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Automatic P -Phase Picking Based on
Local-Maxima Distribution

1

2

Costas Panagiotakis, Eleni Kokinou, and Filippos Vallianatos3

Abstract—In this paper, we propose a method for the automatic4
identification of P -phase arrival based on the distribution of local5
maxima (LM) in earthquake seismograms. The method efficiently6
combines energy and frequency characteristics of the LM distri-7
bution (LMD). The P detection is mainly based on the energy of8
a seismic event in the case the earthquake has higher amplitude9
than seismic background noise. Otherwise, it is based on the10
frequency of LM. Thus, the method provides robust detection of11
P -phase arrival in any quality type of seismic data. Moreover,12
it uses two sequential sliding signal windows yielding very high13
accuracy on the P -phase estimation. A hierarchical P -phase14
detection algorithm dramatically reduces the computational cost,15
making possible a real-time implementation. Experimental results16
from a large database of more than 80 low, medium, and high17
signal-to-noise ratio seismic events and comparison with existing18
methods in the literature indicate the reliable performance of the19
proposed scheme.20

Index Terms—Automatic picking, P -phase arrival identifica-21
tion, seismic-signal analysis, signal segmentation.22

I. INTRODUCTION23

EARTHQUAKE is the shaking and vibration at the surface24

of the earth resulting from underground movement along a25

fault plane or from volcanic activity, producing seismic waves.26

Seismic waves are studied through records of mechanical vi-27

brations of the earth (seismic traces). These records register the28

effect from different types of waves originating from a certain29

point or plane, i.e., the earthquake source in the interior of the30

Earth on its surface [1].31

A seismic signal consists of several different phases, which32

characterize the type of the considered seismic signal. P and33

S phases are considered as the most important of them. P34

phases are longitudinal waves that propagate along the direction35

of seismic-wave propagation. S phases are transverse waves36

that propagate perpendicular to the direction of seismic-wave37

propagation [2]. Accurate picking of P and S phases constitutes38

the most important step for earthquake location, tomographic39

study, and for any further understanding of crustal and upper40

mantle structure [3]. Large data sets must be analyzed in order41
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to reveal P arrival times and further construct the seismic 42

tomography for the studied area. During the last decades, a 43

lot of work has been done for developing algorithms able to 44

automatically detect the earthquake P [4]–[8] and S [9], [10] 45

wave arrival. 46

Most approaches address the P -phase picking problem by 47

focusing either on energy variations or using high-order statis- 48

tics (e.g., kurtosis or skewness [1]), yielding good results on 49

specific earthquake events. In this paper, we have developed 50

an automatic P -phase picker that combines robust energy and 51

frequency characteristics, yielding high-accuracy results under 52

any type of seismic data. We have introduced the local-maxima 53

distribution (LMD), as a robust and well-understandable feature 54

that suffices to discriminate the P phase. The main contribution 55

of this paper is that we take into account the energy and 56

frequency changes. 57

The rest of this paper is organized as follows. Section II 58

describes the problem formulation and the proposed features. 59

Section III presents the proposed scheme. Experimental results 60

and comparisons are given in Section IV. Finally, the conclu- 61

sions are provided in Section V. 62

II. PROPERTIES OF LMD 63

A. LM Estimation 64

Let {Z(k)} be the absolute value of z component of a given 65

seismogram. The set of the LM belonging in a time window W 66

is given by the following: 67

LM(W ) = {k ∈ W : Z(k) > max {Z(k − 1), Z(k + 1)}} .
(1)

We have used the absolute value in order to get, at the same 68

time, the local minima of the seismogram when the given signal 69

has zero mean, as well as its real local minima that correspond 70

to LM of {Z(k)}. LMD has been successfully applied on 71

human-motion analysis estimating the gait period [11]. It holds 72

that when the given signal is a smooth one (e.g., a series of 73

cosines), then it can be reconstructed with good accuracy by 74

the interpolation of its LM (see Fig. 1). Moreover, the central 75

period of the signal can be determined by the LM frequency. 76

In addition, the part of the signal that corresponds to LM has 77

locally very high energy. Therefore, it is less affected by noise, 78

resulting to robust features. Consecutively, the LMD robustly 79

encodes the properties of the given signal, providing data reduc- 80

tion, and keeping the low-frequency components of the signal. 81

We have proposed two almost independent characteristics, the 82

energy and the frequency of the LM set. In order to prove this 83
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Fig. 1. Example of reconstruction by linear interpolation of LM set.

hypothesis, we have tested the Blomquist measure [12], defined84

as V = (|n1 − n2|/n), where n is the number of data pairs, n185

is the number of pairs with the same sign related to the median86

values of the two variables, and n2 is the number of pairs with87

opposite signs. The empirical value obtained for V was about88

0.07, showing an almost sure independence.89

B. Energy of LM90

The mean energy per sample of LM set e(LM(W )) is a91

robust and well-understandable feature.92

e (LM(W )) =
1

|LM(W )|
∑

k∈LM(W )

Z2(k). (2)

|LM(W )| denotes the number of LM set. It holds that a noise93

signal and an earthquake signal can participate to the com-94

ponents that correspond to the vicinity of zero-crossings part95

(low-energy part) and to the components that correspond to LM96

part (high-energy part). The energy histograms of an earthquake97

and a noise signal differ less than the LM-energy histograms98

(Fig. 2). In order to prove that, we used Earth movers distance99

(EMD) [13] applied on the histograms of Fig. 2. The EMD is100

based on the minimal cost that must be paid to transform one101

distribution into the other in a precise sense. It is more robust102

than histogram-matching techniques, since it can be applied on103

variable-length representations of the distributions that avoid104

quantization and other binning problems typical of histograms.105

However, due to its high-computational cost, EMD cannot be106

used on P -phase picking.107

The EMD between energy histograms of the earthquake108

signal of Fig. 2(b), and the noise signal of Fig. 2(e) is 2.1 · 1011,109

while the EMD between energy histograms of LM of the110

earthquake signal of Fig. 2(c) and the noise signal of Fig. 2(d)111

is 2.744 · 1011. Therefore, the proposed feature can be used112

to discriminate real seismic events from noise signal, yielding113

slightly better results than the global signal energy, as our114

experiments have shown.115

C. Frequency of LM116

The frequency of LM set f(LM(W )) is defined by the ratio117

between the number of LM |LM(W )| and the number of the118

corresponding signal samples |W |.119

f (LM(W )) =
|LM(W )|

|W | . (3)
Fig. 2. Seismograms of (a) earthquake and (d) noise recordings. Histograms
of |z|2 component of (b) earthquake and (e) noise. Histograms of |z|2 compo-
nent of the LM set of (c) earthquake and (f) noise.
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In the case of a noisy signal, the frequency of the LM set is120

getting a very high value. It holds that121

0 < f (LM(W )) ≤ 1/2. (4)

For the case of uncorrelated noise (e.g., Gaussian white122

noise), it holds that f(LM(W )) = 1/3. This was proven ex-123

perimentally using noise signals of considerable length, but it124

can also be proven theoretically as follows. Let as consider a125

random sequence X(·) of values. We select a specific sample126

X(k). If X(k) is a local maximum, then it should be greater127

than X(k − 1) and X(k + 1). However, X(k − 1), X(k), and128

X(k + 1) are random and uncorrelated values, so the probabil-129

ity of X(k) (one of three) to be a local maximum is 1/3. This130

probability is equal to the requested frequency. The frequency131

of LM set in a nonnoise signal is lower, and it corresponds to the132

central period of the signal (Fig. 1). Therefore, the frequency133

of the LM set can be used for signal/noise discrimination.134

Moreover, if the statistics of the signal vary, then the frequency135

will change with high probability. Fig. 3(b) and (d) shows136

the frequency of the LM set for the vertical component z137

[Fig. 3(a) and (c)] of January 8, 2006 earthquake (11:35:09.895138

UTC, mb = 6.7, CMT Harvard routine analysis) and an after-139

shock (21:58 UTC, mb = 3.3, CMT Harvard routine analysis),140

occurred in northwestern area of Crete Island, Greece. It holds141

that the frequency of LM for the part of the signal correspond-142

ing to the real seismic event is minimized.143

III. P -PHASE PICKING BASED ON LMD144

The P -phase picking is based on LMD picking. The pro-145

posed algorithm consists of several main modules (Fig. 4). As146

an input, the z component of the seismogram (z signal) for a147

time period (e.g., 15 min) is used. The proposed method is an148

extension of [14] and [15], where the signal energy is used in149

order to detect the P arrival time. The goal of the method is to150

estimate the most possible time as P -phase arrival of the given151

seismogram. At the same time, it provides a reliability factor of152

the estimation. In the case that there is no seismic event at the153

given seismogram, the reliability factor will be low, denoting154

“no seismic event.”155

Initially, the LM sets are estimated in sequential sliding156

windows. As our experiments show (see Fig. 5), the window157

length (from 2 to 20 s) does not affect the accuracy of the P158

estimation. Finally, we have chosen to use 10-s windows.159

Then, the proposed features (energy and frequency of LM160

set) are extracted. The P -phase picking is estimated, using161

a hierarchical scheme of two stages, in order to minimize162

the computational cost, similar to the two stages hierarchical163

estimation of sound signal segmentation proposed in [16]. First,164

P -picking algorithm is executed yielding the P arrival time165

with low time accuracy, and then, the P phase is detected within166

the highest accuracy (the recorded earthquake sampling rate).167

More specifically, in the first stage, the mean energies168

e1 = e(LM(W1)), e2 = e(LM(W2)), the corresponding en-169

ergy variances σ2
1 , σ2

2 , and the frequencies f1 = f(LM(W1)),170

f2 = f(LM(W2)) of the LM sets of two sequential signal win-171

Fig. 3. (a) Vertical component seismogram (z) for the January 8, 2006
earthquake. (b) Frequency of the LM set estimated in 10-s windows for
the January 8, 2006 earthquake. (c) Given seismogram for an aftershock.
(d) Frequency of the LM set estimated in 10-s windows for the aftershock.

Fig. 4. Scheme of the proposed system architecture.

dows W1 and W2 locating at time t are estimated, respectively 172

(see Fig. 6). 173

The windows slide with a shifting rate of 1 s (125 samples). 174

Their symmetric Mahalanobis distance [17], presented by (5), 175
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Fig. 5. P estimation error under different window lengths using the seismo-
gram of Fig. 3(c).

Fig. 6. Two sequential sliding windows W1 (light-gray horizontal lines) and
W2 (heavy-gray vertical lines) locating at time t on the given seismogram Z.

is used to measure the distance between the two windows over176

the time t.177

d(t) = (µ1 − µ2)T ·
(
Σ−1

1 + Σ−1
2

)
· (µ1 − µ2) (5)

where µ1 and µ2 are the mean feature vectors of signal windows178

W1 and W2. Σ1 and Σ2 are the corresponding covariance179

matrices. Under the assumption that energy and frequency180

features are uncorrelated, the symmetric Mahalanobis distance181

can be simplified to182

d(t) = de(t) + df (t)

de(t) = (e1 − e2)2 ·
(

1
2 · σ2

1

+
1

2 · σ2
2

)

df (t) =
(f1 − f2)2

2 · σ2
f

(6)

where σ2
f denotes the variance of frequency of the LM set183

of the whole given signal (e.g., 15 min given signal). This184

value can be initially estimated before the whole process. The185

symmetric Mahalanobis distance has been selected, since it186

outperforms the other frequently used ones like the symmetric187

Kullback–Leibler (KL2) or Bhattacharyya [18] distance.188

KL2(t) = d(t) + 1/2 · tr
(
Σ1Σ−1

2 + Σ2Σ−1
1 − 2I

)
. (7)

This is due to the fact that the symmetric KL2 contains189

an extra factor (tr(Σ1Σ−1
2 + Σ2Σ−1

1 − 2I)), which is max-190

imized when the difference between the variances is maxi-191

mized, namely, when the time t is located before the real192

P -phase arrival (the second window has noisy and earthquake193

samples). Therefore, a false (early) P -phase arrival estimation194

can be caused. The same problem has been observed under195

Bhattacharyya distance.196

The global maximum (P ′) of d(t) is taken, and the second 197

stage of the algorithm is initiated. P ′ corresponds to a first 198

“gross” estimation of P phase with a time accuracy of 1 s due to 199

the window’s shifting rate of 1 s from the first stage. Therefore, 200

during the second stage, the two sequential signal windows W1 201

and W2 slide in the region (2-s signal length) close to P ′ with 202

a shifting rate of one sample, in order to estimate the location 203

of P -phase arrival with the highest accuracy. P corresponds to 204

the position where d(t) is maximized. 205

P = arg max (d(t)) . (8)

At this time, the dissimilarity between the two sequential 206

signal windows W1 and W2 is maximized, which means that 207

W1 will correspond to the end of noise, and W2 will correspond 208

to the rise of the earthquake. Thus, P will be estimated to be 209

the onset of the earthquake. Probably, d(t) will show a local 210

maximum on S phase or other phases arrivals. However, as our 211

experiments show, the global maximum of d(t) is given on P 212

arrival. 213

The reliability factor of the estimation is obtained from d(P ). 214

This value is independent of the signal magnitude [see (5)]. If 215

the given signal does not contain any seismic event (it is just 216

noise), then P -picking module gives very low reliability factor. 217

According to our experiments (using a threshold of 35 on the 218

reliability factor of the estimation), it is observed that 86 out 219

of 88 noisy recordings (15-min duration) were well classified 220

as noise, while the probability of nonrecognition of a seismic 221

event was about 5% using our data set of real seismic events 222

(see Section IV-A). 223

IV. EXPERIMENTAL RESULTS 224

In this section, the experimental results of the proposed 225

algorithm, together with comparisons to other algorithms, are 226

presented. 227

A. Description of Experimental Setup 228

In order to evaluate the proposed algorithm, a database 229

containing 86 earthquake recordings from six stations (Chania, 230

Rethymno, Heraklion, Sfakia, Ierapetra, and Sitia) was created 231

(see Fig. 7) with a sampling rate of 0.008 Hz. The earthquakes, 232

occurred in the time period between January 8, 2006 and end 233

of June 2006 in the wide area around Crete Island, were first 234

detected by using conventional software (PQL seismic-trace- 235

viewer application). Thereafter, selected earthquake recordings 236

were classified according to their noise content in the following 237

categories: 10 high-“quality” (homogenous and relatively com- 238

pressed noise—clear view of the seismic event), 40 medium- 239

“quality” (nonhomogenous noise but still clear view of the 240

seismic event), and 36 low-“quality” seismograms (very noisy 241

data, the maximum amplitude of the noise is comparable to the 242

seismic-event maximum amplitude) (see Fig. 8). This classifi- 243

cation is implemented by measuring the variance of the noise 244

energy of the LM, normalized to the square of the mean energy 245

(of the noise signal) in order to be independent of the amplitude, 246

using short-time windows (e.g., 1 s). 247
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Fig. 7. Topology of the seismological network used in the article covering
southern Greece.

Fig. 8. Examples of (a) high-, (b) medium-, and (c) low-quality seismograms
of the used database.

The method has been implemented using MATLAB. We248

have used a module-based implementation, as shown in Fig. 4.249

For our experiments, we used a Pentium 4 CPU at 2.8 GHz.250

A typical processing time for the execution of the proposed251

scheme is about 25 s for the analysis of a 1-h signal.252

B. Results of the Proposed Scheme253

Figs. 9 and 10 show results of the proposed algorithm un-254

der medium- [Fig. 9(a)] and low- [Fig. 10(a)] “quality” seis-255

Fig. 9. (a) Medium-“quality” seismogram. (b) d(t), de(t), and df (t). (c) P -
phase picking using the proposed algorithm.

mograms, respectively. In both figures, the P phase was suc- 256

cessfully detected with very high accuracy. Figs. 9(b) and 10(b) 257

show the used symmetric Mahalanobis distance d(t) and its 258

components de(t), df (t). It holds that, under medium-“quality” 259

seismograms, de(t) and df (t) [Fig. 9(b)] have about the same 260

graph, showing their global maxima at the same position (es- 261

timation of P -phase arrival). On the other hand, in the low- 262

“quality” seismogram [Fig. 10(a)], de(t) shows many LM, and 263

its global maximum is not “clear,” while df (t) appears as 264

“clear” global maximum which corresponds to a local max- 265

imum of de(t) [Fig. 10(b)]. This location corresponds to the 266

global maximum of d(t) and to the proposed estimation of P - 267

phase arrival. Therefore, this is an example showing that the 268

combination of energy and frequency features is necessary in 269
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Fig. 10. (a) Low-“quality” seismogram. (b) d(t), de(t), and df (t). (c) P -
phase picking using the proposed algorithm.

order to obtain accurate picking. Figs. 9(c) and 10(c) show270

the implementation of the presented algorithm on the vertical-271

component (z) component of the given seismogram in order to272

specify the earthquake onset.273

In order to evaluate the P picking, a database of 86 earth-274

quake recordings was created. The percentage of P picking,275

which differs to manual picking within a given threshold (e.g.,276

0.1 s [19]), is about 95%. The wrong P detection was due to277

very noisy seismograms. We decided to use some very noisy278

data in order to find out the limitations of the method. Addi-279

tionally, even in cases of false P detections, it was observed280

that the picks belonged to the part of the earthquake signal.281

C. Comparisons With Other Algorithms282

The proposed scheme (LMD-P) has been compared to the P -283

arrival identification (PAI-S/K) [1] and to the P -arrival-picking-284

based energy changes (E-P) [14], [15]. The E-P algorithm uses285

two sequential sliding windows, estimating, as P phase, the286

time where the ratio between the signal energy of the windows287

Fig. 11. Results of PAI-S and PAI-K methods on the given seismogram
of Fig. 9.

Fig. 12. Results f LMD-P, E-P, PAI-S, and PAI-K methods for P -phase
picking projected on the given seismogram of Fig. 9.

is maximized. It holds that when the second window starts on 288

P arrival, then the first window will end of P arrival. At this 289

time, the ratio of their energy is maximized, since the energy of 290

the seismic event is higher than the energy of noise. 291

The PAI-S/K scheme, consisting of the PAI-S and PAI-K 292

algorithms, uses one sliding window measuring the skewness or 293

kurtosis. When the sliding window contains the recorded noise, 294

as well as the beginning of the seismic event, i.e., the P arrival, 295

the non-Gaussianity and the asymmetry of the corresponding 296

distribution strongly increase, as well as the corresponding 297

skewness and kurtosis of the window. After the P arrival, 298

the distribution of the windowed seismic trace gradually tends 299

to a non-Gaussian although symmetrical one, resulting in an 300

estimated skewness vector that tends almost to zero values. The 301

maximum value (of skewness or kurtosis) is reached only when 302

a sufficient fraction of the time window contains the seismic 303

signal, which is beyond the P -phase arrival. Thus, P arrival 304

is detected by the location of the maximum slope. Fig. 11 305

shows skewness and kurtosis (results of PAI-S/K algorithm) for 306

the event of Fig. 9. Figs. 12–14 show results of the examined 307

methods. 308

The comparisons of the proposed algorithm (LMD-P) and 309

other methods (E-P and PAI-S/K) under the whole data set 310

(high-, medium-, and low-“quality” seismograms) are de- 311

picted in Table I. The PAI-S/K algorithms outperform Allen’s 312



IE
EE

Pr
oo

f

PANAGIOTAKIS et al.: AUTOMATIC P -PHASE PICKING BASED ON LOCAL-MAXIMA DISTRIBUTION 7

Fig. 13. (a) Results of LMD-P, E-P, PAI-S, and PAI-K methods for P -phase
picking projected on the given seismogram of Fig. 10(b) The skewness and
kurtosis of the seismograms estimated in 1-s windows.

Fig. 14. Results of LMD-P, E-P, PAI-S, and PAI-K methods for P -phase
picking projected on the given seismogram.

algorithm [4] in 75% of the cases, while the opposite happens313

in 6.8% of the cases. Only 18.2% of the cases result to an equal314

performance. The proposed method outperforms with 95% P -315

phase detection probability, while E-P, PAI-K, and PAI-S have316

88%, 57%, and 60.5%, respectively.317

The energy-based feature used by E-P method suffices to de-318

tect P phase with time accuracy in high- and medium-“quality”319

TABLE I
COMPARISONS OF THE PROPOSED ALGORITHM (LMD-P) AND

OTHER METHODS UNDER THE WHOLE DATA SET

Fig. 15. P -detection errors (in seconds) in respect to noise-to-signal ratio for
the seismogram of Fig. 3 under LMD-P, E-P, PAI-S, and PAI-K methods.

seismograms. However, in low-“quality” seismograms, the en- 320

ergy of noise and seismic event is similar; thus, the detection 321

probability decreases. In these cases, the E-P algorithm cannot 322

identify the seismic event, since the envelope of the seismic 323

trace does not change sufficiently. Concerning the PAI-S/K 324

method, it gives accurate in-time results, but there is a prob- 325

ability of false detection. This is due to the fact that the used 326

skewness and kurtosis [see Figs. 11 and 13(b)] are sensitive to 327

noise effects. The proposed method combines robust energy- 328

and frequency-based features yielding the best performance 329

under any type of given seismograms (see Figs. 12, 13(a), and 330

14). Moreover, the robustness of the proposed method and the 331

comparison with the rest of the algorithms is examined by 332

the experiment of Fig. 15. It shows the P detection error (in 333

seconds) with respect to noise-to-signal ratio for the January 8, 334

2006 earthquake z signal. Gaussian white noise was added in 335

order to implement this experiment. It is observed that the error 336

of the proposed method increases smoothly with respect to the 337

noise energy. The error in the detection of P arrival (LMD- 338

P and E-P methods) is reaching a maximum value of 2 s by 339

increasing the noise-to-signal ratio. On the other hand, PAI-S/K 340
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method is getting a P detection error of about 10 s for noise-to-341

signal ratio greater than 0.5.342

V. CONCLUSION343

The main contribution of this paper concerns the344

proposed seismogram analysis using robust and simple345

energy–frequency-based features that suffice for an earthquake346

detection and high time accuracy of P -arrival estimation. The347

combination of energy- and frequency-based features suffices348

for high time-accuracy P -phase arrival picking under any type349

of seismic data. The implementation of the proposed algorithm350

is based on LMD of a given seismogram. The detection of351

P arrival is controlled by a reliability factor. Moreover, this352

factor can be used for automatic rejection of noise signals. The353

comparison with two alternative techniques given in literature354

suggests the great performance and the robustness of the355

proposed scheme in a sufficient seismogram database.356

As future work, we plan to extend the proposed method357

on S-arrival estimation and on P -converted-phases estimation358

between the P and S first arrivals.359
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