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Abstract We present a method for a 3–D snake model
construction and terrestrial snake locomotion synthesis
in 3–D virtual environments using image sequences. The
snake skeleton is extracted and partitioned into equal
segments using a new iterative algorithm for solving the
equipartition problem. This method is applied on 3–D
model construction and on motion analysis stage. Con-
cerning the snake motion, the snake orientation is con-
trolled by a path planning method. An animation syn-
thesis algorithm, based on a physical motion model and
tracking data from image sequences, describes the snake’s
velocity and skeleton shapes transitions. Moreover, the
proposed motion planning algorithm allows a large num-
ber of skeleton shapes, providing a general method for
aperiodic motion sequences synthesis in any motion graph.
Finally, the snake locomotion is adapted to the 3–D lo-
cal ground, while its behavior can be easily controlled by
the model parameters yielding the appropriate realistic
animations.

Keywords Snake motion modeling · graph exploration ·
snake animation

1 Introduction

The analysis of image sequences containing moving ani-
mals in order to create a 3–D model of the animal and its
physical motion is a difficult problem because of the un-
predictable and complicated (most of the time) animal
motion. On the other hand, there are many techniques
and methods in character modeling. We can distinguish
them in canned animation from motion capture data and
numerical procedural techniques such as Inverse Kine-
matics [11]. Canned animations are more expressive, but
less interactive than numerical procedural techniques,
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which often appear as “robotic” creatures and require
parameter tuning by hand.

Motion capturing could be performed by means of im-
age analysis. Ramanan and Forsyth [22] present a system
that builds appearance models of animals from image se-
quences. Many systems use direct motion capture tech-
nology [5] having high accuracy on tracking targets. Mo-
tion graphs [14] constructed from motion capture data
generate different styles of locomotion by building walks
on the graph. The motion graph consists both of pieces
of original motion and automatically generated transi-
tions. Our motion planning algorithm is executed in a
similar graph. The computer vision based techniques in
specific environments can also give high accuracy track-
ing data using predefined 2–D [21] or 3–D models [25] or
without using explicit shape models [24]. One of the first
attempts to reconstruct animal motion from videos is
Wilhelms’s work [28]. Deformable contours (snakes) are
used to extract the 2-D motion of each limb’s contour
from a video sequence of a running horse. However the
active contours methods are very sensitive to noise and
have parameters which are difficult to tune. In [6] is is
presented a 3–D animal motion reconstruction method
from segmented video objects. The user provides the ob-
ject pose in some key frames and the other poses are
computed using interpolation.

In robotics, a lot of work has been done on the con-
struction of snake-like robots with elegant and flexible
motion, which can move in two or three dimensions [23],
[26], [4]. Usually, these robots have many degrees of free-
dom in order to achieve the flexibility of the real snake
and their motion is periodic. Snake-like robots can move
on rugged, sandy, terrestrial environments, such as rough
or muddy terrains, where the wheeled mechanisms are
not effective.

Until now, a lot of work has been done in 3–D animal
modeling. A 3–D animal model and its texture mapping
can be computed using images captured from specific
views and a predefined animal model. This methodology
has been applied successfully in snake, lizard and goat
3–D model construction [20]. A.J. Ijspeert [9] designed
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the 3–D model of a salamander using neural controllers.
In [17], is described an approach for the design of sim-
ple proportional derivative controllers for dynamic loco-
motion applying it in fish locomotion. Miller [15] simu-
lates muscle contractions of snakes and worms by ani-
mating spring tensions. In [29] a physics-based method
for synthesis of bird flight animations is described. A set
of wing-beats is computed, that enables a bird to fol-
low a specified trajectory. The most recent works try to
model the muscle system of a character getting realistic
results. Morphing techniques can be applied for creat-
ing and controlling the metamorphosis of two animated
and textured models [2]. A lot of work has been done
on human animation. In [1] is presented a deformation
algorithm to create hand animations from images using
muscle models. In [30] is simulated a human swimmer,
who attempts to follow a dynamic user-defined target
by augmenting cyclic stroke control with a set of pre-
specified variations, based on the current state of the
character and its environment.

The motion planning capability under the obstacle
avoidance problem support the autonomy of a virtual
character. It has been studied using the Probabilistic
Roadmap Methods (PRM) [13]. Under PRM, a random
sample of configuration space, constructs an accessible
point graph (roadmap), which is used to search for a path
during the planning stage, yielding good performance.
In [7], a motion planning method, based on finite state
machines, is used to solve the path planning problem
under dynamic obstacle avoidance for virtual humans
without knowledge about the environment topology.

The realistic snake movement depends on the mode
of locomotion used by the snake. When snakes encounter
different environments, they are remarkably adept at
changing their pattern of movement so that they can
propel themselves effectively. Gray [8] provides a good
review of his earlier papers, some of which emphasized
modeling, while others had direct observations of snake
movement. In [10] is presented the first quantitative kine-
matic analysis of the major modes of terrestrial snake
locomotion that use lateral bending of the vertebral col-
umn to generate propulsive forces. In [16] muscular ba-
sis and propulsive mechanism of terrestrial lateral undu-
lation in gopher snakes are examined using patch elec-
trodes. The snake mass center trajectory depends mainly
on the snake orientation. Thus, depending on exactly
how periodic motion is defined, most of the modes of
snake locomotion involve some sort of periodic motion
or repeating pattern. In both aquatic and terrestrial lo-
comotion a given point on the body periodically moves
to the left (L) and then to the right (R). During swim-
ming the frequency of L, R movements is constant along
the entire length of the snake. During terrestrial lateral
undulation, which is the kind of undulation that we are
going to animate, the amplitude and wavelength of the
wave of bending can be variable along the length of the
snake. Thus, the duration of a cycle of L, R movement

can be variable producing aperiodic motion. During con-
certina locomotion, snakes moving with a steady speed
periodically (at regular time intervals) stop although the
pattern of left and right movement is highly variable. As
our experiments show, the most impressive results are
provided when the motion sequence is aperiodic, since
if the snake motion is periodic, the motion will be pre-
dictable. For this reason, the proposed motion planning
algorithm obtains aperiodic motion sequences.

A preliminary version of our work was presented in
[20]. In this paper motion synthesis has been significantly
improved by adding a model of acting forces, modify-
ing the motion planning algorithm, using mathematical
models on skeleton shape transitions derived by track-
ing data from image sequences, adding the snake behav-
ior control module and by better fitting the snake 3–D
shape into the 3–D virtual world. The basic purpose of
our work is to create simple and accurate 3–D models
and realistic animations of terrestrial snakes in any 3–D
virtual environments. We study the curve equipartition
problem, whose solution is used in the creation of the 3–D
model and on motion analysis stage. The proposed snake
model coefficients can be distinguished to those that
describe the rotation, translation, scaling of the snake
and to those that describe the snake’s shape. Moreover,
the minimal number of the proposed snake model coef-
ficients, without accuracy loss, provide an easily tuned
method that controls the snake behavior. Thus, the pro-
posed snake model coefficients and the motion planning
algorithm are the main contributions of this work.

The rest of the paper is organized as follows. Section
2 presents the proposed method. The experimental re-
sults are presented in section 3. Finally, in section 4 we
summarize and discuss the results.

2 Methodology

2.1 System Overview

The main stages of the proposed method for computing
3–D snake animations are the following:
– Creation of a 3–D Snake Model
– State Graph Construction
– Motion Synthesis

Initially, a 3–D animal model is produced using seg-
mented images obtained by background subtraction. For
the 3–D model construction process a set of points lo-
cated on the skeleton of the snake is extracted. These
points are called hereafter skeleton points. During the
motion analysis stage, the skeleton points are tracked
through time in the video sequence. Then a graph of
snake skeleton states is created. Each state describes only
the snake shape independent from position and global
orientation. During the motion synthesis stage, a motion
planning algorithm based on a set of possible states is ex-
ecuted on the graph allowing a large number of skeleton
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shapes and ensuring aperiodic motion sequences. Math-
ematical models, derived by tracking data, describe the
skeleton shape transitions. The user selects some points
of the outer environment in order to specify the trajec-
tory that the animal will trace. However, it is possible
that several obstacles appear in the outer world. In ad-
dition, the trajectory may not be smooth enough result-
ing in a zigzagging type of motion. In order that all of
the above issues should be tackled, an obstacle avoid-
ance algorithm is proposed yielding a “safe” animal tra-
jectory. Finally, since initially the snake locomotion is
computed to be a plane displacement, this locomotion is
transformed to fit the 3–D virtual environment.

2.2 Creation of a 3–D Snake Model

Generally, perfect 3–D body reconstruction using only
2-D images as input, is a difficult task difficult task due
to the complexity of the animal’s 3–D shape. So in-
stead, making use of a priori knowledge about the snake
anatomy, we assume that its body cross sections are el-
lipses (see Fig. 2(b)). This way the number of modeling
parameters is minimized, increasing the robustness of the
reconstruction. Therefore, the proposed method is sim-
ple and it yields accurate results using priori knowledge
about the snake anatomy. Moreover, we can use the esti-
mated snake skeleton points on motion synthesis stage,
applying the method on the whole image sequence.

The snake body is reconstructed using the following
“Skeleton Points Extraction” procedure. Two images are
given as input to a background subtraction method for
extracting the boundary of the snake body (Fig. 1): a
background image and a top view image of the snake.
Equally spaced points from the medial axis of the bound-
ary, skeleton points, are then chosen as the centers of
these ellipses (Fig. 2(a)). We propose an iterative curve
equipartition algorithm that segments any 2–D curve to
equal segments given the first and the last point of the
curve (see section 2.3). The texture mapping is done in
the same time using the mirroring technique, each cou-
ple of antisymmetrical from ellipse center points is cor-
responded to the appearance of a snake image pixel. The
ellipse size at a point pn is determined based on the dis-
tance dn between its center and the boundary. Its eccen-
tricity can be given as a known constant parameter, as
it is almost the same for all ellipses. Otherwise, it can
be computed using as input image instead of a top view
image and a beside view image of the snake. All of the
produced ellipses make up the final 3–D model of the
snake.

2.3 Curve Equipartition

The “Skeleton Points Extraction” procedure is based on
curve equipartition (EP), and it is used on 3–D snake

(a) (b) (c)

Fig. 1 (a) A snake image, (b) the background image and
(c) the extracted snake silhouette.

model creation (section 2.2) and on motion analysis stage
(section 2.4). The EP problem can be defined for any 2–D
continuous curve. Let A, B be the start and the end point
of the curve, respectively. The EP problem is to locate
N − 1 consecutive curve points, so that the curve can be
divided into N equal length chords, under the constraint
the first starts from A and the last ends on B (see Fig.
3). We have proved [18, 19] that the above problem has
always at least one solution providing algorithms that
solve the problem.

The above problem can have more than one solutions
depending on curve shape and number N . As N tends
to infinity the problem solution (equal chords) will be
unique and it will provide an approximation of the curve
(see Fig. 3). Next, we present a steepest descent based
EP algorithm (see Algorithm 1) that converges to a so-
lution, and it is efficient for large N. Let Pi = C(ti),
i = 0, · · · , N , P0 = A, ti < ti+1 be the curve points
computed at an iteration. In each iteration, point Pi is
computed based on the constraint that the line segments
length (|Pi−1Pi|) is constant. Finally, Pi will converge to
a solution, this means that PN ' B. The first N −1 seg-
ments will have absolutely the same length. Let T and r
be the convergence error and the algorithm learning rate
(r < 1), respectively. The final solution, that the above
algorithm computes, will be very close to the real one as
the length of each chord will be exactly the same.

P0 = A

s =
curvelength

N
repeat

for i=1 to N do
Pi = C(ti) : ti > ti−1 ∧ |Pi−1Pi| = s
/* If there is not solution, we compute point Pi using
mirroring technique, ⇒ the Pi will be out of curve.*/

end

s =

{
s + r |B−PN |

N
, PN is curve point

s− r |B−PN |
N

, PN is being out of curve
until |PN −B| < T

Algorithm 1: Steepest Descent Based Curve EP.
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(a) (b)

Fig. 2 (a) The skeleton points (green points) and the snake boundary (red curve). (b) A 3–D wire-frame model of the
snake.
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Fig. 3 EP examples for different N. The higher the N, the better the curve approximation.
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Fig. 4 (a) Frames of a snake motion in a high friction surface and (b) the tracking results using a maximum intensity filter
over the time. (c) Frames of a snake motion in a low friction surface and (d) the snake skeleton points tracking results.
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Fig. 5 Motion analysis results (in rads).
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2.4 Motion Analysis Stage

In this section, the motion analysis stage is described.
The skeleton points are tracked with pixel accuracy in
the whole image sequence using the “Skeleton Points
Extraction” procedure. The tracking accuracy has been
improved using stable camera and high contrast back-
ground. We have captured terrestrial snake locomotion
into various types of surfaces in order to measure how
the friction affects the snake locomotion.

Let Θ(n, t) be the angle between the horizontal axis
and the skeleton on point n at frame t (see Fig. 6(a)).
When the snake is moving in high friction surfaces (Figs.
4(a), 4(b)) it holds that each skeleton point traces the
head point trajectory: Θ(n, t) = Θ(n−U(t), t−1), where
U(t) denotes the snake pulse speed at frame t. Otherwise,
the snake slides on low friction surfaces (Figs. 4(c), 4(d)).
Let Θe(n, t) denotes the estimation of Θ(n, t) using the
model Θe(n, t) = Θ(n− U(t), t− 1). Then, the absolute
estimation error |Θe(n, t)−Θ(n, t)| is proportional to the
first derivative of Θ(n, t) with respect to n (Θn(n, t)) (see
Fig. 5(a)). Let U(n, t) denotes the n snake skeleton point
pulse speed at frame t. U(n, t) can be estimated by ap-
plying the linear model : Θe(n, t) = Θ(n−u(n, t), t−1)+
w(n, t)(Θ(n + 1 − u(n, t), t − 1) − Θ(n − u(n, t), t − 1),
where u(n, t) ∈ {1, 2, · · · }, w(n, t) ∈ [0, 1). Then, it holds
that: U(n, t) = u(n, t)+w(n, t). For more robust estima-
tion, U(n, t) was estimated in nine points neighborhoods
using least mean square error minimization. Fig. 5(b)
illustrates results of the estimation.

2.5 State Graph Construction

Since the input video sequence contains a limited num-
ber of motions and skeleton shapes, it is important that
the motion synthesis algorithm can generate new unseen
motions, thus producing realistic and non-periodic snake
animations. For this reason, we have not used simple
mathematical models for motion description, but instead
a novel technique has been proposed and implemented.
According to this method, a graph is constructed, whose
nodes correspond to states of the snake skeleton. A graph
node is independent of translation, rotation and scal-
ing of the snake, describing just the snake shape. Then
the stage of shape motion synthesis merely amounts to
traversing suitable paths through this graph.

At first, a skeleton state representation will be de-
scribed. Since each frame contains a fixed and relatively
large number (100) of skeleton points, a more compact
representation of the skeleton state is obtained using
Fourier Transform coefficients. This representation will
be related to the local curvature of the snake shape and
will thus facilitate our motion synthesis. More specifi-
cally, let A(sk) be the angle computed at the equally

spaced skeleton points sk (Fig. 6(a)). Let F̂ (u)1 be the
Fourier transform of the sequence A(sk) (Fig. 6(b)).

Ignoring the first Fourier transform coefficient, which
measures the global rotation of the snake’s shape, the
next seven Fourier transform coefficients, say {C(i); i =
1, · · · , 7} of F̂ (u) are chosen to represent the state of the
snake skeleton. Due to the smoothness of snake’s shape,
these coefficients suffice to recover the angles A(sk) be-
cause they contain about 99% of the signal energy (see
Fig. 6(b)), on average in the tracking data. Therefore, a
good approximation of the shape is reconstructed, reduc-
ing noise at the same time. In addition, these coefficients
are invariant to translation, rotation and scaling of the
snake’s shape.

Having defined a representation of the skeleton state,
the construction of the graph, that will be used for the
motion synthesis, will be now described. Each node of
the graph corresponds to a skeleton state, i.e. a 7-tuple
of complex numbers. Since a limited number of skeleton
states can be extracted directly from the video frames,
more “random” skeleton states need to be generated
based on the existing ones using the below described
sampling algorithm.

Let Ct(i), i = 1, · · · , 7 be the existing skeleton states
for all video frames2 t = 1, · · · , n, where n denotes the
number of video frames. Let Rk(i) be a new random
skeleton state to be generated. To completely define Rk

the modulus and phase for all 7 components of Rk need
to be set. Each modulus |Rk(i)| of the new state is strongly
related to the curvature of the shape, and so the valid
values should lie between the corresponding minimum
Cmin(i) and maximum Cmax(i) modulus of all the exist-
ing states,

Cmin(i) = min
t

(|Ct(i)|), Cmax(i) = max
t

(|Ct(i)|).

The angle ∠Rk(i) is related to the position where the
snake skeleton is curved. Since the snake skeleton can
be curved at any of its skeleton point, no constraints
are imposed on ∠Rk(i). So Rk(i) is defined by the fol-
lowing equation, the rk(i), gk(i) being random numbers
uniformly distributed in the interval [0, 1]:

|Rk(i)| = Cmin(i) + rk(i) · (Cmax(i)− Cmin(i)) (1)
∠Rk(i) = 2π · gk(i) (2)

The edges of the motion graph are defined and updated
during the motion synthesis algorithm on Trajectory Com-
putation procedure. Therefore, the construction of the
motion graph resembles the generation of a probabilistic
roadmap [13], [12]. Let SA be the current snake skeleton

1 Actually, F̂ (u) is the Fourier transform of a signal Â(sk)
produced by appending samples to the end of A(sk) so that no
discontinuities appear after repetition of A(sk). These extra
samples may be computed by interpolation of the first and
last terms of the initial A(sk).

2 The skeleton states are produced by the skeleton points
that are tracked with pixel accuracy in the whole image se-
quence.
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(a) (b)

Fig. 6 (a) Equally spaced skeleton points and the resulting A(sk) function computed at these points. A(sk) is the angle

between the horizontal axis and the skeleton at point sk. (b) The functions A(s) (in rads) and its Fourier transform F̂ (u).

(skeleton state, snake orientation and snake position).
The meaning of connection between a skeleton SB and
SA is that the SB is placed (rotated and translated) con-
secutively on SA so that the head of SA will be the tail
of SB (see Fig. 8(b)).

2.6 Motion Synthesis

As input for the motion synthesis algorithm are pro-
vided points of the trajectory in the 3–D virtual environ-
ment. The path planner creates a safe and short path in
the 3–D virtual environment that passes from the user
defined points. The path planner output is a set of L
points (Tn, n = 1, · · · , L) that the snake has to follow.
Each point is admitted as reached, when the distance
Dn of the snake from the considered point is lower than
a threshold (Dmax). Then, the trajectory computation
procedure is executed, computing an initial trajectory
of snake motion and initializing the skeleton animation
angles sequence, Θ(n, t). The pseudo-code of the Motion
Synthesis algorithm is given hereafter.

n = 1
pathPlanner()
trajectoryComputation()
repeat

if Dn < Dmax then
n = n + 1

end
getVelocity()
getSkeletonPoints()

until n < N

Algorithm 2: Motion Synthesis

The motion synthesis loop is split into steps: snake’s
velocity determination, skeleton angles computation and
skeleton points computation. The snake velocity is de-
fined applying a physical model. Next, the snake’s shape
is computed. Finally, the snake motion is being adapted
to the local ground model.

2.6.1 Path Planning in 3–D Virtual Environment

During this stage, the path of the outer environment,
that will be traced by the animal, is computed. We as-
sume that a assume that a 3–D model of the outer en-
vironment is provided as input. We also assume that
the outer environment may contain obstacles, like rocks,
trees, etc., which are overlaid on a mostly horizontal sur-
face. Let W = {K1, · · · ,Kn} (Kj ∈ <3) be the set of
vertices of that 3–D model. We will denote by X(K),
Y (K), Z(K) the 3–D coordinates of any world point K.
Based on the geometry of the world model, initially a
subset S of W is automatically selected containing all
those points having no obstacles around obstacles around
them. A point will be a node of S, if the variance of the
elevation (Y coordinate) around this point is lower than
a predefined threshold.

The user then picks interactively a sequence of points
{U1, · · · , Ul} out of the set S and the path planning algo-
rithm outputs a path, which passes through these points,
but doesn’t pass through any obstacles in between. For
this purpose a weighted graph G = (S,E) is computed
having the points of the set S as nodes (Fig. 7(a)). The
edges E are set so that there is a path between two nodes
of G, only if there is a path between the corresponding
points in the original world 3–D model. The weight of
an edge is set equal to the variance of the elevation (Y
coordinate) of all world 3–D points that appear along
that edge. The sum of the edge weights along a path is
called the path score and indicates the amount of obsta-
cles that the path contains. The path ({T1, T2, · · · , TL})
with the minimum score is computed by applying Di-
jkstra’s algorithm to the weighted graph G. A sample
output of the algorithm is shown in Fig. 7(b). The red
points numbered (1, 2, 6) were specified by the user, the
final path points sequence is (1, 2, 3, 4, 5, 6).

2.6.2 Trajectory Computation

In this procedure, the trajectory and the skeleton an-
gle sequence of the animation are initialized using a mo-
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(a) (b)

Fig. 7 The 3–D points graph and the final path in a virtual environment.
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Fig. 8 (a) The motion analysis and synthesis scheme. (b) The snake shape and orientation are defined by the snake target
(T2).

tion planning (exploration) algorithm on the state graph.
This is a general algorithm, which can be applied to
any motion graph obtaining aperiodic motion sequences.
First, an arbitrary state (node) of the graph is selected
and then the next states are chosen by traversing edges
of the graph.

Using an inverse kinematic transform, the skeleton
angles can be computed by the snake state and snake
orientation. In each iteration (k), we compute the state
skeleton angles using the state vector S(k) of size N = 7
and the snake orientation D(k) (see Fig. 8(a)). Let G
be a vector with a size equal to the size of the initial
transformed vector.

G = [c ·D(k) RT (k) 0 · · · 0 RH(k)]T

RH = [R̄(N) R̄(N − 1) · · · R̄(1)]

Then, the skeleton angles Θk(n) sequence is computed
by the inverse Fourier transform of the vector G.

The goal of the algorithm is that the snake should
trace the target points sequence Ti selecting unvisited
states. The optimal snake orientation Do(k) can be com-
puted by the direction of the vector Ti − Sk, where Sk

denotes the snake mass center at iteration k and Ti de-
notes the current target point. So, the edges in graph
are defined using the current snake target point. Let SA,
SB be the current skeleton state and an arbitrary state,
respectively. The SB is placed (rotated and translated)
consecutively on SA (see Fig. 8(b)). The edge between
SA and SB is created, if the orientation (after rotation)

of SB is close to the optimal orientation Do(k). There-
fore, the graph edges are updated on each iteration of
the procedure yielding a star graph, with the center in
current state.

During the state selection process, which is executed
until the snake passes all the target points, we use the
following criteria so that non-periodic motions are ob-
tained and the snake will visit most of the graph states,
as soon as possible:

1. The graph will be covered as soon as possible without
many cycles.

2. The steps between two visits (Ts(q)) of the same
state q will at least 0.05 · |V |, where |V | is the number
of states.

3. Low computation cost per execution step (O(|V |)).
The first constraint will solve the Hamilton Path problem
which is an NP-complete problem. So, we have to develop
an approximate algorithm as the NP-complete problems
have not been solved in O(|V |).

In bibliography, there are two low computation cost
algorithms that can be used: the random walk and the
depth first search (DFS) [3]. We are going to compare
them with the proposed method. Random walk selects
the next state randomly from the unvisited states, other-
wise if all neighboring states have been visited, it selects
the next state randomly. The major problem of this algo-
rithm is that it needs O(|V |2) in the mean case to cover
the graph. An appropriate version of depth first search
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(stack walk) selects from all unvisited states, that with
the highest degree as the next state. If all neighboring
states have been visited, it will select the previous state
as the next state (it keeps in stack the visited states).
The advantage of this algorithm is that it needs O(|E|)
steps in the worst case to visit the total states of a graph
while the optimal is |V |, where |E| is the number of graph
edges. However, when the backtracking is performed the
second constraint is not satisfied as the time between two
visits of the same state is being low.

We propose the snake walk algorithm that satisfies
the above constraints. For each state q we store the num-
ber of times M(q) that this state has been selected and
the number of times F (q) that this state has been se-
lected and the next state was an unvisited state. If deg(q)
denotes the degree of node q then the following statement
is true:

deg(q) + F (q) ≥ M(q) ≥ F (q) (3)

Among all neighboring states of the current state, the
one that maximizes the function W (q), defined hereafter,
is chosen:

Du(q) = 1− sign(M(q)) (4)
Dv(q) = deg(q) · (sign(M(q)) + sign(F (q))) (5)

Df (q) = M(q) · 2F (q) (6)

W (q) =
deg(q)

Du(q) + Dv(q) + Df (q)
(7)

The properties of W (q) describe the selection strat-
egy of the algorithm.

– W (q) ≥ 1 ↔ the state q is unvisited3.
– 1 > W (q) ≥ 1

2 ↔ the state q has been visited and
F (q) = 04.

– W (q) < 1
2 ↔ F (q) > 05.

Therefore, those states that have not been visited are
preferred. If there does not exist unvisited states to visit
in one step, those states that it is possible to connect to
unvisited states are selected. The states q where F (q) > 0
are not preferred (W (q) < 1

2 ) as they will certainly lead
us to select another already visited state. If there are
many unvisited states, the states with high degree are
preferred, because these states could drive the algorithm
to unvisited parts of the graph. If there are only visited
states, the states q with F (q) = 0 and with high de-
gree and low number of visits are preferred, since these
states are more probable to drive the algorithm in the
next step to an unvisited state and the number of steps
that passed from the last selection of q is the maximum
(second constraint) with the highest probability.

For many known graphs, like connected cliques with
bridges, high density graphs (mean node degree ≥ 6),

3 W (a) > W (b) ↔ deg(a) > deg(b).
4 W (a) > W (b) ↔ deg(a)M(b) > deg(b)M(a).
5 W (a) > W (b) ↔ deg(a)M(b)2F (b) > deg(b)M(a)2F (a)

which are possible state graphs, it can be proved that the
above algorithm needs O(N) steps to cover the graph.
In many cases of high density graphs approximates the
optimal (|V |). The snake walk covers quickly any type of
graph and as our experiments6 show, in the worst case,
it needs less than NlogN steps.

As our experiments show, in high density graphs the
snake walk always covers the graph faster than the stack
walk, while, in most of the cases in the low density graphs,
the stack walk is proved faster (Fig. 9). Concerning the
second constraint, the percentage of the cases, in low
density graphs, where Ts(q) < 0.05 · |V | is less than 10%
and it is decreased to 0% in high density graphs. Using
the stack walk, this percentage varies between 20% and
50% in the same graphs because of the backtracking phe-
nomenon. So, under the problem constraints the snake
walk yields better results than the stack walk and it is
almost optimal in high density graphs.

2.6.3 Snake Velocity Computation

In this procedure, the snake velocity is computed ap-
plying a physical model. Let P (n0, t) be the position of
the n0 snake skeleton point at frame t in the horizontal
XZ plane. The frame rate is chosen high enough, so that
P (n0, t) can be estimated with high accuracy using just
the 2–D snake velocity v(t). P (n0, t) = P (n0, t − 1) +
v(t)∆t, where the ∆t denotes the short time period be-
tween the two successive frames t, t − 1. The point n0

changes over the time. We have developed a simple snake
model for the dynamics of snake locomotion. We assume
that there are two types of forces interacting with the
snake, a friction force |T (t)| and a force produced by the
snake motion F (t). The friction model includes viscous
friction and Coulomb friction, |T (t)| = c1|v(t)|+ c2.

The norm of the snake motion force |F (t)| is given in
Equation (8). The K(t), Ȯ(t) denote the standard devia-
tion of the skeleton angles and the first time derivative of
snake orientation, respectively. The snake force is related
with the snake curves. Moreover, it has been observed
that a real world snake usually decelerates, when it is
turning. Equation (8) describes this behavior.

|F (t)| = c3K(t)− c4|Ȯ(t)|. (8)

We now integrate the forces applying the second Newto-
nian law,

|v̇(t)| = |F (t)| − |T (t)| (9)

Using the last equation, we can compute the norm of the
acceleration vector. The speed norm can be computed
using the assumption that the acceleration direction is
parallel to the speed direction. This is a very good ap-
proximation, as the friction direction is exactly parallel

6 The worst case is appeared on low density graphs where
the graph diameter is high. We have tested the snake walk
in more than 10.000 low density small worlds and random
graphs [27] with |V | ∈ {100, 200, 300, · · · , 1000}.
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Fig. 9 The total number of distinct visited states per algorithm execution step at graphs of 1000 nodes. The red, blue cycles
denote the time step in which the stack walk, snake walk cover the graph, respectively. (a) Random graph with mean degree
of 3, (b) random graph with mean degree of 6, (c) random graph with mean node degree of 9, (d) small world graph with
mean node degree of 3, (e) small world graph with mean node degree of 6, (f) small world graph with mean node degree of
9.

to the speed direction and the snake exerts the force F in
the direction of the snake body at the n0 skeleton point.
This direction is the speed direction of the n0 skeleton
point, so we are able to compute the speed vector v(t).

The constants c1, c2, c3, c4 are the model parameters.
The snake behavior is affected by these parameters. The
parameters c1, c2 depend on the friction model. In our
implementation we used c1 = 1, c2 = 0.5. Concerning
the c3, c4, they are related to the snake mass and snake
force. In our experiments, we used c3 = 6, c4 < 2 getting
realistic results.

2.6.4 Skeleton Points Computation

The skeleton points at each frame t are computed using
the snake velocity and the initial snake angle sequence es-
timated by the Trajectory Computation procedure. The
snake motion is characterized by the fact that the tail
motion always follows the head motion with a small
phase delay. However, in a low friction surface, this rule
does not hold. Using the results of the Motion Analysis
Stage, we propose the following general mathematical
model for the skeleton angles Θ(n, t). Let Θ1(n), Θ2(n),
· · · , ΘM (n) be the skeleton angles estimated by the Tra-
jectory Computation procedure. We initialize Θ(n−(k−
1)·N, 1) = Θk(n), k ∈ {1, 2, · · · ,M}, n ∈ {1, 2, · · · , 100}.

Θ(n, t), t > 1 is given by the equation:

Θ̂(n, t− 1) = Θ(n− u(n, t) ·∆t

r
, t− 1) (10)

Θ̄(n, t− 1) = Θn(n− u(n, t) ·∆t

r
, t− 1) (11)

Θ(n, t) = Θ̂(n, t− 1) + wd(n, t) · Θ̄(n, t− 1) (12)
u(n, t) = |v(t)|+ g(n, t) (13)

Parameter r denotes the constant distance between
two consecutive skeleton points. Θn(n, t) is the first nu-
merical derivative of Θ(n, t) with respect to n. The weight-
ing function wd(n, t) is defined for each skeleton point n.
This function describes how the skeleton point n slides
at frame t. If wd(n, t) = 0 then the skeleton points will
trace the snake head trajectory with phase delay (see
Fig. 12(a)). This way the angles defined at the points
of the head are gradually transferred to the points of
the tail. Using a non constant function as g(n, t), the
skeleton points pulse speed can vary over the skeleton.
A useful parameter that controls this behavior is the
variance of g(:, t), σ2

g(t). As our motion analysis stage
shows, it holds that g(n, t) = ci, ni < n < ni+1 and
|g(n, t)− g(n− 1, t)| < T and |g(n, t)− g(n, t− 1)| < T .

As the snake speed vector v(t) is known, the skeleton
points P (n, t), t > 1 can be computed recursively from
the head to the tail using the following equation under
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Fig. 10 Skeleton points as recovered by using angles Θ(n, t) with different sampling rate over time. The blue and black
skeletons correspond to the first and last states respectively.

the hypothesis P (−1, t) = 0,

y1 =
t∑

i=1

v(i) ·∆t

y2 = [sin(Θ(n, t)) cos(Θ(n, t))]T

P (n, t) = P (1, 1) + y1 + P (n− 1, t) + r · y2.

In Fig. 10 are depicted skeleton samples from three snake
motion sequences, that were extracted by our method.
An example of a snake animation is illustrated in Fig.
11.

2.6.5 Snake Locomotion Adaptation to the 3–D Local
Ground

The synthesis algorithm computes a prototype locomo-
tion which is taking always place in the horizontal XZ
plane. Finally, the Y coordinates of the snake skeleton
are computed, so that the snake moves on any surface of
the virtual 3–D environment. We assume however that
the animal moves on a mostly horizontal surface7 (with
slope less than 25 degrees). An efficient way to solve
the problem without many computations is to ignore the
changing of X, Z and to compute just the Y coordinate
of any skeleton point using just the 3–D world model.
Otherwise, we have to recompute the X, Z coordinates of
each skeleton point. This can be done iteratively starting
from the end of tail skeleton point, whose the position
is known. The skeleton point P (n, t) can be computed
from the skeleton point P (n + 1, t) using the following
constraints:
– Its distance from the skeleton point P (n + 1, t) is r.
– The angle on XZ plane between skeleton point n and

n + 1 is Θ(n, t).
– The distance between the point P (n, t) and the 3–D

world model is dt
n

2 (see section 2.2).

7 In the proposed force model, we have ignored the gravity
force, which is important for the motions at inclined planes
with slope more than 25 degrees.

Let define the vertical hemicycle on XZ plane Cn+1,
whose center is the skeleton point P (n + 1, t), its radius
is r, and its direction is Θ(n, t). The skeleton point n
can be computed by the section of Ct

n+1 with the 3–D

world model. Finally, we add the constants dt
n

2 to the es-
timated Y coordinates, so that the skeleton point P (n, t)
distance from the ground will be dt

n

2 and the 3–D snake
model will be adopted to the local ground. Results of
this adaptation are depicted in Fig. 15.

2.6.6 Snake Behavior Control

In many cases, a real world snake can slide on low fric-
tion surfaces. We can enable this behavior by using a
non zero function wd(n, t). Moreover, the skeleton points
pulse speed can vary, this behavior is controlled by the
function g(n, t). In Fig. 12 skeleton points sequences over
the time are depicted, these sequences have been com-
puted using different wd(n, t), g(n, t) functions.

The snake’s shape coefficients can efficiently affect
the snake curvature (the number - type of waves ap-
pearing on snake skeleton) and the snake behavior. Each
coefficient C(i), i ∈ {1, · · · , 7} of a snake state corre-
sponds to a frequency of the snake skeleton signal. The
first from them correspond to low frequencies (low num-
ber of waves) and the last from them to high frequencies
(high number of waves). We can affect the snake curva-
ture on State Graph Construction module, as the State
Graph consists of different snake states that the snake
is going to cover. Therefore, we can set some thresholds
on the coefficients’ energy or we can allow many types
of waves under a predefined proportion getting the ap-
propriate snake curvature on the synthetic snake motion
sequences. Fig. 13 illustrates skeletons derived by dif-
ferent rules on snake state coefficients of State Graph
Construction module.

Concerning the snake tongue model, it is described
below. The snake tongue is modeled by a cylinder whose
height varies over time. The direction of the snake tongue
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Fig. 11 (a) The snake mass center trajectory. (b) Statistics about snake motion over time: the distance of snake middle
point from the current target and the snake velocity. (c) Sampling skeletons from a snake motion sequence and the three
target points (green , brown and red cycle).
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Fig. 12 Skeleton points sequences as recovered by using angles Θ(n, t). The *, + points correspond to the position of the
head and mass center, respectively. (a) wd(n, t) = 0, g(n, t) = 0 (b) wd(n, t) = 0.5, g(n, t) = 0 (c) wd(n, t) = 1, g(n, t) = 0
(d) wd(n, t) = cos2(0.05 · t), g(n, t) = 0 (e) wd(n, t) = 0.3, Vg(t) = 0.5 (f) wd(n, t) = 0.3, Vg(t) = 2.

is almost the same as the snake head. Let Hst(t) be the
height of the cylinder at time t. We used image tracking
data in order to estimate the probability P (Hst(t) =
x/Hst(t − 1) = y, Hst(t − 2) = z). If this probability is
known, it is trivial to compute a sequence of Hst(t). The
snake tongue behavior (how fast the the snake tongue is
moved) can be adjusted by using the Hst(bst · t) as the

Hst(t), where bst ∈ [0.4, 2.5] is the adjustment parameter
of the snake tongue behavior.
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Fig. 13 (a) Low frequency skeleton, (b) medium frequency skeleton and (c) high frequency skeleton.
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Fig. 15 Some frames from the produced snake animations inside 3–D virtual environments.
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Fig. 14 The synthetic 3–D snake.

3 Results

The first step of the algorithm is the 3–D snake model
construction. In Figs. 14 and 2(b) the 3–D snake model
and the corresponding wire-frame are depicted.

Hundreds of synthetic animations have been produced
by the proposed motion synthesis algorithm. The snake
was placed inside 3–D virtual environments like a rep-
resentation of Samaria Gorge and synthetic virtual en-
vironments. Some frames from the produced animations
are displayed in Fig. 15. In Figs. 15(c), 15(f), 15(e) and
15(h) the 3–D shape of the snake body is adapted to the
inclined local ground. The accurate texture mapping and
3–D model and 3–D model allow us to observe the snake
skin details in high resolution (see Fig. 15(g)). Conse-
quently, the snake motion algorithm passes from many
states producing smooth and aperiodic motion, which
are the major features of the real snake motion. Some
videos of the snake animations produced by the proposed
method are available at the Web address:
www.csd.uoc.gr/˜cpanag/DEMOS/snakeAnimation.htm.

The method has been implemented using C and Mat-
lab and the animations are generated in VRML 2.0 for-
mat. The mean computation time for the construction
of a 3–D snake model was about 45 seconds, using as
input images of 1.6 megapixels. This step needs to be
executed only once and it has been implemented using
C. Regarding the rest steps of the method, which have
been implemented using Matlab, the mean computation
time for producing a 250 frames animation was about
65 seconds. This time includes the time occupied by the
path planning stage (inside a 3–D virtual world of 10.000
vertices), as well as the motion synthesis stage. The code,
as it is written in Matlab, was not speed optimized. So,
our method can be implemented in real time. For our
experiments, we have been using a Pentium 4 CPU at
2.8 GHz.

4 Conclusion

In this paper, we have presented a method for 3–D snake
model building and animation synthesizing using image
sequences as input. The 3–D model is created by ellipses,
whose centers are defined by the skeleton points. In the

same step, the proposed method provides the high de-
tailed texture mapping, using high resolution real snake
images and prior knowledge about the snake anatomy,
making the synthetic snake resemble more genuine. Thus,
the precision of image analysis data suffices to give real-
istic modeling.

The snake motion data consist of tracking skeleton
points in the whole image sequences. The tracking accu-
racy has been improved by using stable camera and high
contrast background. This method is based on a solution
of the curve equipartition problem, which has been also
presented in this article. The proposed snake model co-
efficients can be distinguished to those that describe the
rotation, translation, scaling of the snake and to those
that describe the snake’s shape, leading on the develop-
ment of an efficient motion synthesis method. The min-
imal number of the proposed snake model coefficients
decreases the memory cost of the state graph construc-
tion, providing the ability of a large graph construction
which means a huge number of different skeletons that
the snake is going to cover. Moreover, the noise of image
data and the number of 3–D model parameters are re-
duced by using the Fourier transform coefficients of the
angles sequence between consecutive skeleton points. To
move snake from one user predefined point to another a
graph of surface vertices is used. Edges of this graph have
different weights concerning the safety of the edge path.
A safe and smooth trajectory of the snake is calculated
as a trajectory along this graph edges and it should be
of minimal weight.

Concerning the snake locomotion, an animation syn-
thesis algorithm, based on a physical motion model, de-
scribes the snake’s velocity. To overcome the problem
that the input video sequence contains a limited num-
ber of motions and skeleton shapes, the proposed motion
synthesis algorithm, based on a set of possible states, can
generate new unseen motions, allows a large number of
skeleton shapes, and ensures aperiodic motion sequences.
The combination of them yields special characteristics on
snake locomotion behavior, like the natural locomotion,
that is locomotion derived following physical laws, and
the unpredictable - aperiodic motion, yielding impressive
animations. The motion planning algorithm yields bet-
ter results than the existed methods, random walk and
stack walk and it can be applied to any motion graph.
Finally, the snake locomotion is adapted to the 3–D lo-
cal ground yielding realistic results on fitting the snake
skin into the 3–D local ground surface. Concerning the
snake behavior, the snake curvature over a synthetic mo-
tion sequence can be efficiently affected by the snake’s
shape coefficients on the State Graph Construction mod-
ule. Moreover, the “sliding” snake behavior can be easily
controlled by a model parameters.

As future work, we plan to extend our forces model
between the snake body and the ground including the
gravity force, so that a more accurate representation of
the snakes locomotion is obtained. Moreover, we can ap-
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ply the 3–D model construction method and the path
planning algorithm to other creatures, characterized by
skeleton based 3–D model and no periodic motion. The
motion planning algorithm can be also applied to robotic
systems that should cover as soon as possible a state
graph (e.g. a region) without many cycles.
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