from
* a binary object file so this constructor is mainly
* used for debugging.
* @param initialSize the initial address book size
*/
public AddressBook(int initialSize)
{

list = new ArrayList<AddressBookEntry>(initialSize);
fileName = "";
fileStatus = "";

}

/**
* Make an address book from the data in a binary object file,
* if the file exists, else construct a new address book. Errors
* are recorded as strings that can be retrieved using the
* fileStatus() method.
*/
public AddressBook(String inFileName)
{

fileName = inFileName;
read();

}

/**

13.14 Programming exercises 795

* Read the address book from a binary object file. If
* a binary object file does not exist then create a new
* address book.
* Errors are recorded as strings that can be retrieved using the
* fileError() method.
*/
public void read()
{

// If no error then the string is empty
fileStatus = "";

ObjectInputStream in = null;
try
{

in = new ObjectInputStream(new FileInputStream(fileName));
list = (List<AddressBookEntry>) in.readObject();
fileStatus = "Address book file has been loaded";

}
catch (FileNotFoundException e)
{

// make a new address book if input file not found.
list = new ArrayList<AddressBookEntry>();
fileStatus = "New address book list has been created";

}
catch (ClassNotFoundException e)
{

fileStatus = "Invalid address book file";
}
catch (IOException e)
{

fileStatus = "Unknown error reading address book file";
}
finally // make sure the file was closed
{

try
{

if (in != null) in.close();
}
catch (IOException e)
{

fileStatus = "Unknown error closing address book file";
}

}
}

/**

796 Introduction to Data Types and Structures

* Write the address book as a binary object file.
* Errors are recorded as strings that can be retrieved using the
* fileError() method.
*/
public void write()
{

fileStatus = "Address book has been saved in file";
ObjectOutputStream out = null;
try
{

out = new ObjectOutputStream(new FileOutputStream(fileName));
out.writeObject(list);

}
catch (FileNotFoundException e)
{

fileStatus = "Address book file not found";
}
catch (IOException e)
{

fileStatus = "Unknown error writing address book file";
}
finally
{

try
{

if (out != null) out.close();
}
catch (IOException e)
{

fileStatus = "Unknown error closing output file";
}

}
}

/**
* Return file error or status string after a file operation.
* @return the status string.
*/
public String fileStatus()
{

return fileStatus;
}

/**
* Return number of entries in address book.
* @return number of entries in address book

13.14 Programming exercises 797

*/
public int size()
{

return list.size();
}

/**
* Return the value associated with a given key.
* @param key the key to find
* @return value of key found else null
*/
public String get(String key)
{

// TODO
}

/**
* Add a new entry to the address book.
* If the entry already exists then it is an update operation
* so the value of the entry for this key is updated.
* @param key the key of entry to add or update
* @param value new value for the entry
*/
public void add(String key, String value)
{

// TODO
}

/**
* Delete an entry from address book given its key.
* @param key the key of the entry
* @return true if entry was deleted
* else false if entry did not exist.
*/
public boolean delete(String key)
{

// TODO
}

/**
* Return a string representation of this list.
* @return a string representation of this list.
*/
public String toString()
{

// TODO

798 Introduction to Data Types and Structures

}

// -------- inner class for address book entries ------------

/**
* An object of this class is an entry in an address book database.
* Each entry is a key-value pair. The keys and values are strings.
*/
private static class AddressBookEntry implements java.io.Serializable
{

private static final long serialVersionUID = 1L;
private String key;
private String value;

/**
* Construct an entry given a key and a value.
* @param key the key for the entry.
* @param value the value associated with the key.
*/
public AddressBookEntry(String key, String value)
{

this.key = key;
this.value = value;

}

/**
* Return the key for this entry.
* @return Return the key for this entry.
*/
public String getKey()
{

return key;
}

/**
* Return the value associated with this key
* @return Return the value associated with this key.
*/
public String getValue()
{

return value;
}

/**
* Test this object for equality with obj
* @param obj the object to test with this object

13.14 Programming exercises 799

* @return true if the two objects have the same keys else false
*/
public boolean equals(Object obj)
{

if (obj == null) return false;
if (! getClass().equals(obj.getClass())) return false;
AddressBookEntry entry = (AddressBookEntry) obj;
return key.equals(entry.key);

}

/**
* Define a string representation of this object.
* @return Return the string representation of this object.
*/
public String toString()
{

return "AddressBookEntry[" + key + ", " + value + "]";
}

}
}

Now write theAddressBookGUI class that uses theAddressBook class. This class can have a
JTextField for the key, and aJTextArea for the value. AnotherJTextArea can be used to
display output and status information andJButton objects can be used for ”Save”, ”Search”,
”Delete”, ”Add”, and ”Display All” operations.

◮ Exercise 13.17 (Map version of an address book)
Repeat the previous exercise using a map of the typeMap<String,String> instead of a list to
hold the address book entries. Now there is no need for the inner AddressBookEntry class. The
GUI class will be the same as in the previous exercise, only theAddressBook class will change.

◮ Exercise 13.18 (Map version of a telephone directory)
Write a GUI version of telephone directory that uses a sortedmap.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

