HY－111，Aтвıробтıко́s＾оүıбцós II
 Eapıvó E§áunvo 2009－10

 3^{η} ミعıрá A

Гєvıкยя Oठпүієя

Абкクбा 1 （30\％）

Абкпŋぁ 2 （20\％）

АбкПбๆ 3 （30\％）

АбкПбך 4 （20\％）

кat $x^{2}+y^{2} \leq 4$ ка兀t ка́tढ a α ó то $\varepsilon \pi i \pi \varepsilon \delta \circ \quad x+y+z=10$ ．
Bonus：（ $+10 \%$ ）
$f(x, y)=4^{*} x^{2}+y^{2},(x, y) \in S$

 $\gamma \rho a ́ \varphi \eta \mu \alpha \pi ŋ \varsigma \mathrm{f}(\mathrm{x}, \mathrm{y})$ va عivaı o î̀ıoç．

4 an 1

$$
f(x, y)=1+x y,(x, y) \in S
$$

a) S : $A(0,0), B(0,1), \Gamma(1,0), \Delta(1,1)$

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1\right\}
$$

$$
\begin{array}{r}
|f(x, y)|=|1+x y|=1+x y \\
\text { Enudn }(x, y)
\end{array}
$$

$$
\text { snuin }(x, y) \in 5
$$

$$
\text { da } x, y>0
$$

$$
\begin{aligned}
V & \left.=\int_{5} \mid f(x, y)\right) d x d y=\int_{0}^{1} \int_{0}^{1}(1+x y) d x d y=\int_{0}^{1}\left[\int_{0}^{1}(1+x y) d y\right] d x \\
& =\int_{0}^{1}\left[\int_{0}^{1} d y+\int_{0}^{1} x y d y\right]_{0}^{1} d x= \\
& \left.\left.=\int_{0}^{1}[y]_{0}^{1}+x \frac{1}{2} y^{2}\right]_{0}^{1}\right) d x=\int_{0}^{1}\left[(1-0)+\left(\frac{1}{2} x-\frac{1}{2} x \cdot 0\right)\right] d x= \\
& \left.=\int_{0}^{1}\left(1+\frac{1}{2} x\right) d x=x+\frac{1}{2} \cdot \frac{1}{2} x^{2}\right]_{0}^{1}=1+\frac{1}{4}=\frac{5}{4}
\end{aligned}
$$

b) $S_{:} A(0,0), B(0,1), \Delta(1,1)$

$$
(x, y) \in 5 \Rightarrow x, y \geqslant 0
$$

$$
\begin{aligned}
\text { Aea }|f(x, y)| & =\mid(x y) \\
& =1+x y
\end{aligned}
$$

$$
\begin{gathered}
y=a x+b \stackrel{A(0,0)}{\Rightarrow} \quad Q=a+b \Rightarrow b=0 \\
\Rightarrow y=x
\end{gathered}
$$

$$
=1+x y
$$

$$
\begin{aligned}
& S=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1, \quad x \leq y \leq 1\right\} \\
& V=\iint_{S}^{1} \int f(x, y) \mid d x d y=\int_{0}^{1}\left(\int_{x}^{1}(1+x y) d y\right) d x=\longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(\int_{x}^{1} d y+\int_{x}^{1} x y d y\right) d x= \\
& \left.\left.=\int_{0}^{1}(y]_{x}^{1}+x \frac{1}{2} y^{2}\right]_{x}^{1}\right) d x= \\
& =\int_{0}^{1}\left((1-x)+\left(x \frac{1}{2}-x \frac{1}{2} x^{2}\right)\right) d x= \\
& =\int_{0}^{1}\left(1-x+\frac{1}{2} x-\frac{1}{2} x^{3}\right) d x= \\
& \left.=\int_{0}^{1}\left(1-\frac{1}{2} x-\frac{1}{2} x^{3}\right) d x=\left(x-\frac{1}{2} \cdot \frac{1}{2} x^{2}-\frac{1}{2} \cdot \frac{1}{4} x^{4}\right)\right]_{0}^{1} \\
& =1-\frac{1}{4}-\frac{1}{8}=\frac{5}{8}
\end{aligned}
$$

$$
\begin{aligned}
x, y \geq 0 \Rightarrow f(x, y) \mid & =1+x y)= \\
& =1+x y
\end{aligned}
$$

Inficia rofus iaknutur ju va thoperbw ver nobdioeabir za pela. x rou xupion

$$
\begin{array}{r}
y=1+x \\
\left.\begin{array}{r}
y=x^{2}
\end{array}\right\} \Rightarrow \begin{array}{l}
x^{2}=1+x \Rightarrow \\
x^{2}-x-1=0 \\
\\
\Delta=1+4=5 \\
\\
x_{1,2}=\frac{1 \pm \sqrt{5}}{2}
\end{array} .
\end{array}
$$

Opws $x_{1}=\frac{1-\sqrt{5}}{2}<0$ Onotr

$$
0 \leq x \leq \frac{1+\sqrt{5}}{2} \quad x^{2} \leq y \leq 1+x
$$

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant x \leqslant \frac{1+\sqrt{5}}{2}, x^{2} \leqslant y \leqslant 1+x\right\}
$$

Aea

$$
\begin{aligned}
& \left.=\int_{0}^{2}\left[y f_{x^{2}}^{1+x}+x \frac{1}{2} y^{2}\right]_{x^{2}}^{1+x}\right) d x= \\
& =\int_{0}^{\frac{1+\sqrt{5}}{2}}\left((1+x)-x^{2}+\frac{1}{2} x(1+x)^{2}-x \cdot \frac{1}{2} x^{4}\right) d x= \\
& =\int_{0}^{\frac{1+\sqrt{5}}{2}} 1+x-x^{2}+\frac{1}{2} x(x+1)^{2}-\frac{1}{2} x^{5}= \\
& =\int_{0}^{\frac{1+\sqrt{5}}{2}}\left(1+x-x^{2}\right) d x^{+} \int_{0}^{1+\frac{\sqrt{5}}{2}} \frac{1}{2}(x+1)(x+1)^{2}-\frac{1}{2}(x+1)^{2} d x=\int_{0}^{1+\frac{\sqrt{5}}{2}} \frac{1}{2} x^{5} d x \\
& \left.\left.=x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{0}+\int_{0}^{\frac{1+\sqrt{5}}{2}}\left(\frac{1}{2}(x+1)^{3}-\frac{1}{2}(x+1)^{2}\right) d(x+1)-\frac{1}{2} \frac{1}{6} x^{6}\right]_{0}^{0} \\
& \left.\left.\left.=x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1+\frac{\sqrt{5}}{2}}+\left(\frac{1}{2} \cdot \frac{1}{4}(x+1)^{4}-\frac{1}{2} \frac{1}{3}(x+1)^{3}\right)\right]_{0}^{\frac{1+\sqrt{5}}{2}}-\frac{1}{12} x^{6}\right]_{0}^{\frac{1+\sqrt{5}}{2}} \\
& \text { neaぞと. .. . }
\end{aligned}
$$

Aombu 2

$$
f(x, y)=x^{2}-y^{2}, \quad(x, y) \in S
$$

S: $A(-1,1), B(1,-1), r(1,1,1, A(1,-1)$

$$
\begin{gathered}
V=\iint_{S}|f(x, y)| d x d y \\
|f(x, y)|=\left|x^{2}-y^{2}\right|
\end{gathered}
$$

O/ws

$$
\begin{aligned}
& -1 \leqslant x^{2}-y^{2} \leqslant 1
\end{aligned}
$$

Afa $\exists(x, y)$ yar za onoia ì $f(x, y)<0$ kan Enofives reina fia us rfis oures $|f(x, y)|=-f(x, y)$

$$
A=\left|x^{2}-y^{2}\right|=|(x-y)(x+y)|
$$

6uvia6toi (4) $+\quad \Rightarrow \quad x^{2}+y^{2}=f(x, y)$
(2) $+\quad \Rightarrow A=-\left(x^{2}-y^{2}\right)=-f(x, y)$
$(3)-\quad \Rightarrow A=-\left(x^{2}-y^{2}\right)=-f(x, y)$
(4) - $\quad \Rightarrow \quad A=x^{2}-y^{2}=f(x, y)$

$$
\begin{align*}
& \left.(1) \Rightarrow \begin{array}{l}
x-y>0 \\
x+y>0
\end{array}\right\} \Rightarrow \tag{1}\\
& \left.(2) \Rightarrow \begin{array}{l}
x-y>0 \\
x+y<0
\end{array}\right\} \Rightarrow \begin{array}{l}
x>y \\
x<-y
\end{array}
\end{align*}
$$

$\left.(3) \Rightarrow \begin{array}{l}x-y<0 \\ x+y>0\end{array}\right\} \Rightarrow \begin{aligned} & x<y \\ & x>-y\end{aligned}$

$$
\begin{align*}
& x>y \tag{4}\\
& x>-y
\end{align*}
$$

(4) $\left.\Rightarrow \begin{array}{l}x-y<0 \\ x+y<0\end{array}\right\} \Rightarrow\left\{\begin{array}{l}x<y \\ x<-y\end{array}\right.$

Enofervas $\varepsilon \times \omega$

$$
\begin{aligned}
& S_{A}=S_{1} \cup S_{2} \quad S_{B}=S_{3} \cup S_{u} \\
& S_{1}=\left\{(x, y) \in \mathbb{R}^{2}:-1 \leq x \leq 0, x \leq y \leq-x\right\} \\
& S_{2}=\left\{(x, y) \in \mathbb{R}^{2} ; \quad 0 \leq x \leq 1,-x \leq y \leq t x\right\} \\
& S_{4}=\left\{(x, y) \in \mid R^{2}:-1 \leq y \leq 0, y \leq x \leq-y\right\} \\
& S_{3}=\left\{(x, y) \in \mid R^{2} ;\right. \\
&
\end{aligned}
$$

Nepampebricurdn kearaw gavipo to y kan trrobàllw ro x

Avro jiveton A乡rbborgo avzintito an avunedalझz $s_{1} \mathrm{kan}_{3}$

ESw y ficobluio

©for av inilir]o va reambu * kraOreo rerna va bnabur 20 nuplo be z alse xula

$$
\begin{aligned}
& -1<x \leq 0,+x \leq y \leq 1 \\
& 0 \leq x \leq 1,1 \leq y \leq x
\end{aligned}
$$

Av ofurs keambw onarpo ro y da <xw

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& -y \leq x \leq y
\end{aligned}
$$

Ala

$$
V=\iint_{S}|f(x, y)| d x d y=\iint_{S_{A}}\left(x^{2}-y^{2}\right) d x d y+\iiint_{S_{B}}-\left(x^{2}-y^{2}\right) d x d y
$$

$$
\begin{aligned}
V & =\iint_{S A}\left(x^{2}-y^{2}\right) d x d y-\iint_{S B} x^{2}-y^{2} d x d y= \\
& =\int_{-1}^{0}\left(\int_{0}^{-x}\left(x^{2}-y^{2}\right) d y\right) d x+\int_{0}^{1}\left(\int_{-x}^{x}\left(x^{2}-y^{2}\right) d y\right) d x \\
& -\int_{0}^{1}\left(\int_{-y}^{1}\left(x^{2}-y^{2}\right) d x\right) d y-\int_{-1}^{0}\left(\int_{-1}^{-y}\left(x^{2}-y^{2}\right) d x\right) d y
\end{aligned}
$$

- beyn pive revial wis
+ Hza wis neos ro oladeo $[5]$

$$
\begin{aligned}
& =\int_{-1}^{0}\left(-\int_{-x}^{+x}\left(x^{2}-y^{2}\right) d y\right) d x+\int_{0}^{1}\left(\int_{-x}^{x}\left(x^{2}-y^{2}\right) d y\right) d x \\
& -\int_{0}^{1}\left(\int_{-y}^{y}\left(x^{2}-y^{2}\right) d x\right) d y-\int_{-1}^{0} \cdot\left(-\int_{-y}^{y}\left(x^{2}-y^{2}\right) d x\right) d y \\
& =\int_{-1}^{0}-k(x) d x+\int_{0}^{1} k(x) d x-\int_{0}^{1} k(y) d y-\int_{0}^{0}-k(y) d y \\
& =-\int_{-1}^{0} k(x) d x+\int_{0}^{1} k(x) d x-\int_{0}^{1} k(y) d y+\int_{-1}^{0} k(y) d y \\
& \begin{aligned}
k(x)=\int_{-x}^{x}\left(x^{2}-y^{2}\right) d y & \left.=x^{2} y-\frac{1}{3} y^{3}\right]_{-x}^{x}=x^{2} \cdot x-\frac{1}{3} x^{3}-\left[x^{2}(-x)-\frac{1}{3}(-x)^{3}\right. \\
& =x^{3}-\frac{1}{3} x^{3}+x^{3}-\frac{1}{3} x^{3}=2 x^{3}-\frac{2}{3} x^{3}=\frac{4}{3} x^{3}
\end{aligned} \\
& \left.k(y)=\int_{-y}^{y}\left(x^{2}-y^{2}\right) d x=0 \cdot \frac{1}{3} x^{3}-y^{2} x\right]-\frac{y}{y}=\frac{1}{3} y^{3}-y^{3}-\left(\frac{1}{3}(-y)^{3}+y^{3}\right)=\frac{2}{3} y^{3}-2 y^{3}=-\frac{4}{3} y^{3} \\
& \text { Aea } V=-\int_{1}^{0} \frac{4}{3} x^{3} d x+\int_{0}^{1} \frac{4}{3} x^{3}-\int_{0}^{3}-\frac{4}{3} y^{3} d y+\int_{-1}^{0}-\frac{4}{3} y^{3} d y \\
& \left.\left.\left.\left.\begin{array}{rl}
-1 & -1 \\
0 & 0
\end{array}\right]_{-1}^{0}+\frac{1}{3} x^{4}\right]_{0}^{1}+\frac{1}{3} y^{4}\right]_{0}^{1}-\frac{1}{3} y^{4}\right]_{-1}^{0}=\begin{array}{l}
=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3} \\
=4 / 3
\end{array}
\end{aligned}
$$

A6kubn 3

El中pajura B kar T buvopruba un jwilas φ
Enridu 70 xupio hou ठqu wan wukliko de troew

 fia va oerodrzulow 20 kweros

$$
\begin{align*}
& y_{1}=\tan \varphi \cdot x \tag{A}\\
& y_{2}=\tan \left(4+\frac{\pi}{3}\right) \cdot x \tag{2}
\end{align*}
$$

$$
y_{3}-y_{B}=\frac{y_{r}-y_{B}}{x_{r}-x_{B}}\left(x-x_{B}\right)
$$

$$
y_{3}-r \cos \varphi=\frac{r \sin \left(\varphi+\frac{n}{3}\right)-r \sin \varphi}{r \cos \left(\varphi+\frac{n}{3}\right)-r \cos \varphi}(x-r \sin \varphi)
$$

O Lus $\sin \left(\varphi+\frac{n}{3}\right)-\sin \varphi=2 \sin \frac{\varphi+\frac{n}{3}-4}{2} \cos \frac{\varphi+\frac{n}{3}+\varphi}{2}=2 \sin \frac{n}{6} \cos \cdot \frac{2 \varphi+\frac{n}{3}}{2}$

$$
=2 \cdot \frac{1}{2} \cdot \pi\left(\varphi+\frac{n}{6}\right)
$$

$$
\begin{align*}
& \cos \left(\varphi+\frac{n}{3}\right)-\cos \varphi=-2 \sin \left(\frac{\varphi+\frac{n}{3}+4}{2}\right) \sin \left(\frac{4+\frac{n}{3}-4}{2}\right)=-\sin \left(\varphi+\frac{n}{6}\right) \\
& y_{3}=-\frac{\cos \left(\varphi+\frac{n}{6}\right)}{\sin \left(\varphi+\frac{n}{6}\right)}(x-r \cos \varphi)+r \sin \varphi \tag{3}
\end{align*}
$$

To r uno unju ano 2o, $;(q)$.

$$
\left.\begin{array}{rl}
E=\frac{B \cdot u}{2} & =\frac{r \cdot u}{2} \\
& \epsilon=1 \\
& \Rightarrow \quad \frac{r u}{2}=1 \\
\tan \frac{n}{3}=\frac{u}{\frac{r}{2}} \Rightarrow u=r_{3} \frac{r}{2}
\end{array}\right\} \Rightarrow \sqrt[r]{r} \frac{r}{2} \cdot \frac{r}{2}=1
$$

$$
\sqrt{\sqrt{3} \frac{r^{2}}{4}=1 \Rightarrow r^{2}=\frac{u}{r}} \Rightarrow \int_{x=0}^{i} \quad r
$$

Enuion dev avor zo S karovillo ws reos x kor y nerner va zo bnatwor 2 xupia

Hear $S_{1}=\left\{(x, y) \in \left\lvert\, R^{2}=0 \leqslant x \leqslant r \cos \left(6+\frac{n}{3}\right)\right.\right.$

$$
\left.\tan y x<y \leq \tan \left(y+\frac{n}{3}\right) \cdot x\right\}
$$

$$
S_{2}=\left\{(x, y) \in\left(R^{2}, \quad \operatorname{Fos}\left(y+\frac{n}{5}\right) \leq x \leq \operatorname{nos} y, \tan \left(4+\frac{1}{3}\right), y \leq y_{3}\right\}\right.
$$

onou r, y_{3} juwbra ano（3），（4）

$$
\begin{aligned}
& \text { AL } \\
& \left.V=\int_{S_{S}^{1}}|f(x, y)| d x d y=\int_{S_{1}}^{A L} \mid f(x, y)\right) d x d y+\int_{S_{2}}^{A}(f(x, y) \mid d x d y \\
& \left.A_{1}=\int_{0}^{\operatorname{ros}\left(\varphi+\frac{n}{3}\right)}\left(\int_{\tan \varphi \cdot x}^{\tan \left(\varphi+\frac{n}{3}\right) \cdot x}\left(x^{2}+y^{2}\right) d y\right) d x=\int_{0}^{\operatorname{rot}\left(\varphi+\frac{n}{3}\right)}\left(x^{2} y+\frac{1}{3} y^{3}\right]_{\tan \varphi \cdot x}^{\tan \left(\varphi+\frac{n}{3}\right) \cdot x}\right) d x \\
& =\int_{0}^{\operatorname{not}\left(\varphi+\frac{n}{3}\right)}\left(x^{2} \tan \left(\varphi+\frac{n}{3}\right) \cdot x+\frac{1}{3} \tan \left(\varphi+\frac{n}{3}\right)^{3} x^{3}-x^{2} \tan y^{2} x^{e}\right. \\
& \left.=\frac{1}{3} \tan y^{3} x^{3}\right) d x \\
& =\cdots \text {. }
\end{aligned}
$$

Ofows rato A_{2}
neogaves ja misubu के perabrar va xe4butonoints＞8 matlab．To V roskゅjajsiz 6 av bovcermbu 200 b．
\｛ro zとう \Rightarrow ．Drzot $\vee \vee(\xi)=1 \Rightarrow \varphi=000$
 va loxure max orros nerner $\frac{\partial V(\varphi)}{\partial \varphi}=0$ han $\frac{\partial^{2} V(\varphi)}{\partial \varphi^{2}}<0$
omber 4
S: $1 \cong$ of 00 toplo, $\quad \begin{aligned} & x^{2}+y^{2} \leqslant 4 \\ & x+y+2=10\end{aligned}$

$$
g(u, v)=g(r, y)=f(x(r, y), y(r, y))=
$$

$$
=10-(\operatorname{ros} \varphi+r \sin \varphi)=
$$

$$
=10-r(\cos \varphi+\sin 4)
$$

$$
V=\iint_{D} g(r, y) \frac{\partial(x, y)}{\partial(r, y)} d r d \varphi=\iint_{D}(10-r \cos \varphi-r \sin \varphi) r d r d \varphi=
$$

$\theta(-\omega) \quad D=\left\{\begin{array}{ll}(r, y)+\mid R^{2}: r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi \leq 4, & r \sin \varphi>0\end{array}\right\}$

$$
\begin{aligned}
& \Rightarrow D=\left\{(r, y) \in \mid R^{2}, 0 \leq r^{2} \leq 4,\right. \\
& \Rightarrow D\left\{\begin{array}{l}
\sin 4>0
\end{array}>0\right. \\
& \left.\Rightarrow(r, \varphi) \in \mid R^{2}: 0 \leq r \leq 2,0 \leq 4 \leq \frac{n}{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& S=\left\{(x, y) \in \mid R^{2} ; \quad x^{2}+y^{2}=4, \quad x, y>0\right\} \\
& V=\iint_{S}|f(x, y)| d x d y=\iint_{S}\left(10-(x+y)\left|d x d y \int_{S}\right| f(x, y) \mid=\right. \\
& \text { Kpubitonolw noljixss sovisia } \mathrm{H} \text { tives } \\
& x=r \cos 4 \\
& y=r \sin y \\
& \left\{\begin{array}{l}
|10-(x+y)| \\
=10-(x+y) \\
\text { Sloz } 0 \leq x \leq 2
\end{array}\right. \\
& \text { Slore } 0 \leq x \leq 2 \\
& \text { osonva } \\
& r \text { arrurg } \\
& \frac{\partial(x, y)}{\partial(r, y)}=r \\
& 0 \leq y=2 \\
& g(u, y)=g(r, y)=f(x(r, y), y(v, y))=0 \leq x+y \leq 4
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow V=\int_{0}^{\frac{\pi}{d}}\left(\int_{0}^{2}(10-r \cos \varphi-r \sin \varphi) r d r\right) d \varphi= \\
& <_{0}^{n / 2} \\
& =\int_{0}^{n / 2}\left(\int_{0}^{2} 10 r-r^{2} \cos \varphi-r^{2} \sin \varphi d r\right) d \varphi \\
& \left.=\int_{0}^{n 12}\left(\frac{10}{2} r^{2}-\frac{1}{3} r^{3} \cos \varphi-\frac{1}{3} r^{3} \sin \varphi\right]_{0}^{2}\right) d \varphi= \\
& =\int_{0}^{1 / 2}\left(\frac{10}{2} \cdot 4-\frac{8}{3} \cos \varphi-\frac{8}{3} \sin \varphi\right) d 6= \\
& =\int_{0}^{n 12}\left(20-\frac{8}{3} \cos \varphi-\frac{8}{3} \sin \varphi\right) d y= \\
& \left.\left.=20 \div 6]_{0}^{n / 2}=\frac{8}{3} \sin \varphi\right]_{0}^{n / 2}+\frac{8}{3} \cos \varphi\right]_{0}^{n / 2}= \\
& =20 \frac{n}{2}-\frac{8}{3}+0-\frac{8}{3}=10 n-\frac{16}{3}
\end{aligned}
$$

sonus

$$
\begin{aligned}
& f(x, y)=4 x^{2}+y^{2} \\
& \text { S: } \quad x^{2}+y^{2} \leq 1 \\
& \varphi_{1}+\varphi_{2}+\varphi_{3}=2 n \\
& V=\iint_{S} f(x, y) d x d y=\iint_{D} g(r, \varphi) r d r d \varphi \\
& \left.\begin{array}{l}
x=r \cos \varphi \\
y=r \sin y
\end{array}\right\} \Rightarrow g(r, \varphi)=4 r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi \\
& x^{2}+y^{2}=1 \Rightarrow r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi \leqslant 1 \Rightarrow r^{2} \leqslant 1 \Rightarrow \\
& 0<r \leqslant 4 \\
& D=\left\{(r, 4) \in \mid R^{2}: 0 \leqslant r \leqslant 1, \quad 0-4 \leqslant 2 n\right\} \\
& V=\iint_{D}\left(4 r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi\right) r d r d \varphi= \\
& =\int_{0}^{2 n}\left(\left(4 r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi\right) r d r\right) d \varphi= \\
& =\int_{0}^{2 n}\left(4 \cos ^{2} \varphi \frac{1}{4 x} r^{4}+\frac{1}{4} r^{4} \sin ^{2} \varphi\right) d \varphi= \\
& \left.=\int_{0}^{20}\left(r^{4} \cos ^{2} \varphi+\frac{1}{4} r^{4} \sin ^{2} \varphi\right)\right]_{0}^{1} d \varphi= \\
& \begin{aligned}
&=\int_{0}^{2 n}\left(\cos ^{2} \varphi+\frac{1}{4} \sin ^{2} \varphi\right) d \varphi= \\
&=\int_{0}^{2 \pi} \cos ^{2} \varphi+\frac{1}{4}(2-\cos \varphi \\
&=\int_{0}^{2 n}\left(\frac{3}{4} \cos ^{2} \varphi+\frac{1}{4}\right) d \varphi
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 n}\left(\frac{3}{4}\left(\frac{1+\cos 24}{2}\right)+\frac{1}{4}\right) d y= \\
& =\frac{\int_{4}^{2 n}}{4}=\int_{0}^{a n}\left(\frac{3}{4} \cdot \frac{1}{2}+\frac{3}{4} \cdot \frac{1}{2} \cos 2 \varphi+\frac{1}{4}\right) d \varphi= \\
& =\int\left(\frac{3}{18}+\frac{3}{8} \cos 2 \varphi+\frac{1}{4}\right) d \varphi= \\
& =\int_{0}^{2 n}\left(\frac{5}{8}+\frac{3}{8} \cos ^{2} \boldsymbol{4}\right) d y= \\
& \left.=\frac{5}{8} \varphi+\frac{3}{16} \sin 2 \varphi\right]_{0}^{2 n}=\frac{5}{8} \cdot 2 n=-\frac{10 n}{8} \\
& \left.\left.=\frac{5}{8} \varphi+\frac{3}{16} \sin 2 \varphi\right]_{0}^{\varphi \cdot}+\frac{5}{8} \varphi+\frac{3}{16} \sin 2 \varphi\right]_{\varphi_{1}}^{\varphi_{2}} \\
& \left.+\frac{5}{8} \varphi+\frac{3}{10} \sin 2 \varphi\right]_{\varphi 2}^{2 n}=\cdots=\frac{10 \pi}{8}=\frac{5 \pi}{4} 00010 \\
& \text { Aea } \frac{V}{3}=\frac{5 \pi}{12} \text { Evar }
\end{aligned}
$$ oorros R nou xub be in late vursilo zotra

$$
\begin{align*}
\frac{5 \pi}{12} & =\frac{5}{8} \varphi_{1}+\frac{3}{16} \sin 2 \varphi_{1} \tag{1}\\
\frac{5 \pi}{12} & =\frac{5}{8} \varphi_{2}+\frac{3}{16} \sin 2 \varphi_{2}-\frac{5}{8} \varphi_{1}-\frac{3}{16} \sin 2 \varphi_{1} \tag{20}\\
\Rightarrow \frac{5 \pi}{12} & =\frac{5}{8} \varphi_{2}+\frac{3}{16} \sin 2 \varphi_{2}-\frac{5 \pi}{12} \\
\frac{5 \pi}{6} & =\frac{5}{8} \varphi_{2}+\frac{3}{16} \sin 2 \varphi_{2},(1) \text {) } \tag{3}
\end{align*}
$$

$\frac{5 \pi}{12}=\frac{5}{8} \cdot 2 \pi-\frac{5}{8} \varphi_{2}-\frac{3}{16}-\sin 2 \varphi_{2} \Rightarrow$ anta ina)nर्णुr zun (3) Nunoute bro matlab usindeltifies $\left.\sum\right\}$ Hoobly (2), (3) \Rightarrow 4i: 40,42 $41:[0,61] \quad \psi_{3}^{\prime}:\left(y_{2}, 21\right]$

