Serial Peripheral Interface

• What is it?

• Basic SPI

• Capabilities

• Protocol

• Pros and Cons

• Uses
What is SPI?

- Serial bus protocol
- Fast, easy to use, and simple
- Very widely used
- Not “standardized”
SPI Basics

- A 4-wire communications bus
- Typically communicate across short distances
- Supports
 - Single master
 - Multiple slaves
- Synchronized
 - Communications are “clocked”
SPI Capabilities

- **Always full-duplex**
 - Communicates in both directions simultaneously
 - Transmitted (or received) data may not be meaningful

- **Multiple Mbps transmission speeds**
 - 0-50 MHz clock speeds not uncommon

- **Transfer data in 4 to 16 bit characters**

- **Supports multiple slaves**
SPI bus wiring

- Bus wires
 - Master-Out, Slave-In (MOSI)
 - Master-In, Slave-Out (MISO)
 - System Clock (SCLK)
 - Slave Select/Chip Select (SS1#, ..., SS#n or CS1, ..., CSn)
- Master asserts slave/chip select line
- Master generates clock signal
- Shift registers shift data in and out
SPI signal functions

- **MOSI** - carries data out of master to slave
- **MISO** - carries data out of slave to master
 - Both MOSI and MISO are active during every transmission
- **SS# (or CS)** - unique line to select each slave chip
- **SCLK** - produced by master to synchronize transfers
SPI uses a “shift register” model of communications

Master shifts out data to Slave, and shifts in data from Slave

http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png
Two bus configuration models

Master and multiple independent slaves

Some wires have been renamed

Master and multiple daisy-chained slaves

http://www.maxim-ic.com/appnotes.cfm/an_pk/3947
SPI clocking: there is no “standard way”

- Four clocking “modes”
 - Two phases
 - Two polarities
- Master and *selected* slave must be in the same mode
- During transfers with slaves A and B, Master must
 - Configure clock to Slave A’s clock mode
 - Select Slave A
 - Do transfer
 - Deselect Slave A
 - Configure clock to Slave B’s clock mode
 - Select Slave B
 - Do transfer
 - Deselect Slave B
- Master reconfigures clock mode on-the-fly!
Timing Diagram – Showing Clock polarities and phases
http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif
SPI tradeoffs: the pros and cons

• Pros
 - Fast for point-to-point connections
 - Easily allows streaming/constant data inflow
 - No addressing in protocol, so it’s simple to implement
 - Broadly supported

• Cons
 - Slave select/chip select makes multiple slaves more complex
 - No acknowledgement (can’t tell if clocking in garbage)
 - No inherent arbitration
 - No flow control (must know slave speed)
SPI is used everywhere!

- **Peripherals**
 - LCDs
 - Sensors
 - Radios
 - Lots of other chips

- **Microcontrollers**
 - Almost all MCUs have SPI masters
 - Some have SPI slaves
SPI summary

- SPI - a 4-wire serial bus (but not official “standard”)
 - MOSI, MISO, SS/CS, and SCLK signals
- Full-duplex operation
- One master
- Multiple slaves
- Best for point-to-point data transfers
- Easily supported
- Broadly used
SPI bus architecture

- Shared bus
- SCK
- MOSI
- MISO
- Chip selects
SPI bus architecture

- Compact shared bus
- SCK
- MOSI
- MISO
- Chip selects
I2C bus

- Inter-Integrated Circuit
- Pronounced “eye-squared-see”
- Sometimes called “eye-two-see”
- Two wire serial bus specification
- Invented by Philips in the early 1980s
 - The division is now NXP
 - Was a patented protocol, but patent has now expired
I2C uses

- Originally used by Philips inside television sets
- Now a very common peripheral bus standard
- Intended for use in embedded systems
 - Philips, National, Xicor, Siemens, ... all use
- Also used in PCs
 - RTC
 - Temperature sensors
 - Variant is the SMBus (system management bus)
I2C bus architecture

- I2C
- Standardizes peripheral classes
- SCK, SDA
- Philips/NXP
I2C details

- Two-wire serial protocol with addressing capability

- Speeds up to 3.4 Mbps
 - Discussion: what limits I2C to such small speeds?
 - Multi-master architecture
 - Open collector bus driver
 - Pull-up resistors

- Multi-master, Multi-slave
 - Uses bus arbitration
I2C wiring

- Two lines
 - SDA (serial data)
 - SCL (serial clock)
- Open collector design
 - Simple interfacing in for multi-voltage
 - Supports bus arbitration
I2C clock

- Not a “traditional” clock
- Normally is kept “high” using a pull-up
- Pulsed by the master during data transmission
 - Master could be either the transmitter or receiver
- Slave device can hold clock low if needs more time
 - Allows for flow control
I2C transaction

- Transmitter/receiver differs from master/slave
 - Master initiates transactions
 - Slave responds
- Transmitter sets data on SDA line, slave acks
 - For a read, slave is transmitter
 - For a write, master is transmitter
I2C start condition

- Master pulls SDA low while SCL is high
- Normal SDA changes only happen when SCL is low
I2C address transmission

- Data is always sampled on the rising clock edge
- Address is 7 bits
- An 8-th bit indicated read or write
 - High for read
 - Low for write
- Addresses assigned by Philips/NXP
 - For a fee
 - Was covered by patent
I2C data transmission

- Transmitted just like address (8 bits)
- For a write, master transmits, slave acknowledges
- For a read, slave transmits, master acknowledges
- Transmission continues
 - Subsequent bytes sent
 - Continue until master creates stop condition

Source: ATmega8 Handbook
I2C stop condition

- Master pulls SDA high while SCL is high
- Also used to abort transactions
I2C bus transactions: start and stop conditions

Fig 5. START and STOP conditions
I2C bus transactions: data transfer

Fig 6. Data transfer on the I2C-bus

Source: ATMega8 Handbook
I2C bus transactions: data transfer

Fig 6. Data transfer on the I²C-bus