
You Can Type, but You Can’t Hide

A Stealthy GPU-based Keylogger

EUROSEC 2013

Evangelos Ladakis

Lazaros Koromilas, Giorgos Vasiliadis, Sotiris Ioannidis, Michalis Polychronakis

(FORTH-ICS)

1

Outline

 Background

 A GPU-Based keylogger

 Evaluation

 Defenses

2

Keyloggers

 Malware that records keystrokes

Types:

Hardware (devices plugged in keyboard)

Software (user mode or kernel mode)

User mode:

They use OS functionalities:

 Character device files Linux OS

 GetAsyncKeyState Windows OS

Kernel mode:

They implement “Hook” functions

 Can be detected by AVs/anti-malware software

3

Motivation

 How can we hide the malicious code from
AVs/anti-malware software?

 Is it possible to use the GPU for building a
stealthier malware?

4

General-Purpose Programming on
GPUs (GPGPU)

 GPUs can be programmed for general purpose
computation

 Familiar API as C language extensions

 Existing GPGPU frameworks

 OpenCL (Universal Programming Language)

 NVIDIA CUDA (For NVIDIA Graphics Cards)

 General-Purpose Programming is directly supported
by most commodity drivers/video cards

 A GPU-based keylogger will run without problems on most
systems

5

Overall approach

• Scan kernel’s memory to locate the keyboard
buffer

• Remap the memory page of the buffer to user
space

• Set the GPU to periodically read and scan them
for sensitive information (e.g., credit card
numbers)

• Unmap the memory in order to leave no traces

6

Implementation

Step 1: Locate the keyboard buffer

 Keyboard buffer dynamically changes address after system
rebooting or after unplugging and plugging back in the device

7

kernel module

controller
process

memory
scanner

GPU
code

start
keylogger

manipulate
page table entries

locate
buffer

sc
a
n

p
a
g
e
s

Implementation

Scan the kernel memory using heuristics

8

Struct URB (USB Request Block)

struct usb_device *dev

...

void *transfer_buffer

(actual keyboard buffer)

dma addr t *transfer_dma

...

u32 *transfer_buffer_length

...

struct usb_device

…

char* product

(descibes the device)

“USB”, “keyboard”

Must contains substrings

*For proof of concept
we scanned kernels memory with a
kernel module

Implementation

Step 2: Configure the GPU to constantly monitor
buffer contents for changes

9

kernel module

controller
process

memory
scanner

GPU
code

start
keylogger

manipulate
page table entries

locate
buffer

sc
a
n

p
a
g
e
s

Implementation

• The GPU driver allows DMA access ONLY to the host
process' address space

 Only to memory regions allocated through a special CUDA
API call

• Use a kernel module to remap the physical page of the
buffer to the user-level process' memory space

10

Implementation

Step 3: Start GPU process & Capture keystrokes

11

kernel module

controller
process

memory
scanner

GPU
code

start
keylogger

manipulate
page table entries

locate
buffer

sc
a
n

p
a
g
e
s

Implementation

• Uninstall the module

• Use polling to catch keystrokes

 “wake up” GPU process periodically through the CPU
controller process

• Simple state machine translates keystrokes into ASCII
characters

• Store keystrokes into Video RAM

12

Implementation

Step 4: Scan captured keystrokes for sensitive
information

• GPU-based regular expression parser

13

Credit card Regular expresion

VISA ^4[0-9]{12}(?:[0-9]{3})?$

MasterCard ^5[1-5][0-9]{14}$

American Express ^3[47][0-9]{13}$

Diners Club ^3(?:0[0-5]|[68][0-9])[0-9]{11} $

Discover ^6(?:011|5[0-9]{2})[0-9]{12}$

Evaluation

• Ubuntu Linux 12.10 with kernel v3.5.0

• Used CUDA 5.0 SDK

• Executable less than 4 KB

• Polling interval tradeoff:

Monitoring granularity vs. CPU/GPU utilization

 Low Frequency: might miss keystroke events

 High frequency: might cause detectable CPU/GPU utilization
increase

14

CPU Utilization

15

CPU Utilization

16

Fastest
Typists

GPU Utilization

17

GPU Utilization

18

Fastest
Typists

Possible Defenses

• Monitoring GPU access patterns

 Multiple/repeated DMAs from the GPU to system RAM

• Monitoring GPU usage

 Unexpected increased GPU usage

19

Current Prototype Limitations

• Requires a CPU process to control its execution

 Future GPGPU SDKs might allow us to drop the CPU
controller process

• Requires administrative privileges

 For installing and using the module

 However the control process runs in user-space

• No kernel injection needed or data structure manipulation,
in order to hide

20

Conclusion

• GPUs offer new ways for robust and stealthy
malware

• Presented a fully functional and stealthy GPU-
based keylogger

 Low CPU and GPU usage

 No Device Hooking

 No traces left after exploitation

 User Mode application. No kernel injection needed

 21

Thank you

22

Locate the keyboard buffer

#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

for (i = 0; i < totalmem; i += 0x10) {
 struct urb *urbp = (struct urb *)__va(i);
 If (((urbp->dev % 0x400) == 0) &&
 ((urbp->transfer_dma % 0x20) == 0) &&
 (urbp->transfer_buffer_length == 8) &&
 (urbp->transfer_buffer != NULL) &&
 strncmp(urbp->dev->product, "usb", 32) &&
 strncmp(urbp->dev->product, "keyboard", 32)) {

 /* potential match *
 }
}

23

Related Work

 DMA Malware “DAGGER” by: Patrick Stewin
and Iurii Bystrovx

 Implemented in Intel's Manageability Engine (it is used
for remote Bios operations)

 GPU assisted malware by: Giorgos Vasiliadis,
Michalis Polychronakis and Sotiris Ioannidis

 GPU-based self-unpacking malware

24

