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Why	
  GPU?	
  
•  General-­‐purpose	
  compu.ng	
  

–  Flexible	
  and	
  programmable	
  
–  Portability	
  

•  Powerful	
  and	
  ubiquitous	
  
– Dominant	
  co-­‐processor	
  
–  Constant	
  innova.on	
  
–  Inexpensive	
  and	
  always-­‐present	
  

•  Data-­‐parallel	
  model	
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CPU	
  vs.	
  GPU	
  

CPU	
   GPU	
  

Xeon X5550:   

4 cores 

731M transistors 

GTX480:   

480 cores 

3,200M transistors 
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Single	
  Instruc.on,	
  Mul.ple	
  Threads	
  

•  Example:	
  Vector	
  addi.on	
  

6	
  

void vecadd(
int *A, int *B, int *C, int N)
{
    int i;
    //iterate over N elements
    for (i=0; i<N; ++i)
        C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	
  code	
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•  Example:	
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void vecadd(
int *A, int *B, int *C, int N)
{
    int i;
    //iterate over N elements
    for (i=0; i<N; ++i)
        C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	
  code	
  
__global__ void vecadd(
int *A, int *B, int *C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);

GPU	
  code	
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Single	
  Instruc.on,	
  Mul.ple	
  Threads	
  

•  Example:	
  Vector	
  addi.on	
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CPU	
  code	
   GPU	
  code	
  
void vecadd(
int *A, int *B, int *C, int N)
{
    int i;
    //iterate over N elements
    for (i=0; i<N; ++i)
        C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

__global__ void vecadd(
int *A, int *B, int *C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);
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Single	
  Instruc.on,	
  Mul.ple	
  Threads	
  

•  Threads	
  within	
  the	
  same	
  warp	
  have	
  to	
  execute	
  
the	
  same	
  instruc.ons	
  

•  Great	
  for	
  regular	
  computa/ons!	
  

SIMT	
  group	
  
(warp)	
  

The College of William and Mary eddy@cs.wm.edu
3

a SIMD group
(warp)

Graphic Processing Unit (GPU)

• Massive parallelism

• Favorable 

• computing power

• cost effectiveness

• energy efficiency
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Network	
  Intrusion	
  Detec.on	
  Systems	
  

•  Typically	
  deployed	
  at	
  ingress/egress	
  points	
  
–  Inspect	
  all	
  network	
  traffic	
  
– Look	
  for	
  suspicious	
  ac.vi.es	
  
– Alert	
  on	
  malicious	
  ac.ons	
  

10	
  GbE	
  

Internet	
   Internal	
  
Network	
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Challenges	
  (1)	
  

•  Traffic	
  rates	
  are	
  increasing	
  
– 10	
  Gbit/s	
  Ethernet	
  speeds	
  are	
  common	
  in	
  metro/
enterprise	
  networks	
  

– Up	
  to	
  40-­‐100	
  Gbit/s	
  at	
  the	
  core	
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Challenges	
  (2)	
  

•  Ever-­‐increasing	
  need	
  to	
  perform	
  more	
  
complex	
  analysis	
  at	
  higher	
  traffic	
  rates	
  
– Deep	
  packet	
  inspec.on	
  
– Stateful	
  analysis	
  
– 1000s	
  of	
  adack	
  signatures	
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Designing	
  NIDS	
  and	
  AVs	
  

•  Fast	
  
– Need	
  to	
  handle	
  many	
  Gbit/s	
  
– Scalable	
  

•  The	
  future	
  is	
  many-­‐core	
  

•  Commodity	
  hardware	
  
– Cheap	
  
– Easily	
  programmable	
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Today:	
  fast	
  or	
  commodity	
  
•  Fast	
  “hardware”	
  IDS/IPS	
  

–  FPGA/TCAM/ASIC	
  based	
  
– Usually,	
  .ed	
  to	
  a	
  specific	
  
implementa.on	
  

–  Throughput:	
  High	
  

•  Commodity	
  “sohware”	
  
NIDS/NIPS	
  and	
  AVs	
  
–  Processing	
  by	
  general-­‐
purpose	
  processors	
  

–  Throughput:	
  Low	
  

IDS/IPS	
  Sensors	
  	
  
(10s	
  of	
  Gbps)	
  

	
  

IDS/IPS	
  M8000	
  
(10s	
  of	
  Gbps)	
  

	
  

Open-­‐source	
  S/W	
  

	
  

~	
  US$	
  20,000	
  -­‐	
  60,000	
  

~	
  US$	
  10,000	
  -­‐	
  24,000	
  

≤	
  ~1	
  Gbps	
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Single-­‐threaded	
  NIDS	
  performance	
  

NIC	
   Preprocess	
   Padern	
  
matching	
   Output	
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alert	
  tcp	
  $EXTERNAL_NET	
  any	
  -­‐>	
  $HTTP_SERVERS	
  80	
  	
  
(msg:“WEB-­‐PHP	
  horde	
  help	
  module	
  arbitrary	
  command	
  execu.on	
  adempt”;	
  
flow:established,to_server;	
  uricontent:”	
  /services/help/";	
  pcre:”	
  /[\?\x20\x3b\x26]module=[a-­‐zA-­‐
Z0-­‐9]*[^\x3b\x26]/U");	
  metadata:service	
  hdp;	
  

*	
  PCRE:	
  Perl	
  Compa.ble	
  Regular	
  Expression	
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Single-­‐threaded	
  NIDS	
  performance	
  

NIC	
   Preprocess	
   Padern	
  
matching	
   Output	
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  hdp;	
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Single-­‐threaded	
  NIDS	
  performance	
  

NIC	
   Preprocess	
   Padern	
  
matching	
   Output	
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alert	
  tcp	
  $EXTERNAL_NET	
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  -­‐>	
  $HTTP_SERVERS	
  80	
  	
  
(msg:“WEB-­‐PHP	
  horde	
  help	
  module	
  arbitrary	
  command	
  execu.on	
  adempt”;	
  
flow:established,to_server;	
  uricontent:”	
  /services/help/";	
  pcre:”	
  /[\?\x20\x3b\x26]module=[a-­‐zA-­‐
Z0-­‐9]*[^\x3b\x26]/U");	
  metadata:service	
  hdp;	
  

Giorgos	
  Vasiliadis	
  



Single-­‐threaded	
  NIDS	
  performance	
  

NIC	
   Preprocess	
   Padern	
  
matching	
   Output	
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alert	
  tcp	
  $EXTERNAL_NET	
  any	
  -­‐>	
  $HTTP_SERVERS	
  80	
  	
  
(msg:“WEB-­‐PHP	
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  help	
  module	
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  command	
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  adempt”;	
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Single-­‐threaded	
  NIDS	
  performance	
  

•  Vanilla	
  Snort:	
  0.2	
  Gbit/s	
  

NIC	
   Preprocess	
   Padern	
  
matching	
   Output	
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Single-­‐threaded	
  NIDS	
  performance	
  

•  Vanilla	
  Snort:	
  0.2	
  Gbit/s	
  

NIC	
   Preprocess	
   Padern	
  
matching	
   Output	
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Problem	
  #3:	
  Padern	
  matching	
  is	
  the	
  
bodleneck	
  

•  On	
  a	
  Intel	
  Xeon	
  X5520,	
  2.27	
  GHz,	
  8	
  MB	
  L3	
  Cache	
  
–  String	
  matching	
  analyzing	
  bandwidth	
  per	
  core:	
  1.1	
  Gbps	
  
–  PCRE	
  	
  analyzing	
  bandwidth	
  per	
  core:	
  0.52	
  Gbps	
  

	
  

NIC	
   Padern	
  
matching	
   Output	
  Preprocess	
  

>	
  75%	
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Offload	
  padern	
  matching	
  on	
  the	
  GPU	
  

NIC	
   Preprocess	
   Padern	
  
matching	
   Output	
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Padern	
  matching	
  on	
  the	
  GPU	
  

•  Data	
  level	
  parallelism	
  ==	
  Packet	
  level	
  parallelism	
  
–  Uniformly	
  one	
  core	
  for	
  each	
  reassembled	
  packet	
  stream	
  

GPU	
  
core	
  

Matches	
  

GPU	
  
core	
  

GPU	
  
core	
  

GPU	
  
core	
  

Packet	
  Buffer	
  

GPU	
  
core	
  

GPU	
  
core	
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Padern	
  matching	
  on	
  the	
  GPU	
  

	
  Both	
  string	
  searching	
  and	
  regular	
  expression	
  
matching	
  can	
  be	
  matched	
  efficiently	
  by	
  combining	
  
the	
  paderns	
  into	
  Determinis/c	
  Finite	
  Automata	
  
(DFA)	
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NIC	
  

match0	
  

Output	
  Preprocess	
  

27	
  

NVIDIA	
  GTX	
  480	
  GPU	
  

Giorgos	
  Vasiliadis	
  

match1	
  

matchN	
  

Padern	
  matching	
  on	
  the	
  GPU	
  

On	
  an	
  Intel	
  Xeon	
  X5520,	
  2.27	
  GHz,	
  8	
  MB	
  L3	
  Cache	
  
String	
  matching	
  analyzing	
  bandwidth:	
  1.1	
  Gbps	
  
PCRE	
  analyzing	
  bandwidth:	
  0.52	
  Gbps	
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Pipelining	
  CPU	
  and	
  GPU	
  

•  Double-­‐buffering	
  
– Each	
  CPU	
  core	
  collects	
  new	
  reassembled	
  packets,	
  
while	
  the	
  GPUs	
  process	
  the	
  previous	
  batch	
  

– Effec.vely	
  hides	
  GPU	
  communica.on	
  costs	
  

CPU	
  

Packet	
  buffers	
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Mul.-­‐Parallel	
  Network	
  Intrusion	
  Detec.on	
  

•  Vanilla	
  Snort: 	
   	
   	
   	
  0.2	
  Gbit/s	
  
•  With	
  mul.ple	
  CPU-­‐cores:	
  0.9	
  Gbit/s	
  
•  With	
  GPU:	
   	
   	
   	
   	
  5.2	
  Gbit/s	
  

RSS	
  
NIC	
  

Output	
  

Preprocess	
   Output	
  

match0	
  

Output	
  Preprocess	
  

Preprocess	
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match1	
  

matchN	
  

match0	
  
match1	
  

matchN	
  

match0	
  
match1	
  

matchN	
  



Outline	
  

•  Background	
  and	
  mo.va.on	
  
•  GPU-­‐based	
  Signature	
  Detec-on	
  

– Network	
  intrusion	
  detec.on/preven.on	
  
– Virus	
  matching	
  

•  GPU-­‐assisted	
  Malware	
  
–  Code-­‐armoring	
  techniques	
  
–  Keylogger	
  

•  GPU	
  as	
  a	
  Secure	
  Crypto-­‐Processor	
  
•  Conclusions	
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An.-­‐Virus	
  Databases	
  

•  Contain	
  thousands	
  of	
  signatures	
  
– ClamAV	
  contains	
  more	
  than	
  60K	
  signatures	
  

31	
  Giorgos	
  Vasiliadis	
  



An.-­‐Virus	
  Databases	
  

•  ClamAV	
  signatures	
  are	
  significant	
  longer	
  than	
  
NIDS	
  
–  length	
  varying	
  from	
  4	
  to	
  392	
  bytes	
  

>	
  80%	
  

>	
  90%	
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An.-­‐Virus	
  Databases	
  

•  Memory	
  requirements	
  

~14	
  GB	
  

~0.8	
  GB	
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Opportunity:	
  Prefix	
  Filtering	
  

•  Take	
  the	
  first	
  n	
  bytes	
  from	
  each	
  signature	
  
– e.g.	
  

  Worm.SQL.Slammer.A:0:*:	
  

  4e65742d576f726d2e57696e33322e536c616d6d65725554 

•  Compile	
  all	
  n-­‐bytes	
  sub-­‐signatures	
  into	
  a	
  
single	
  Scanning	
  Trie	
  

•  The	
  Scanning	
  Trie	
  can	
  quickly	
  filter	
  clean	
  data	
  
segments	
  in	
  linear	
  .me.	
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Scanning	
  Trie	
  

•  Variable	
  trie	
  height	
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Longer	
  prefix	
  =	
  Fewer	
  matches	
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Longer	
  prefix	
  =	
  More	
  memory	
  

Prefix length
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Fig. 6. Memory requirements for the storage of the DFA as a function of the signature
prefix length.

Prefix length
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ClamAV (1x core)
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Fig. 7. Performance of GrAVity and ClamAV. We also include the performance num-
ber for ClamAV running on 8 cores. The CPU-only performance is still an order of
magnitude less that the GPU-assisted. The numbers demonstrate that additional CPU
cores offer less benefit than that of utilizing the GPU.

experiments. We have verified the absence of I/O latencies using the iostat(1)
tool.

Throughput In this experiment we evaluate the performance of GrAVity com-
pared to vanilla ClamAV. Figure 7 shows the throughput achieved for different
prefix lengths. The overall throughput increases rapidly, raising at a maximum
of 20 Gbits/s. A plateau is reached for a prefix length of around 10.

As the prefix length increases, the number of potential matches decreases, as
shown in Figure 9. This results to lower CPU post-processing, hence the overall
application throughput increases. In the next section, we investigate in more
detail the breakdown of the execution time.
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Virus	
  Scanning	
  on	
  the	
  GPU	
  

•  Each	
  thread	
  operate	
  on	
  different	
  data	
  
– May	
  overlap	
  for	
  spanning	
  paderns,	
  but	
  …	
  
– …	
  no	
  communica.on/synchroniza.on	
  costs.	
  
– Highly	
  scalable	
  (million	
  threads	
  can	
  run	
  in	
  parallel)	
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Execu.on	
  Time	
  Breakdown	
  

•  CPU	
  .me	
  results	
  in	
  20%	
  of	
  the	
  total	
  execu.on	
  .me,	
  
with	
  a	
  	
  prefix	
  length	
  equal	
  to	
  14	
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GPU	
  vs	
  CPU	
  

Ø Up	
  to	
  20	
  Gbps	
  end-­‐to-­‐end	
  performance	
  

100x	
  

12x	
  

GPU	
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Summary	
  

•  Both	
  Network	
  Intrusion	
  Detec/on	
  and	
  Virus	
  
Scanning	
  on	
  the	
  GPU	
  are	
  prac-cal	
  and	
  fast!	
  

•  More	
  technical	
  details	
  
– See	
  our	
  RAID’08,	
  RAID’09,	
  RAID’10,	
  CCS’2011,	
  
and	
  	
  	
  USENIX	
  ATC’14	
  papers	
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Outline	
  

•  Background	
  and	
  mo.va.on	
  
•  GPU-­‐based	
  Malware	
  Signature	
  Detec.on	
  

– Network	
  intrusion	
  detec.on/preven.on	
  
–  Virus	
  scanning	
  

•  GPU-­‐assisted	
  Malware	
  
–  Code-­‐armoring	
  techniques	
  
–  Keylogger	
  

•  GPU	
  as	
  a	
  Secure	
  Crypto-­‐Processor	
  
•  Conclusions	
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Mo.va.on	
  

•  Malware	
  con.nually	
  seek	
  new	
  methods	
  for	
  
hiding	
  their	
  malicious	
  ac.vity,	
  …	
  
–  Packing/Polymorphism	
  
–  Polymorphism	
  

•  …	
  as	
  well	
  as,	
  hinder	
  reverse	
  engineering	
  and	
  code	
  
analysis	
  
–  Code	
  obfusca.on	
  
– An.-­‐debugging	
  tricks	
  

•  Is	
  it	
  possible	
  for	
  a	
  malware	
  to	
  exploit	
  the	
  rich	
  
func.onality	
  of	
  modern	
  GPUs?	
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Proof-­‐of-­‐Concept	
  GPU-­‐based	
  Malware	
  

•  Design	
  and	
  implementa.on	
  of	
  code	
  armoring	
  
techniques	
  based	
  on	
  GPU	
  code	
  
– Self-­‐unpacking	
  
– Run-­‐.me	
  polymorphism	
  

•  Design	
  and	
  implementa.on	
  of	
  stealthy	
  host	
  
memory	
  scanning	
  techniques	
  
– Keylogger	
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  scanning	
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Self-­‐unpacking	
  GPU-­‐malware	
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Self-­‐unpacking:	
  Strengths	
  

•  Current	
  analysis	
  and	
  unpacking	
  systems	
  
cannot	
  handle	
  GPU	
  code	
  

•  Exposes	
  minimal	
  x86	
  code	
  footprint	
  
•  GPU	
  can	
  use	
  extremely	
  complex	
  encryp.on	
  
schemes	
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Self-­‐unpacking:	
  Weaknesses	
  

•  Malware	
  code	
  lies	
  unencrypted	
  in	
  main	
  
memory	
  aher	
  unpacking	
  

•  Can	
  be	
  detected	
  by	
  dumping	
  the	
  memory	
  

•  Can	
  we	
  do	
  beder?	
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Run.me-­‐polymorphic	
  GPU-­‐malware	
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Run-­‐.me	
  polymorphism:	
  Strengths	
  

•  Only	
  the	
  necessary	
  code	
  blocks	
  are	
  decrypted	
  
each	
  .me	
  

•  GPU	
  can	
  use	
  different	
  encryp.on	
  keys	
  
occasionally	
  
– Random-­‐generated	
  

•  Newly	
  generated	
  encryp.on	
  keys	
  are	
  stored	
  in	
  
device	
  memory	
  
– Not	
  accessible	
  from	
  CPU	
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Outline	
  

•  Background	
  and	
  mo.va.on	
  
•  GPU-­‐based	
  Malware	
  Signature	
  Detec.on	
  

– Network	
  intrusion	
  detec.on/preven.on	
  
–  Virus	
  scanning	
  

•  GPU-­‐assisted	
  Malware	
  
–  Code-­‐armoring	
  techniques	
  
–  Keylogger	
  

•  GPU	
  as	
  a	
  Secure	
  Crypto-­‐Processor	
  
•  Conclusions	
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Overall	
  approach	
  

•  Scan	
  kernel’s	
  memory	
  to	
  locate	
  the	
  keyboard	
  
buffer	
  

•  Remap	
  the	
  memory	
  page	
  of	
  the	
  buffer	
  to	
  user	
  
space	
  

•  Set	
  the	
  GPU	
  to	
  periodically	
  read	
  and	
  scan	
  them	
  
for	
  sensi.ve	
  informa.on	
  (e.g.,	
  credit	
  card	
  
numbers)	
  	
  

•  Unmap	
  the	
  memory	
  in	
  order	
  to	
  leave	
  no	
  traces	
  
•  GPU	
  periodically	
  collects	
  newly-­‐typed	
  keystrokes	
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How	
  the	
  GPU	
  access	
  host	
  memory	
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Opportunity:	
  Remap	
  process’	
  virtual	
  
memory	
  to	
  sensi.ve	
  physical	
  pages	
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Implementa.on	
  

•  Use	
  polling	
  to	
  catch	
  keystrokes	
  
– “wake	
  up”	
  GPU	
  process	
  periodically	
  through	
  the	
  
CPU	
  controller	
  process	
  	
  

•  Simple	
  state	
  machine	
  translates	
  keystrokes	
  
into	
  ASCII	
  characters	
  	
  

•  Store	
  keystrokes	
  into	
  Video	
  RAM	
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Current	
  Prototype	
  Limita.ons	
  

•  Requires	
  a	
  CPU	
  process	
  to	
  control	
  its	
  
execu.on	
  
– Future	
  GPGPU	
  SDKs	
  might	
  allow	
  us	
  to	
  drop	
  the	
  
CPU	
  controller	
  process	
  

•  Requires	
  administra.ve	
  privileges	
  
– For	
  installing	
  and	
  using	
  the	
  module	
  
– However	
  the	
  control	
  process	
  runs	
  in	
  user-­‐space	
  

•  No	
  OS	
  modifica.on	
  needed	
  or	
  data	
  structure	
  
manipula.on,	
  in	
  order	
  to	
  hide	
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Summary 
•  GPUs	
  offer	
  new	
  ways	
  for	
  robust	
  and	
  stealthy	
  
malware	
  
– We	
  demonstrated	
  how	
  a	
  malware	
  can	
  increase	
  its	
  
robustness	
  against	
  detec.on	
  using	
  the	
  GPU	
  

•  Unpacking	
  /	
  Run.me	
  polymorphism	
  
–  Presented	
  a	
  fully	
  func.onal	
  and	
  stealthy	
  GPU-­‐based	
  
keylogger	
  

•  Low	
  CPU	
  and	
  GPU	
  usage	
  
•  No	
  device	
  hooking	
  

•  Graphics	
  cards	
  may	
  be	
  a	
  promising	
  new	
  
environment	
  for	
  future	
  malware 
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Outline	
  

•  Background	
  and	
  mo.va.on	
  
•  GPU-­‐based	
  Malware	
  Signature	
  Detec.on	
  

– Network	
  intrusion	
  detec.on/preven.on	
  
–  Virus	
  scanning	
  

•  GPU-­‐assisted	
  Malware	
  
–  Code-­‐armoring	
  techniques	
  
–  Keylogger	
  

•  GPU	
  as	
  a	
  Secure	
  Crypto-­‐Processor	
  
•  Conclusions	
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Mo.va.on	
  

•  Modern	
  cryptography	
  is	
  based	
  on	
  keys	
  

•  Problem:	
  Secret	
  keys	
  may	
  remain	
  unencrypted	
  in	
  
CPU	
  Registers,	
  RAM,	
  etc.	
  
– Memory	
  disclosure	
  adacks	
  

•  Heartbleed	
  
– DMA/Firewire	
  adacks	
  
–  Physical	
  adacks	
  

•  Cold-­‐boot	
  adacks	
  
– …	
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PixelVault	
  Overview	
  

•  Runs	
  encryp.on	
  
securely	
  outside	
  CPU/
RAM	
  

•  Only	
  on-­‐chip	
  memory	
  
of	
  GPU	
  is	
  used	
  as	
  
storage	
  

•  Secret	
  keys	
  are	
  never	
  
observed	
  from	
  host	
  

Host	
  

Host	
  CPU	
  

PLAINTEXT CIPHERTEXT 

Graphics	
  Card	
  
CIPHER 
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Cryptographic	
  Processing	
  with	
  GPUs	
  

•  GPU-­‐accelerated	
  SSL	
  
–  [CryptoGraphics,	
  CT-­‐RSA’05]	
  
–  [Harrison	
  et	
  al.,	
  Sec’08]	
  
–  [SSLShader,	
  NSDI’11]	
  
–  …	
  

•  High-­‐performance	
  
•  Cost-­‐effec.ve	
  

OpenSSL	
  stub	
  

SSH	
  
Server	
  

Web	
  
Server	
  

IMAP	
  
Server	
  

GPU	
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Cryptographic	
  Processing	
  with	
  GPUs	
  

•  GPU-­‐accelerated	
  SSL	
  
–  [CryptoGraphics,	
  CT-­‐RSA’05]	
  
–  [Harrison	
  et	
  al.,	
  Sec’08]	
  
–  [SSLShader,	
  NSDI’11]	
  
–  …	
  

•  High-­‐performance	
  
•  Cost-­‐effec.ve	
  

Can	
  we	
  also	
  make	
  it	
  secure?	
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Implementa.on	
  Challenges	
  

•  How	
  to	
  isolate	
  GPU	
  execu.on?	
  

•  Who	
  holds	
  the	
  keys?	
  

•  Where	
  is	
  the	
  code?	
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Autonomous	
  GPU	
  execu.on	
  

•  Force	
  GPU	
  program	
  to	
  run	
  indefinitely	
  
–  i.e.,	
  using	
  an	
  infinite	
  while	
  loop	
  

•  GPUs	
  are	
  non-­‐preemp.ve	
  
– No	
  other	
  program	
  can	
  run	
  at	
  the	
  same	
  .me	
  

•  We	
  use	
  a	
  shared	
  memory	
  segment	
  for	
  
communica.on	
  between	
  the	
  CPU	
  and	
  the	
  
GPU	
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Shared	
  Memory	
  between	
  CPU/GPU	
  

•  Page-­‐locked	
  memory	
  
–  Accessed	
  by	
  the	
  GPU	
  
directly,	
  via	
  DMA	
  

–  Cannot	
  be	
  swapped	
  to	
  
disk	
  

•  Processing	
  requests	
  are	
  
issued	
  through	
  this	
  
shared	
  memory	
  space	
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Shared	
  Memory	
  between	
  CPU/GPU	
  

•  GPU	
  con.nuously	
  
monitors	
  the	
  shared	
  
space	
  for	
  new	
  requests	
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Shared	
  Memory	
  between	
  CPU/GPU	
  

•  When	
  a	
  new	
  request	
  is	
  
available,	
  it	
  is	
  
transferred	
  to	
  the	
  
memory	
  space	
  of	
  the	
  
GPU	
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Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-
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the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-
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Summary	
  

•  Cryptography	
  on	
  the	
  GPU	
  is	
  not	
  only	
  fast	
  …	
  
•  …	
  but	
  also	
  secure!	
  

– Preserves	
  the	
  secrecy	
  of	
  keys	
  even	
  when	
  the	
  base	
  
system	
  is	
  fully	
  compromised	
  

•  More	
  technical	
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  our	
  ACM	
  CCS’2014	
  paper	
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  Cryptographic	
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Conclusions	
  
•  GPUs	
  have	
  diverse	
  security	
  applica.ons	
  

–  Both	
  for	
  defense	
  and	
  offense	
  
–  NDIS,	
  AV,	
  crypto-­‐devices,	
  secure	
  processors,	
  etc.	
  
–  Generic	
  library	
  with	
  func.onality	
  for	
  various	
  applica.ons	
  
–  Combine	
  high-­‐performance	
  with	
  programmability	
  

•  Future	
  work	
  
–  Adapt	
  to	
  other	
  applica.on	
  domains	
  	
  
–  Apply	
  to	
  mobile	
  and	
  embedded	
  devices	
  
–  U.lize	
  integrated	
  CPU-­‐GPU	
  designs	
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