e i1 CSD Univ. of Crete Fall 2007

Java Object and Wrapper Classes
and
Understanding Polymorphism

Fall 2007

~ 9 CSD Univ. of Crete

he Object Class

® Java defines the class
java.lang.Object thatis
defined as a superclass for
all classes!

® If a class doesn’t specify
explicitly which class it is
derived from, then it will be
implicitly derived from class
Object Object

oThe Object class is

therefore the ultimate root]]
of all class hierarchies Restricted Adjustable

+Any object is-a(n) Object File Switch

/91 CSD Univ. of Crete Fall 2007

All Classes Extend Object

® The following two class definitions are equivalent:

class SomeClass class SomeClass extends Object
{ {
// some code // some code

} }

.~ $] CSD Univ. of Crete

®The Object class defines a
set of methods that are
iInherited by all classes

® This makes easier many
functionalities since all objects
(i.e., class instances) have
some common interface

he Object Class Methods

java.lang.Object

clone()
equalsQ
finalize(O
hashCode()
tostring()
getClass()
wait(,notifyQ

Class 1

Attributes

methods inherited
from Object +
its own methods

an identical copy
object equality
release resources

Fall 2007

a computed hash code
"class@hashCode"

Class object for type

for threads

Class 2

Attributes

methods inherited
from Object + its
own

"1 CSD Univ. of Crete Fall 2007

he clone() Method

eThe clone () method has no parameters an returns an Object type

+ returns a new object whose initial state is a copy of the current
state of the object

®Note that what is actually returned by each class does not match the
return type on the method header verses

+ Since all classes are derived from Object, every class “is an”
Object

eIn many classes, the default implementation of (protected) clone () will
be wrong because it duplicates a reference to an object that shouldn’t
be shared

+ A shallow copy, by default
¢ A deep copy is often preferable

7% CSD Univ. of Crete Fall 2007

private int serialNum = O;
public void setSerialNum (int sn){serialNum =sn;}
public int getSerialNum () {return serialNum;}
public Car(int sn) {serialNum = sn;}
public String toString() {

return "Color="+color+" serialNum="+serialNum;}
public Car clone() throws CloneNotSupportedException {
//System.out.println('"cloning");
returnizggfiguper.c1one();

/"% CSD Univ. of Crete Fall 2007

example (cont.)

class TestCloning {
static public void main (String[] a) {

try {
Car cl = new Car(1l);

CaR:EZZE cl.c1on§zzz:>//a1so try Car c2 = cl

//you will not get what you wanted

cl.setSerialNum(20);
System.out.println(cl.toString()+ "\n" + c2.toString());
} catch (Exception e) {}
}
}

You will get at the console:
Color=white serialNum=20
Color=white serialNum=11

. % CSD Univ. of Crete Fall 2007

An alternative way (without using clone())

using a static newinstance() method

class Car implements Cloneable {
String color = "white";

public String toString() {
return "Color="+color+" serialNum="+serialNum;}
public static Car newlnstance(Car a) {
return new Car(a.getSerialNum());

}
}
Instead of |
Car c2 = cl.cloneQ): Assignment for you:
] . . ’ Achieve the same
now we have to use: functionality by a defining an

Car c2 = Car.newInstance(cl); appropriate constructor

‘* CSD Univ. of Crete

Fall 2007

Creating a Shallow Copy of an Object

Public class IntegerStack {
private int[] buffer;
private int top;

public IntegerStack(int maxContents){
buffer = new int[maxContents];

top = -1;

}

public void push(int val)
buffer[++top] = val;

}

public int pop(Q{
return buffer[top--];

}

IntegerStack first =
new IntegerStack(2);
first.push(2);
first.push(9);
Integerstack second =
(Integerstack) first.cloneQ;

88 CSD Univ. of Crete

Creating a Shallow Copy of an Object

buffer 21 g

first — | top: 1 /

buffer’/

///////, top: 1

second

Fall 2007

10

. $1 CSD Univ. of Crete Fall 2007

Creating a Deep Copy of an Object

Object clone method

public Object clone() { is used

try {
IntegerStack nobj = (IntegerStack)super.clone();
nobj.buffer = (int[])buffer.clone();

}catch (CloneNotSupportedException e){
throw new InternalError(e.toString(Q);

}

11

"1 CSD Univ. of Crete

Creating a Deep Copy of an Object

| buffer -1 2| 9
first — top: 1
2
/
buffer —
///////, top:1l
second

Fall 2007

12

. %3 CSD Univ. of Crete Fall 2007

he equals() Method

®The equals() method receives an Object as a parameter
¢ Since all classes are derived from Object, every class “is an” Object

® The default implementation just checks if the two references are the same
¢ We can override this method in order to test object state equality

N
possible ClassCastException

SLLIIG (GBS LI avoided by checking

public boolean equalstObject o)
if (o instanceof Bo
Box b = (Box) o;
return ((length == b.getLength()) &&
(width == b.getwidth()) &&

(height == b.getHeight()));

13

8 CsD univ. of Crete Fall 2007

he 1nstanceof Operator

®You can restore the narrow point of view for objects, by using casting

eHowever at runtime you must know the true type of object referenced
by some wider (base) reference (why?)

eThe instanceof operator can be used to query about the true type
of the Object you are referencing

¢ E.g., Is this particular Object an instance of Class Box?

eQuestion: If Java can determine that a given Object is or is not a Box
(via instanceof), then:

¢ Why the need to cast it to a Box object before Java can recognize
that it can getwidth() or getHeight()?

¢ Why can’t Java do it for us?

14

7% CSD Univ. of Crete Fall 2007

he 1nstanceof Operator and Casting

if (o instanceof Box){
Box b = (Box) o;
return ((length == b.getLength()) &&
(width == b.getwidth()) &&
(height == b.getHeight()));

® st statement is legal
® 2nd statement isn’t (unless o is Box)
® We can see that 1st line guarantees 2nd and 3rd are legal

® Compiler cannot see inter-statement dependencies... unless compiler
runs whole program with all possible data sets!
® Runtime system could tell easily
¢\We want most checking at compile-time for performance and

correctness
15

. @ CSD Univ. of Crete

he 1nstanceof Operator and Casting

® Here, legality of each line of code can be evaluated at compile time

Fall 2007

® Legality of each line discernable without worrying about inter-statement

dependencies, i.e., each line can stand by itself
® Can be sure that code is legal (not sometimes-legal)

® A Good Use for Casting:

¢ Resolving polymorphic ambiguities for the compiler

16

8 CsD univ. of Crete Fall 2007

he finalize() Method

® The finalize() method is useful to release system resources
® Who runs it?
¢ The garbage collector
® Unlike constructors, you can only have one finalize method
® A finalizer receives no parameters and return no value (e.g., its return

type is void)
® Example:
public Class Box However we cannot be sure
private static int count; that it will be called before

JVM shutdown

protected void finalizeO){

--count however you could use:
} System.runFinalizersOnEXxit(true);

17

8 CsD univ. of Crete Fall 2007

The hashCode() Method

® hashCode() returns distinct integers for distinct objects

If two objects are equal according to the equals () method, then
the hashCode () method on each of the two objects must
produce the same integer result

¢ When hashCode () is invoked on the same object more than
once, it must return the same integer, provided no information
used in equals comparisons has been modified

¢ It is not required that if two objects are unequal according to
equals () that hashCode () must return distinct integer values

18

. "$71 CSD Univ. of Crete Fall 2007

he toString() Method

eThe toString() method is used whenever we want to get a String
representation of an object

e\When you define a new class, you can override the toString()
method in order to have a suitable representation of the new type of
objects as Strings

eExample:
System.out.printin (new Random());

printed
Java.util.Random@fd78d6b6

shortcut for

System.out.println (new Random().toString(Q));

19

"1 CSD Univ. of Crete Fall 2007

he Class Class

® \We can navigate the type system in a program

einstance of the class Class represents each class or interface in a
running Java application

® Provide a tool to manipulate classes (defineClass() in Classloader)
ecreating objects of types specified in strings

¢loading classes using specialized techniques, such as across the
network

® Two way to get a Class object

esuse this.getClass method of Object

«fully qualified name using the static method Class.forName(cl1sname)
® The Class Class Methods

egetName() -> a string class/interface name

egetSuperclass() ->acClass object

egetInterfaces() -> an array of objects representing all interfaces
implemented/extended by the class/interface 20

7% CSD Univ. of Crete Fall 2007

Printing the Type Hierarchy of a Class Object

public class ClassInfo {
// We expect class names as command 1line arguments
public static void main(String[] args) {
ClassInfo info = new ClassInfo();
for(int i = 0; i < args.length; i++) {
try {
info.printInfo(Class.forName(args[i]l), 0);
} catch(ClassNotFoundeException e) {
System.err.printin(Ce); // report the error
}
}

// by default print on standard output
private java.io.PrintStream out = System.out;
// used in printInfo() for labeling type names
private static Stringl[]
basic = {“class”, “interface”},
extended = {“extends”, “implements”}; o

. "$71 CSD Univ. of Crete Fall 2007

Printing the Type Hierarchy of a Class Object

public void printInfo(Class type, int depth) {

// Object’s supertype is null
if(type == null)

return;
// print out this type
for(int i=0; 1 < depth; i++)

out.print(”“ “);
string[] labels = (depth == 0 ? basic : extended);
out.print(labels[type.isInterface() ? 1 : 0] + “ “);
out.printin(type.getName());
// print out all interface this class implements
Class[] initerfaces = type.getInterfaces();
for(int i = 0; i < interfaces.length ; i++)

printInfo(interfaces[i], depth + 1);
// recurse on the superclass
printInfo(type.getSuperClass(), depth + 1);

} 22

i1 CSD Univ. of Crete Fall 2007

If args[] = {"java.lang.Object", "reflection.ClassInfo", "java.util.Vector",
"java.io.Serializable", "java.lang.Cloneable"}, the we will get:

class java.lang.Object

class reflection.ClassInfo
extends java.lang.Object

class java.util.vector
implements java.util.List
implements java.util.Collection
implements java.lang.Iterable
implements java.util.RandomAccess
implements java.lang.Cloneable
implements java.io.Serializable
extends java.util.AbstractList
implements java.util.List
implements java.util.Collection
implements java.lang.Iterable
extends java.util.AbstractCollection
implements java.util.Collection
implements java.lang.Iterable
extends java.lang.Object

interface java.io.Serializable

23
interface java.lang.Cloneable

.~ 93 CSD Univ. of Crete

Wrapper Classes

®Primitive types (e.g., int) are not classes
@But sometimes, we may have need to
make use of primitive types in a context that

requires that we manipulate objectsM
primitives

Fall 2007

Class Character Number Boolean

¢e.g., many collection classes

are collections of Objects /
@Java provides a set of wrapper classes
(a.k.a. type wrappers, a.k.a. envelope
classes) to support treating primitives as

objects Integer Long
@It does this by providing a specific class

that corresponds to each primitive data type
®They are in java. lang, so the names are
universally available

Float Double

24

~ 9 CSD Univ. of Crete

Wrapper Classes

Class corresponds to Primitive
Boolean boolean
Character char
Byte byte
Short short
Integer int
Long Tong
Float float
Double double

®Each one:
® allows us to manipulate primitives as objects
® contains useful conversion methods
¢E.g. Integer contains
estatic Integer valueOof(String s)
¢Integer.valueof(“27”)
#is the object corresponding to int 27
@ contains useful utility methods (e.g. for hashing)

Fall 2007

25

'.),{,_ CSD Univ. of Crete

Wrapper Classes

@ Using wrappers to bridge between objects and primitives:

//

//

//

//

//

create and initialize an int
int 1 = 7;
create an Integer object and convert the int to it

Integer intObject = new Integer(1);

retrieve the int by unwrapping it from the object
System.out.println(intObject.intvalue);

convert a string into an Integer object A class
String strs = “277,;

Integer intObject

intObject = new Integer (Integer.valueof(strS));
then to an int

i = intObject.intvalue;

method

Fall 2007

26

CSD Univ. of Crete Fall 2007

he Java.Lang Hierarchy

Boolkan java.lang

T, S e S el e
it e

SOLELRY e FDEiglm
- & LT R F- T
Clonesble R T =
gl F - Classl cadear
_’.l-"-
T e
P Epie

- = Compiler |

FlaaingDeci mal
Jeranl B paochooces

MUl BEecuriyManager
bomnl po gk

27

o] CSD Univ. of Crete

Understanding Polymorphism

Fall 2007

28

79 CSD Univ. of Crete Fall 2007

he Notion of Polymorphism

® The Webster definition:

¢ pol-y-mor-phism n. : a genetic variation that produces differing
characteristics in individuals of the same population or species

¢ pol-y-mor-phous adj,. : having, assuming, or passing through many
or various forms, stages, or the like

® The basic principle and aims of the generality and abstraction are:
¢ Reuse
¢ Interoperability

® [he basic idea:

¢ A programmer uses a single, general interface, Java selects the
correct method

29

7% CSD Univ. of Crete Fall 2007

Principle of Substitutability

® If B is a subclass of A, then we can replace any instance of A with an
instance of B in any situation with no observable effect

® If A responds to message m, then B responds to m
¢All Numbers respond to + aNumber

® Strongly typed languages require this property in many more
situations than just adhering to a protocol

oE.g., in Java, we may insist on parameters of a certain type —
subtypes may be used here.

® Strongly typed languages require casts to adhere to typing rules

30

79 CSD Univ. of Crete Fall 2007

Subclass, Subtype, Substitutability

® Substitutability: type of a variable does not have to match the type of
the actual value, subclasses are OK, too

® A subclass is usually substitutable, because:
#Subclass instances have all parent fields
e Subclasses implement all parent methods
¢ Thus, subclasses support parent protocol
® But: not always true (see later)

® Interfaces can also be used for subtyping

® Subtype <> subclass, “stronger notion”

31

%7 CSD Univ. of Crete Fall 2007

he Principle of Substitutability: Example

® Recall the is-a relationship
iInduced by inheritance:

oA RestrictedFileis a
File, whichis an Object

@ RestrictedFile can be used
by any code designed to work with
F1i le objects

® |f a method expects a F1 |e object
you can hand it a
RestrictedFi le object and it
will work (think why?)

® This means that
RestrictedFi le object can be
used as both a Fi le object and a

RestrictedFile object (and an _
Object) The object can have many forms!

32

\
Is—a‘
?

RestrictedFile

@ CSD Univ. of Crete Fall 2007

3 Views of RestrictedFile

e\We can view a RestrictedFi le object from 3 different points of views:
¢ AsaRestrictedFile
e This is the most narrow point of view (the most specific)
e This point of view ‘sees’ the full functionality of the object
¢ AsaFile
e This is a wider point of view (a less specific one)

o We forget about the special characteristics the object has as a
RestrictedFile (we can only open and close the file)

¢ As aplainObject
e \What can we do with it?

33

Referencing a Subclass

®\We “view” and use an object by holding and referring to the object’s
reference

® A variable of type ‘reference to Fi1e’ can only refer to an object which
isaFile
File f = new File(“story.txt”);

eBut a RestrictedrFileis also a File, so f can also refer to a
RestrictedFile object

File f = new RestrictedFile(“mydoc.txt”);

1 %9 CSD Univ. of Crete Fall 2007

34

e CSD Univ. of Crete

he Reference Determines the View

Fall 2007

® The type of the reference we use determines the point of view we will

have on the object

The Object

rf

RestrictedFile
Reference

.F

RestrictedFile
Object

File

File Reference

Object

35

< i1 CSD Univ. of Crete

View 1

Fall 2007

o|f we refer to a RestrictedFile rf = new

RestrictedFile object using a
RestrictedFi le reference we

RestrictedFile(
“visa.dat”, 12345);

have the RestrictedFile point of \/r'f.'lock() ;

view - we see all the methods that v £ Tock (12345) -

are defined in RestrictedFile and rf.unlock();

up the hierarchy tree v'rf.closeQ;
vstring s =

rf.tostring();

36

< i3 CSD Univ. of Crete

o|f we refer to a

View 2

File f = new

RestrictedFile object using a
F1i1e reference we have the File

point of view - which lets us use
only methods that are defined in

class File and up the hierarchy
tree.

RestrictedFile(
“visa.dat”, 12345);

Xf.lock(Q;
Xf.unlock(12345);

\/f.c1ose();
\/String S =

f.tostring(Q);

Fall 2007

37

3 CSD Univ. of Crete

View 3

olf we refer to a Object o = new

RestrictedFi le object using
an Object reference we have the

RestrictedFile(
“visa.dat”, 12345);

Object point of view - which let us X0.lockQ):
see only methods that are defined X0 ' un'IockElZ 345) :

in class Obiject.

Xo.close();

\/String S =

o.toString(Q);

Fall 2007

38

RestrictedFile

isOpen

1sLocked
key

Multiple Views

tostring()

isOpen()
open()
close()
Tock()
unlock(key)
isLocked()

Fall 2007

39

7% CSD Univ. of Crete Fall 2007

Object References and Inheritance

® An object reference can refer to an object of its class, or to an object of
any class related to it by inheritance

® Assigning a descendant object to an ancestor reference is considered to
be a widening conversion (upcast), and can be performed by simple
assignment (implicit)
¢lt is always possible to perform an upcast (relation is-a of inheritance)

® Assigning an ancestor object to a descendant reference can also be
done, but it is considered to be a narrowing conversion (downcast) and
must be done with a cast (explicit)

oA downcast is not always possible; at runtime, the type of the object
will be checked subclass (instanceof)

40

9 CSD Univ. of Crete Fall 2007

Widening

@ Changing our point of view of an object, to a wider one (a less specific
one) is called widening

File file;
file = new RestrictedrFile((“visa”, 1234);

— _/
— Y
File reference RestrictedFile reference
Fi1e point of view RestrictedFile point of view

S

Widening

41

8 CsD univ. of Crete Fall 2007

Heterogeneous Collections

e®\Widening is especially useful when we want to create a heterogeneous
collection of objects
e®For example, we want a class switchpanel that represents a panel of
switches
¢ Some of the switches in the panel are simple switches and some are
adjustable switches

e®\When implementing our SwitchPanel class, we would like to store
switches of both kinds in a single array, so we can easily write code that
operates on both kinds of switches

on off on off

e? 2

’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’
’ ’ ’ ’ ’ ’

42

. "§1 CSD Univ. of Crete

SwitchPanel Example

/**
* Represents a panel of switches
*/

public class SwitchPanel {

// Holds he switches in this panel
private(Switch[D switches;

// constants representing the types of switches
private final static int ADJUSTABLE_SWITCH = 1;
private final static int REGULAR_SWITCH = O;

// ...here come SwitchPanel() constructor

// and getConsumption() method

Fall 2007

43

7% CSD Univ. of Crete Fall 2007

getConsumption() Method in Switch

e Suppose that we add the method getConsumption() in class
Sw1 tch that returns the electrical consumption of the switch (which is O
if the switch is off and maxPower if the switch is on)

®This method is overridden in class AdjustableSwitch (the
consumption is 0 if the switch is off, or 1evel*maxPower /100 if it is on)

/**
* An electronic switch that can be on/off.
*/

public class Switch {
// ... same implementation as before

// Returns the electrical consumption of the switch

public float getConsumption() {
return (ison() ? maxPower : 0.0f);
}

%7 CSD Univ. of Crete Fall 2007

getConsumption() Override

/**
* An adjustable electronic switch
*/

public class AdjustableSwitch extends Switch {
// ... same implementation as before

// Returns the electrical consumption of the switch
public float getConsumption() {
return
super.getConsumption()*level/100;

}

e\We want to implement a method getConsumption() in class
SwitchPanel that will compute the total electrical consumption of all
the switches in the panel, whether they are adjustable switches or

regular switches i

SwitchPanel Constructor

// model is the name of the file that describes
// the panel
public SwitchPanel (String model) {
int numberofswitches =
// ...code for reading the numbers of switches
switches = new Switch[numberofswitches];
for (int i = 0; 1 < numberofswitches; i++) {
int switchType = // ...read the switch type
float maxPower = //...read maxPower
if (switchType == REGULAR_SWITCH) {
switches[1] = new Switch(maxPower) ;
} else if (switchType == ADJUSTABLE_SWITCH {
, switches[1] = new AdjustableSwitch(maxPower) ;

}
}

‘* CSD Univ. of Crete Fall 2007

46

/"% CSD Univ. of Crete Fall 2007

getConsumption() Implementation

/**
* Computes the total electricity consumption
* of all the switches in the panel.
*/
public float getConsumption() {
float total = 0.0f;
for (int i =0; i < switches.length; j++) {
total += switches[i].getConsumption();>
}

return total;

}

® We do not care if switches[1] refers to a regular Switch or an
Adjustableswitch, they both know how to compute their current
consumption 47

79 CSD Univ. of Crete Fall 2007

Static versus Dynamic Binding

® |In OOP calling a method is often referred to as sending a message to
an object

+At runtime, the object responds to the message by executing the
appropriate code of the method

® Binding refers to the association of a method invocation and the code
to be executed on behalf of the invocation

+\When we invoke a method on an object we always do it through
a reference

® |n static binding, all the associations are determined at compile time
econventional function calls are statically bound

® |n dynamic binding, the code to be executed in response to a method
invocation (i.e., a message) will not be determined until runtime

emethod invocations to objects are dynamically bound

48

8 CsD univ. of Crete Fall 2007

Polymorphic Methods

® A method is polymorphic if the action performed by the method depends
on the actual type of the object to which the method is applied

®|n Java the code of the method which will be executed is dependent on
the type of object (and not on the type of reference), and this type is
determined at runtime

System.out.printin(ref);

®is a message to the object referred to by ref (Which message?)

®Since the object knows of what type it is, it knows how to respond to the
message:

¢ If a Switch is referenced by ref, then toString method of Switch
class is invoked

¢ If Adjustableswitch is referenced by ref, then toString method
of AdjustableSwitch class is invoked

49

~ 91 CSD Univ. of Crete Fall 2007

Polymorphic Methods: Example 1

ublic String tostring({

If pt refers return
to Switch "(" + ison + "," + maxPower ")";

}

System.out.printin(pt);

If pt refers to public String toString() {

Adjustableswitc return Lo -
(" + ison + "," + maxPower ",

+ level + ")";
}

50

7% CSD Univ. of Crete

Fall 2007

Polymorphic Methods: Example 2

File file;
if (Math.random() >= 0.5) {
file = new FileQ);
} else {
file = new RestrictedrFile(“visa.dat”, 76543);
// Recall that a RestrictedFile 1is
// locked by default

}

file.open() ;\

Will the file be opened if
the number tossed < 0.5?
- NO!

51

'.',,{,_ CSD Univ. of Crete

Polymorphic Methods: Example 2

public void workaroundAttempt(File file) {
File workaroundReference = file;
workaroundrReference.open();

[/

workaroundAttempt(file) ;— gijnce file is of type

RestrictedFile, this will
invoke open() which is
defined on restricted files
and not on regular files.
The workaround attempt
will faill!

Fall 2007

52

§ 7§11 CSD Univ. of Crete Fall 2007

Static Methods Are Not Polymorphic!

®\When we invoke a method on an object we always do it through a
reference

e Static methods can be invoked using a class name! (but can also using
a reference)

®They are resolved at compile time, when we do not know which type of
object is actually referenced

o Therefore they are NOT virtual, they depend on the type of reference

53

79 CSD Univ. of Crete Fall 2007

Narrowing
®\We have seen how widening can be used in heterogeneous collections

eBut if we look at all objects from a wide point of view, and would not be
able to restore a more narrow view for some of them, there would not
have been much point in having an heterogeneous collection in the first
place

54

f. ~ 91 CSD Univ. of Crete Fall 2007

Narrowing Example

/**

* Locks all the restricted files in the array

* @param files The array of files to be locked

*/
?ub1ic static void lockRestrictedFiles(File[] files)

for (int i = 0; 1 < files.length; i++) {

if (files[i] instanceof RestrictedFile) {
RestrictedFile file = (RestrictedFile)files[i];

, fledocc0i))
} Y Y

RestrictedFile < File point of view

'.',,{,_ CSD Univ. of Crete Fall 2007

Narrowing - Equivalent Example

/**
* Locks all the protected files in the array
* @param files The array of files to be locked
*/
?ub1ic static void lockRestrictedFiles(File[] files)
for (int i = 0; 1 < files.length; i++) {
if (files[i] instanceof RestrictedFile) {

‘@EﬁestrictedFi1e)fi1es|1I23iock();
}

}
}

56

%7 CSD Univ. of Crete Fall 2007

Rules of Narrowing

eNarrowing let us restore a more specific point of view of an object using
cast

e®Casting a reference should be done only after verifying the object is
indeed of the type we cast to!

®You cannot refer to an object through a RestrictedFi e reference
unless this object is indeed a RestrictedFile object!

elf we try to cast a F1i | e reference referring to a regular Fi 1 e object, into
a RestrictedFile,a ClassCastException will be thrown

57

8 CsD univ. of Crete Fall 2007

A More Complex Example: Geometric Shapes

name

getName()
Shape getSurfaceArea()

side
getSurfaceArea()

radius

getsurfaceArea() Circle Rectangle

class Shape { public int
getSurfaceArea () {
public final double PI=3.14159; return (0);
protected String name; } // area
public String getName () { } // Shape

return (this.name);
} // getName 58

Fall 2007

. 7% CSD Univ. of Crete

A More Complex Example: Geometric Shapes

class Rectangle extends Shape { : :
: : : _ public String getName () {
private int length, width; if (length == width)
return ("square");
O ehie(0, 0; } // constructor| ©58
158U, ’ constructor return (super.getName());

Rectangle (int 1, int w) { } // getName

this(1, w, “rectangle”); : i '
| ghisC 1, w, pugllgnztgzng tostring O {
Rectangle (int 1, int w, S ey A
String n) { QEtName() gth "
length = 1; width = 1; with length =+ length
B ’ + " and width " + width);
name = n; } // constructor return (s):

public int getSurfaceArea () { } // tostring
return (length * width); 1y // gectangle

} // area

59

7% CSD Univ. of Crete Fall 2007

Polymorphism is Possible Because of

® |[nheritance: subclasses inherit attributes and method
of the superclass.
public class Circle extends Shape {

® Method overriding: subclasses can redefine methods
that are inherited from the superclass

public class Shape {
public float getSurfaceArea() {return 0.0f;}

public class Circle extends Shape {
public float getSurfaceArea() {return (float)

3.14f*radius*radius; }

} 60

. "§1 CSD Univ. of Crete Fall 2007

Polymorphism is Possible Because of

® Polymorphic variables: variables that can hold value of different types

(classes)
Circle ¢ = new Circle(“Circle C”);
Square s = new Square(“Square S”);

Shape shapeArray[] = {c, s};

Circle
shapeArray//////7
C square
3 ///////”'s
—___— square

> Triangle

> Rectangle

® Dynamic binding: method invocations are bound to methods during
execution time

for(int i = 0; i < shapeArray.lenth; i++)
shapeArray[i].getSurfaceArea() ;

61

88 CSD Univ. of Crete

® Incremental development
¢adding new class is made easy with inheritance and polymorphism

Circle

*

DemoClient

Fall 2007

“Impact of polymorphism on Software Development

base
height
getSurfaceArea()

name
Shape getName()
getSurfaceArea()
/\
[|
Square Triangle
& *
Shape

62

\ CSD Univ. of Crete Fall 2007

“Impact of polymorphism on Software Development

public class Triangle extends Shape {
private float base, height;
public Triangle(String aName) {super(aName); base = 1.0f;

height = 1.0f; }
public Triangle(String aName, float base, float height)
{ super(aName); this.base = base; this.height = height; }
public float getSurfaceArea() {return (float) 0.5f*base*height;}
} // End Triangle class

public class ShapebDemoClient {
public static void main(String argv[1) {

Triangle t = new Triangle(“Triangle T”, 4.0f, 5.0f);
Shape shapeArray[] = {cl, c2, sl, s2, t};

} // End main
} // End ShapeDemoClient class 63

< i1 CSD Univ. of Crete

® |ncreased code readability

¢ polymorphism also increases code readability since the same
message is used to call different objects to perform the
appropriate behavior

for (i = 0; i < numShapes; i++)
switch (shapeType[i]) {

lC!

s

}

Versus

for(int i = 0; i < shapeArray.lenth; i++)
shapeArray[i].calculateArea();

: calculateCircleArea(circles[c++]); break;
: calculateSquareArea(squares[s++]); break;

Fall 2007

“Tmpact of polymorphism on Software Development

64

2§ CSD Univ. of Crete Fall 2007

Polymorphism Design Hints

® use polymorphism, not type information whenever you find the code
of the form
if (x is of type 1)
actionl(x);
else if (x is of type 2)
action2(x);

think polymorphism!

XType| action()

o

[|
action()| XTypel XType2 | action()

x.action()

65

/"% CSD Univ. of Crete Fall 2007

Polymorphism Design Hints

® move common behavior to the superclass

oto flood fill a shape means to do the following:
- plot the outline of the shape
- if it isn’t a closed shape, give up
- find an interior point of the shape
- fill the shape

eothese common behaviors can be put into the superclass Shape:
class Shape {

pub11c boolean

floodfill(GraphicsPanel aPanel, Color aColor) {
plot(aPanel);
if (! isClosed()) return false;
Point aPoint = center();

aPanel.fill(aPoint.getX(), aPoint.getY(), acColor);
return true;

. $1 CSD Univ. of Crete Fall 2007

Polymorphism Design Hints

® Subclasses merely need to redefine: plot(), isClosed(), and

center()
Floodfil1()
plot()
Shape 1sClosed()
/\ center()
plot()
Circle Square Triangle| 1sClosed()
center()
Circle ¢ = new Circle(“Circle C”);
Square s = new Square(“square S”);

Triangle t = new Triangle(“Triangle T");

Shape shapeArray[] = {c, s, t}

%oF (int 1 = 0; 1 < shapeArray.length; 1i1++)
shapeArray[i].floodfi11(aPanel, aColor);

67

Nl] CSD Univ. of Crete

Java Heterogeneous Collections of Objects

Fall 2007

68

79 CSD Univ. of Crete Fall 2007

he Class Vector

® One of the most useful classes in the Java APl is java.util.vector
¢An array that dynamically resizes itself to whatever size is needed
¢You may add or remove objects from the vector at any position and
its size grows and shrinks as needed to accommodate adding and
removing items

® Vector is a class

+Must have an object of type Vector instantiated via new() to get
an instance of vector

® A Vector is designed to store Object references
+ Note that, because all classes inherit from the Object class, an
Object reference can refer to any type of object
® All rules of good OO programming apply

¢ Thus, access by requesting services via methods, not via direct
access (such an array)

69

. 7% CSD Univ. of Crete

class Vector {

public void
public boolean

public Object

public Object
public 1int
public void

public boolean
public Object
public 1int
public void
public boolean
public void

public void
public 1int

he Class Vector Contract

Fall 2007

addElement(Object obj) // adds to end
contains(Object elem)
elementAt(int index) // returns reference to
element at specified index
firsteElement()
indexof(Object elem)
insertElementAt(Object obj, int index)
// Insertion into linked list
1sEmpty ()
lastElement()
lastIndexOf(Object elem)
removeAl 1Elements ()
removeElement(Object obj)
removeElementAt(int index)
setElementAt(Object obj, int index) / overwrites that element

size() // returns current number of elements

70

/91 CSD Univ. of Crete Fall 2007

Java vVectors

® Can be populated only with objects and not with primitives
® Can be populated with objects that contain primitives

¢ If you need to populate them with primitives, use type wrapper

classes e.g., Integer for 1nt, etc.
® Will allow you to populate them with any type of object . ..

® Thus, good programming requires that the programmer enforce
typing within a Vector, because Java doesn't
® Capacity is dynamic
¢ Capacity can grow and shrink to fit needs

¢ Capacity grows upon demand
® Capacity shrinks when you tell it to do so via method trimToSize()

eIt implies performance costs upon subsequent insertion
® \When extra capacity is needed, then it grows by how much?
¢Depends on which of three constructors is used . . . 7

@ CSD Univ. of Crete Fall 2007

Java Vectors Capacity

® Three Vector constructors:
epublic vector (int 1nitialCapacity, 1nt
capacityIncrements) ;
epublic vector (int 1nitialCapacity);
epublic vector();
¢// there 1s another constructor taking as 1nput a
Collection (but we will not describe 1t now)

® First constructor (2 parameters):.
ebegins with initialCapacity _
¢if/when it needs to grow, it grows by size capacityIncrements

® Second constructor (1 parameter):
#begins with initialCapacity
¢if/when needs to grow, it grows by doubling current size

® Third constructor (no parameters):

¢ Dbegins with capacity of 10
¢if/when needs to grow, it grows by doubling current size

72

e CSD Univ. of Crete

Fall 2007

Vectors Example: Cats & Dogs...

class Cat 1

public String toString() {
return new String(“meaw”);

}

public String toString() {

return new String(“bark”);

class Mouse 1
public String toString() {
return new String(“squeak”);

} O

} QC&»\A\?

—

73

7% CSD Univ. of Crete Fall 2007

Vectors Example: Cats & Dogs...

class MouseTrap {
public static void main(String[] args) {
Vector v = new Vector();
) .addElement(new Cat());
‘égg————av.addE1ement(new Mouse());

& A

\/T?,%%z__qy.addE1ement(new Dog());

Ry .addElement (new Mouse());

Lé:;}'f:::::z.addE1ement(new String(“its raining”));
= for (int i = 0; i < v.sizeQ); i++)

“its raining” | System.out.println(v.elementAt(i));
catchTheMice(Vv);
}

74

~ 91 CSD Univ. of Crete Fall 2007

The vector Holds Object References

Object |Object |Object

Cl

C(i§> “a string”

75

/"% CSD Univ. of Crete Fall 2007

Vectors and Casting

® Vectors are a subclass of class Object
¢ Thus, vectors can handle any class of object (i.e., no type checking)
® Thus, must cast any object obtained from a Vector before invoking
any methods not defined in class Object

private static catchTheMice(vector v) {
int 1 = 0;
while (i < v.size()) {
if (v.elementAt(i) instanceof Mouse) {
v.removekElementAt(i);

el co e
T1++; S e s == P
: e L2 o L2 &
: L2 o o
} (et Yov. @;\g)

/91 CSD Univ. of Crete Fall 2007

Vectors versus Arrays

® Arrays: statically sized
® \ectors: dynamically sized

® Arrays: can directly access, e.g., myArray[6]
¢ but shouldn’t
(except maybe within the class in which they’re declared if
efficiency concerns; or for testing purposes.)

® \ectors: must use methods to access

® Vector services provide a good model for the Array services you
should implement

77

79 CSD Univ. of Crete Fall 2007

Vectors versus Linked Lists

® Can use Vectors to simulate a Linked List;
¢Don’t want direct access to data, so . . .

+Provide methods for getPrevious(),getNext(), etc. that
do the standard Linked List things

¢ While the list is implemented as a Vector, the client uses it as if
it's a Linked List

e BUT . ..

¢ There are performance implications (that may or may not matter
for a given instance)

¢\What is the cost of:
¢insertion?
¢deletion?

78

79 CSD Univ. of Crete Fall 2007

Vectors versus Linked Lists

® For ordered Linked Lists:
e cost of traversal to locate target: O(N)

o cost of insert/delete: O(1) (Thus, Vectors\
etotal cost: O(N) imply twice
the work
® For ordered Vector: \. /

o cost of traversal to locate target: O(N) (if accessible via direct
access, then O(1))

e¢insertion or deletion of element implies (average case), moving O(N)
elements

ototal cost: O(N)

® Thus, at first glance, equivalent...

® But what does Big Oh hide here?
e¢Linked Lists: search thru N/2, plus insert/delete
¢ Vectors: search thru N/2, plus moving N/2 79

~ 91 CSD Univ. of Crete Fall 2007

Java vs. C++ Object Oriented Programming

® Similarities
e User-defined classes can be used the same way as build-in types
+Basic Syntax

® Differences
+Methods (i.e., member functions) are the only function type
+Object is the topmost ancestor for all classes

¢ All methods use run-time and not compile-time types of objects
(i.e., Java methods are like C++ virtual functions)

+ The type of all objects are known at run-time
oIt is always safe to return objects from methods
+Single inheritance only

80

