Security Applications of GPUs

Giorgos Vasiliadis

Foundation for Research and
Technology — Hellas (FORTH)

Outline

Background and motivation

GPU-based Malware Signature-based Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Outline

Background and motivation

GPU-based Malware Signature-based Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Why GPU?

* General-purpose computing
— Flexible and programmable
— Portability

 Powerful and ubiquitous
— Dominant co-processor
— Constant innovation
— Inexpensive and always-present

* Data-parallel model

CPU vs. GPU

| Control “ ALU :
-
!:
=
|
CPU GPU
Xeon X5550: GTX480:
4 cores 480 cores
/3 1M transistors 3,200M transistors

Giorgos Vasiliadis

Single Instruction, Multiple Threads

 Example: Vector addition

CPU code

void vecadd(
int *A, int *B, int *C, int N)

{
int 1i;
//iterate over N elements
for (1=0; 1i<N; ++1)
C[i] = A[i] + B[i];
}

vecadd (A, B, C, N);

Single Instruction, Multiple Threads

 Example: Vector addition

CPU code

GPU code

void wvecadd(
int *A, int *B, int *C, int N)
{
int 1i;
//iterate over N elements
for (1=0; 1i<N; ++1)
C[i] = A[i] + B[i];

}

vecadd (A, B, C, N);

__global void vecadd(
int *A, int *B, int *C)
{
int i = threadIdx.x;
C[i] = A[i] + B[1];

//Launch N threads
vecadd<<<l, N>>>(A, B, C);

Giorgos Vasiliadis

Single Instruction, Multiple Threads

 Example: Vector addition

CPU code GPU code
void wvecadd(~_global void vecadd(
int *A, int *B, int *C, int N) int *A, int *B, int *C)
{ {

int i; int 1 = threadlIdx.x;
//iterate over N elements C[i] = A[i] + B[i];
for (i=0; i<N; ++i) }
C[i] = A[i] + B[i];
}
//Launch N threads
vecadd (A, B, C, N); vecadd<<<l, N>>>(A, B, C);

Giorgos Vasiliadis

Single Instruction, Multiple Threads

G G555 555 S555%

SIMT group
(warp)

* Threads within the same warp have to execute
the same instructions

e Great for regular computat'lons/

||||||||||||||||

Outline

Background and motivation

GPU-based Signature Detection
— Network intrusion detection/prevention
— Virus matching

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Network Intrusion Detection Systems

» Typically deployed at ingress/egress points
— Inspect all network traffic

— Look for suspicious activities

— Alert on malicious actions

Internet

Giorgos Vasiliadis

Internal
Network

11

Challenges (1)

* Trdffic rates are increasing

— 10 Gbit/s Ethernet speeds are common in metro/
enterprise networks

Internet, Managed IP and

— Up to 40-100 Gbit/s at the core ‘s oo

SGLOBAL
T

RAFFIC MAP L)

it
vvvvvvvvvvv

12

Challenges (2)

* Ever-increasing need to perform more
complex analysis at higher traffic rates

— Deep packet inspection
— Stateful analysis
— 1000s of attack signatures

<

Reassembly

TCP Stream

Stream Demux

Output

Protocol Analysis
Pattern Matching

Giorgos Vasiliadis

13

Designing NIDS and AVs

* Fast
— Need to handle many Gbit/s
— Scalable

e The future is many-core

e Commodity hardware
— Cheap

— Easily programmable

Giorgos Vasiliadis

14

Today: fast or commodity

e Fast “hardware” IDS/IPS

— FPGA/TCAM/ASIC based

— Usually, tied to a specific

implementation
— Throughput: High

e Commodity “software”
NIDS/NIPS and AVs

— Processing by general-
pUrpose Processors

— Throughput: Low

dbealn IDS/IPS Sensors

CISC (20s of Gbps)
~ US$ 20,000 - 60,000
M) MCAfee IDS/IPS M8000

(10s of Gbps)
~US$ 10,000 - 24,000

Open-source S/W
< ~1 Gbps

7
Uy

Giorgos Vasiliadis 15

Single-threaded NIDS performance

Patt
NIC [Preprocess [N Output

matching

alert tcp SEXTERNAL_NET any -> SHTTP_SERVERS 80

(msg:“WEB-PHP horde help module arbitrary command execution attempt”;
flow:established,to_server; uricontent:” /services/help/"; pcre:” /[\?\x20\x3b\x26]module=[a-zA-
Z0-9]*["\x3b\x26]/U"); metadata:service http;

* PCRE: Perl Compatible Regular Expression

Giorgos Vasiliadis 16

Single-threaded NIDS performance

Patt
NIC —> Preprocess [d e.rn — Output
matching

alert tcp SEXTERNA¥Y NET any -> SHTTP_SERVERS 80

(msg:“WEB-P orde help module arbitrary command execution attempt”;
mow:estabIished,to_server;]uricontent:” /services/help/"; pcre:” /[\?\x20\x3b\x26]module=[a-zA-
Z0-9]*["\x3b\x26]/U"); metadata:service http;

Giorgos Vasiliadis 17

Single-threaded NIDS performance

Patt
NIC —> Preprocess [d e.rn — Output
matching

alert tcp SEXTERNAL_NET any -> SHTTP_SERVERS 8
(msg:“WEB-PHP horde help module arbitrary copafmand execution attempt”;
flow:established,to_server; uriconten{:” /services/help/"] pcre:” /[\?\x20\x3b\x26]module=[a-zA-
Z0-9]*["\x3b\x26]/U"); metadata:service http;

Giorgos Vasiliadis 18

Single-threaded NIDS performance

NIC [Preprocess [

Pattern
matching

— Output

N

rver; uricontent:” /services/help/"; pcre
ZO o]* ["\x3b\x26]/U" metadata:service http;

alert tcp SEXTERNAL_NET any -> SHTTP_SERVERS 80
(msg WEB PHP horde help module arbitrary command executj 7

” /1\?\x20\x3b\x26]module=[a-zA-

Giorgos Vasiliadis

19

Single-threaded NIDS performance

Patt
NIC —> Preprocess [d e.rn — Output
matching

alert tcp SEXTERNAL NET any -> SHTTP S 80

(msgt“WEB-PHP horde help module arbitrary command execution attempt”k
flow:established,to_server; uricontent:” /services/help/"; pcre:” /T\?\x20\x3b\x26]module=[a-zA-
Z0-9]*["\x3b\x26]/U"); metadata:service http;

Giorgos Vasiliadis 20

Single-threaded NIDS performance

NIC

Preprocess [~

* Vanilla Snort: 0.2 Gbit/s

Giorgos Vasiliadis

Pattern
matching

Output

21

Single-threaded NIDS performance

NIC [Preprocess [

Pattern

Output

\/matching

Bottlenecks

* Vanilla Snort: 0.2 Gbit/s

Giorgos Vasiliadis

22

Problem #3: Pattern matching is the
bottleneck

7%

NIC || Preprocess " Pattern |, Output

matching

PN

strings || pcre

* On alIntel Xeon X5520, 2.27 GHz, 8 MB L3 Cache

— String matching analyzing bandwidth per core: 1.1 Gbps
— PCRE analyzing bandwidth per core: 0.52 Gbps

Giorgos Vasiliadis

Offload pattern matching on the GPU

Pattern l
matching Output

NIC || Preprocess

Pattern matching on the GPU

Packet Buffer

GPU GPU GPU

e o o
core core core
GPU GPU 2 aa GPU
core core core
Matches

* Data level parallelism == Packet level parallelism
— Uniformly one core for each reassembled packet stream

Giorgos Vasiliadis

Pattern matching on the GPU

Both string searching and regular expression
matching can be matched efficiently by combining
the patterns into Deterministic Finite Automata
(DFA)

Input Stream State Transition Table

P
‘ .all wo‘[k and no play...
%
h = ch_: t
/
Automaton \
state = T[state] [ch]
»
int state; // current state N Output Array
char ch; // input character if (state < 0) { .
report (offset,id)] offs_et_ 1 _patt._'d_
uint offset;// current offset } Bl N
.

Pattern matching on the GPU

match,

match,
NIC [~ Preprocess ° Output

match,

NVIDIA GTX 480 GPU

On an lnrtel XeonX5520 227 GHz 83 MB13 Cache
String matching analyzing bandwidth: 1-2-Gbps 30 Gbps
PCRE analyzing bandwidth: 8-52-Gbps 8 Gbps

Giorgos Vasiliadis

Pipelining CPU and GPU

Packet buffers

* Double-buffering

— Each CPU core collects new reassembled packets,
while the GPUs process the previous batch

— Effectively hides GPU communication costs

Giorgos Vasiliadis

28

Multi-Parallel Network Intrusion Detection

|
match,
—— Preprocess maEch1 Output
match,
match,
Z?g ——| Preprocess maEch1 Output
match,
A

match,
——2 Preprocess maEch1 Output
=
e Vanilla Snort: 0.2 Gbit/s

e With multiple CPU-cores: 0.9 Gbit/s
 With GPU: 5.2 Gbit/s

Outline

Background and motivation

GPU-based Signature Detection
— Network intrusion detection/prevention
— Virus matching

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Anti-Virus Databases

* Contain thousands of signatures
— ClamAYV contains more than 60K signatures

o 30008 —
£ — ClamAV
Q25000 -
o
& 20008 - SnOrt
G
© 15888 -
[
]
-g 16000 —-%
2 #, H H
see0 i I
N,
8 - L B e

T T T @ ! f
EIamW///

/
Giorgos Vasiliadis 31

Anti-Virus Databases

* ClamAV signatures are significant longer than

NIDS
— length varying from 4 to 392 bytes

3608088 —

— ClamAV

Number of patterns

40 60 :
Pattern length

Anti-Virus Databases

* Memory requirements

38008 —

— ClamAV

Number of patterns

Giorgos Vasiliadis

Opportunity: Prefix Filtering

* Take the first n bytes from each signature
—e.g.

Worm.SQL.Slammer.A:0:*:
4e65742d576£f726d2e57696e33322e536c616d6d65725554

 Compile all n-bytes sub-signatures into a
single Scanning Trie

 The Scanning Trie can quickly filter clean data
segments in linear time.

Scanning Trie

* Variable trie height

intel, < LI I]
procens: N >
Sor a« u »

Patterns

Giorgos Vasiliadis

35

Longer prefix = Fewer matches

w
2 o0
- |

(@)

© 3000

o 2500 -

2 5000 -

O

© 1500 -

=

= 1000 - 0.0001%

S 500 -

% 0_ | [| | | [| | | [[|
N 2 3 4 5 6 7 8 9 10 11 12 13 14

Prefix length

Giorgos Vasiliadis

36

Total Memory (MBs)

Longer prefix = More memory

400
300 -

200

L
100_ I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14
Prefix length

Virus Scanning on the GPU

* Each thread operate on different data
— May overlap for spanning patterns, but ...
— ... no communication/synchronization costs.

— Highly scalable (million threads can run in parallel)

- L

\J

w1 1]

\ /‘ \ /
Threads: @ @

Execution Time Breakdown

2000 - [] Transfer Results

[Transfer Data

[l GPU Search

B CPU Post-process
| I--HH]] | 1] |] |] | |
2 3 4 5 6 7

| i j | j i |
8 9 10 11 12 13 14

Execution Time
(@)]
o
o
|

Prefix length

CPU time results in 20% of the total execution time,
with a prefix length equal to 14

Giorgos Vasiliadis

39

GPU vs CPU

oO—O0—0—0—0—0—0—0—0—0—Y0O

O

-— ClamAV (1x core)
O—0O ClamAYV (8x cores)

I I I I I | [[

I I
2 3 4 5 6 7 8 9 10 11 12 13 14
Prefix length

Throughput (GBits/sec)
¥
L]
|
:
0

» Up to 20 Gbps end-to-end performance

Summary

e Both Network Intrusion Detection and Virus
Scanning on the GPU are practical and fast!

e More technical details

— See our RAID’08, RAID’09, RAID’10, CCS’2011,
and USENIX ATC’14 papers

Outline

Background and motivation

GPU-based Malware Sighature Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Motivation

 Malware continually seek new methods for
hiding their malicious activity, ...
— Packing/Polymorphism
— Polymorphism

e ...as well as, hinder reverse engineering and code
analysis
— Code obfuscation
— Anti-debugging tricks

* |s it possible for a malware to exploit the rich
functionality of modern GPUs?

Proof-of-Concept GPU-based Malware

* Design and implementation of code armoring
techniques based on GPU code

— Self-unpacking
— Run-time polymorphism

* Design and implementation of stealthy host
memory scanning techniques

— Keylogger

Outline

Background and motivation

GPU-based Malware Sighature Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

GPU

CPU

Self-unpacking GPU-malware

Decryption

IBEEEEEEEEEEEERENR

Decryptor

Packed Malware

Decryption

mmap

Init

Packed Malware

—

Bootstrapping

I >

Actual malware code execution

O Code [0 Data/Decrypted Code I Code Execution

Giorgos Vasiliadis

GPU-accesible
address space

GPU execution

CPU-accesible
address space

CPU execution

46

Self-unpacking: Strengths

* Current analysis and unpacking systems
cannot handle GPU code

* Exposes minimal x86 code footprint

* GPU can use extremely complex encryption
schemes

Self-unpacking: Weaknesses

 Malware code lies unencrypted in main
memory after unpacking

* Can be detected by dumping the memory

e Can we do better?

GPU

CPU

Runtime-polymorphic GPU-malware

Decryption/Encryption Decryption/Encryption
IEEER IEEER
Dispatcher funci() func2()
Q) — e — —
Decr. Encr. Decr. Encr.
mmap mmap
Control funci() func2()
Malicious Code Malicious Code Control

[0 Code

[0 Data/Decrypted Code

= Code Execution

Giorgos Vasiliadis

GPU-accesible
address space

GPU execution

CPU-accesible
address space

CPU execution

49

Run-time polymorphism: Strengths

* Only the necessary code blocks are decrypted
each time

* GPU can use different encryption keys
occasionally

— Random-generated

* Newly generated encryption keys are stored in
device memory

— Not accessible from CPU

Outline

Background and motivation

GPU-based Malware Sighature Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Overall approach

Scan kernel’s memory to locate the keyboard
buffer

Remap the memory page of the buffer to user
space

Set the GPU to periodically read and scan them
for sensitive information (e.g., credit card
numbers)

Unmap the memory in order to leave no traces
GPU periodically collects newly-typed keystrokes

52

How the GPU access host memory

CUDA User

Runtime Virtual
Library Address

User-space

Kernel

Virtual
Address

Kernel-space
o %

p

GPU Keybd
Buffer Buffer

~

Physical Mem.
N\ %

Giorgos Vasiliadis

53

User
|rtua
ﬂ Address

Userspace

Giorgos Vasiliadis

Kernel

' Ystual
d%ess

Kernel -space
o %

4 N
GPU Keybd
Buffer Buffer

Physical Mem.
. /

How the GPU access host memory

54

How the GPU access host memory

CUDA User

Runtime Virtual
Library Address

User-space

DMA

Kernel

Virtual
Address

Kernel-space
o %

p

GPU Keybd
Buffer Buffer

~

Physical Mem.
N\ %

Giorgos Vasiliadis

55

Opportunity: Remap process’ virtual
memory to sensitive physical pages

e

CUDA

User

Runti Virtua
Libr ﬂ Address

" User-space

p

g Kernel-space

~

AddreSs

A/

GPU
Buffer

Physical Mem.
N\ %

Giorgos Vasiliadis

56

Opportunity: Remap process’ virtual
memory to sensitive physical pages

4) 4)

CUDA User Kernel

Virtual
Address

Runtime Virtual
Library Address

User-space Kernel-space
. / - /

Physical Mem.
. /

Giorgos Vasiliadis

Implementation

e Use polling to catch keystrokes

— “wake up” GPU process periodically through the
CPU controller process

* Simple state machine translates keystrokes
into ASCII characters

e Store keystrokes into Video RAM

58

CPU utilization (percent)

CPU Utilization

100

10 -

0.1

001 b—— ot
0.001 0.01 0.1 1 10 100 1000

Kernel invocation interval (msecs)

Giorgos Vasiliadis

CPU utilization (percent)

CPU Utilization

100
10 +~ -
1 L
Fastest
Typists
0.1 € | y
001 | | L | | L | | L | | | | | | |
0.001 0.01 0.1 1 10 100 1000
Kernel invocation interval (msecs)
60

Giorgos Vasiliadis

GPU utilization (percent)

GPU Utilization

0.1

0.01 |

103

Fastest
104 | Typists

10_6 | | | ‘ | | | ‘ | | | ‘ | | | ‘ | | | | |
0.001 0.01 0.1 1 10 100 1000

Kernel invocation interval (msecs)

Giorgos Vasiliadis 61

Current Prototype Limitations

* Requires a CPU process to control its
execution

— Future GPGPU SDKs might allow us to drop the
CPU controller process

* Requires administrative privileges
— For installing and using the module

— However the control process runs in user-space

* No OS modification needed or data structure
manipulation, in order to hide

62

Summary

 GPUs offer new ways for robust and stealthy

malware
— We demonstrated how a malware can increase its
robustness against detection using the GPU
* Unpacking / Runtime polymorphism
— Presented a fully functional and stealthy GPU-based
keylogger
 Low CPU and GPU usage
* No device hooking

* Graphics cards may be a promising new
environment for future malware

64

Outline

Background and motivation

GPU-based Malware Sighature Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Motivation

 Modern cryptography is based on keys

* Problem: Secret keys may remain unencrypted in
CPU Registers, RAM, etc.

— Memory disclosure attacks
* Heartbleed

— DMA/Firewire attacks

— Physical attacks
e Cold-boot attacks

Giorgos Vasiliadis 66

PixelVault Overview

Host | °

o
PLA]&EXT CI PHHTEXT

L.

Graphics Card

b ||

Giorgos Vasiliadis

Runs encryption
securely outside CPU/
RAM

Only on-chip memory
of GPU is used as
storage

Secret keys are never
observed from host

67

Cryptographic Processing with GPUs

 GPU-accelerated SSL
— [CryptoGraphics, CT-RSA’05]
— [Harrison et al., Sec’08]
— [SSLShader, NSDI'11]

OpenSSL stub

* High-performance
e Cost-effective

Giorgos Vasiliadis 68

Cryptographic Processing with GPUs

 GPU-accelerated SSL
— [CryptoGraphics, CT-RSA’05]
— [Harrison et al., Sec’08]
— [SSLShader, NSDI'11]

OpenSSL stub

—
°

LECEGIEOED)

* High-performance
e Cost-effective

Can we also make it secure?
69

Implementation Challenges

e How to isolate GPU execution?

 Who holds the keys?

e Where is the code?

Implementation Challenges

e How to isolate GPU execution?

* Who holds the keys?

e Where is the code?

Giorgos Vasiliadis

Autonomous GPU execution

* Force GPU program to run indefinitely
— i.e., using an infinite while loop

* GPUs are non-preemptive
— No other program can run at the same time

* We use a shared memory segment for
communication between the CPU and the
GPU

Giorgos Vasiliadis

73

Shared Memory between CPU/GPU

Server Server Server ¢ PGQE'/OCkEd memory

— Accessed by the GPU
directly, via DMA

— Cannot be swapped to
disk

Shared Memory Segment

* Processing requests are
l I issued through this
shared memory space

74

Shared Memory between CPU/GPU

Server Server Server ¢ GPU COﬂﬁﬂUOUSly

monitors the shared

space for new requests
Shared Memory Segment

L]

75

Shared Memory between CPU/GPU

* When a new request is
available, it is
transferred to the
memory space of the
GPU

REQUEST
msg#

offsets[msg#] pry Segment
keyIDs [msqg#]

msg_buf[] T
v

76

Shared Memory between CPU/GPU

Shared Memory Segment

.

REQUEST RESPONSE
msg# 3| msg#
offsets[msg#] o’ offsets[msg#]

keyIDs [msg#]

> | keyIDs [msg#]
enc_msg_buf[]

msg_buf[]

* The requestis
processed by the GPU

77

Shared Memory between CPU/GPU

Shared Memo

RESPONSE
msg#

offsets[msg#]

keyIDs [msg#]
enc_msg _buf[]

l

* When processing is
finished, the host is
notified by setting the
response parameter
fields accordingly

78

Autonomous GPU execution

Server Server Server

* Non-preemptive
execution

: : * Only the output block is
being written back to

host memory

Shared Memory Segment

| 4
input output
v T

N

non-preemptive exec

79

Implementation Challenges

e How to isolate GPU execution?

 Who holds the keys?

e Where is the code?

Giorgos Vasiliadis

80

Who holds the keys?

4 N
GPU
[} (Multiprocessor N)
Host Memory N
(Multiprocessor 2
E’ 4 N\
e Multiprocessor 1
CPU >
L—‘; Memory Cache »
P sp)lsp |l sp)
5 \‘SP][SP][SP][SP]/)

 GPUs contain different memory hierarchies of ...

— different sizes, and ...
— different characteristics

Giorgos Vasiliadis

Who holds the keys?

GPU

(Multiprocessor N

Reset to zero on each
GPU kernel execution.

Global Me

Pl sp|lsp)

L) | Pj[SP][SP]/)

\.

 GPUs contain different memory hierarchies of ...

— different sizes, and ...
— different characteristics

Giorgos Vasiliadis 82

Support for an arbitrary number of keys

 We can use a separate KeyStore array that
holds an arbitrary number of secret keys

encrypted keys are

stored in GPU global each key is decrypted in registers
device memory: during encryption/decryption:
KeyStore GPU Registers File

Master
Key
copy to registers

| > B DR e

Giorgos Vasiliadis 84

Implementation Challenges

e How to isolate GPU execution?
* Who holds the keys?

e Where is the code?

mov.u32 %r2, o;
setp.le.s32 ¥pl, %rl, %*r2;
mov.s32 %r5, %rd;

add.u32? ¥r6, %rl, %rd;
i*pl bra $Lt & 1282;
mov.s32 %r8, Ar3d;

xor.b32 %rle, 7, %ro;
st.global.u8 [%r5+8], %rile;
add.u3?2 %r5, %r5, 1;
setp.ne.s32 ¥p2, %r5, *r

Giorgos Vasiliadis

Where is the code?

* GPU code is initially stored in global device
memory for the GPU to execute it

— An adversary could replace it with a malicious
version

Global Device
Memory

mov.u32 %r2, 0;

setp.le.s32 %pl, ¥rl, ¥r2;
mov.s32 %&rs, %rd;

add.u32 %r6, %rl, %rd;

i*pl bra $Lt © 1282;
mov.s32 %r8, %r3;

¥or.b32 %rie, ZIr7, %ro9;
st.global.u8 [%r5+8], %ril@;
add.u32 %rs, %rs, 1;
setp.ne.s32 ¥p2, %r5, *r

Prevent GPU code modification attacks

* Three levels of instruction caching (icache)
— 4KB, 8KB, and 32KB, respectively
— Hardware-managed

* Opportunity: Load the code to the icache, and
then erase it from global device memory

— The code runs indefinitely from the icache
— Not possible to be flushed or modified

PixelVault Crypto Suite

e Currently implemented algorithms
— AES-128
— RSA-1024

* Implemented completely using on-chip
memory (i.e. registers, scratchpad memory)

— The only data that is written back to global, off-
chip device memory is the output block

AES-128 CBC Performance

] GPU
[PixelVault
B PixelVault (w/ KeyStore)

Up to 13% overhead
on GPU execution

. Up to 20% overhead

on GPU execution

1 16 64 128 1024 4096 1 16 64 128 1024 4096
Number of Messages Number of Messages

Throughput (Gbit/s)

Encryption Decryption

Giorgos Vasiliadis 89

Throughput (Gbit/s)

AES-128 CBC Performance

[GPU

[PixelVault
B PixelVault (w/ KeyStore

— CPU

Intel Nehalem

single core (2.27GHz) Of messages

3x-4x faster than CPU
for a sufficient number

16 64 128 1024 4096

Number of Messages

16 64 128 1024 4096
Number of Messages

Encryption Decryption

Giorgos Vasiliadis 90

RSA 1024-bit Decryption

#Msgs | CPU || GPU [25] ‘ PixelVault]| PixelVault (w/ KeyStore)
1 | 1632.7 15.3 14.3
16 | 1632.7 240.4 239.2
64 | 1632.7 949.9 939.6
112 | 1632.7 1652.4 1630.3
128 | 1632.7 1888.3 1861.7
1024 | 1632.7]| 10643.2 10640.8 9793.1
4096 | 1632.7§ 17623.5 17618.3 14998.8
8192 | 1632. 7| 24904.2 24896.1 21654.4

PixelVault adds an 1%-15% overhead over the default
GPU-accelerated RSA

Giorgos Vasiliadis

91

RSA 1024-bit Decryption

#Msgs | CPU | GPU [25] | PixelVault | PixelVault (w/ KeyStore)
1 | 1632.7 15.5 15.3 14.3
16 | 1632.7 242.2 240.4 239.2
64 | 1632.7 954.9 949.9 939.6
112 | 1632.7 1659.5 1652.4 1630.3
128 1892.3 1888.3 1861.7
1024 10643.2 10640.8 9793.1
4096 17623.5 17618.3 14998.8
8192 24904.2 24896.1 21654.4

Giorgos Vasiliadis

 Still faster than CPU when batch processing >128 messages

92

PixelVault Features

* Prevents key leakages
— Even when the base system is fully compromised

* Requires just a commodity GPU
— No OS kernel modifications or recompilation

* High-performance cryptographic operations

Limitations
Require trusted bootstrap

Dedicated GPU execution

Misusing PixelVault for encrypting/decrypting
messages

Denial-of-Service attacks

Side-channel attacks

Summary

* Cryptography on the GPU is not only fast ...

e ... but also secure!

— Preserves the secrecy of keys even when the base
system is fully compromised

e More technical details

— See our ACM CCS’2014 paper

“PixelVault: Using GPUs for Securing Cryptographic
Operations”

Outline

Background and motivation

GPU-based Malware Sighature Detection
— Network intrusion detection/prevention
— Virus scanning

GPU-assisted Malware

— Code-armoring techniques

— Keylogger

GPU as a Secure Crypto-Processor
Conclusions

Conclusions

 GPUs have diverse security applications
— Both for defense and offense
— NDIS, AV, crypto-devices, secure processors, etc.
— Generic library with functionality for various applications
— Combine high-performance with programmability

e Future work
— Adapt to other application domains
— Apply to mobile and embedded devices
— Utilize integrated CPU-GPU designs

e Credits to:

— Sotiris loannidis, Lazaros Koromilas, Michalis Polychronakis, Spyros
Antonatos, Evangelos Ladakis, Elias Athanasopoulos, Evangelos
Markatos

GPUs for Security

Giorgos Vasiliadis

Foundation for Research and
Technology — Hellas (FORTH)

thank you!

