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ABSTRACT

In this paper, the problem of automatically assigning a piece
of traditional Turkish music into a class of rhythm referred
to asusul is addressed. For this, an approach for rhyth-
mic similarity measurement based on scale transforms has
been evaluated on a set of MIDI data. Because this task
is related to time signature estimation, the accuracy of the
proposed method is evaluated and compared with a state
of the art time signature estimation approach. The results
indicate that the proposed method can be successfully ap-
plied to audio signals of Turkish music and that it captures
relevant properties of the individualusul.

1. INTRODUCTION

Traditional music of Turkey has a big community of listen-
ers, and the music is strongly related to the music of neigh-
boring regions. For example, in Greece and Arabian coun-
tries music melodies of traditional music are often based on
similar modal systems as in Turkey. Concerning rhythm,
there is a correspondence in classes of rhythm found in
Arabic music (iqa’) and in Turkey (usul), and dances en-
countered in Turkey have influenced rhythms played in
GreekRembetikomusic. Thus, automatic retrieval of this
information not only enables a better understanding of an
important cultural heritage but may also be of major com-
mercial interest. Methods for this type of retrieval can be
assigned to the branch of computational ethnomusicology,
as introduced in [20]. Only recently, first research results
on the classification of Turkish music into melodic classes
were presented [7]. The retrieval of rhythmic information
from traditional Turkish music has not been addressed yet.
In this paper, classification of samples of Turkish music
into rhythmic classes is proposed. These classes are re-
ferred to asusul [16]. A data set containing samples of
songs composed in six differentusulhas been compiled to
conduct experiments. As it will be shown in the later Sec-
tions, in the context of this data set the classification intoa
specific rhythmic class is related to the recognition of the
time signature in Western music.
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In [18], an approach was presented to estimate the time
signature of a piece of music based on symbolic descrip-
tions (MIDI). This approach uses autocorrelation coeffi-
cients (ACF) derived from the annotated onsets. In [21], a
time signature estimation system for audio signals was pro-
posed and evaluated on a set of percussive music. The sys-
tem estimates the tatum [2] of the signal using inter-onset
intervals (IOI) and in parallel, ACF are computed from the
amplitude envelope of the signal. Beat and bar length are
chosen from the peaks of the ACF, taking into account the
estimated tatum. In [8], the determination of musical meter
was reduced to a classification into either binary or ternary
meter. Beat indexes are extracted in a semi-automatic way
and then ACF on a chosen set of features are used to de-
cide on the meter type. Using audio signals, the general
problem of rhythmic similarity was addressed previously
in [10] [1] in the context of traditional music, in both cas-
es by applying Dynamic Time Warping techniques. In [4],
rhythmic patterns were computed from samples of Western
ballroom dances.
In [14] a system was proposed for the automatic estimation
of the musical meter, i.e., the estimation of the position of
tatum, beat and bars in the signal. The estimation of bar po-
sitions in 3

4 time signatures is mentioned to be error-prone.
Compound time signatures such as9

8 are not mentioned
and to the best of our knowledge no reliable method has
been presented to estimate the meter in such signals.
On the other hand, compound or complex time signatures
are commonly encountered in traditional music of Turkey.
The time signatures can take various forms, as it will be de-
tailed in Section 2. Furthermore, the goal of the approach
presented in this paper is not only the correct estimation of
a time signature, but a description of the rhythmic proper-
ties of a class, becauseusul cannot be only distinguished
by time signature in all cases. In [11], audio samples of tra-
ditional dances were compared: ACF were computed from
onset strength signals (OSS) and these ACF were trans-
formed into the scale domain by using the scale transform
[3]. This results in descriptors that do not vary due to tempo
changes. Thus, the scale transform magnitudes (STM) can
be used to compare the rhythmic content of audio using
simple point to point distance measures without the need
of meter estimation. The approach in [11] was shown to be
superior to the DTW based approach presented in [10]. In
this paper, it will be combined with the approach presented
in [18] and applied to a set of MIDI data. MIDI data was
chosen as a first step to approach the problem of automat-
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Figure 1. Symbolic description of theusul Aksak

ic rhythm description in Turkish music. This approach can
easily be applied to audio signals by replacing the type of
OSS, has no need of meter estimation and is robust to large
tempo deviations.
Section 2 introduces the basic concepts of the analyzed
type of music and describes the data set. Section 3 intro-
duces the descriptors based on scale transform and propos-
es a method of comparison. Section 4 gives experimental
results and Section 6 concludes the paper.

2. DATA SET

Compositions in Turkish traditional music follow certain
schemes regarding their melodic and rhythmic content. Me-
lodies are characterized by a modal system referred to as
makam, and it defines a melodic texture consisting of spe-
cific tonal segments, progressions, directionality, tempo-
ral stops, tonal centers and cadences [13]. The rhythmic
schemes encountered in traditional Turkish music are re-
ferred to asusul. An usul is a rhythmic pattern of certain
length that defines a sequence of strong and weak intona-
tions. An example is shown in Figure 1: theusul Aksakhas
a length of nine beats. The notes on the upper line labelled
düm have the strongest intonation while the notes on the
low line denote weak intonations. The note durations in the
sequence shown in Figure 1 can be described as the string
xoxxxoxox, wherex symbolizes the start of a note and
o metric unit without note [19]. Note that this representa-
tion is a further simplification of the one shown in Figure
1, because no differentiation of the intonation strength is
contained. However these representations can be used for
estimating the similarity between rhythms of same lengths
by computing a chronotonic distance, as detailed in [19].

Unlike in [19], the length of theusulvaries. According
to H. Sadeddin Arel (1880-1955), theusul can be divid-
ed into minor and majorusul. Minor usulhave a length of
up to 15 time units, while the majorusul have up to 124
time units. As denoted in [16], minor usul are related to
small musical forms, while larger musical forms employ
the major usul in most cases. Musical forms that are usu-
ally composed in major usul are, e.g.,PresrevandBêste.
Two examples of small musical forms areSarkıandTürkü.
The latter are folk songs of unknown composers, while the
former are short songs based usually on four lines of text
with known composer. Both forms have in common that
a song follows a certain minorusuland a certainmakam,
and both forms are vocal music. The most popular songs
in Turkish music are composed in these forms. Because of
that, along with a system for the recognition of themakam
as presented in [7], an approach for the recognition of the

usul represents an essential element in automatic retrieval
of information from this music. Apart from that, the re-
lation between melody andusulhas not been investigated
and an automatic approach like the one presented here can
give valuable insight into the relation between melody and
usul.
The data set used in this paper consists of Turkish songs in
the forms ofSarkıandTürkü. They are following six dif-
ferent types of rhythmic schemes having lengths from 3 up
to 10:Aksak( 9

8 ), Curcuna( 10
8 ), Düyek( 8

8 ), Semai( 3
4 ), So-

fyan( 4
4 ), andTürk Aksăgi ( 5

8 ). The softwaremus2okur[13]
has been used to obtain a data set consisting of 288 songs
distributed along the six classes as shown in the second line
of Table 1. Each sample consists of a MIDI description of
the song melody, in most cases also a MIDI voice with
a percussive accompaniment is contained. This percussive
accompaniment has been left out, in order to be able to fo-
cus on the rhythmic properties of the melody. Due to the
character of this music, there exists no chord accompani-
ment.
As all usul in the data set have different length, the recog-
nition of the usul can be reduced to a recognition of its
length. This is closely related to the task of time signa-
ture recognition and motivates the experimental setup de-
scribed in the following Sections. The lower two lines in
Table 1 depict the mean values of the tempi inbpm(beats
per minute) and the standard deviation of the tempi, respec-
tively. It is apparent that there are large overlaps between
the tempo distributions of theusul. Thus, a system forusul
length estimation for a given audio signal has to be robust
to the tempo deviations and overlaps.

Table 1. Data set: number of songs, mean and standard
deviation of tempi inbpm

CLASS AKS CUR DUY SEM SOF TUR
NSongs 64 57 47 22 60 38
MEAN 98.5 98.3 70.7 131.9 81.3 73.1
STD 27.9 13.5 12.6 26.3 16.7 22.3

3. TIME SIGNATURE ESTIMATION

3.1 Rhythm Description

3.1.1 Tempo-invariant ACF

In order to describe and compare the content of the sam-
ples, an autocorrelation based method as presented in [18]
has been combined with a method used for estimating rhyth-
mic similarity presented in [11]. The onset times are read
from the MIDI files and each onset is assigned a weight.
In [18], different methods to set the weights were evaluat-
ed, and in this paper the three most successfull weighting
schemes have been applied: the weight of an onset can ei-
ther be related to the note duration as proposed in [15],
to characteristics of the melody [17], or all onsets are as-
signed the same weight. The best weighting scheme will be
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Figure 2. Autocorrelationsru derived from two samples
of usul aksak

determined in Section 4. In the method presented in [18],
an onset strength signal (OSS) is generated at a sampling
frequency related to the eighth note of the piece. This OSS
has an impulse of height according to the assigned weight
at the positions related to the onset time. From an OSSo(n)
an ACFr(m) can be derived

r(m) =

∑
n o(n)o(n − m)∑

n o(n)2
(1)

Note that the autocorrelations are not affected by tempo
differences, when the OSS are computed at a sampling fre-
quency that changes with the tempo (eighth note). Because
of this, changing the tempo will result in constant ACF,
which will be denoted asrc.

3.1.2 Tempo-variant ACF

As mentioned in [18], beat tracking is a necessary step
when applying the above described approach to audio. It
is necessary to correctly estimate all metric levels in or-
der to determine the eighth note pulse of the piece. When
dealing with compound rhythms of different type as they
are contained in the data set and commonly encountered in
the music of Turkey and the whole eastern Mediterranean,
no method has been presented yet to perform this task. For
that reason, the MIDI data contained in the data set as de-
scribed in Section 2 is used to compute OSS using a con-
stant sampling frequency offs = 50Hz. From the OSS au-
tocorrelations are derived. For two pieces having the same
time signature but different tempi, their autocorrelations
will differ by an unknown scaling factor, as can be seen in
Figure 2. This is particularly critical for the type of music
examined in this paper due to the large tempo deviations
as detailed in Section 2. In order to overcome this scaling
problem, typically the beat tracking would be necessary in
order to estimate the tempo difference between the pieces.
However, in this paper the usage of the method introduced
in [11] is proposed to avoid the intractable problem of beat
tracking in the presence of complex and compound time
signatures. Due to the unknown scaling factor depicted in
Figure 2, a simple point-to-point distance measure cannot
be applied when comparing these autocorrelations, which
due to the unknown scaling will be denoted asru. In order
to solve this problem, a scale transform has been applied
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Figure 3. Two STM derived from the twoaksakexamples
shown in Figure 2

to the autocorrelation sequenceru(t) :

R(c) =
1

2π

∫
∞

0

ru(t)e(−jc−1/2) ln tdt (2)

The scale transform has the property that for a signalru(t)
and its time scaled version

√
aru(at), with a > 0 being

the scaling factor, the two computed scale transform mag-
nitudes will be the same. This can be seen in Figure 3,
where the two scaled autocorrelations from Figure 2 have
been transformed to scale space. Due to the scale invari-
ance property they are aligned and can be directly com-
pared.
Thus, in this paper OSS will be computed from the MIDI
files using a constant sampling frequency offs = 50Hz.
Then, scale transform magnitudes (STM) are computed from
the autocorrelationsru using the discrete scale transform
algorithm proposed in [22]. This results in a STM vector
that describes the rhythmic content of the signal, the scale
resolution was found to be of minor importance and has
been set to∆c = 0.5. The accuracy in the task of time sig-
nature recognition when using either scaling free autocor-
relationsrc or the STM derived fromru will be compared.
The results will indicate if by using a scale transform, the
unsolved problem of meter estimation in complex time sig-
natures can be avoided and theusul length could be deter-
mined by using this method.

3.2 Rhythm Dissimilarity

In order to determine the time signature of a piece the fol-
lowing approach will be applied: All pairwise dissimilari-
ties between songs are computed using either the scale-free
ACF rc or the STM vectors, by using a cosine distance as
proposed in [6] [9]. This results in dissimilarity matrices,
having values close to zero whenever two pieces are found
to be similar regarding their rhythmic content. In order to
determine the accuracy of the proposed rhythmic similarity
measure, the accuracies of a modifiedk-Nearest Neighbor
(kNN) classification will be determined. For this, each sin-
gle song will be used as a query for that a classification
into one of the available classes is desired. This classifi-
cation is performed by applying the modified kNN to the
dissimilarity matrix. As shown in [10], a locally weighted
kNN was found to improve accuracies on similar data, and
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80.2% 68.1% 72.9%

Table 2. Time signature recognition accuracies when using
scale freerc representation

therefore it has been used in the experiments. It assigns a
weight wi = 1 − (di/dk+1) to the i-th training sample,
wheredk+1 is the distance of thek + 1-nearest neighbor
to the test sample. Thus, training samples more far away
from the test sample contribute less to its classification.
An usul can be expressed in a simplified way as a string,
as for example the stringxoxxxoxox for Aksak. In Sec-
tion 4, for someusul their string representations will be
used to estimate their similarity using a method proposed
in [19]: From the string representations chronotonic chains
can be computed, by breaking down the rhythm into its
smallest time unit on thex-axisand assigning to each el-
ement a height on they-axisaccording to the beat-to-beat
interval. This results in the chronotonic chain[211221] in
case ofAksak. As proposed in [19], in order to compare
two such chronotonic chains, then a discrete form of the
Kolmogorov Variational Distance (DKVD) can be applied.
Given two chronotonic chainsg andf of same lengthL,
this distance can be computed as

K =
L∑

i=1

|f [i]− g[i]| (3)

and is equal to the1 − norm distance between the chains.
Thus, by depicting anusul pair as two strings of same
length, their rhythmic similarity can be estimated. In this
paper, this method will be applied to pairs ofusul for that
samples frequently were confused in the time signature
recognition.

4. EXPERIMENTS

4.1 Scale-free ACF

Three different weighting schemes have been evaluated in
the experiments: the duration accent as proposed in [15],
the melodic accent [17], and the flat accent (i.e., using the
same accent weight for all onsets). Using therc autocorre-
lations computed using these three accents in the classifi-
cation approach as described in Section 3.2, resulted in the
best accuracies for the duration accent, as documented in
Table 2. This contradicts with the findings in [18], where
the melodic and flat accents were found to be preferable.
Furthermore, using a selected range of autocorrelation co-
efficients could not further improve results on this data set,
while in [18] using the coefficients of longer lags and leav-
ing out the coefficients of short lags was found superior.
This must be assigned to the differences between the data
sets.

In Table 3 the confusion matrix for the best classifica-
tion in Table 2 is shown. The biggest confusion happens
between the88 time signatureusul and the4

4 usul (Düyek

Predicted
9/8 10/8 8/8 3/4 4/4 5/8

Notated

9/8 62 0 1 0 1 0
10/8 0 50 0 0 1 6
8/8 1 4 24 0 18 0
3/4 0 0 0 20 2 0
4/4 2 0 12 0 46 0
5/8 0 9 0 0 0 29

Table 3. Confusion matrix forrc using duration accent

Symbolic Description
Düyek: xxoxxoxo Curcuna: xoxxoxoxox
Sofyan: xoooxoxo Türk Aksăgi: xoooxoooxo

Chronotonic Chains
Düyek: 12212222 Curcuna: 2212222221
Sofyan: 44442222 Türk Aksăgi: 4444444422

Normalized DKVD betw. Chronotonic Chains
10/8=1.25 18/10=1.8

Table 4. Computing chronotonic distances between con-
fusedusul

andSofyan, respectively). The pieces in the88 -usul could
be equivalently annotated in a84 time signature by chang-
ing their degree, referred to asmertebe, to four. The second
biggest confusion happens betweenCurcunaandTürk Ak-
saği. The time signatures are related by a factor of two as
well ( 10

8 and 5
8 ). These types of errors have been denoted

as typical as well in [18]. Still, the confusion between be-
tweenDüyekandSofyanis larger. This can be attributed
to the different degree of similarity of theusul, which can
be estimated using the approach proposed in [19]: In Ta-
ble 4, the symbolic descriptions for the two confusedusul-
pairs are depicted as vectors of same length. From these
descriptions the chronotonic chains have been derived that
are depicted in Table 4. Note thatSofyanwould be typi-
cally denoted as[211] as its smallest beat-to-beat interval
is a fourth note. In order to get chains of equal length,
the eighth note has been chosen as smallest unit. Com-
puting the Kolmogorov Variational Distances between the
chronotonic chains, and normalizing by the length of the
vectors it can be seen that theusul DüyekandSofyanare
more similar than the other pair. This is reflected in the
higher confusion in Table 3. Thus, it can be concluded that
the applied autocorrelation method is not only suitable for
determining time signatures, but can as well capture rhyth-
mic similarities contained in the piece.

4.2 Scale Transform Magnitudes

The results presented in Section 4.1 have been obtained
using the known note values that have been read from the
MIDI files. As discussed above, when audio signals have to
be examined instead of MIDI, this knowledge can only be
obtained by means of beat tracking, which is an unsolved



Figure 4. Result of the parameter grid search using the
STM descriptors

Predicted
9/8 10/8 8/8 3/4 4/4 5/8

Notated

9/8 51 3 3 1 3 3
10/8 0 52 2 0 0 3
8/8 1 1 30 2 11 2
3/4 3 0 3 15 1 0
4/4 0 2 8 1 48 1
5/8 2 4 3 0 1 28

Table 5. Confusion matrix for STM atC = 140 and max-
imum lag of14s

task for the time signatures obtained in the data set. Thus,
the STM represent a solution to avoid beat tracking, and in
this Section the influence of its application on the resulting
accuracies will be documented.
The parameters to set when using the STM are the maxi-
mum lag considered in the autocorrelationru and the num-
ber of scale coefficientsC that is to be used when comput-
ing the cosine distance.
The influence of these parameters has been evaluated in a
grid search. The resulting accuracies are depicted in Fig-
ure 4. It can be seen that by increasing the maximum lag
size and the maximum scale coefficient the accuracies are
improved until a level of about77% is reached. The high-
est accuracy achieved at some points on the dotted line in
Figure 4 is77.8%, for example atC = 140 and at a max-
imum lag of14s (marked in Figure 4). Choosing a point
with small maximum lag leads to faster computation of the
scale transform, and choosing a small value ofC means a
more compact STM description.

The related confusion matrix is shown in Table 5 and
comparing it with the confusion matrix shown in Table
3 reveals very similar structure. The decrease in accuracy
seems to be caused by some misclassification that cannot
be justified by a similarity of theusul, as for example the
9
8 -time signature, which for the STM descriptor is random-
ly misclassified. Thus it appears that transforming autocor-
relations to scale domain in the proposed way introduces
some noise to the rhythm descriptors. However, the per-

formance is only2.4% lower than for using the scale-free
autocorrelations (77.8% instead of80.2%). Hence, by in-
cluding scale transform the currently infeasible step of beat
tracking in this kind of meters is avoided and time signa-
ture estimation is made feasible, when presented with ar-
bitrary types of music signals having a compound or com-
plex meter.

5. FUTURE WORK: TOWARDS AUDIO SIGNALS

As mentioned in [18], in order for the above described ap-
proach to work on audio instead of MIDI three algorith-
mic steps have to be added: onset detection, pitch estima-
tion and beat tracking. The first step appears to be nec-
essary, because the onset locations are not known as it is
the case for MIDI. The pitch estimation is necessary only
when the weights in the OSS are desired to be influenced
by the pitch properties of the melody. On audio data, this
can be approached using a fundamental frequency based
OSS as proposed in [12], otherwise this step can be left
out and an OSS as described in [5] can be used instead.
The most error-prone step when dealing with audio is the
beat tracking: it is necessary to correctly estimate all met-
ric levels in order to determine the eighth note pulse of the
piece, when the method as described in Section 3.1.1 is de-
sired to be applied. Fortunately, the results using the STM
as described in Section 3.1.2 avoids this step of beat track-
ing. Thus, time signatures and rhythmic properties can be
captured by computing an OSS from an audio signal, and
computing ACF and STM as described above. In order to
evaluate the accuracy of the approach on audio data, a set
of audio recordings similar to the MIDI data set will have
to be compiled.

6. CONCLUSIONS

In this paper the application of scale transform for the recog-
nition of time signatures is proposed. Using a data set of
MIDI data with high class intern tempo deviations it is
shown that this method achieves almost the same accu-
racy as a method that assumes that the metric levels of
the piece are known. Thus, this method can be applied
to the time signature recognition of audio signals by esti-
mating an OSS suitable for the character of the signal and
then computing the STM descriptors as proposed. This rep-
resents a significant achievement because the estimation
of the metric levels in music signals having compound or
complex meters is not a solved problem. The proposed ap-
proach is computationally simple because the scale trans-
form can be performed using FFT algorithms. Furthermore,
the proposed descriptors seem to capture a reasonable amount
of information about the rhythmic properties of theusul, as
could be seen in the relation between symbolic similarity
and the confusion. As the rhythmic properties of Turkish
music have never been studied using computational meth-
ods, this indicates an interesting direction for future stud-
ies. Next steps of these studies have to be the usage of au-
dio signals and the examination ofusulof same length.
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