
Security	
 Applica.ons	
 of	
 GPUs	

Giorgos	
 Vasiliadis	

Founda.on	
 for	
 Research	
 and	

Technology	
 –	
 Hellas	
 (FORTH)	

	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Malware	
 Signature-­‐based	
 Detec.on	

– Network	
 intrusion	
 detec.on/preven.on	

–  Virus	
 scanning	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

2	
 Giorgos	
 Vasiliadis	

Outline	

•  Background	
 and	
 mo-va-on	

•  GPU-­‐based	
 Malware	
 Signature-­‐based	
 Detec.on	

– Network	
 intrusion	
 detec.on/preven.on	

–  Virus	
 scanning	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

3	
 Giorgos	
 Vasiliadis	

Why	
 GPU?	

•  General-­‐purpose	
 compu.ng	

–  Flexible	
 and	
 programmable	

–  Portability	

•  Powerful	
 and	
 ubiquitous	

– Dominant	
 co-­‐processor	

–  Constant	
 innova.on	

–  Inexpensive	
 and	
 always-­‐present	

•  Data-­‐parallel	
 model	

4	
 Giorgos	
 Vasiliadis	

CPU	
 vs.	
 GPU	

CPU	
 GPU	

Xeon X5550:

4 cores

731M transistors

GTX480:

480 cores

3,200M transistors

5	
 Giorgos	
 Vasiliadis	

Single	
 Instruc.on,	
 Mul.ple	
 Threads	

•  Example:	
 Vector	
 addi.on	

6	

void vecadd(
int *A, int *B, int *C, int N)
{
 int i;
 //iterate over N elements
 for (i=0; i<N; ++i)
 C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	
 code	

Giorgos	
 Vasiliadis	

Single	
 Instruc.on,	
 Mul.ple	
 Threads	

•  Example:	
 Vector	
 addi.on	

7	

void vecadd(
int *A, int *B, int *C, int N)
{
 int i;
 //iterate over N elements
 for (i=0; i<N; ++i)
 C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	
 code	

__global__ void vecadd(
int *A, int *B, int *C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);

GPU	
 code	

Giorgos	
 Vasiliadis	

Single	
 Instruc.on,	
 Mul.ple	
 Threads	

•  Example:	
 Vector	
 addi.on	

8	

CPU	
 code	
 GPU	
 code	

void vecadd(
int *A, int *B, int *C, int N)
{
 int i;
 //iterate over N elements
 for (i=0; i<N; ++i)
 C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

__global__ void vecadd(
int *A, int *B, int *C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);

Giorgos	
 Vasiliadis	

Single	
 Instruc.on,	
 Mul.ple	
 Threads	

•  Threads	
 within	
 the	
 same	
 warp	
 have	
 to	
 execute	

the	
 same	
 instruc.ons	

•  Great	
 for	
 regular	
 computa/ons!	

SIMT	
 group	

(warp)	

The College of William and Mary eddy@cs.wm.edu
3

a SIMD group
(warp)

Graphic Processing Unit (GPU)

• Massive parallelism

• Favorable

• computing power

• cost effectiveness

• energy efficiency
9	
 Giorgos	
 Vasiliadis	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Signature	
 Detec-on	

– Network	
 intrusion	
 detec-on/preven-on	

–  Virus	
 matching	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

10	
 Giorgos	
 Vasiliadis	

Network	
 Intrusion	
 Detec.on	
 Systems	

•  Typically	
 deployed	
 at	
 ingress/egress	
 points	

–  Inspect	
 all	
 network	
 traffic	

– Look	
 for	
 suspicious	
 ac.vi.es	

– Alert	
 on	
 malicious	
 ac.ons	

10	
 GbE	

Internet	
 Internal	

Network	

11	
 Giorgos	
 Vasiliadis	

Challenges	
 (1)	

•  Traffic	
 rates	
 are	
 increasing	

– 10	
 Gbit/s	
 Ethernet	
 speeds	
 are	
 common	
 in	
 metro/
enterprise	
 networks	

– Up	
 to	
 40-­‐100	
 Gbit/s	
 at	
 the	
 core	

12	

Challenges	
 (2)	

•  Ever-­‐increasing	
 need	
 to	
 perform	
 more	

complex	
 analysis	
 at	
 higher	
 traffic	
 rates	

– Deep	
 packet	
 inspec.on	

– Stateful	
 analysis	

– 1000s	
 of	
 adack	
 signatures	

St
re
am

	
 D
em

ux
	

O
ut
pu

t	

TC
P	

St
re
am

	

Re

as
se
m
bl
y	

Pr
ot
oc
ol
	
 A
na

ly
si
s	

Pa
M
er
n	

M
at
ch
in
g	

13	
 Giorgos	
 Vasiliadis	

Designing	
 NIDS	
 and	
 AVs	

•  Fast	

– Need	
 to	
 handle	
 many	
 Gbit/s	

– Scalable	

•  The	
 future	
 is	
 many-­‐core	

•  Commodity	
 hardware	

– Cheap	

– Easily	
 programmable	

14	
 Giorgos	
 Vasiliadis	

Today:	
 fast	
 or	
 commodity	

•  Fast	
 “hardware”	
 IDS/IPS	

–  FPGA/TCAM/ASIC	
 based	

– Usually,	
 .ed	
 to	
 a	
 specific	

implementa.on	

–  Throughput:	
 High	

•  Commodity	
 “sohware”	

NIDS/NIPS	
 and	
 AVs	

–  Processing	
 by	
 general-­‐
purpose	
 processors	

–  Throughput:	
 Low	

IDS/IPS	
 Sensors	
 	

(10s	
 of	
 Gbps)	

	

IDS/IPS	
 M8000	

(10s	
 of	
 Gbps)	

	

Open-­‐source	
 S/W	

	

~	
 US$	
 20,000	
 -­‐	
 60,000	

~	
 US$	
 10,000	
 -­‐	
 24,000	

≤	
 ~1	
 Gbps	

15	
 Giorgos	
 Vasiliadis	

Single-­‐threaded	
 NIDS	
 performance	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

16	

alert	
 tcp	
 $EXTERNAL_NET	
 any	
 -­‐>	
 $HTTP_SERVERS	
 80	
 	

(msg:“WEB-­‐PHP	
 horde	
 help	
 module	
 arbitrary	
 command	
 execu.on	
 adempt”;	

flow:established,to_server;	
 uricontent:”	
 /services/help/";	
 pcre:”	
 /[\?\x20\x3b\x26]module=[a-­‐zA-­‐
Z0-­‐9]*[^\x3b\x26]/U");	
 metadata:service	
 hdp;	

*	
 PCRE:	
 Perl	
 Compa.ble	
 Regular	
 Expression	
 	

Giorgos	
 Vasiliadis	

Single-­‐threaded	
 NIDS	
 performance	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

17	

alert	
 tcp	
 $EXTERNAL_NET	
 any	
 -­‐>	
 $HTTP_SERVERS	
 80	
 	

(msg:“WEB-­‐PHP	
 horde	
 help	
 module	
 arbitrary	
 command	
 execu.on	
 adempt”;	

flow:established,to_server;	
 uricontent:”	
 /services/help/";	
 pcre:”	
 /[\?\x20\x3b\x26]module=[a-­‐zA-­‐
Z0-­‐9]*[^\x3b\x26]/U");	
 metadata:service	
 hdp;	

Giorgos	
 Vasiliadis	

Single-­‐threaded	
 NIDS	
 performance	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

18	

alert	
 tcp	
 $EXTERNAL_NET	
 any	
 -­‐>	
 $HTTP_SERVERS	
 80	
 	

(msg:“WEB-­‐PHP	
 horde	
 help	
 module	
 arbitrary	
 command	
 execu.on	
 adempt”;	

flow:established,to_server;	
 uricontent:”	
 /services/help/";	
 pcre:”	
 /[\?\x20\x3b\x26]module=[a-­‐zA-­‐
Z0-­‐9]*[^\x3b\x26]/U");	
 metadata:service	
 hdp;	

Giorgos	
 Vasiliadis	

Single-­‐threaded	
 NIDS	
 performance	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

19	

alert	
 tcp	
 $EXTERNAL_NET	
 any	
 -­‐>	
 $HTTP_SERVERS	
 80	
 	

(msg:“WEB-­‐PHP	
 horde	
 help	
 module	
 arbitrary	
 command	
 execu.on	
 adempt”;	

flow:established,to_server;	
 uricontent:”	
 /services/help/";	
 pcre:”	
 /[\?\x20\x3b\x26]module=[a-­‐zA-­‐
Z0-­‐9]*[^\x3b\x26]/U");	
 metadata:service	
 hdp;	

Giorgos	
 Vasiliadis	

Single-­‐threaded	
 NIDS	
 performance	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

20	

alert	
 tcp	
 $EXTERNAL_NET	
 any	
 -­‐>	
 $HTTP_SERVERS	
 80	
 	

(msg:“WEB-­‐PHP	
 horde	
 help	
 module	
 arbitrary	
 command	
 execu.on	
 adempt”;	

flow:established,to_server;	
 uricontent:”	
 /services/help/";	
 pcre:”	
 /[\?\x20\x3b\x26]module=[a-­‐zA-­‐
Z0-­‐9]*[^\x3b\x26]/U");	
 metadata:service	
 hdp;	

Giorgos	
 Vasiliadis	

Single-­‐threaded	
 NIDS	
 performance	

•  Vanilla	
 Snort:	
 0.2	
 Gbit/s	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

21	
 Giorgos	
 Vasiliadis	

Single-­‐threaded	
 NIDS	
 performance	

•  Vanilla	
 Snort:	
 0.2	
 Gbit/s	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

22	

BoMlenecks	

Giorgos	
 Vasiliadis	

Problem	
 #3:	
 Padern	
 matching	
 is	
 the	

bodleneck	

•  On	
 a	
 Intel	
 Xeon	
 X5520,	
 2.27	
 GHz,	
 8	
 MB	
 L3	
 Cache	

–  String	
 matching	
 analyzing	
 bandwidth	
 per	
 core:	
 1.1	
 Gbps	

–  PCRE	
 	
 analyzing	
 bandwidth	
 per	
 core:	
 0.52	
 Gbps	

	

NIC	
 Padern	

matching	
 Output	
 Preprocess	

>	
 75%	

23	

strings	
 pcre	

Giorgos	
 Vasiliadis	

Offload	
 padern	
 matching	
 on	
 the	
 GPU	

NIC	
 Preprocess	
 Padern	

matching	
 Output	

24	

strings	
 pcre	

Giorgos	
 Vasiliadis	

Padern	
 matching	
 on	
 the	
 GPU	

•  Data	
 level	
 parallelism	
 ==	
 Packet	
 level	
 parallelism	

–  Uniformly	
 one	
 core	
 for	
 each	
 reassembled	
 packet	
 stream	

GPU	

core	

Matches	

GPU	

core	

GPU	

core	

GPU	

core	

Packet	
 Buffer	

GPU	

core	

GPU	

core	

25	
 Giorgos	
 Vasiliadis	

Padern	
 matching	
 on	
 the	
 GPU	

	
 Both	
 string	
 searching	
 and	
 regular	
 expression	

matching	
 can	
 be	
 matched	
 efficiently	
 by	
 combining	

the	
 paderns	
 into	
 Determinis/c	
 Finite	
 Automata	

(DFA)	

26	
 Giorgos	
 Vasiliadis	

NIC	

match0	

Output	
 Preprocess	

27	

NVIDIA	
 GTX	
 480	
 GPU	

Giorgos	
 Vasiliadis	

match1	

matchN	

Padern	
 matching	
 on	
 the	
 GPU	

On	
 an	
 Intel	
 Xeon	
 X5520,	
 2.27	
 GHz,	
 8	
 MB	
 L3	
 Cache	

String	
 matching	
 analyzing	
 bandwidth:	
 1.1	
 Gbps	

PCRE	
 analyzing	
 bandwidth:	
 0.52	
 Gbps	

30	
 Gbps	

8	
 Gbps	

Pipelining	
 CPU	
 and	
 GPU	

•  Double-­‐buffering	

– Each	
 CPU	
 core	
 collects	
 new	
 reassembled	
 packets,	

while	
 the	
 GPUs	
 process	
 the	
 previous	
 batch	

– Effec.vely	
 hides	
 GPU	
 communica.on	
 costs	

CPU	

Packet	
 buffers	

28	
 Giorgos	
 Vasiliadis	

Mul.-­‐Parallel	
 Network	
 Intrusion	
 Detec.on	

•  Vanilla	
 Snort: 	
 	
 	
 	
 0.2	
 Gbit/s	

•  With	
 mul.ple	
 CPU-­‐cores:	
 0.9	
 Gbit/s	

•  With	
 GPU:	
 	
 	
 	
 	
 5.2	
 Gbit/s	

RSS	

NIC	

Output	

Preprocess	
 Output	

match0	

Output	
 Preprocess	

Preprocess	

29	

match1	

matchN	

match0	

match1	

matchN	

match0	

match1	

matchN	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Signature	
 Detec-on	

– Network	
 intrusion	
 detec.on/preven.on	

– Virus	
 matching	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

30	
 Giorgos	
 Vasiliadis	

An.-­‐Virus	
 Databases	

•  Contain	
 thousands	
 of	
 signatures	

– ClamAV	
 contains	
 more	
 than	
 60K	
 signatures	

31	
 Giorgos	
 Vasiliadis	

An.-­‐Virus	
 Databases	

•  ClamAV	
 signatures	
 are	
 significant	
 longer	
 than	

NIDS	

–  length	
 varying	
 from	
 4	
 to	
 392	
 bytes	

>	
 80%	

>	
 90%	

32	
 Giorgos	
 Vasiliadis	

An.-­‐Virus	
 Databases	

•  Memory	
 requirements	

~14	
 GB	

~0.8	
 GB	

33	
 Giorgos	
 Vasiliadis	

Opportunity:	
 Prefix	
 Filtering	

•  Take	
 the	
 first	
 n	
 bytes	
 from	
 each	
 signature	

– e.g.	

 Worm.SQL.Slammer.A:0:*:	

 4e65742d576f726d2e57696e33322e536c616d6d65725554

•  Compile	
 all	
 n-­‐bytes	
 sub-­‐signatures	
 into	
 a	

single	
 Scanning	
 Trie	

•  The	
 Scanning	
 Trie	
 can	
 quickly	
 filter	
 clean	
 data	

segments	
 in	
 linear	
 .me.	

34	
 Giorgos	
 Vasiliadis	

Scanning	
 Trie	

•  Variable	
 trie	
 height	

35	
 Giorgos	
 Vasiliadis	

Longer	
 prefix	
 =	
 Fewer	
 matches	

36	

2%	

0.0001%	

Giorgos	
 Vasiliadis	

Longer	
 prefix	
 =	
 More	
 memory	

Prefix length
2 3 4 5 6 7 8 9 10 11 12 13 14N

um
be

r o
f s

ta
te

s
(1

00
0’

s)

100

200

300

400

Fig. 6. Memory requirements for the storage of the DFA as a function of the signature
prefix length.

Prefix length
2 3 4 5 6 7 8 9 10 11 12 13 14Th

ro
ug

hp
ut

 (G
Bi

ts
/s

ec
)

0.2

1

5
20

GrAVity
ClamAV (1x core)
ClamAV (8x cores)

Fig. 7. Performance of GrAVity and ClamAV. We also include the performance num-
ber for ClamAV running on 8 cores. The CPU-only performance is still an order of
magnitude less that the GPU-assisted. The numbers demonstrate that additional CPU
cores offer less benefit than that of utilizing the GPU.

experiments. We have verified the absence of I/O latencies using the iostat(1)
tool.

Throughput In this experiment we evaluate the performance of GrAVity com-
pared to vanilla ClamAV. Figure 7 shows the throughput achieved for different
prefix lengths. The overall throughput increases rapidly, raising at a maximum
of 20 Gbits/s. A plateau is reached for a prefix length of around 10.

As the prefix length increases, the number of potential matches decreases, as
shown in Figure 9. This results to lower CPU post-processing, hence the overall
application throughput increases. In the next section, we investigate in more
detail the breakdown of the execution time.

37	

To
ta
l	
 M

em
or
y	

(M

Bs
)	

Giorgos	
 Vasiliadis	

Virus	
 Scanning	
 on	
 the	
 GPU	

•  Each	
 thread	
 operate	
 on	
 different	
 data	

– May	
 overlap	
 for	
 spanning	
 paderns,	
 but	
 …	

– …	
 no	
 communica.on/synchroniza.on	
 costs.	

– Highly	
 scalable	
 (million	
 threads	
 can	
 run	
 in	
 parallel)	

	

38	

Execu.on	
 Time	
 Breakdown	

•  CPU	
 .me	
 results	
 in	
 20%	
 of	
 the	
 total	
 execu.on	
 .me,	

with	
 a	
 	
 prefix	
 length	
 equal	
 to	
 14	

39	
 Giorgos	
 Vasiliadis	

GPU	
 vs	
 CPU	

Ø Up	
 to	
 20	
 Gbps	
 end-­‐to-­‐end	
 performance	

100x	

12x	

GPU	

40	
 Giorgos	
 Vasiliadis	

Summary	

•  Both	
 Network	
 Intrusion	
 Detec/on	
 and	
 Virus	

Scanning	
 on	
 the	
 GPU	
 are	
 prac-cal	
 and	
 fast!	

•  More	
 technical	
 details	

– See	
 our	
 RAID’08,	
 RAID’09,	
 RAID’10,	
 CCS’2011,	

and	
 	
 	
 USENIX	
 ATC’14	
 papers	

41	
 Giorgos	
 Vasiliadis	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Malware	
 Signature	
 Detec.on	

– Network	
 intrusion	
 detec.on/preven.on	

–  Virus	
 scanning	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

42	
 Giorgos	
 Vasiliadis	

Mo.va.on	

•  Malware	
 con.nually	
 seek	
 new	
 methods	
 for	

hiding	
 their	
 malicious	
 ac.vity,	
 …	

–  Packing/Polymorphism	

–  Polymorphism	

•  …	
 as	
 well	
 as,	
 hinder	
 reverse	
 engineering	
 and	
 code	

analysis	

–  Code	
 obfusca.on	

– An.-­‐debugging	
 tricks	

•  Is	
 it	
 possible	
 for	
 a	
 malware	
 to	
 exploit	
 the	
 rich	

func.onality	
 of	
 modern	
 GPUs?	

43	
 Giorgos	
 Vasiliadis	

Proof-­‐of-­‐Concept	
 GPU-­‐based	
 Malware	

•  Design	
 and	
 implementa.on	
 of	
 code	
 armoring	

techniques	
 based	
 on	
 GPU	
 code	

– Self-­‐unpacking	

– Run-­‐.me	
 polymorphism	

•  Design	
 and	
 implementa.on	
 of	
 stealthy	
 host	

memory	
 scanning	
 techniques	

– Keylogger	

44	
 Giorgos	
 Vasiliadis	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Malware	
 Signature	
 Detec.on	

– Network	
 intrusion	
 detec.on/preven.on	

–  Virus	
 scanning	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

45	
 Giorgos	
 Vasiliadis	

Self-­‐unpacking	
 GPU-­‐malware	

46	
 Giorgos	
 Vasiliadis	

Self-­‐unpacking:	
 Strengths	

•  Current	
 analysis	
 and	
 unpacking	
 systems	

cannot	
 handle	
 GPU	
 code	

•  Exposes	
 minimal	
 x86	
 code	
 footprint	

•  GPU	
 can	
 use	
 extremely	
 complex	
 encryp.on	

schemes	

47	
 Giorgos	
 Vasiliadis	

Self-­‐unpacking:	
 Weaknesses	

•  Malware	
 code	
 lies	
 unencrypted	
 in	
 main	

memory	
 aher	
 unpacking	

•  Can	
 be	
 detected	
 by	
 dumping	
 the	
 memory	

•  Can	
 we	
 do	
 beder?	

48	
 Giorgos	
 Vasiliadis	

Run.me-­‐polymorphic	
 GPU-­‐malware	

49	
 Giorgos	
 Vasiliadis	

Run-­‐.me	
 polymorphism:	
 Strengths	

•  Only	
 the	
 necessary	
 code	
 blocks	
 are	
 decrypted	

each	
 .me	

•  GPU	
 can	
 use	
 different	
 encryp.on	
 keys	

occasionally	

– Random-­‐generated	

•  Newly	
 generated	
 encryp.on	
 keys	
 are	
 stored	
 in	

device	
 memory	

– Not	
 accessible	
 from	
 CPU	

50	
 Giorgos	
 Vasiliadis	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Malware	
 Signature	
 Detec.on	

– Network	
 intrusion	
 detec.on/preven.on	

–  Virus	
 scanning	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

51	
 Giorgos	
 Vasiliadis	

Overall	
 approach	

•  Scan	
 kernel’s	
 memory	
 to	
 locate	
 the	
 keyboard	

buffer	

•  Remap	
 the	
 memory	
 page	
 of	
 the	
 buffer	
 to	
 user	

space	

•  Set	
 the	
 GPU	
 to	
 periodically	
 read	
 and	
 scan	
 them	

for	
 sensi.ve	
 informa.on	
 (e.g.,	
 credit	
 card	

numbers)	
 	

•  Unmap	
 the	
 memory	
 in	
 order	
 to	
 leave	
 no	
 traces	

•  GPU	
 periodically	
 collects	
 newly-­‐typed	
 keystrokes	

52	
 Giorgos	
 Vasiliadis	

How	
 the	
 GPU	
 access	
 host	
 memory	

53	

GPU	

	

	

	

User-­‐space	

CUDA	

Run.me	

Library	

User	

Virtual	

Address	

	

	

	

Kernel-­‐space	

Kernel	

Virtual	

Address	

	

	

	

Physical	
 Mem.	

GPU	

Buffer	

Keybd	

Buffer	

Giorgos	
 Vasiliadis	

How	
 the	
 GPU	
 access	
 host	
 memory	

54	

GPU	

	

	

	

User-­‐space	

CUDA	

Run.me	

Library	

User	

Virtual	

Address	

	

	

	

Kernel-­‐space	

Kernel	

Virtual	

Address	

	

	

	

Physical	
 Mem.	

GPU	

Buffer	

Keybd	

Buffer	

Giorgos	
 Vasiliadis	

How	
 the	
 GPU	
 access	
 host	
 memory	

55	

GPU	

	

	

	

User-­‐space	

CUDA	

Run.me	

Library	

User	

Virtual	

Address	

	

	

	

Kernel-­‐space	

Kernel	

Virtual	

Address	

	

	

	

Physical	
 Mem.	

GPU	

Buffer	

Keybd	

Buffer	

DMA	

Giorgos	
 Vasiliadis	

Opportunity:	
 Remap	
 process’	
 virtual	

memory	
 to	
 sensi.ve	
 physical	
 pages	

56	

GPU	

	

	

	

User-­‐space	

CUDA	

Run.me	

Library	

User	

Virtual	

Address	

	

	

	

Kernel-­‐space	

Kernel	

Virtual	

Address	

	

	

	

Physical	
 Mem.	

GPU	

Buffer	

Keybd	

Buffer	

Giorgos	
 Vasiliadis	

Opportunity:	
 Remap	
 process’	
 virtual	

memory	
 to	
 sensi.ve	
 physical	
 pages	

57	

GPU	

	

	

	

User-­‐space	

CUDA	

Run.me	

Library	

User	

Virtual	

Address	

	

	

	

Kernel-­‐space	

Kernel	

Virtual	

Address	

	

	

	

Physical	
 Mem.	

GPU	

Buffer	

Keybd	

Buffer	

DMA	

Giorgos	
 Vasiliadis	

Implementa.on	

•  Use	
 polling	
 to	
 catch	
 keystrokes	

– “wake	
 up”	
 GPU	
 process	
 periodically	
 through	
 the	

CPU	
 controller	
 process	
 	

•  Simple	
 state	
 machine	
 translates	
 keystrokes	

into	
 ASCII	
 characters	
 	

•  Store	
 keystrokes	
 into	
 Video	
 RAM	

58	
 Giorgos	
 Vasiliadis	

59

CPU	
 U.liza.on	

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000

CP
U

ut
ili

za
tio

n
(p

er
ce

nt
)

Kernel invocation interval (msecs)

Giorgos	
 Vasiliadis	

CPU	
 U.liza.on	

60

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000

CP
U

ut
ili

za
tio

n
(p

er
ce

nt
)

Kernel invocation interval (msecs)

Fastest	

Typists	

Giorgos	
 Vasiliadis	

GPU	
 U.liza.on	

61

10-6

10-5

10-4

10-3

 0.01

 0.1

 0.001 0.01 0.1 1 10 100 1000

GP
U

ut
ili

za
tio

n
(p

er
ce

nt
)

Kernel invocation interval (msecs)

Fastest	

Typists	

Giorgos	
 Vasiliadis	

Current	
 Prototype	
 Limita.ons	

•  Requires	
 a	
 CPU	
 process	
 to	
 control	
 its	

execu.on	

– Future	
 GPGPU	
 SDKs	
 might	
 allow	
 us	
 to	
 drop	
 the	

CPU	
 controller	
 process	

•  Requires	
 administra.ve	
 privileges	

– For	
 installing	
 and	
 using	
 the	
 module	

– However	
 the	
 control	
 process	
 runs	
 in	
 user-­‐space	

•  No	
 OS	
 modifica.on	
 needed	
 or	
 data	
 structure	

manipula.on,	
 in	
 order	
 to	
 hide	

62	
 Giorgos	
 Vasiliadis	

Summary
•  GPUs	
 offer	
 new	
 ways	
 for	
 robust	
 and	
 stealthy	

malware	

– We	
 demonstrated	
 how	
 a	
 malware	
 can	
 increase	
 its	

robustness	
 against	
 detec.on	
 using	
 the	
 GPU	

•  Unpacking	
 /	
 Run.me	
 polymorphism	

–  Presented	
 a	
 fully	
 func.onal	
 and	
 stealthy	
 GPU-­‐based	

keylogger	

•  Low	
 CPU	
 and	
 GPU	
 usage	

•  No	
 device	
 hooking	

•  Graphics	
 cards	
 may	
 be	
 a	
 promising	
 new	

environment	
 for	
 future	
 malware

64 Giorgos	
 Vasiliadis	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Malware	
 Signature	
 Detec.on	

– Network	
 intrusion	
 detec.on/preven.on	

–  Virus	
 scanning	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

65	
 Giorgos	
 Vasiliadis	

Mo.va.on	

•  Modern	
 cryptography	
 is	
 based	
 on	
 keys	

•  Problem:	
 Secret	
 keys	
 may	
 remain	
 unencrypted	
 in	

CPU	
 Registers,	
 RAM,	
 etc.	

– Memory	
 disclosure	
 adacks	

•  Heartbleed	

– DMA/Firewire	
 adacks	

–  Physical	
 adacks	

•  Cold-­‐boot	
 adacks	

– …	

66	
 Giorgos	
 Vasiliadis	

PixelVault	
 Overview	

•  Runs	
 encryp.on	

securely	
 outside	
 CPU/
RAM	

•  Only	
 on-­‐chip	
 memory	

of	
 GPU	
 is	
 used	
 as	

storage	

•  Secret	
 keys	
 are	
 never	

observed	
 from	
 host	

Host	

Host	
 CPU	

PLAINTEXT CIPHERTEXT

Graphics	
 Card	

CIPHER

67	
 Giorgos	
 Vasiliadis	

Cryptographic	
 Processing	
 with	
 GPUs	

•  GPU-­‐accelerated	
 SSL	

–  [CryptoGraphics,	
 CT-­‐RSA’05]	

–  [Harrison	
 et	
 al.,	
 Sec’08]	

–  [SSLShader,	
 NSDI’11]	

–  …	

•  High-­‐performance	

•  Cost-­‐effec.ve	

OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

GPU	

68	
 Giorgos	
 Vasiliadis	

Cryptographic	
 Processing	
 with	
 GPUs	

•  GPU-­‐accelerated	
 SSL	

–  [CryptoGraphics,	
 CT-­‐RSA’05]	

–  [Harrison	
 et	
 al.,	
 Sec’08]	

–  [SSLShader,	
 NSDI’11]	

–  …	

•  High-­‐performance	

•  Cost-­‐effec.ve	

Can	
 we	
 also	
 make	
 it	
 secure?	

OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

GPU	

69	

Implementa.on	
 Challenges	

•  How	
 to	
 isolate	
 GPU	
 execu.on?	

•  Who	
 holds	
 the	
 keys?	

•  Where	
 is	
 the	
 code?	

70	
 Giorgos	
 Vasiliadis	

Implementa.on	
 Challenges	

•  How	
 to	
 isolate	
 GPU	
 execu.on?	

•  Who	
 holds	
 the	
 keys?	

•  Where	
 is	
 the	
 code?	

71	
 Giorgos	
 Vasiliadis	

Autonomous	
 GPU	
 execu.on	

•  Force	
 GPU	
 program	
 to	
 run	
 indefinitely	

–  i.e.,	
 using	
 an	
 infinite	
 while	
 loop	

•  GPUs	
 are	
 non-­‐preemp.ve	

– No	
 other	
 program	
 can	
 run	
 at	
 the	
 same	
 .me	

•  We	
 use	
 a	
 shared	
 memory	
 segment	
 for	

communica.on	
 between	
 the	
 CPU	
 and	
 the	

GPU	

73	
 Giorgos	
 Vasiliadis	

Shared	
 Memory	
 between	
 CPU/GPU	

•  Page-­‐locked	
 memory	

–  Accessed	
 by	
 the	
 GPU	

directly,	
 via	
 DMA	

–  Cannot	
 be	
 swapped	
 to	

disk	

•  Processing	
 requests	
 are	

issued	
 through	
 this	

shared	
 memory	
 space	

OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

Shared	
 Memory	
 Segment	

GPU	

74	

Shared	
 Memory	
 between	
 CPU/GPU	

•  GPU	
 con.nuously	

monitors	
 the	
 shared	

space	
 for	
 new	
 requests	

	

OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

Shared	
 Memory	
 Segment	

GPU	

75	

Shared	
 Memory	
 between	
 CPU/GPU	

•  When	
 a	
 new	
 request	
 is	

available,	
 it	
 is	

transferred	
 to	
 the	

memory	
 space	
 of	
 the	

GPU	

	

OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

Shared	
 Memory	
 Segment	

GPU	

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

76	

Shared	
 Memory	
 between	
 CPU/GPU	

•  The	
 request	
 is	

processed	
 by	
 the	
 GPU	

	
 OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

Shared	
 Memory	
 Segment	

77	

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

Shared	
 Memory	
 between	
 CPU/GPU	

•  When	
 processing	
 is	

finished,	
 the	
 host	
 is	

no.fied	
 by	
 se�ng	
 the	

response	
 parameter	

fields	
 accordingly	

OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

Shared	
 Memory	
 Segment	

GPU	

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

78	

Autonomous	
 GPU	
 execu.on	

•  Non-­‐preemp.ve	

execu.on	

•  Only	
 the	
 output	
 block	
 is	

being	
 wriden	
 back	
 to	

host	
 memory	

OpenSSL	
 stub	

SSH	

Server	

Web	

Server	

IMAP	

Server	

Shared	
 Memory	
 Segment	

GPU	

79	

non-preemptive exec

input output

Implementa.on	
 Challenges	

•  How	
 to	
 isolate	
 GPU	
 execu.on?	

•  Who	
 holds	
 the	
 keys?	

•  Where	
 is	
 the	
 code?	

80	
 Giorgos	
 Vasiliadis	

Who	
 holds	
 the	
 keys?	

•  GPUs	
 contain	
 different	
 memory	
 hierarchies	
 of	
 …	

–  different	
 sizes,	
 and	
 …	

–  different	
 characteris.cs	

81	

Host	
 Memory	

CPU	

(Host)	

Gl
ob

al
	
 M

em
or
y	

Shared	

Memory	

Regs	

Cache	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

Mul.processor	
 N	

Mul.processor	
 2	

Mul.processor	
 1	

GPU	

Giorgos	
 Vasiliadis	

Who	
 holds	
 the	
 keys?	

•  GPUs	
 contain	
 different	
 memory	
 hierarchies	
 of	
 …	

–  different	
 sizes,	
 and	
 …	

–  different	
 characteris.cs	

82	

Host	
 Memory	

CPU	

(Host)	

Gl
ob

al
	
 M

em
or
y	

Shared	

Memory	

Regs	

Cache	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

Mul.processor	
 N	

Mul.processor	
 2	

Mul.processor	
 1	

GPU	

Reset	
 to	
 zero	
 on	
 each	

GPU	
 kernel	
 execu.on.	

Giorgos	
 Vasiliadis	

Support	
 for	
 an	
 arbitrary	
 number	
 of	
 keys	

•  We	
 can	
 use	
 a	
 separate	
 KeyStore	
 array	
 that	

holds	
 an	
 arbitrary	
 number	
 of	
 secret	
 keys	

KeyStore	

Enc’ed	
 Key	
 Dec’ed	
 Key	

GPU	
 Registers	
 File	

encrypted	
 keys	
 are	

stored	
 in	
 GPU	
 global	

device	
 memory:	

each	
 key	
 is	
 decrypted	
 in	
 registers	

during	
 encryp.on/decryp.on:	

copy	
 to	
 registers	

Master	

Key	

84	
 Giorgos	
 Vasiliadis	

Implementa.on	
 Challenges	

•  How	
 to	
 isolate	
 GPU	
 execu.on?	

•  Who	
 holds	
 the	
 keys?	

•  Where	
 is	
 the	
 code?	

85	

Graphics Processors for Security

GPU-assisted
Malware

GPU-assisted
Malware Detection

Signature matching
Regular expression matching
Malicious code analysis
 April*2,*2013* 57*

Giorgos	
 Vasiliadis	

Where	
 is	
 the	
 code?	

•  GPU	
 code	
 is	
 ini.ally	
 stored	
 in	
 global	
 device	

memory	
 for	
 the	
 GPU	
 to	
 execute	
 it	

– An	
 adversary	
 could	
 replace	
 it	
 with	
 a	
 malicious	

version	

Graphics Processors for Security

GPU-assisted
Malware

GPU-assisted
Malware Detection

Signature matching
Regular expression matching
Malicious code analysis
 April*2,*2013* 57*

Global	
 Device	

Memory	

86	

Prevent	
 GPU	
 code	
 modifica.on	
 adacks	

•  Three	
 levels	
 of	
 instruc.on	
 caching	
 (icache)	

– 4KB,	
 8KB,	
 and	
 32KB,	
 respec.vely	

– Hardware-­‐managed	

•  Opportunity:	
 Load	
 the	
 code	
 to	
 the	
 icache,	
 and	

then	
 erase	
 it	
 from	
 global	
 device	
 memory	

– The	
 code	
 runs	
 indefinitely	
 from	
 the	
 icache	

– Not	
 possible	
 to	
 be	
 flushed	
 or	
 modified	

87	
 Giorgos	
 Vasiliadis	

PixelVault	
 Crypto	
 Suite	

•  Currently	
 implemented	
 algorithms	

– AES-­‐128	

– RSA-­‐1024	

•  Implemented	
 completely	
 using	
 on-­‐chip	

memory	
 (i.e.	
 registers,	
 scratchpad	
 memory)	

– The	
 only	
 data	
 that	
 is	
 wriden	
 back	
 to	
 global,	
 off-­‐
chip	
 device	
 memory	
 is	
 the	
 output	
 block	

88	
 Giorgos	
 Vasiliadis	

AES-­‐128	
 CBC	
 Performance	

89	

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3
GPU
PixelVault
PixelVault (w/ KeyStore)

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

CPU

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Decryp.on	
 Encryp.on	

Up	
 to	
 20%	
 overhead	

on	
 GPU	
 execu.on	

Up	
 to	
 13%	
 overhead	
 	

on	
 GPU	
 execu.on	

Giorgos	
 Vasiliadis	

AES-­‐128	
 CBC	
 Performance	

90	

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3
GPU
PixelVault
PixelVault (w/ KeyStore)

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

CPU

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Decryp.on	
 Encryp.on	

Intel	
 Nehalem	

single	
 core	
 (2.27GHz)	
 	

3x-­‐4x	
 faster	
 than	
 CPU	

for	
 a	
 sufficient	
 number	

of	
 messages	

Giorgos	
 Vasiliadis	

RSA	
 1024-­‐bit	
 Decryp.on	

91	

the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  PixelVault	
 adds	
 an	
 1%-­‐15%	
 overhead	
 over	
 the	
 default	
 	

GPU-­‐accelerated	
 RSA	

Giorgos	
 Vasiliadis	

RSA	
 1024-­‐bit	
 Decryp.on	

92	

the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  S.ll	
 faster	
 than	
 CPU	
 when	
 batch	
 processing	
 	
 >128	
 messages	
 	

Giorgos	
 Vasiliadis	

PixelVault	
 Features	

•  Prevents	
 key	
 leakages	

– Even	
 when	
 the	
 base	
 system	
 is	
 fully	
 compromised	

•  Requires	
 just	
 a	
 commodity	
 GPU	

– No	
 OS	
 kernel	
 modifica.ons	
 or	
 recompila.on	

•  High-­‐performance	
 cryptographic	
 opera.ons	

93	
 Giorgos	
 Vasiliadis	

Limita.ons	

•  Require	
 trusted	
 bootstrap	

•  Dedicated	
 GPU	
 execu.on	

•  Misusing	
 PixelVault	
 for	
 encryp.ng/decryp.ng	

messages	

•  Denial-­‐of-­‐Service	
 adacks	

•  Side-­‐channel	
 adacks	

94	
 Giorgos	
 Vasiliadis	

Summary	

•  Cryptography	
 on	
 the	
 GPU	
 is	
 not	
 only	
 fast	
 …	

•  …	
 but	
 also	
 secure!	

– Preserves	
 the	
 secrecy	
 of	
 keys	
 even	
 when	
 the	
 base	

system	
 is	
 fully	
 compromised	

•  More	
 technical	
 details	

– See	
 our	
 ACM	
 CCS’2014	
 paper	

“PixelVault:	
 Using	
 GPUs	
 for	
 Securing	
 Cryptographic	

Opera-ons”	

95	
 Giorgos	
 Vasiliadis	

Outline	

•  Background	
 and	
 mo.va.on	

•  GPU-­‐based	
 Malware	
 Signature	
 Detec.on	

– Network	
 intrusion	
 detec.on/preven.on	

–  Virus	
 scanning	

•  GPU-­‐assisted	
 Malware	

–  Code-­‐armoring	
 techniques	

–  Keylogger	

•  GPU	
 as	
 a	
 Secure	
 Crypto-­‐Processor	

•  Conclusions	

96	
 Giorgos	
 Vasiliadis	

Conclusions	

•  GPUs	
 have	
 diverse	
 security	
 applica.ons	

–  Both	
 for	
 defense	
 and	
 offense	

–  NDIS,	
 AV,	
 crypto-­‐devices,	
 secure	
 processors,	
 etc.	

–  Generic	
 library	
 with	
 func.onality	
 for	
 various	
 applica.ons	

–  Combine	
 high-­‐performance	
 with	
 programmability	

•  Future	
 work	

–  Adapt	
 to	
 other	
 applica.on	
 domains	
 	

–  Apply	
 to	
 mobile	
 and	
 embedded	
 devices	

–  U.lize	
 integrated	
 CPU-­‐GPU	
 designs	

•  	
 Credits	
 to:	

–  So.ris	
 Ioannidis,	
 Lazaros	
 Koromilas,	
 Michalis	
 Polychronakis,	
 Spyros	

Antonatos,	
 Evangelos	
 Ladakis,	
 Elias	
 Athanasopoulos,	
 Evangelos	

Markatos	

97	
 Giorgos	
 Vasiliadis	

GPUs	
 for	
 Security	

Giorgos	
 Vasiliadis	

Founda.on	
 for	
 Research	
 and	

Technology	
 –	
 Hellas	
 (FORTH)	

thank	
 you!	

99	
 Giorgos	
 Vasiliadis	

