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ABSTRACT

This paper introduces a new feature set based on a Non-negative Ma-
trix Factorization approach for the classification of musical signals
into genres, only using synchronous organization of music events
(vertical dimension of music). This feature set generates a vector
space to describe the spectrogram representation of a music sig-
nal. The space is modeled statistically by a mixture of Gaussians
(GMM). A new signal is classified by considering the likelihoods
over all the estimated feature vectors given these statistical models,
without constructing a model for the signal itself. Cross-validation
tests on two commonly utilized datasets for this task show the supe-
riority of the proposed features compared to the widely used MFCC
type of representation based on classification accuracies (over 9% of
improvement), as well as on a stability measure introduced in this
paper for GMM.

Index Terms— Music Genre Classification, Non-negative Ma-
trix Factorization, Gaussian Mixture Model, MFCC

1. INTRODUCTION

When investigating the structure of music, it is considered to have
a vertical and a horizontal dimension [1]. These dimensions can
be recognized when reading the score of the piece. Vertical dimen-
sion involves harmonic relations of synchronous sounds and the in-
strumental timbre, while horizontal dimension involves rhythm and
melodic elements. From a signal processing point of view, both
dimensions are depicted in a spectrogram-type representation of a
piece. In this case, however, timbres have been additively mixed and
they are not vertically sorted like in a score. When a piece of music
is perceived to be similar to another piece of music, it is expected
that these pieces share some of the elements in both directions. It
would be interesting to be able to automatically detect these com-
mon elements when only a music signal is presented.
Measuring the similarity of pieces of music is an important and chal-
lenging task. As the size of digital collections of musical data is
growing bigger there is a need for automatically organizing these
data. But as music similarity is highly subjective and correctness of
measures are difficult to judge it is practical to restrict the task to
a more feasible problem. This is the assignment of musical pieces
to a set of classes. These classes are usually referred to as musical
genres. Some databases have been published in which the musical
content can be distributed for non-commercial purposes and a genre
classification already exists [2]. These databases may be used as
benchmarks for measuring music similarity.
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There have been several tries to measure the similarity of music by
incorporating features for the vertical description of sounds. These
approaches usually rely on Mel-Frequency Cepstrum Coefficients
(MFCC) [3]. It has been shown that modeling the vertical structure
using MFCC, an upper performance bound may be reached [4]. This
raises the task for searching for a new feature set by exploiting the
vertical structure of music more efficiently.
As mentioned above the musical instruments are additively mixed
in a spectrogram. Techniques to find these components from a mix-
ture include Independent Subspace Analysis (ISA) and Non-negative
Matrix Factorization (NMF). NMF was successfully applied to the
decomposition of sound mixtures in [5]. Recently NMF was used
for the classification of musical instruments in [6]. These approaches
follow a deterministic path for classification; first, a fixed set of spec-
tral bases is defined and then, classification is performed by project-
ing the input signals into the space generated by these fixed spectral
bases.
In this paper, we present a feature set that captures the vertical di-
mension of music by computing an NMF on spectrograms of music
signals. The factorization step provides base vectors of the spectral
space where the signal is supposed to lie within. The number of base
vectors is determined based on a Singular Value Decomposition of
the spectrogram before factorization. For a given musical genre, a
Gaussian Mixture Model (GMM) is built on all the base vectors com-
puted from the training data. For classification we do not model the
songs statistically; classification decision is based on the likelihoods
of the song feature vectors given the statistical models. The ability of
such a feature set to extract significant characteristics from the music
to be classified is the central item of this paper. Our approach does
not include descriptors for the horizontal structure of music, such as
melody and rhythm. We rather aim to evaluate a new set of features
for the vertical dimension.
Section 2 will give a detailed overview of the feature calculation
frontend and Section 3 will describe the classification approach. An
objective way for measuring the performance of the proposed sys-
tem is presented in Section 4. For this purpose, a general approach
to measure sensitivity in the classification task using GMM is pre-
sented along with experiments using the proposed system. Details
about our experiments, a description of the databases we have used,
and the obtained results are presented in Section 5. Conclusions
drawn from our experiments are provided in Section 6.

2. FEATURE SET

2.1. NMF

A spectrogram, X ∈ RNc×k, contains in its rows, k vectors of Nc

coefficients computed using the magnitude of the Short Time Fourier



Transform (STFT) on signal x. Usually, to decompose this represen-
tation of a mixture into its elementary components it is assumed that
the number of observation vectors k is higher than the number of
the elementary components. Assuming that the observations are the
output of an additive mixture, the observation matrix X can be ap-
proximated by

X ≈ WH =

dX
i=1

wihi (1)

where W ∈ RNc×d is the mixing matrix, H ∈ Rd×k is the result-
ing component matrix, wi is the i-th column of W, and hi is the
i-th row of H. Parameter d, with d < k, denotes the number of
components contained in the mixture. In this paper, we consider the
columns of W to represent a possible spectral base of the signal.
Rows of H contain the temporal weights throughout the mixture.
NMF performs the factorization of matrices shown in (1) by mini-
mizing the error function:

D(X||WH) =
X
i,j

Xi,j log
Xi,j

[WH]i,j
−Xi,j + [WH]i,j (2)

under the constraint that W,H and X are non-negative. This prob-
lem is guaranteed to converge to a local minimum using efficient
gradient decent algorithms with multiplicative updates as shown in
[7].

2.2. Feature Calculation

The features describing the spectral space are calculated as shown
in figure 1. The preprocessing step avoids the influence of recording
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Fig. 1. Calculation of the features used for the statistical model of
musical genres

conditions which are not considered as significant for classification.
It includes removal of mean values and normalization to an average
sound pressure level of L = 96dB by applying

xnorm =

0
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to the zero mean signal vector x of length Ns (in samples). Then,
the magnitude of the STFT of the signal is computed on a 40ms
Hamming window with 50% of overlap. The next step is a conver-
sion from the linear frequency abscissa to a logarithmic axis. We
use eight bands per octave ranging from 65.5 Hz to 8 kHz. This
conversion is following the AudioSpectrumEnvelopeType descriptor
of the MPEG-7 standard. It enables a more compact description
of the signal. The choice of eight bands per octave has been moti-
vated by the temperate musical system of western music in which
tonal scales contain seven steps from the fundamental tone until its
octave. Having computed these vectors for a whole song, a spectro-
gram representation is then obtained. This is segmented into smaller
sub-spectrograms that represent non-overlapping windows of tBlock

seconds length in the time signal. Each sub-spectrogram is then fac-
torized using NMF, providing a spectral base in the columns of ma-
trix W (see (1)). The final step of the feature calculation is a Discrete

Cosine Transform (DCT) on the logarithm of the spectral base vec-
tors. This helps to reduce the dimensionality of the space. Note that
the whole process is similar to the calculation of MFCC. Because
of this, any performance improvement can be then attributed to the
factorization step. For a given spectrogram the determination of the
optimum values for the temporal length, tBlock, of the timbre win-
dow and the number, d, of spectral base vectors to compute, should
be defined. We have tested values for tBlock from 0.25 seconds to 3
seconds. In order to get a value for d, we have varied the values of
ratio:

φ =

Pd
j=1 σjPNBands

i=1 σi

(4)

from 0.95 to 0.6, where σi is the i-th singular value of a Singu-
lar Value Decomposition (SVD) of the spectrogram to be factorized.
For evaluation, a subset of four classes (classical, disco, metal, rock)
from the first database has been used, while a mixture of Gaussians
with five components with full covariances has been built for each
genre (see Section 3 for details). The best classification was achieved
with tBlock = 0.5s and φ = 0.6, resulting in d = 3 for these data.
Note that these values are then fixed for all the following experi-
ments.

3. STATISTICAL MODEL AND CLASSIFICATION

In order to construct the models for the music genres, we calculate
the features for all samples of the database and store the features
for each class separately. Then, a Gaussian Mixture Model (GMM),
θi, for each genre is built (i.e., with i = 1...C, where C denotes
the number of genres), using a standard Expectation Maximization
(EM) algorithm [8]. EM algorithm is initialized by a deterministic
procedure based on the Gaussian means algorithm presented in [9].
A new song is classified into a genre by computing the likelihood of
its features given the genre models, θi, with i = 1...C. Summing
up these likelihood values, the song is assigned to the genre that has
the maximum summation value. The principle of the model training
and classification is depicted in Figure 2.
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Fig. 2. Model estimation and classification of data

4. JUDGMENT OF PERFORMANCE

4.1. Baseline System

In order to evaluate the performance of our classification approach
it is necessary to compare with some kind of standard procedure



used in many recent publications. For this, we implemented a base-
line system that is as close as possible to the proposed classifica-
tion system except for the feature calculation approach. The form
of the baseline system was motivated by [4] which is a state of the
art system for capturing the vertical structure of music. The model
estimation and classification procedures follow exactly the pattern
described by Figure 2. The only difference between the approach
used in [4] and the one followed in this paper is the feature set; in [4]
MFCCs have been used.

4.2. A Measure of Sensitivity

In addition to comparing the performance of the proposed classifi-
cation system with that of the baseline system, we also judge the
quality of the classifiers based on a measure that estimates their sen-
sitivity (or stability).
In order to judge the stability of a trained GMM, a method based
on Kullback Leibler divergence (KLD) was implemented. The KLD
between two distributions f and g, is given by

KL(f ||g) =

Z
f(x) log

f(x)

g(x)
dx (5)

Since there is no a closed form expression for KLD in a GMM con-
text, a possible way to get a distance measure in this case is by gen-
erating M samples from distribution f and then approximate KLD,
by:

KL(f ||g) ≈ 1

M

MX
t=1

log
f(xt)

g(xt)
(6)

Based on (6) a symmetric distance measure may be then defined as:

DKL(f, g) = KL(f ||g) + KL(g||f) (7)

Our problem consists of the classification into one of C classes. Per-
forming an n-fold cross-validation we will get a set of n×C GMMs.
We can now determine the distances between the GMMs of different
classes using (7) for each of the n cross-validation runs separately.
The minimum of these values throughout the cross-validation runs
gives us the least distance, Dinter , between two different classes.
Then we calculate the distances within the classes throughout the
different cross-validation runs. The biggest value along all classes,
Dintra, gives us a measure of how much the model differs through-
out the cross-validation due to diversity of the data set. We can now
define a condition measure for a specific feature set, computed by:

Cond =
Dinter

Dintra
(8)

Obviously values for Cond smaller than 1 for a specific feature set
imply that a classification with this feature set might be unreliable.
This is because there is a high variability between models built from
a different set of data for a specific genre, while at the same time
there is a relatively small distance between the models for different
genres.

5. EXPERIMENTS

5.1. Databases

Two different data sets have been used for the experiments. All the
samples are monaural wave files at a sampling frequency of 16000
Hz and quantized with 16 bits. The first database (D1) consists of

ten classes1, each containing 100 subsections of musical pieces of
30 seconds length. The database was collected by Giorgos Tzane-
takis [10] and has been used for performance evaluation by other
researchers as well [11]. The second database (D2) has been down-
loaded from the website of the ISMIR contest in 20042. The songs
had been selected from the magnatune collection. D2 consists of six
classes3 that are not equally distributed as they are in D1. In D2,
pieces are full musical pieces and not snapshots as in D1; therefore
the lengths of pieces in D2 differ. All the classification accuracies
shown in this paper are the means of the obtained accuracies from
5-fold cross-validations on the whole databases.

5.2. Classification results

Table 1 shows the classification scores on the two databases. The
rows marked with NMF contain results achieved with the system
using the NMF-based features while rows marked with MFCC con-
tain results achieved with the baseline system (using MFCC). The
values in parentheses denote the number of mixture components in
GMM. Full covariance matrices have been used for all experiments.
Note, that for Database 1 (D1), we didn’t have enough data for the
NMF-based features to train the GMM with 30 components. The

Table 1. Classification Accuracies in %
Database 1 Database 2

NMF(10) 69.8 70.6
NMF(20) 72.9 70.8
NMF(30) - 74.1

MFCC(20) 71.5 64.9
MFCC(30) 72.0 67.8

results show that the proposed system outperforms the baseline sys-
tem. This is more evident for the second database (D2). Here we
were able to increase the number of components further as D2 con-
tains more data. We observed that in most of the cases misclassi-
fications have some musical sense. For example, the genre Rock
in D1 was confused most of the time with either Metal or Country.
In D2 the Rock/Pop genre was mostly misclassified as Metal/Punk
pieces. Genres which are assumed to be very different, like Metal
and Classic, were never confused. The worst classification perfor-
mance for the proposed system was: Rock in D1 (42%, NMF(20))
and World in D2 (37.6 %, NMF(30)). It is worth to note that this be-
havior in performance is similar for other systems as well [3] [12].
The low performance for these genres may be assigned to their large
intra-variance of music style (at least for the analyzed data). In Ta-
ble 2 we show the confusion matrix of the NMF(30) system on DB2.
The columns contain the actual genres of the test data and rows con-
tain the predicted classification. Apart from illustrating the above
referred results and observations, it can be contrasted with the ma-
trices shown in the ISMIR2004 genre classification contest2.

Regarding the time allocated for training, the NMF-based system
is very fast compared to the baseline system (with MFCC). For in-
stance, training a 20 component model on D1 took about twenty
times longer using the baseline system instead of the NMF-based
system. The computation of the features for NMF takes longer than

1Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae,
Rock

2http://ismir2004.ismir.net
3Classical, Electronic, Jazz, Metal/Punk, Rock/Pop, World
2http://ismir2004.ismir.net/genre contest/results.htm



Table 2. Confusion matrix for database 2
cl el ja mp rp wo

cl 309 5 0 0 3 37
el 0 97 0 1 15 24
ja 0 1 22 0 0 0

mp 0 0 0 35 17 1
rp 4 6 3 7 60 16
wo 7 6 0 2 5 47

computing MFCC due to the gradient decent algorithm for NMF
(about 2.3 times longer). However, regarding the total time for fea-
ture calculation and training, NMF-based system is still about 6
times faster than the baseline system.
Even though our system captures only information about the vertical
characteristics of music it also performs well in comparison with ap-
proaches incorporating more versatile feature sets that include both
vertical and horizontal directions. On D1, Li and Tzanetakis [10]
reported an accuracy of 71% while recently Bergstra et al. [11] re-
ported 83% on the same database. D2 has been used for training
in the 2004 ISMIR Audio Description contest. There, the winner
reached an accuracy of 78.8% [12] while the second in the rank
reached the accuracy of 67.2% [13]. Note, however, that these re-
sults have not been obtained from a cross-validation experiment. It
is interesting, therefore, to note that for the same database (D2) the
NMF-based system in a single validation reached the score of 83.0%
(NMF(30)).

5.3. Stability Measure

Table 3 shows the condition measure for all the systems using (8).
From Table 3 it follows that NMF based features provide constantly
a higher condition number than MFCC. Moreover, the condition
number for NMF based features is always bigger that 1, while for
MFCC this number is always less than 1. This indicates that for
NMF based features the smallest inter class distance is always bigger
than the biggest intra class distance; this is not the case for MFCC
based models. This provides a further proof of the superiority of the
presented feature set compared to MFCC. From Table 3, we also ob-
serve that the condition values for the NMF based system decrease
as the number of mixture components increases. This is because
the intra class distances, Dintra, are growing faster than the inter
class distances, Dinter , when using more Gaussians. We further
observed that this effect diminishes when the number of Gaussians
increases. We assume therefore, that further increase will lead to a
stable state. Due to the limited size of the databases, this hypothe-
sis cannot, however, be verified. On the other hand this behavior of
the NMF based vectors may indicate their ability to amplify exist-
ing differences between songs classified in the same genre. At the
same time, the classification score still remain high compared to the
MFCC baseline system (see Table 1) since the smallest inter class
distances were observed to be always bigger for NMF based feature
than for MFCC.

6. CONCLUSION

We presented a new feature set based on NMF of the spectrogram of
a music signal for the description of the vertical structure of music.
We were able to show its superiority to MFCC which is the standard
set of features for describing the vertical dimension of sounds. Us-

Table 3. Condition Measure
Database 1 Database 2

NMF(10) 1.40 1.70
NMF(20) 1.39 1.30
NMF(30) - 1.27

MFCC(20) 0.33 0.55
MFCC(30) 0.44 0.64

ing the new feature set classification accuracies have been improved
by approximately 9%. Moreover, the proposed classification sys-
tem is more stable than the system with MFCC by over 98% using a
stability criterion based on the inter and intra distances of statistical
models in a cross validation test. In addition, the new feature set
has the advantage of fast training times compared to MFCC. Future
work includes the task to extend the new feature set to the horizonal
dimension, i.e. rhythm and melody. For example, using the rows
of H in (1) may be a starting point for the estimation of beat occur-
rences.
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