You Can Type, but You Can’t Hide

Evangelos Ladakis
Lazaros Koromilas, Giorgos Vasiliadis, Sotiris loannidis, Michalis Polychronakis

(FORTH-ICS)

{“ FORTH

2D Institute of Computer Science

u
"}

Outline

Background

A GPU-Based keylogger
Evaluation

Defenses

Keyloggers

« Malware that records keystrokes
Types:
Hardware (devices plugged in keyboard)

Software (user mode or kernel mode)

User mode:

They use OS functionalities:

Character device files Linux OS
GetAsyncKeyState Windows OS

Kernel mode:

They implement “Hook” functions

. Can be detected by AVs/anti-malware software

Motivation

« How can we hide the malicious code from
AVs/anti-malware software?

. IS It possible to use the GPU for building a
stealthier malware?

General-Purpose Programming on
GPUs (GPGPU)

« GPUs can be programmed for general purpose
computation

a Familiar APl as C language extensions
« Existing GPGPU frameworks

a OpenCL (Universal Programming Language)
a NVIDIA CUDA (For NVIDIA Graphics Cards)

« General-Purpose Programming is directly supported
by most commodity drivers/video cards

a A GPU-based keylogger will run without problems on most
systems

Overall approach

Scan kernel’'s memory to locate the keyboard
ouffer

Remap the memory page of the buffer to user
space

Set the GPU to periodically read and scan them
for sensitive information (e.g., credit card
numbers)

Unmap the memory in order to leave no traces

Implementation

Step 1: Locate the keyboard buffer

» Keyboard buffer dynamically changes address after system
rebooting or after unplugging and plugging back in the device

c(:SoF;lLé kernel module
start manipulate
keylogger page table entries = élg))
38
locate
controller bufter memory

process —> scanner

Implementation

Scan the kernel memory using heuristics

Struct URB (USB Request Block)

struct usb_device

dma addr t *transfer_dma

Must contains substrings
“USB”, “keyboard”

u32 *transfer_buffer length *For proof of concept

we scanned kernels memory with a
kernel module

Implementation

Step 2: Configure the GPU to constantly monitor
buffer contents for changes

GPU

code kernel module

start manipulate o,

keylogger page table entries c O
S @
wmw

locate
controller butter memory

pProcess scanner

Implementation

 The GPU driver allows DMA access ONLY to the host
process' address space

= Only to memory regions allocated through a special CUDA
API call

« Use a kernel module to remap the physical page of the
buffer to the user-level process' memory space

10

Implementation

Step 3: Start GPU process & Capture keystrokes

GPU
code kernel module
start manipulate "
keylogger page table entries c @
S&
wm o
locate
controller butfer memory
process scanner

11

Implementation

Uninstall the module

Use polling to catch keystrokes

= “wake up” GPU process periodically through the CPU
controller process

Simple state machine translates keystrokes into ASCI|
characters

Store keystrokes into Video RAM

12

Implementation

Step 4: Scan captured keystrokes for sensitive

Information

 GPU-based regular expression parser

Credit card
VISA

MasterCard
American Express
Diners Club

Discover

Regular expresion
M[0-9{12}(?:[0-9{3})?$
A5[1-5][0-9]{14}$
A3[47][0-91{13}$
A3(?:0[0-5]|[68][0-9])[0-9]{11} $

A6(?2:011|5[0-9]{21)[0-9]{12}$

13

Evaluation

 Ubuntu Linux 12.10 with kernel v3.5.0
« Used CUDA 5.0 SDK
« Executable less than 4 KB

* Polling interval tradeoft:
Monitoring granularity vs. CPU/GPU utilization

a Low Frequency: might miss keystroke events

a High frequency: might cause detectable CPU/GPU utilization
Increase

14

CPU utilization (percent)

CPU Utilization

100

10

0.1 -

0.01
0.001

0.01

0.1 1 10

Kernel invocation interval (msecs)

100

1000

15

CPU utilization (percent)

CPU Utilization

100

0.1 ¢

0.01
0.001

0.01

0.1 1 10

Kernel invocation interval (msecs)

Fastest
Typists

16

GPU utilization (percent)

GPU Utilization

0.1 |
0.01
10-3
104

10>

106

0.001

0.01

0.1 1 10
Kernel invocation interval (msecs)

17

GPU utilization (percent)

GPU Utilization

0.1

0.01 -

103

106

0.001

0.01

0.1 1 10
Kernel invocation interval (msecs)

7
100

Fastest
Typists

18

Possible Defenses

* Monitoring GPU access patterns
= Multiple/repeated DMAs from the GPU to system RAM

* Monitoring GPU usage

» Unexpected increased GPU usage

19

Current Prototype Limitations

* Requires a CPU process to control its execution

» Future GPGPU SDKs might allow us to drop the CPU
controller process

* Requires administrative privileges

= For installing and using the module
= However the control process runs in user-space

* No kernel injection needed or data structure manipulation,
In order to hide

20

Conclusion

* GPUs offer new ways for robust and stealthy
malware

* Presented a fully functional and stealthy GPU-
based keylogger

« Low CPU and GPU usage

« No Device Hooking

= No traces left after exploitation

« User Mode application. No kernel injection needed

21

Thank you

Locate the keyboard buffer

#define __ va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

for (i = O; I < totalmem; i += 0x10) {

struct urb *urbp = (struct urb *) __ va(i);

If (((urbp->dev % 0x400) == 0) &&
((urbp->transfer_dma % 0x20) == 0) &&
(urbp->transfer_buffer_length == 8) &&
(urbp->transfer_buffer '= NULL) &&
strncmp(urbp->dev->product, "usb", 32) &&
strncmp(urbp->dev->product, "keyboard", 32)) {

[* potential match *

23

Related Work

« DMA Malware "DAGGER” by: Patrick Stewin
and luril Bystrovx

- Implemented in Intel's Manageability Engine (it is used
for remote Bios operations)

« GPU assisted malware by: Giorgos Vasiliadis,
Michalis Polychronakis and Sotiris loannidis

- GPU-based self-unpacking malware

24

