GrAVity: A Massively Parallel Antivirus Engine

<u>Giorgos Vasiliadis</u> and Sotiris Ioannidis FORTH-ICS, Greece

RAID'10, 15 September 2010

Overview

Increase the processing throughput of virus scanning applications, using the Graphics Processing Unit (GPU)

Outline

- Introduction
- Architecture
- Performance evaluation
- Conclusions

Motivation

- Antivirus software is running on e-mail servers, gateway proxies, user desktops
 - Require significant computational resources
- Graphics cards
 - Easy to program
 - Powerful and ubiquitous

• Why not use GPUs to speed-up virus scanning operations?

CPU vs GPU

- The GPU is specialized for compute-intensive, highly parallel computation
 - More transistors are devoted to data processing rather than data caching and flow control

Anti-Virus Databases

- Contain thousands of signatures
- ClamAV contains more than 60K signatures, with length varying from 4 to 392 bytes

Significant longer than NIDS

- ClamAV uses a small part from each signature for a *first-pass filtering*
- Every potential match is processed by the verification module

Usually, the majority of data do not contain any virus

⇒Only a small number of file segments pass to the verification module

Our Approach: GPU Offloading

GRAVITY DESIGN

Basic Design

• Three-stage pipeline

Files Journey (1/5)

• File scanning example

Files Journey (2/5)

• File scanning example

Files Journey (3/5)

Files Journey (4/5)

• File scanning example

Files Journey (5/5)

• File scanning example

GPU IMPLEMENTATION

Prefix Filtering

- Take the first *n* bytes from each signature
 - e.g.

Worm.SQL.Slammer.A:0:*:

4e65742d576f726d2e57696e33322e536c616d6d65725554

- Compile all *n*-bytes sub-signatures into a single Scanning Trie
- The Scanning Trie can quickly filter clean data segments in linear time.

Scanning Trie

• GrAVity: Variable trie height

Virus Scanning on the GPU

- Each thread operate on different data
 - May overlap for spanning patterns, but ...
 - ... no communication/synchronization costs.
 - Highly scalable (million threads can run in parallel)

Memory Management Optimizations

• Exploit texture cache, to achieve better reading throughput

 Cache misses are hidden by running a large number of threads in parallel

PERFORMANCE EVALUATION

GrAVity vs ClamAV

Up to 20 Gbps end-to-end performance

Execution Time Breakdown

- CPU time results in 20% of the total execution time, with a prefix length equal to 14
- Increasing the prefix length, results in less matches

Raw Computational Throughput

With 8M threads, the GPU achieves 42Gbits/s throughput

Scaling factor

Fast evolution

Conclusions

- Virus scanning on the GPU is practical and fast!
- Over 20 Gbit/s throughput
 - Suitable for network-based virus scanning
- Future work includes
 - Adapt memory-efficient algorithms (XFA, D²FA)
 - Multiple GPUs

GrAVity: A Massively Parallel Antivirus Engine

thank you!

Giorgos Vasiliadis, gvasil@ics.forth.gr Sotiris Ioannidis, sotiris@ics.forth.gr