
Data Dependences (Hazards) in Pipelines

RAW (Read after Write) − true dependence, as above

RAR (Read after Read) − not a dependence, can freely reorder the reads

WAW (Write after Write) − if you want to reorder them, simply abort the write of I1

just keep a copy of the old data and have I1 read that copy
WAR (Write after Read) − "antidependence": if you want to do the write (I2) early,

(if no one reads this word between I1 and I2)

an earlier Instruction:

a later Instruction

I2 needs the new data written by I1,
hence must wait for I1 to write −or at least to generate− the new data

some Memory or

Register File:

a wordwrite

I1

read

Copyright 2020 University of Crete − https://www.csd.uoc.gr/~hy225/20a/copyright.html

I2:

Manolis GH Katevenis
1

Re−order is NOT possible − NOT allowed

using "internal forwarding" from wherever "new" is located − see below

Read−after−Write (RAW): True Dependence

timeProgram Order

value = old value = new

Write new

Read new

time

value = old

Write new

Execution
Hardware

Order Read new??

Note: if "new" is known earlier, but not yet written in−place, re−order is feasible

Manolis GH Katevenis
1b

Read−after−Read (RAR): NOT a Dependence

timeProgram Order

value contained in memory/register word remains unmodified

Read2Read1

time
Execution
Hardware

Order Read1Read2

Free to Re−order

Manolis GH Katevenis
1c

Write new

Read old

Read old from Copy

co
p
y
 o

ld
... ...into tmp

Write new

value = new

Program Order

Hardware
Execution
Order

value = old

time

time

value = new

Feasible to Re−order,
using a copy of the old value

(or renaming the register being written:

read from x7.v1; write into x7.v2)

value = old

Write−after−Read (WAR): Anti−Dependence

Manolis GH Katevenis
1d

− e.g. writes via array/pointers, *p, *q, and compiler does not know if p=?=q

Write new2Write new1

value = old

Write new1

Write new2

− e.g. the second one may be within an if−then−else

Why two writes in sequence, without read in−between? − is the first write useless?

Write−after−Write (WAW): Abort the earlier one

Program Order time

value = old value = new2value = new1

value = new2

Hardware
Execution Order

time
Feasible to Re−order, with Abort

Abort!

Manolis GH Katevenis
1e

Reg.Rd; OpInstr. Fetch

Program Order

time

Data Memory accesses are performed ‘in−order’ in our simple pipeline,
i.e. are not reordered relative to what the program specifies,
thus, no dependences of memory word accesses are ever violated

No Memory Data Hazards in our simple Pipeline

Data Mem. Write BackALUReg.Rd; Op

Data Mem. Write BackALU

Data Mem. Write Back

Data Mem.ALUReg.Rd; OpInstr. Fetch

Data Mem. Write BackALUReg.Rd; OpInstr. Fetch

Data Mem. Write BackALU

2

Reg.Wr.

For each instruction that writes a destination register, if the next 2 or 3 instructions
read that same register, i.e. need its result, we have to do something about it...

Register Accesses reordered, with Pipelining
time

in initial Program Order
Register Accesses

Data Mem. Reg. WriteALUReg. ReadFetch

Data Mem.ALUReg. ReadInstr. Fetch Reg.Wr.

Register Accesses
of next 2 or 3 instructions

potential Dependence Hazards
reordered in time, thus causing

time

Data Mem. Reg. WriteALUReg. ReadFetch

Data Mem. Reg. WriteALUReg. ReadInstr. Fetch

Data Mem. Reg. WriteALUReg. ReadInstr. Fetch

Data Mem. Reg. WriteALUReg. ReadInstr. Fetch

Data Mem.ALUReg. ReadInstr. Fetch

3

add

0

x11

add

1needed,
nothing special

x11

168

168

1

48

x11

130

just latch−based RF

immediately over−write old contents

148

Latch−based Register File: write−data

432

(Cycle 6)

130

600x6

100

432

Imm

Control

L
U

A

110168

110168

10 14

add x12, x3, x4

A

B

Imm

x10

x11

x12

x13

120

130

x1

x2

x3

x4

100

200

32

400

140 14

Memory:

Instruction Distance 3

rs2

we Din

rd

rs1 Addr

we rd

Din

Dout

DM
f7

op f7

rdIRPC

+

PC

+4

br/jmp addr.

A

IM

I

RF

64:

68:

72:

76:

ld x10, 40(x1)

sd x13, 48(x1)

add x14, x11, x6

60:

sub x11, x2, x3

f3

0
1

1
0

4

Actual Need−Produce Time vs. from/in−Register Time

ALU Instructions:
actual

‘official’ Register Position
written intoOutput Result Produced

Inputs NeededInputs Read from ‘official’ Position

Output Result

We can ‘Bypass’ the ‘official’ loop through the Register File for immediate−use Results

computation

Load Instructions: Data Mem. Reg. WriteALUReg. ReadInstr. Fetch

Inputs Needed

Output Result Produced

Inputs Read

Output Result
written

actual computation

time

All we care about is actual Results ‘Forwarded’ from Producer to Consumer instruction

Data Mem. Reg. WriteALUReg. ReadInstr. Fetch

5

the one immediately succeeding
instruction, without it having to wait one extra cycle

ALU op. result can be

to any subsequent instruction
forwarded

Loaded data canNOT be used by

ALUInstr. Fetch Reg. Read Reg. Write

Data Mem.ALUInstr. Fetch Reg. Read Reg. Write

Data Mem.

ALUInstr. Fetch Reg. WriteReg. Read

Data Mem.ALUInstr. Fetch Reg. Read Reg. Write

Data Mem.ALUInstr. Fetch Reg. Read

Data Mem.

Reg. Write

ALU instructions never stall the pipeline, but Load instructions will do so
when immediately followed by a dependent instruction

from Load Instruction:

from ALU Instructions:

time

ALU result to next I; Load result to next−after−next I

ALUInstr. Fetch Reg. Read Reg. Write

Data Mem.

6

500

x5

48

432

432

110

x6

130

130

216

600

add

add

168

A

110168

10 14

Forward the new value

Correct new value available, in another place

Erroneous old value coming from stage 2

rs2

we Din

rd

rs1 Addr

we rd

Din

Dout

DM
f7

op f7

rdIRPC

+

PC

+4

br/jmp addr.

A

IM

I

RF

64:

68:

72:

76:

ld x10, 40(x1)

sd x13, 48(x11)

add x14, x5, x6

60:

sub x11, x2, x3

f3

add x12, x3, x4

A

B

(need muxes at forwarding locations)

Imm

Control

L
U

140 14

Memory:

Forward to Distance 2

Forwarding path for second source register

e.g. from ALU op. (Cycle 6)

x10

x11

x12

x13

120

130

x1

x2

x3

x4

100

200

32

400

1
0

1
0

7

sd

1

1

x10

0

0

1

14

48

x12

1

0

0

add

0

0

0

1

1

 x11

110

x11

130x13

32

400

168

168

add76

432

add

Detect need to Forward

Imm

Control

L
U

A

rs2

we Din

rd

rs1 Addr

we rd

Din

Dout

DM
f7

op f7

rdIRPC

+

PC

+4

br/jmp addr.

A

IM

I

RF

64:

68:

72:

76:

ld x10, 40(x1)

sd x13, 48(x11)

add x14, x5, x6

60:

sub x11, x2, x3

f3

add x12, x3, x4

A

B

Imm

− in previous Cycle: 5

0

0
1

1

8

x13

110

568

76

100

x1

add

sd

130 14

48

400

168

168

add

rs2

we Din

rd

rs1 Addr

we rd

Din

Dout

DM
f7

op f7

rdIRPC

+

PC

+4

br/jmp addr.

A

IM

I

RF

f3

A

B

Imm

(need muxes at forwarding locations)

Imm

Control

L
U

A

110168

10 14

Forward the new value

Erroneous old value coming from stage 2

Correct new value available, in another place

400

140 14

Memory:

sd x13, 48(x1)

Forward to Distance 1
from ALU op. ONLY (Cycle 5)

need these AND the distance−2 forwarding paths

64:

68:

72:

76:

ld x10, 40(x1)

add x14, x5, x6

60:

sub x11, x2, x3

add x12, x11, x4

x10

x11

x12

x13

120

130

x1

x2

x3

x4

100

200

32

1
0

0
1

9

add

0 0

0 0

1 1

x12 x11

0

1

1

x10

32

ld72

168

14

76

76

140

200110

400

x11

x4

add
0 0

sub

Imm

Control

L
U

A

64:

68:

72:

76:

ld x10, 40(x1)

add x14, x5, x6

60:

sub x11, x2, x3

add x12, x11, x4

sd x13, 48(x1)

rs2

we Din

rd

rs1 Addr

we rd

Din

Dout

DM
f7

op f7

rdIRPC

+

PC

+4

br/jmp addr.

A

IM

I

RF

f3

A

B

Imm

− in previous Cycle: 4Detect need to Forward

0

0
1

1

10

Imm

L
U

A

+
+4

br/jmp

PC A

IM

I

rs2

we Din

rd

rs1

f7

op f7

RF

f3

Imm

A

B

IR

Op. Dec.

Addr

we rd

Din

Dout

DM

rd

rs2

fwd.ctrl

Forwarding Control
rd rrd5rrd4

rwe4

rrd3

rwe3

0
1

0
1

mrd3

mwe3

mrd4

mwe4

rwe5rs1

11

(rs == rd != x0) AND (rd.writeEnable == ON)

Define Match(rs, rd) as follows:

if (Match(rs1, rrd3)) then { prepare_to_forward_from_stage4_to_A }

else { no_forwarding_to_A_will_be_needed }

if (Match(rs2, rrd3)) then { prepare_to_forward_from_stage4_to_B }

else if (Match(rs2, rrd4)) then { prepare_to_forward_from_stage5_to_B }

else { no_forwarding_to_B_will_be_needed }

else if (Match(rs1, rrd4)) then { prepare_to_forward_from_stage5_to_A }

hence the stage3 result has PRIORITY in forwarding:

The stage3 instruction is more recent than the stage4 one,

Forwarding Control Logic
Assuming that the instruction in stage3 is NOT a Load

add t0, s1, s2

add t0, t0, s3

add t0, t0, s4

12

14

10

48

130x13

100

x1

add

414

400

168

168

add76

sd

rs2

we Din

rd

rs1 Addr

we rd

Din

Dout

DM
f7

op f7

rdIRPC

+

PC

+4

br/jmp addr.

A

IM

I

RF

f3

A

B

e.g. from Load Instr. (Cycle 5)

Imm

Control

L
U

A

10 14

Forward the new value

Correct new value available, in another place

Erroneous old value coming from stage 2

140 14

Memory:

sd x13, 48(x1)

110168

Forward to Distance 2

Forwarding path for second source register

(need muxes at forwarding locations)

64:

68:

72:

76:

ld x10, 40(x1)

add x14, x5, x6

60:

sub x11, x2, x3

add x12, x10, x4

x10

x11

x12

x13

120

130

x1

x2

x3

x4

100

200

32

400

1
0

0
1

13

140

add

10

72

32 ??

Imm

Control

L
U

A

10 ?

Impossible to Forward − have to WAIT!

Correct new value NOT YET available!

Erroneous old value coming from stage 2

rs2

we Din

rd

rs1 Addr

we rd

Din

Dout

DM
?

f7

op f7

?rdIRPC

+

PC

+4

br/jmp addr.

A

IM

I

RF

f3

A

B

Imm

Dependence on immed. preceding Load

(start of Cycle 4)

64:

68:

72:

76:

ld x10, 40(x1)

add x14, x5, x6

60:

sub x11, x10, x3

add x12, x3, x4

x10

x11

x12

x13

120

130

x1

x2

x3

x4

100

200

32

400

140 14

Memory:

sd x13, 48(x1)

110 ?

Dist. 1 dep. on LOAD

14

forward

Wait/Repeat!

Abort!

fetch 60

sub x10, x3

64:

68:

72:

76:

ld x10, 40(x1)

add x14, x5, x6

60:

sub x11, x10, x3

add x12, x3, x4

sd x13, 48(x1)

The instruction immediately after a Load wants to use the load’ed data

Simple, in−order Pipeline: the next instruction has to wait too!

Impossible without losing one cycle:
force this instruction to wait (repeat itself on the next cycle)

fetch 64

Distance 1 dependence on LOAD: Wait!

time

x1 + 40

no−op.no−op no−op

Data Mem.x10 − x3fetch 68

x3 + x4fetch 68

ld: read x1 read M[140] write x10

write x11

Data Mem.add x3, x4 write x12

H’zrd D’tct!

15

L
U

A
68

Imm+
+4

br/jmp

A

IM

I

rs2

we Din

rd

rs1

f7

op f7

RF

f3

Imm

A=100

B

IR

Op. Dec.

Addr

we rd

Din

Dout

DM

rd

40

x10

1

add

0

1

1

x10

x3 x11

sub

PC

1

Forwarding Control
Hazard Detection

ld
E

n

ld
E

n

0
1

rrd3rd

rs1

rs2

fwd.ctrl

need.rs1

rrd5

rwe5

rrd4

rwe4rwe3

mrd3

mwe3

mrd4

mwe4n
e

e
d

.r
s2

0

Wait

16

Wait =

(mrd3) AND (Match(rs1, rrd3)) AND (need_rs1)

OR

(mrd3) AND (Match(rs2, rrd3)) AND (need_rs2)

Hazard Detection Logic

non existent for them, e.g. J/U instructions like ‘lui’ (load upper immediate) or ‘jal’ (jump and link)

Several instructions do not need the register that happens to be specified by their rs2 field: besides those

i.e. the previous instruction is a Load and I need the register that it will write

Not all instructions need the register that happens to be specified by their rs1 field, when that field is

with J/U format, the ones with I−format also do not have an rs2 field −most notably: addi and load

17

(OK to reorder sd−ld) or i==j (fwd in reg.)?

If unknown to compiler, static sch. impossible
=> dynamic scheduling at runtime (ooo pipe)

Does the compiler know for sure if i!=j

t1,

sub t1, t0, t1

sd 24(gp)t1,

2 extra clock cycles lost

e = b − f;

a = b + c;

a[i] = b + c;

e = b − a[j];
What if the program is?:

RAW dependence?

sd e

sub

ld f

ld b

ld c

add

t1

ld b

ld c

sd e

sub

ld f

add

sd a

This is ‘Static’ Scheduling, at Compile Time

t0

tw
o
 t
e
m

p
o
ra

ry
re

g
is

te
rs

 s
u
ff
ic

e
t2

t0

t1

th
re

e
 t
e
m

p
o
ra

ry
 r

e
g
is

te
rs

 n
e
e
d
e
d

Instruction Scheduling

sd a
f

b

+16:
+8:
+0:

+24:
+32:

e

c

a gp

the more things you have
‘up in the air’ (in parallel),
the more temporary
registers you need
in order to ‘name’
those ‘pending’ values

ld 32(gp)t2,

ld t0, 8(gp)

ld t1, 16(gp)

add t1, t0, t1

sd t1, 0(gp)

sub t1, t0,

sd 24(gp)t1,

t2

No extra clock cycle lost

sd t1, 0(gp)

ld t0, 8(gp)

ld t1, 16(gp)

add t1, t0, t1

ld 32(gp)

18

