The Best of Many Worlds: Scheduling Machine Learning Inference on CPU-GPU Integrated Architectures

Giorgos Vasiliadis, Rafail Tsirbas, Sotiris Ioannidis

Use Cases

Self-driving cars

Smart Agriculture

Predictive maintenance

Video surveillance

Robotics

Image recognition

]0]]]]0•]]]]0

Voice/sound recognition

Collision avoidance

Anomaly detection

More

Commodity Processors

• Multi-core processors

• Discrete accelerators

• System on Chip / Chip-integrated graphics units

Motivation

• Programmers initial intuition when utilizing external accelerators

Motivation

• Programmers initial intuition when utilizing external accelerators

Motivation

• Programmers initial intuition when utilizing external accelerators

• Workload: Image classification on *three* different processors *

• Performance metrics:

- 1. Throughput
- 2. Latency
- 3. Power consumption

* Experiments performed on the MNIST dataset. More workloads and datasets are analyzed in the paper.

• Workload: Image classification on *three* different processors GPU is better for big samples

• Workload: Image classification on three different processors

iGPU becomes better than CPU

for very big samples

GPU performance varies up to 7x times due to "power-saving" state

No single configuration is good for all

- Workload Performance variability
 - Size of samples (Batch size)
 - Computational characteristics (i.e., structure) of ML model
- Hardware characteristics
 - GPU: High throughput comes with high latency
 - CPU: Low latency and good throughput
 - iGPU: Energy efficient and good throughput
- Harware state
 - Power saver states overthrow things:
 - e.g., GPU becomes more energy efficient than CPU

Search Space is Huge...

- Which device?
- How many samples?
- How many work groups / threads?
- How to partition datasets / workload?
- What memory to use?
- Power saver idle state?
- ...

Choosing the right configuration

Hard to find the best choice manually

Need adaptive mechanisms to automatically select the most efficient processing device available

Adaptive Scheduling

- The scheduler is based on machine learning to make decisions
- Our aim is to train a model that would be able to learn and predict the appropriate device on which a classification model will run
- Online Tuning
 - Measure performance continuously
 - Update/tune model

Evaluation and Conclusions

- Our proposed scheduler is able to predict the appropriate device with an **accuracy of 92.5%**, while consuming up to **10% less energy**
- Adaptive schedulers is a promising solution to tackle performance variability
- Our proposed scheduler is able to utilize *efficiently* the computational capacity of its resources *on demand*:
 - respond to relative performance changes
 - improve the energy efficiency