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Abstract. We propose a method for trajectory classification based on
trajectory voting in Moving Object Databases (MOD). Trajectory voting
is performed based on local trajectory similarity. This is a relatively new
topic in the spatial and spatiotemporal database literature with a variety
of applications like trajectory summarization, classification, searching
and retrieval. In this work, we have used moving object databases in
space, acquiring spatiotemporal 3-D trajectories, consisting of the 2-D
geographic location and the 1-D time information. Each trajectory is
modelled by sequential 3-D line segments. The global voting method is
applied for each segment of the trajectory, forming a local trajectory
descriptor. By the analysis of this descriptor the representative paths of
the trajectory can be detected, that can be used to visualize a MOD. Our
experimental results verify that the proposed method efficiently classifies
trajectories and their sub-trajectories based on a robust voting method.

1 Introduction

Nowadays, there is a tremendous increase of moving objects databases due to
location-acquisition technologies like GPS and GSM networks [1], and to com-
puter vision based tracking techniques [2]. This explosion of information com-
bines an increasing interest in the area of trajectory data mining and more gen-
erally the knowledge discovery from movement-aware data [3]. All these techno-
logical achievements require new services, software methods and tools for under-
standing, searching, retrieving and browsing spatiotemporal trajectories content.

A MOD consists of spatiotemporal trajectories of moving objects (e.g. hu-
mans, vehicles, animals, etc.). In general case, these trajectories encode the 2-D
(two dimensional) or 3-D geographic location and the 1-D time information.
Many of the existing approaches are interested in the trajectory shape analysis
considering that the trajectory consists of sequential 2-D or 3-D spatial sampling
positions ignoring the temporal dimension [4], [5]. In [6], a trajectory clustering
algorithm is proposed that partitions a 2-D trajectory into a set of line seg-
ments, and then, groups similar line segments together into a cluster, while the
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notion of the representative trajectory of a cluster is defined. The algorithm is
based on geometrical distances between line segments taking into account posi-
tion and orientation. These methods can be applied on trajectory segmentation,
classifications, searching and retrieval problems using shape based descriptors.
Based on the idea of partial trajectories, Lee et al. [7] proposed an algorithm
for trajectory classification showing that it is necessary and important to mine
interesting knowledge on partial trajectories rather than on the whole. However,
both of these algorithms cannot be applied with complex time-aware trajectories
considering the whole route of the moving objects.

In addition, temporal dimension is ignored by almost all computer vision
based methods, that are interested in human action and activity recognition.
Many of them use 2-D trajectories from specific human points that are tracked
in video sequences with constant frame rate [8], [9]. Another class of methods
use temporally annotated sequences [10], [1], performing mining tasks. In these
methods, as temporal dimension is used the transition time between sequentially
points of the trajectory. Therefore, a trajectory of n+1 points S = (s0, s1, ..., sn),
is stored as T = (S, Δt1, Δt2, ..., Δtn), where Δti, denotes the transition time
between the points si−1 and si. The use of transition time takes into account that
the sampling rate could be varied, providing information about speed. However,
the format in temporal dimension changes and important information for some
real world applications is missing. In real world, there are applications where the
temporal dimension should be used unchanged. These applications concern traf-
fic monitoring, security applications (e.g. identifying “illegal” trajectories under
shape and space-time requirements), searching using space-time constraints, and
so on.

In [11], distance-based criteria have been proposed for segmentation of ob-
ject trajectories using spatiotemporal information. First, Minimum Bounding
Rectangles (MBRs) is used in order to simplify the trajectories, taking advan-
tage their tight integration with existing multidimensional indexes in commer-
cial database management systems (such as R-trees). The use of R-trees reduces
the computation cost of trajectory searching to O(log(n)), where n denotes the
number of trajectories. The distance between two trajectories is defined used
MBRs representation. Finally, the segmentation problem is given as a solution
of a maximization problem, that attempts to create MBRs in such a way, that
the original pairwise distances between all trajectories are minimized. In [12],
a framework consisting of a set of distance operators based on primitive (space
and time) as well as derived parameters of trajectories (speed and direction)
has been introduced. They assume linear interpolation between sampled loca-
tions, so that a trajectory consists of a sequence of 3-D line segments, where
each line segment represents the continuous development of the moving object
during sampled locations. In [13], representative motion paths (frequently trav-
eled trails of numerous moving objects) are detected in a distributed system
under the assumption that the moving objects can communicate with a central
unit (coordinator) and all processing must be performed in a single pass over
the stream. The location measurements of each object is modeled with some
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uncertainty tolerance ε and a one-pass greedy algorithm, termed RayTrace, is
running on each object independently. They have proposed a one-pass greedy
algorithm, termed RayTrace, running on each object independently. The coor-
dinator utilizes a lightweight index structure, termed MotionPath, which stores
the representative motion paths. The goal of this work is in the same context
with the aim of our research. However, they ignore segments’ orientation taking
into account only the points of the trajectories. Moreover, they propose to the
use of a step function to formulate the closeness of two points. On the other hand
the use of a continuous decision function derived robust and smooth results (in
our approach).

Most of the above mentioned approaches propose different similarity metrics
which they utilize either for introducing indexing structures for vast trajectory
retrieval, or for clustering purposes, focusing either on space criteria, ignoring
temporal variation, minimizing predefined metric criteria on feature domain,
simplifying the given trajectories or applying simple clustering-based techniques.
We argue that all of the above approaches, as well as those which are dealing
with vast volumes of trajectory datasets would benefit if they would be applied
in a representative subset (consisting of the representative trajectories) that best
describes the whole dataset. Consider for example the domain of visual analytics
on movement data [14] in which it is meaningless to visualize datasets over a
certain small size, as the human eye cannot distinguish any movement pattern
due to the immense size of the data. On the contrary, in this paper, we don’t
simplify the given trajectories, as we use the original data unchanged. Moreover,
the temporal information is taken into account.

We are proposing a global voting method that is applied for each segment of
trajectory without any simplification. Then, we analyze the voting descriptor in
order to detect the representative paths of the trajectory, that followed by many
objects at almost the same time and space. Moreover, we classify the trajectories
and the trajectory segments. The results of classification have been used to
visualize a MOD. The proposed methodology can be applied under different
distance metrics (e.g. non Euclidean) and higher trajectory dimensions.

The rest of the paper is organized as follows: Section 2 gives the problem
formulation describing the proposed modelling. Section 3 presents the proposed
method for trajectory voting and classification. The experimental results are
given in Section 4. Finally, conclusions and discussion are provided in Section 5.

2 Problem Formulation

In this section the problem formulation is given. Let us assume a MOD D =
{T1, T2, · · · , Tn}, of n trajectories, where Tk denotes the k-trajectory of the
dataset, k ∈ {1, 2, ..., n}. We assume that the objects are moving in the xy plane.
Let pk(i) = (xk(i), yk(i), tk(i)), be the i-point, i ∈ {1, 2, ..., Lk} of k-trajectory,
where Lk denotes the number of points of k-trajectory. xk(i), yk(i) and tk(i))
denote the 2-D location and the time coordinate of point pk(i), respectively.
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Similar to the work of [12], [6], we consider linear interpolation between
successive sampled points pk(i), pk(i + 1), so that each trajectory consists of a
sequence of 3-D line segments ek(i) = pk(i)pk(i + 1), where each line segment
represents the continuous moving of the object during sampled points. The goal
of this work is to detect representative paths4 and trajectories, that followed
by many objects at almost the same time and space. A method to detect them
is to apply a voting process for each segment ek(i) of the given trajectory Tk.
This means that ek(i) will be voted by the trajectories of MOD, according to
the distance of ek(i) to each trajectory. The sum of these votes is related to
the number of trajectories that are close to ek(i). If this number is high, means
that the segments is representative, followed by many objects at almost the same
time and space. Thus, the voting results will be used to detect the representative
paths and trajectories. First, we have to determine the distance d(ek(i), Tm)
between ek(i) and a trajectory Tm of the dataset that consists of line segments.
d(ek(i), Tm) is defined as the distance between ek(i) and the closest line segment
of Tm to ek(i):

d(ek(i), Tm) = minjd(ek(i), em(j)) (1)

So, we have to compute distances between 3-D line segments (d(ek(i), em(j))). In
this framework, the meaning of (d(ek(i), em(j))) is equal to the minimum energy
of transportation of line segment ek(i) to em(j), or line segment em(j) to ek(i).
Between these two choices, the transportation of minimum energy is selected.
This idea has been introduced on Earth Movers Distance (EMD) framework
[15] and it has been successfully applied on pattern recognition and computer
vision applications [16]. In our case, this energy can be defined by the sum of
two energies:

– translation energy d⊥(ek(i), em(j)) and
– rotation energy d∠(ek(i), em(j)),

that depend on the Euclidean distance and on angle between the line segments,
respectively. Therefore, taking into account the orientation of line segments, we
have added an expression d∠(ek(i), em(j)) to the distance formula related to the
angle θ between the line segments,

d(ek(i), em(j)) = d⊥(ek(i), em(j)) + d∠(ek(i), em(j)) (2)
d∠(ek(i), em(j)) = min(|ek(i)|, |em(j)|) · sin(θ) (3)

where d⊥(ek(i), em(j)) denotes the Euclidean distance between the 3-D line seg-
ments and |ek(i)| the Euclidean norm (length) of 3-D line segment ek(i). In
order to minimize the energy according to EMD definition, we select to rotate
the line segment of minimum length, see Equation 3. Moreover, d∠(ek(i), em(j))
has been expressed in “Euclidean distance” units, measuring the maximum dis-
tance that a point of line segment of minimum length will cover during rotation.
If d∠(ek(i), em(j)) was expressed in rads, we should introduce a weight to make
d⊥(ek(i), em(j)) and d∠(ek(i), em(j)) comparable (similar with Equation 4). Fig.
4 In this framework, “path” is used for a trajectory part.
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1 illustrates the Euclidean distance (red dotted line) between the 3-D line seg-
ments pk(i)pk(i + 1) and pm(j)pm(j + 1).
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Fig. 1. The (closest) points p* and s* of 3-D line segments pk(i)pk(i + 1) and
pm(j)pm(j + 1) define their distance.

The distance d(ek(i), em(j)) cannot be expressed by a single formula, but
it can be estimated in O(1) [17]. This computation cost is not affected by the
d∠(ek(i), em(j)), since it a constant value for (each pair of points of the) two
line segments. In order to estimate the Euclidean distance d⊥(p, s) between two
points p = (x, y, t) and p′ = (x′, y′, t′), weights (w1, w2) can be used (Equation
4), making comparable location and time differences.

d⊥(p, p′) =
√

w1 · (x − x′)2 + w1 · (y − y′)2 + w2 · (t − t′)2 (4)

The weights can be defined by the user. The ratio w2
w1

determines the spatial dif-
ference (e.g. how many meters) that “is equivalent” with one unit time difference
(e.g. one second). This ratio can be estimated my the mean speed.

3 Global Voting and Classification

3.1 Voting Method

This section describes the proposed algorithm, the Global Voting Algorithm
(GVA). The input of the algorithm is a MOD D = {T1, T2, · · · , Tn}, a trajectory
Tk ∈ D and an intrinsic parameter σ of the method. The output of the method
is the vector Vk of Lk − 1 components that can be considered as a trajectory
descriptor along the Tk line segments. Each component of the vector Vk(i) corre-
sponds to the number of votes (representativeness) of ek(i), i ∈ {1, 2, ..., Lk − 1}
of Tk.

According to the problem formulation, the algorithm for each line segment
ek(i) of Tk and Tm ∈ D, m �= k computes the distance d(ek(i), Tm). This dis-
tance will be used to define the voting function V (ek(i), Tm). In literature, a lot
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of voting functions have been proposed, like the step functions or continuous
functions [18]. In this work, we have selected to use the continuous function of
gaussian kernel getting,

V (ek(i), Tm) = e−
d2(ek(i),Tm)

2·σ2 (5)

The gaussian kernel is widely used in a variety of applications of pattern recog-
nition [19]. The control parameter σ shows how fast the function (“voting in-
fluence”) decreases with distance. According to Equation 5, it holds that 0 ≤
V (ek(i), Tm) ≤ 1. If d(ek(i), Tm) is close to zero, the voting function gets its
maximum value, giving 1.0. This means, that there exists a line segment of Tm

that is being very close (in time and space) to ek(i). Otherwise, if d(ek(i), Tm)
is high, e.g. greater than 5 · σ, the voting function gets almost 0, meaning that
Tm is very far away (in time or space) from ek(i).

The use of a continuous voting function, like the gaussian kernel, gives smooth
results for small changes on parameters (σ), and the possibility to get deci-
mal values as results of voting process increasing the robustness of the method.
Finally, Vk(i) is estimated by getting the sum of votes for all of trajectories
Tm ∈ D, m �= k. Given the above discussion, a nice property that holds is that
the proposed local trajectory descriptor Vk changes continuously over the tra-
jectory segments. The pseudo-code of the above procedure is depicted at the
end of the section (see Algorithm 1). The next subsection discusses the using of
local trajectory descriptor Vk to classify trajectories and to detect representative
paths.

input : The moving objects database D = {T1, T2, · · · , Tn} and a
trajectory Tk ∈ D, parameter σ for voting.

output: The voting vector of Tk, Vk.

for i = 1 to Lk − 1 do
Vk(i) = 0
for m = 1 to n do

if m �= k then

Vk(i) = Vk(i) + e
−d2(ek(i),Tm)

2·σ2

end

end

end

Algorithm 1: Global Voting Algorithm (GVA).

3.2 Trajectory Classification

In this section, we describe the analysis of local trajectory descriptor Vk in order
to detect the representative paths of the trajectory and to classify the trajec-
tories. Representative paths or representative trajectories are followed by many
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objects at almost the same time and space. In order to identify the representa-
tive trajectories, we will introduce Ek that is defined by the mean value of Vk

over the line segments of Tk.

Ek =
1

Lk − 1

Lk−1∑

i=1

Vk(i) (6)

This value is a measurement of trajectory representativeness. Therefore, a clas-
sification of the trajectories can be done using this value. Another trajectory
feature is the maximum value of Vk, Mk = maxiVk(i). By the analysis of Mk,
the representative line segments can be detected.

The trajectory classification results can be used for an efficient visualization
and sampling of large datasets. The visualization of a large MOD suffers from
the problem that the space-time density of the trajectories is extremely high
(see Fig. 2(b)). A solution on this problem is given by an efficient sampling of
the MOD, that can be provided by the classification results, using the detected
representative trajectories (see Fig. 2(c)). In Section 4, we present experimental
results concerning trajectory classification and visualization. The next subsection
discusses the computational complexity issues of the proposed algorithm.

3.3 Computational Complexity Issues

Concerning the Global Voting Algorithm (GVA) complexity, the computational
cost for each line segment ek(i), of Tk is O(n). The computation cost of GVA
(estimation of Vk) is O(Lk · n). If we perform GVA for each trajectory of the
database, then the total computation cost is O(L̄ · n2), where L̄ denotes the
mean number trajectory points (samples). Therefore the polynomial cost of the
algorithm makes the algorithm efficient for large databases (i.e. more than 1000
trajectories needed few seconds).

However, it is possible to reduce this computation cost, in order to be able to
execute the algorithm in even larger databases. MBRs can be used as initializa-
tion step, and the indexing of the line segments to MBRs should be stored. We
have proposed the using MBRs because of their tight integration with multidi-
mensional indexes (R-trees). Then, the cost of searching step of voting algorithm
will be reduced in an MBR (or some MBRs). Thus, the use of R-trees will reduce
the cost of GVA execution to O(log(L̄ ·n)), and the total cost to O(n · log(L̄ ·n)).

4 Experimental Results

The method has been implemented using Matlab without any code optimization
or using of R-trees structures. For our experiments, we used a Core 2 duo CPU
at 1.5 GHz. A typical processing time of GVA execution, when n = 1000 and
L̄ = 100, is about 3 seconds.

We have tested the proposed algorithm on the ’Athens trucks’ MOD contain-
ing 1100 trajectories. The dataset is available online on [20]. In most of the figures
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Fig. 2. The trajectories of our dataset (1100 traj.) projected in (a) 2-D spatial space
ignoring time dimension and (b) spatiotemporal 3-D space. (c), (d) The 20 and 50
most representative trajectories of the dataset projected in 2-D spatial space (up) and
in 3-D spatiotemporal space (down), respectively.
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we have depicted a subset (10% or 20%) of the trajectories of our dataset, due to
visualization issues. Fig. 2 illustrates the trajectories of our dataset projected in
2-D spatial space ignoring time dimension (Fig. 2(a)) and in spatiotemporal 3-D
space (Fig. 2(b)). The provided information of Figs. 2(a) and 2(b) can not be
visualized efficiently, due to the large number of projected trajectories in almost
the same time and space. In order to solve this problem, we have used the results
of classification to sample the dataset. Figs. 2(c) and 2(d) illustrate an efficient
sampling/visualazation of the dataset using the 20 and 50 most representative
trajectories according to Ek criterion, respectively. According to the proposed
method, the estimated representative trajectories have the property to be close
to many other trajectories of the dataset and can be used efficiently to visualize
them. In our framework we have used the weights w1 = 1/1000, w2 = 1/30 (see
Equation 4) and σ = 2.5 (see Equation 5).
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Fig. 3. Results of GVA for 219th trajectory of the dataset. (a) The 219th trajectory
(bold black color) and some trajectories of our dataset projected in 2-D spatial space.
(b) The voting descriptor V219. (c) The 219th trajectory in 3-D space. The used colors
correspond to the values of V219, (red color for high values, blue color for low values).

Figs. 3 and 4 show the results of GVA for the trajectories 219 and 253 of
the dataset, respectively. Figs. 3(a) and 4(a) show with bold black color the
trajectories 219 and 253 and some of the trajectories of the dataset projected in 2-
D spatial space. The estimated voting descriptors V219 and V253 are illustrated in
Figs. 3(b) and 4(b). As it was mentioned before, the estimated voting descriptors
change continuously over the trajectory segments. Figs. 3(c) and 4(c) illustrate
the trajectories 219 and 253 in 3-D using a blue-to-red color map according to
the corresponding to segments voting values (red color for high values, blue color
for low values). By the analysis of these figures, it can be observed that the most
representative paths of the trajectory 219 are found at the middle and at the
end of the trajectory, while the most representative path of the trajectory 253 is
found at the start of the trajectory. Moreover, the maximum values of V219 and
V253 descriptors shows how many trajectories are close to the most representative
paths of 219 and 253 trajectories, respectively.

Fig. 5(a) illustrates the classification results for 220 trajectories of our dataset
projected in 2-D spatial space using Ek descriptor. The used colors correspond
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Fig. 4. Results of GVA for 253th trajectory of the dataset. (a) The 253th trajectory
(bold black color) and some trajectories of our dataset projected in 2-D spatial space.
(b) The voting descriptor V253. (c) The 253th trajectory in 3-D space. The used colors
correspond to the values of V253, (red color for high values, blue color for low values).

to the class of the trajectory (red color for representative trajectories). The most
representative trajectory of the dataset is illustrated with red bold line. Similar
results are obtained using Mk descriptor (see Fig. 5(b)). The most representative
trajectories of the dataset are detected close to the center of the dataset, where
most of the trajectories are crossed. Fig. 5(c) illustrates the classification results
for trajectories line segments of 110 trajectories of the dataset projected in 2-D
spatial space. The line segments with Vk(i) greater than 10 are illustrated with
red colors. The voting descriptor of the most representative line segment of the
dataset has the value of 67.4. These figures are very useful for traffic monitoring,
since they efficiently the trajectories and the segments, where the traffic is high.

5 Conclusions

In this paper, we have discussed the trajectory voting and classification prob-
lems in real spatiotemporal MOD. We have proposed an algorithm for trajectory
voting and classification based on local trajectory similarity. Finally, a local tra-
jectory descriptor per trajectory segment is estimated, that changes continuously
over the trajectory segments. By the analysis of this descriptor the representa-
tive paths of the trajectory can be detected, that followed by many objects at
almost the same time and at the same place. These results have been used to
visualize a MOD. We have tested the proposed method under real databases and
the experimental results shows that the method provides an efficient local (per
segment) and global (per trajectory) classification of the dataset.

As future work, we plan to apply the voting results for trajectory segmenta-
tion, sampling, searching and retrieval. Segmentation and clustering algorithms
can be applied on trajectory descriptor Vk providing a trajectory segmentation
and a clustering of the dataset. Moreover, we plan to associate the voting results
with an error function in order to measure the performance of the proposed
sampling and to make comparisons with other works.
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Fig. 5. Classification results for 220 trajectories of our dataset projected in 2-D spatial
space using (a) Ek descriptor (b) using Mk descriptor, respectively. The used colors
correspond to the class of the trajectory (red color for representative trajectories). (c)
Classification results for trajectories line segments.
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