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ABSTRACT

In this paper we study the detection of hesitation filled pauses
in oral presentations of university lectures taught in the Greek
language and recorded using a tablet PC via a specialized
software. We suggest an hierarchical approach fusing video
data with audio data for increasing the precision rate in our
detection system. The detection method works at frame level
rather than the usual segmental level for more accurate syn-
chronization of audio and video data after removing the de-
tected hesitations. Audio characteristics are modeled us-
ing Gaussian Mixture Models while the stationarity of the
recorded video is taken into account. This efficient video and
audio combination yields higher precision and recall rates
comparing with other works in the literature. On a dataset
of approximately 7 hours the precision rate is 99.6% while
the recall rate is 84.7% when audio and video data are taken
into account.

1. INTRODUCTION

Spontaneous speech contains disfluencies. These are gen-
erally defined as “phenomena that interrupt the flow of
speech and do not add propositional content to an utter-
ance” [1]. They include pauses, interruptions, repeated
words and phrases, restarted sentences, words with elongated
pronunciations, and filled pauses. In this paper we concen-
trate our attention on filled pauses, which are meaningless
vocalizations that are inserted into speech when a speaker
is thinking about the speech contents on the fly. They are
usually found in three distinct forms: i) an elongated central
vowel only, such as “ee” or “aa”; ii) a nasal murmur only,
such as “mm”; iii) a central vowel followed by a nasal mur-
mur, such as “eem” [2]. Pauses play valuable roles in oral
communications, such as helping a speaker hold a conversa-
tional turn and express mental and thinking states. On the
other hand, filled pauses are often considered undesirable,
unnecessary and annoying to listeners. For this reason peo-
ple take courses to learn how to avoid saying them and they
are spliced out, usually manually, from recorded interviews,
public speeches, university lectures etc.

Filled pause detection systems have mainly been sug-
gested for improving the speech recognition accuracy and
thus, rendering easier and more robust the human-machine
communication. This is because current speech recognition
systems fail to process efficiently spontaneous speech where
the filled pauses effect is quite frequent. Automatic iden-
tification methods of filled pauses rely on intramedia fusion
of parameters such as speech spectra, fundamental frequency
and duration [3, 4, 5]. The duration of a phonetic event had to
be 120 ms or more to be considered as a filled pause. When
a filled pause contains an elongated vowel the tension of the

vocal cords and the vocal-tract shape are unvaried, and con-
sequently the fundamental frequency and the spectral enve-
lope remain almost constant [3]. The existing filled pauses
detection methods achieve high precision and recall rates.
Goto et al. [3] reported 91.5% precision and 84.9% recall
rates and Li et al. [6] reported 80.66% precision and 92.59%
recall rates.

All the above approaches were only based on speech-
related features in detecting filled pauses. However, there are
many applications where data from more than one media are
available like from audio and video and where there is an op-
portunity for intermedia fusion (or multimedia processing)
for increasing the detection rate. Moreover, the task may
not necessarily be speech recognition but rather a kind of
audio enhancement by automatically detecting and deleting
(filtering) the undesired disfluency events. In this paper we
focus on multimedia data from university lectures recorded
in a tablet PC during a Speech Signal Processing course.
The recordings were made using the Camtasia Studio soft-
ware | where there are options, among others, for enhancing
a recording by removing the ambient noise and equalize the
loudness of the recording. However, it is not possible to de-
tect and remove specific sound events like the filled pauses.
Therefore, such a task should be performed manually which
is quite time-consuming. In this paper, we suggest a sys-
tem for automatically detecting the filled pauses in audio-
visual data. Our approach takes advantage of the fact that
two modalities, speech and video, are available suggesting a
multimedia approach. We make two hypotheses. First, when
a speaker is uttering a filled pause, he/she is in a thinking
state and he/she does not write on the tablet PC. We recall
here that by filled pause we mean the time of meaningless
vocalizations as those mentioned before, and not the pauses
(with silence) which define the rhythm in a presentation and
to some extent characterize the speaking style of the lecturer.
Such pauses should remain untouched. Second, when a seg-
ment of length > 140 ms is erroneously identified as a filled
pause then the segment contains at least one consonant. For
this reason we model not only the filled pauses but also some
of the Greek language consonants. We suggest an hierarchi-
cal approach; we first detect stationary video frames and then
only on these frames we perform detection of filled pauses
using the audio. This approach improves the precision score
of our detector while speeding up the detection process. Our
method is able to detect elongated vowels inside a word as
well as filled pauses that start and/or end with silence seg-
ments. The suggested system is completely trainable, which
means that it can be adapted to the needs of a lecturer; the

Uhttp://www.techsmith.com/camtasia.asp



lecturer provides to the suggested system a training set of
filled pauses which are considered undesirable. For exam-
ple, in this paper, the undesirable filled pauses were defined
by the 3rd author of the paper who was the lecturer.

The paper is organized as follows. In Section 2 the sug-
gested detection system based on audio and visual features
is described. In Section 3 we present the dataset where the
suggested system was evaluated while in Section 4 the detec-
tion results are presented. Future work and conclusions are
provided in the last section of the paper.

2. AUDIO AND VIDEO ANALYSIS

2.1 Audio Features

An example of a typical filled pause is depicted in Fig. 1.
During a hesitation filled pause, the fundamental frequency,
FO, declines very slowly and very smoothly and this is an
observation that is used in most of filled pauses detectors [3,
4].
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Figure 1: Waveform (upper panel), norm of the derivative
of MFCC vectors (middle panel) and pitch contour (lower
panel) of a typical “ee” hesitation filled pause.

We also make use of FO and more specifically the first-
order FO derivative (velocity) calculated using regression
analysis, as [7]:
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where JFO; is the first time derivative of FO at time frame
t, and F0,. is the fundamental frequency at time frame 7 +

ey

k. Hanson at al. [8] recommend a width of K = 2. For
the estimation of fundamental frequency we use a standard
autocorrelation based method [9].

We also consider the speech spectral envelope represented
by Mel-Frequency Cepstrum Coefficients (MFCC). For each
frame, a vector ¢ of 13 MFCC using the Slaney’s Auditoty
Toolbox [10] is computed. The Oth cepstral coefficient ¢[0]
is not used in the feature vector. The first-order derivative,
dc, of vector c is also computed in the same way as in (1)
by substituting FO with ¢. Then the norm of dc is used as
feature. As it is indicated by the middle panel of Fig. 1 the
norm of dc provides evidence for detecting the filled pause
shown in the figure. To sum up the feature vector that we use
is [c[1:12]T, 9F0, |dc|]T. The feature vector for consonants
consists of 12 MFCC ¢[1 : 12].

2.2 Audio Model Description

To model the acoustic space of the filled pauses we use Gaus-
sian Mixture model (GMM). A Gaussian mixture density is
a weighted sum of M component densities as given by:

M
p(x[®) =Y cipi(x(6;) )
i=1

where x is a D-dimensional random vector, the parameters
are ©® = (qy,...,00,61,...,6y) such that ¥ o; = 1 and
6; = (1;,%;). Each component density is a D-variate Gaus-
sian function
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with mean vector (; and covariance matrix ;. In our experi-
ments we use diagonal covariance matrices while the estima-
tion of the GMM parameters is obtained by using a standard
Expectation-Maximization (EM) algorithm [11]. Two criti-
cal factors in estimating a GMM are selecting the order M of
the mixture and initializing the model parameters prior to the
EM algorithm. In our experiments we set M = 25 for “ee”
and “eem” trying to model the various recording conditions
(i.e., room acoustics, distance from the microphone, and an-
gle of recording) while for each of the 10 consonants we set
M = 5. All the recordings were made using the same tablet
PC and always the microphone of the PC was used. For the
initialization, the training data of each GMM was clustered,
using the BIRCH algorithm [12], into M classes. The class
means and variances then served as the initial model for EM
training. BIRCH clustering algorithm runs faster than LBG
and K-means algorithms since it performs one scan of the
data and according to our experiments its results are compa-
rable to those of LBG and K-means in terms of quality and
superior in terms of stability.

2.3 Video Analysis

The goal of video analysis is to determine the frame images
where the video has been changed in content which mainly
occurs when the lecturer writes on its tablet PC. In our case,
the camera is static and the video shows the contents of
the screen of the tablet PC of the lecturer (see examples in
Fig. 2). By analysis of the audio-visual content, it holds that
a hesitation filled pause appears when the lecturer does not
write on the tablet PC. Therefore, the estimation of frames
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Figure 3: (a)(b) Two sequential frames from video data (I(¢),
I(t 4+ 1)), (c) the single frame-difference (D(¢)) and (d) the
estimated bitmap image B (¢).

where the lecturer writes on the tablet PC will automatically
exclude all these frames from being in the set of frames con-
taining filled pauses. The video analysis method is described
hereafter.

First, the absolute value of single frame-difference im-
age (D(r)) is obtained by subtracting the current frame image
(I(r)) from the previous-frame image (I(t)),

D(t) = It +1) = 1(1)], “4)

where ¢ denotes the frame number. Single frame differences
encode the visual content changes. Especially when the cam-
era is static, frame-differences have been used successively
on background subtraction techniques [13], object tracking
[14, 15] and on video representation [16]. Next, we estimate
the maximum value, m(¢) of image D(t).

A binary image By(t) is estimated by thresholding D().
If a pixel intensity change is higher than a threshold (e.g., 40)
then it is classified as changed (white color), otherwise it is
classified as unchanged (black color). Morphological opera-
tions (erosion and dilation) [17] are applied on By(¢) in order
to reduce noise due to coding effects (e.g., salt and pepper

noise) yielding By (¢). When there is a content change, the
lecturer writes at a specific point on the table, meaning that
the change is a compact region which is not affected by the
procedures of erosion and dilation. Then, the number of pix-
els, n(t), that change at frame ¢ can be robustly given by the
sum of white pixels of Bj(f). In order to increase the ro-
bustness of the method, n(¢) can be computed by the sum
of pixels inside the largest compact white region (region of
the maximum area). This is useful when the video has been
recording in very low quality. Highest area object estima-
tion has been successfully used on human tracking under bad
quality athletics video captured from TV [18]. Fig. 3 illus-
trates an example of B (¢) estimation. The last two images of
Fig. 3 are cropped close to the white region, showing in high
detail the region of interest. The remaining pixels of these
images are black.

Finally, an empirical probability p(r) of visual change
at frame ¢ is estimated using the proposed features n(z) and
m(t):

m? (1) (1)

p)=(-e o )-(1—e o) 5)
where it is assumed that m(¢) and n(¢) independent random
variables. The parameters o, and o, were estimated to be 40
and 15, respectively, by statistical analysis of our data. The
left picture in Fig. 4 illustrates n(t), m(t) and p(z) of a 28
seconds video. Note that m(r) contains small spikes (mostly
at the end of the sequence) while n(z) is more smooth. The
spike character of m(t) is caused by video coding.

After calculating p(¢), a threshold of 0.5 was used on p(t)
to detect the frame with change (“writing activity”). Using
Eq. (5) the areas with no writing activity are easily detected
as it is shown for this example in the right picture in Fig. 4. In
our dataset, we found that the combination of n(¢) and m(t)
features results in 99.7% detection of video content changing
with 0.5% of false alarm.

—n(t)
m

Figure 4: Results of the video analysis method. Left, the
estimated number of pixels, n(z), and the maximum value,
m(t), of the image. Right, the probability of content change,

p().

2.4 Frame Classification

The classification procedure is hierarchical giving priority to
the video data. All the video frames where content change
was detected are excluded by the detection algorithm since
no hesitations are expected there. An audio frame of length
20ms is considered with a frame rate of 10ms providing 100
frames per second. The video frame rate is 20 frames per
second. The ratio between the video and audio frame rate
is used to synchronize the information into these two media



streams. The rest of the classification process only uses the
audio information. The hesitation filled pause detection task
can be stated as a basic hypothesis test between two hypothe-
ses:

HO: (audio) frame with features x belongs to a filled pause
H1: frame with features x does not belong to a filled pause
We decide between these two hypotheses using a likelihood
ratio test given by:

P(x|H0){ > 1
p(x|H1) | <1

accept HO
accept H1

Likelihood p(x|HO0) is evaluated for feature vector x = [c][1 :
12]7, 9FO0, |dc|)T.

M
p(x|HO) = Z &P (x| Oeei) (6)
i=1

For likelihood p(x|H1) we compute the likelihood
P(x[@cons;) for j=1,...,10 for feature vector x = c[1 : 12].
Then we set

p(x‘Hl) - max(l?(x| econx] )a e »P(x‘ GL'()n‘V|0)7pother)7 (7)

where poper is @ small numerical value (e.g., 0.0005) that ac-
counts for other sounds (i.e., non modeled consonants and
vowels).

If p(x|HO0) > p(x|H1) the frame is labeled as filled pause
candidate and then we continue with the next frame by re-
peating the above procedure. When a maximal sequence
of adjacent frames, labeled as filled pause candidates, has
length of at least 14 frames (140 ms) then this sequence is
identified as an “ee” filled pause segment. Next we try to ex-
tend this sequence as far as possible to the right by append-
ing frames that may correspond to nasal murmur “mm”. For
this, we check whether the next right neighboring frame is an
“eem” and we append this frame to the filled pause segment
if p(x|6eem) > Peem, Where x = ¢[1 : 12] and pee is a small
numerical value. We repeat the extension procedure until we
find a frame with p(x|6Geem) < Peem-

3. DATA

Our analysis has been applied to data from recorded lectures
of a course entitled “Speech Signal Processing”, which was
taught in the Greek language at the Computer Science De-
partment of University of Crete during the Fall term of aca-
demic year 2007-2008. The course was recorded using a
tablet PC. Each recording sessions has a variable duration,
ranging from 60 to 90 minutes. All the recorded classes were
taught by the same teacher, a male speaker. The teacher’s
speech overlaps with the “tics” from the tablet PC pen. Apart
from the teacher’s voice the recordings contain the voices of
students who ask or answer questions, and background noise.
About 5% of the speech segments were saturated. Long si-
lence epochs and sections of the recordings that have no ed-
ucational value were manually removed. Hesitation filled
pauses, especially long “ee” and “eem”, appear too often to
be removed manually.

We selected 10 sound files from the recorded lectures for
training and testing. The total duration of files was 6 hours
and 51 minutes. For training, the first 30 minutes of the 5
first files were transcribed for filled pauses and for the 10
selected consonants of the Greek language. The rest of data

Methods Precision | Recall
Proposed (Audio) 98.5% 80.6%
Proposed (Video and Audio) | 99.6% 84.7%
Goto et al. [3] (Audio) 91.5% 84.9%
Li et al. [6] (Audio) 80.66% 92.59%

Table 1: Precision and recall rates using only audio and both
video and audio streams and comparizons with other meth-
ods.

were transcribed only for filled pauses and they were used for
testing. In total, 1124 filled pauses were annotated with 399
of them being in the training data set. Labeling was done on
the basis of listening and visual inspection of the waveform,
spectrogram, F0 and intensity contours, using WaveSurfer?.

4. RESULTS

Our main hypothesis that the lecturer does not write on tablet
PC during a filled pause event is supported by the statistical
data since only 5 of the 1124 annotated filled pause events
(~ 0.45%) overlap with writing on tablet PC. Additionally
we tested this hypothesis on two randomly chosen lectures
(different from the 10 selected lectures) and we found that
only one event out of more that 300 filled pause events over-
laps with writing.

Using only the audio stream, the suggested detector has
precision rate 98.5% and recall rate of 80.6%. If both video
and audio streams are included into the detector the precision
rate is 99.6% and the recall rate is 84.7%. Goto et al. [3]
reported 91.5% precision and 84.9% recall rates and Li et
al. [6] reported 80.66% precision and 92.59% recall rates
using only audio stream. Therefore, the proposed method
outperforms the other works in the literature (see Table 1),
due to the efficient combination of video and audio features.

The above measurements concern not only isolated filled
pauses that are characterized by silence segments before
and/or after the filled pause but also elongated “ee” that are
inside words (see Fig. 5). If in the statistics we consider
only very long filled pauses (of duration greater than 230ms),
which are the ones that are considered to be unpleasant to
listeners, then the recall rate is 99.3%. The missing filled
pauses are either within saturated areas or they have very low
energy compared to the mean energy of filled pauses.

S. CONCLUSION

We suggested a method for the detection of hesitation filled
pauses “ee” and “eem” in oral presentations using multime-
dia (audio and visual) data. The removal of hesitation filled
pauses is a useful task, since they are annoying to listen-
ers. By analysis of the audio-visual content, it holds that
a hesitation filled pause appears when the lecturer does not
write on the tablet PC. Therefore, the combination of audio-
visual information increases both the precision and the recall
score, yielding higher precision and recall rates comparing
with other works in the literature. Audio characteristics are
modeled using Gaussian Mixture Models while the stationar-
ity of the recorded video is taken into account based on single
frame-difference images.

Zhttp://www.speech kth.se/wavesurfer/
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Figure 5: Waveform of a speech signal before and after the
removal of detected filled pause segments. In filled pause
segment from frame 20 to frame 120 a few frames have
not been detected. These frames are surrounded by silence
frames and can easily be detected and removed in a post-
processing step. The filled pause segment from frame 275 to
frame 375 is an elongated “ee” that is uttered after a Greek
word.

As future work, we plan to improve the audio part by
working at the segmental level instead of the frame level
and by using sequence models (e.g., Hidden Markov Mod-
els) to explore the differences in sequential structure among
filled pauses, elongated words and normal speech. We also
plan to extend our method to summarize an oral presenta-
tion, adding more audio-visual features, so making possible
searching and indexing tasks.

REFERENCES

[1] J.E. Fox Tree, “The effects of false starts and repetitions
on the processing of subsequent words in spontaneous
speech,” J. Memory & Lang., vol. 34, pp. 709-738,
1995.

[2] H. Moniz, A.I. Mata, and M.C. Viana, “On filled pauses
and prolongations in european portuguese,” in Inter-
speech 2007, pp. 1246-1249.

[3] M. Goto, K. Itou, and S. Hayamizu, “A real-time filled
pause detection system for spontaneous speech recog-
nition,” in Eurospeech99, 1999, pp. 227-230.

[4] D. 0’Shaughnessy and M. Gabrea, “Automatic iden-
tification of filled pauses in spontaneous speech,” in
CCECE 2000, 2000, vol. 2, pp. 620-624.

[5] E. Stouten, J. Duchateau, J.-P. Martens, and
P. Wambacq, “Coping with disfluencies in spontaneous
speech recognition: Acoustic detection and linguistic
context manipulation,” Speech Communication, vol.
48, pp. 1590-1606, 2006.

[6] Y.-X. Li, Q.-H. He, and T. Li, “A novel detec-
tion method of filled pause in mandarin spontaneous
speech,” in ICIS 08, 2008, pp. 217-222.

[7]1 E. Bimbot, J. FE. Bonastre, C. Fredouille, G. Gravier,
Magrin I. Chagnolleau, S. Meignier, T. Merlin, Or-
tega J. Garcia, Petrovska Delacretaz, and Reynolds,

(8]

[9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

“A tutorial on text-independent speaker verification,”
EURASIP Journal on Applied Signal Processing, vol.
4, no. 4, pp. 430-451, 2004.

B. Hanson and T. Applebaum, ‘“Robust speaker-
independent word recognition using static, dynamic
and acceleration features: experiments with lombard
and noisy speech,” in ICASSP-90, 1990, vol. 2, pp.
857-860.

D. Talkin, “A robust algorithm for pitch tracking
(RAPT),” in Speech Coding and Synthesis (W. B. Kleijn
and K. K. Paliwal, eds.), pp. 495-518. Elsevier, 1995.

M. Slaney, “Auditory toolbox version 2,” Tech. Rep.
1998-010, Interval Research Corproation, 1998.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum likelihood from incomplete data via the EM algo-
rithm,” J. Royal Statist. Soc. Ser. B (methodological),
vol. 39, no. 1, pp. 1-22 et 2238 (discussion), 1977.

T. Zhang, R. Ramakrishnan, and M. Livny, “Birch:
A new data clustering algorithm and its applications,’
Data Min. and Knowl. Disc., vol. 1, no. 2, pp. 141-182,
1997.

B. Han, D. Comaniciu, and L. Davis, “Sequential ker-
nel density approximation through mode propagation:
Applications to background modeling,” in ACCV 2004,
2004.

A. Caplier, L. Bonnaud, and J.M. Chassery, “Robust
fast extraction of video objects combining frame differ-
encesand adaptive reference image,” in ICIP01, 2001.

I. Grinias and G. Tziritas, “Foreground object local-
ization using a flooding algorithm based on inter-frame
change and colour,” in IEEE, AVSS 2007, 2007.

M.J. Lee, A.S. Lee, D.K. Lee, and S.Y. Lee, “Video
representation with dynamic features from multi-frame
frame-difference images,” in Motion07, 2007, pp. 28—
34,

R. C. Gonzalez and R. E. Woods, Digital Image Pro-
cessing, Addison-Wesley Publishing Company, 1992.

E. Ramasso, C. Panagiotakis, M. Rombaut, D. Pellerin,
and G. Tziritas, “Human shape-motion analysis in ath-
letics videos for coarse to fine action/activity recogni-
tion using transferable belief model,” Electronic Letters
on Computer Vision and Image Analysis, vol. 7, no. 4,
pp- 32-50, 2009.



