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Abstract

In this paper we analyze the problem of partitioning a continuous curve into n parts
with equal successive chords, the curve EquiPartition problem (EP). The goal is to
locate n − 1 consecutive curve points, so that the curve can be divided into n segments
with equal chords under a distance function. We adopt a level set approach to prove
that for any continuous injective curve in a metric space and any number n there always
exists at least one n-equipartition (EP). A new approximate algorithm, that is the first
EP algorithm, inspired from the level set approach is proposed for finding all solutions
with high accuracy. Finally, EP based applications are presented and special properties
of their solutions are discussed.

MSC: 65D18, 68U05, 68U07, 68U10.
Keywords: Equipartition, injective continuous curve, iso-level algorithm.

1 Introduction

The equipartition problem (EP) is the following. Let (X, ρ) be a metric space and let
c : [0, 1] → X be an injective continuous curve. We seek 0 < t1 < · · · < tn < 1 such that
ρ(c(ti−1), c(ti)) = ρ(c(ti), c(ti+1)), where t0 = 0 and tn+1 = 1. This problem was posed
by J.F. Pal in 1940. In 1954 K. Urbanik gave a proof of the existence of a solution to
the problem based on the Brouwer fixed point theorem [21]. An alternative proof based
again on the Brouwer fixed point theorem was presented recently in [12]. A problem of
this kind is also the ”square-peg” problem for which we refer the reader to [7].

Our approach is based on the topological study of the zero level set of a certain
continuous function defined on the standard n-dimensional simplex Δn (see Fig. 1). As
far as we know, this idea is new and has not been used before for the EP problem.

Of course the case n = 1 is trivial, because if F : [0, 1] → R is the continuous function

F (t) = ρ(c(t), c(1)) − ρ(c(0), c(t)),
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then F (0) > 0 and F (1) < 0 and by the Intermediate Value Theorem there exists some
0 < t1 < 1 such that F (t1) = 0. Every point in F−1(0) is a solution to the problem.
Our level set approach is an extension of this elementary idea. The fact that F changes
signs on the boundary points of [0, 1] is equivalent to saying that the restriction of F
to the boundary {0, 1} of [0, 1] with values in R \ {0} is not homotopic to a constant.
For n > 1 this is replaced by Proposition 2.1 below, which says that the restriction of a
certain continuous function to the boundary of Δn is not homotopic to a constant.

In general, the number of solutions depends on the curve shape and n. There exist
degenerate cases for which the number of solutions for a particular value of n is infinite.
A brief exposition of the basic issues of the EP can be found in [17].

Generalizing the EP, one can take X to be a topological space and ρ : X×X → R
+ a

continuous function such that ρ(x, y) = 0 if and only if x = y (not necessarily a distance
function). One can ask then, given a positive integer n and real numbers λ0 > 0,
λ1 > 0,..., λn > 0, if there exists a partition 0 < s1 < s2 < · · · < sn < 1, such that

λ0ρ(c(0), c(s1)) = λ1ρ(c(s1), c(s2)) = · · · = λn−1ρ(c(sn−1), c(sn)) = λnρ(c(sn), c(1)).

This is equivalent to the following. Let Δ2 = {(s1, s2) ∈ R
2 : 0 ≤ s1 ≤ s2 ≤ 1} be the

standard 2-dimensional simplex. Let d : Δ2 → R
+ be a continuous function, such that

d(s1, s2) = 0 if and only if s1 = s2. Given a positive integer n and real numbers λ0 > 0,
λ1 > 0,..., λn > 0, does there exist a partition 0 < s1 < s2 < · · · < sn < 1 such that

λ0d(0, s1) = λ1d(s1, s2) = · · · = λn−1d(sn−1, sn) = λnd(sn, 1)?

Curve segmentation is a challenging problem in computational geometry, particu-
larly for pattern recognition applications. Object boundary representation and curve
simplification are based on curve segmentation. Another example of such segmentation
approach is the polygonal approximation [2], which is a well-known and widely studied
problem. In some applications it could be interesting to have a uniform representation
according to an appropriate quality measure. We have adopted such an approach for 3D
modelling and non articulated motion tracking [18], leading to the curve equipartition
problem. The objective is the partition of the feature sequence into “homogeneous”
segments with uniform characteristics according to a predefined error criterion.

Shape representation [13] by polygonal approximation has become a popular tech-
nique for constructing a concise description of a boundary in the form of a sequence
of straight lines. There are two main approaches to the problem: (1) Approxmate the
curve by a polygon minimizing an error criterion and (2) finding a subset of dominant
points as vertices of the approximating polygon. Under the first approach, the goal is
to capture the main characteristics of the boundary shape with the least number of line
segments. The second approach works by locating the vertices of the approximating
polygon directly through detecting points of high curvature. These vertices contain use-
ful information concerning the curve shape and they can be used on image and shape
analysis. On the other hand constraining the length of the line segments to be constant,
as the equipartition does, gives a more concise representation, allowing more flexibility
for studying deformations of the polygons, and finally of the original curve.

In Section 2 we adopt a level set approach to give a new geometric proof that the
generalized EP has a solution for any n (see Theorem 2.5 below). An approximate
algorithm inspired from the level set approach is described in Section 3 for finding all

2



(a) (b)

Fig. 1: (a) The triangle ABO is Δ2. (b) The tetrahedron ABCO is Δ3.

solutions with high accuracy. Finally, in Section 4, applications based to the EP are
presented and special properties of their solutions are discussed.

2 A level set approach to the equipartition problem

In this section we give a new proof of existence of a solution to the general equipartition
problem for any number of pieces. Our approach is based on the analysis of the connected
components of the zero level set of a certain function using methods of Combinatorial
and Algebraic Topology. For definitions and properties of homotopy and Brouwer degree
we refer the reader to any standard text on Algebraic Topology, such as for instance [5].

Let
Δn = {(s1, s2, ..., sn) ∈ R

n : 0 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1}
be the n-dimensional simplex. Its boundary is ∂Δn = B1 ∪ B2 ∪ ... ∪ Bn+1, where

Bj = {(s1, s2, ..., sn) ∈ Δn : sj−1 = sj},

1 ≤ j ≤ n+1, are the (n−1)-faces of Δn, putting s0 = 0 and sn+1 = 1. Fig. 1 illustrates
Δn in cases n = 2 (triangle) and n = 3 (tetrahedron).

Let d : Δ2 → R
+ be a continuous function such that d(s1, s2) = 0 if and only if

s1 = s2. Let also λ0 > 0, λ1 > 0,..., λn > 0 be real numbers. For each 1 ≤ j ≤ n let
fj : Δn → R be the function defined by

fj(s1, s2, ..., sn) = λjd(sj, sj+1) − λj−1d(sj−1, sj),

where again we have set s0 = 0 and sn+1 = 1.
If f = (f1, f2, ..., fn−1) : Δn → R

n−1, then obviously

f−1(0) ⊂ {(0, 0, ..., 0)} ∪ intBn+1 ∪ intΔn,

because d−1(0) = B2 in Δ2, where int denotes topological interior.
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If Fn = (f1, f2, ..., fn−1, fn), then Fn vanishes nowhere on ∂Δn. A key property of
Fn is the following.

Proposition 2.1. For every integer n ≥ 2, the continuous map Fn|∂Δn : ∂Δn → R
n\{0}

has Brouwer degree (−1)n.

Proof. Examining the signs of fj, 1 ≤ j ≤ n, on ∂Δn, we observe that the vector
Fn(s1, s2, ..., sn) at (s1, s2, ..., sn) points inward Δn for every (s1, s2, ..., sn) ∈ ∂Δn. In-
deed, the (n − 1)-face Bj , 1 ≤ j ≤ n + 1, is contained in the affine hyperplane g−1

j (0),
where gj : R

n → R is the affine map gj(s1, s2, ..., sn) = sj − sj−1. As above, s0 = 0 and
sn+1 = 1. If (s1, s2, ..., sn) ∈ Bj , then

fj−1(s1, s2, ..., sn) = −λj−2d(sj−2, sj) ≤ 0,

fj(s1, s2, ..., sn) = λjd(sj , sj+1) ≥ 0

and therefore

〈Fn(s1, s2, ..., sn),∇gj(s1, s2, ..., sn)〉 = λj−2d(sj−2, sj) + λjd(sj, sj+1),

for 1 < j < n + 1, while

〈Fn(s1, s2, ..., sn),∇gj(s1, s2, ..., sn)〉 =

{
λ1d(0, s2), if j = 1, and
λn−1d(sn−1, 1), if j = n + 1.

Since 〈Fn(s1, s2, ..., sn),∇gj(s1, s2, ..., sn)〉 ≥ 0 for every (s1, s2, ..., sn) ∈ Bj and for every
1 ≤ j ≤ n+1, we conclude that the vector Fn(s1, s2, ..., sn) at (s1, s2, ..., sn) points inward
for every (s1, s2, ..., sn) ∈ ∂Δn.

It follows now from Hopf’s formula that

(−1)n deg Fn = χ(Δn) = 1,

where deg denotes the Brouwer degree and χ the Euler characteristic (see Example 4.8
on page 269 and Proposition 4.9 on page 270 of [5]). �

It follows from Proposition 2.1 that Fn|∂Δn : ∂Δn → R
n \ {0} is not homotopic to a

constant. This will be used in the proof of the main Lemma 2.4 below. In order to give
the reader the idea of proof, we shall first treat the case n = 2, which corresponds to
equipartition in three pieces and is relatively elementary.

Lemma 2.2. If n = 2, the connected component C of f−1(0) which contains (0, 0, ..., 0)
has non-empty intersection with intB3.

Proof. Let K be the connected component of Y = f−1(0) ∪ [0, 1] × {1} which contains
[0, 1]×{1}. Suppose that the conclusion is not true. Then C ∩K = ∅ and there exists a
polygonal simple arc I which separates C form K in Δ2 with endpoints (0, t) and (s, s),
for some 0 < t < 1 and 0 < s < 1, whose any other point is contained in the interior of
Δ2 \ Y . This follows directly from Theorem 3.3 on page 143 in [15], which says that
any two connected components of a compact subset of the plane are separated by a
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simple closed polygonal curve in its complement. It is also proved in any dimension in
the course of proof of Lemma 2.4 below. Since f = f1 and f(0, t) > 0, f(s, s) < 0, it
follows from the Intermediate Value Theorem that I ∩ f−1(0) �= ∅, contradiction. �

Proposition 2.3. Let d : Δ2 → R
+ be a continuous function such that d(s1, s2) = 0 if

and only if s1 = s2. For any set of real numbers λ0 > 0, λ1 > 0, λ2 > 0, there exist
0 < s1 < s2 < 1 such that

λ0d(0, s1) = λ1d(s1, s2) = λ2d(s2, 1).

Proof. We denote as in the proof of Lemma 2.2 by C the connected component of
f−1(0) which contains (0, 0). We have f2(0, 0) = λ2d(0, 1) > 0. Lemma 2.2 says that
there exists some 0 < s < 1 such that (s, 1) ∈ C. Since f2(s, 1) = −λ1d(s, 1) < 0, there
exists some (s1, s2) ∈ C such that f2(s1, s2) = 0, by the Intermediate Value Theorem.
Obviously, (s1, s2) ∈ F−1

2 (0). �

Lemma 2.4. If n ≥ 3, the connected component C of f−1(0) which contains (0, 0, ..., 0)
has non-empty intersection with intBn+1.

Proof. Suppose that C ∩ Bn+1 = ∅. Then there exists an embedded polyhedral,
compact, connected (n−1)-manifold D ⊂ Δn\f−1(0) whose boundary ∂D is a topological
(n− 2)-dimensional sphere Sn−2 such that ∂D ⊂ ∂Δn \Bn+1 and D \ ∂D ⊂ intΔn. One
way to construct D is the following. Let Y = Bn+1 ∪ f−1(0) and let K be the connected
component of Y which contains Bn+1. Then C ∩ K = ∅ and so there are two disjoint
compact sets A1, A2 ⊂ Y such that C ⊂ A1, K ⊂ A2 and A1 ∪ A2 = Y (see Theorem

5.6 on page 82 in [15]). Obviously, A1 ∩ ∂Δn = {(0, 0, ..., 0)}. Let 0 < δ <
1
4
dist(C,K)

and I0 = [0, δ/
√

n]n, where dist(C,K) = inf{‖x − y‖ : x ∈ C and y ∈ K}. Then I0 has
diameter δ and therefore is disjoint from A2. Let now

0 < ε <
1√
n

min{δ, 1
4
dist(A1 \ intI0, ∂Δn)}

and let P = {0 = t0 < t1 < ... < tk = 1} be a partition of [0, 1] such that δ/
√

n ∈ P and
tj − tj−1 < ε, for all integers 1 ≤ j ≤ k. Let Pn be the corresponding partition of [0, 1]n

and let Q0 be the union of all n-cubes I in Pn such that I ∩ A1 �= ∅ and I ∩ intI0 = ∅.
Note that if I and J are n-cubes of P in Q0, then I ∩ J is a common face of I and J , if
non-empty, which can be thickened to an n-dimensional parallelepiped which does not
intersect A2. In case I ∩ J does not intersect Y we may thicken it to a n-dimensional
parallelepiped with the same property. Adding these thickenings to Q0 we obtain a set
Q which is a polyhedral, connected, compact n-manifold with boundary contained in
intΔn. Moreover, A1 \ I0 ⊂ intQ, Q ∩ A2 = ∅ and

f−1(0) ∩ ∂Q = A1 ∩ ∂Q ⊂ I0 ∩ Q = I0 ∩ ∂Q = intF (F ∩ ∂Q),

where F = [0, δ/
√

n]n−1 × {δ/√n} is the top (n − 1)-face of I0, and intF denotes topo-
logical interior relative to the set F . The set G = F ∩ Δn \ intF (F ∩ ∂Q) is home-
omorphic to a (n − 1)-dimensional disc with a finite number of holes. Note that the

5



(n − 2)-simplex F ∩ ∂Δn is contained in G. Let now D be the connected component of
(∂Q \ intF (F ∩ ∂Q)) ∪ G which contains F ∩ ∂Δn. Then D is a polyhedral, connected,
compact (n − 1)-manifold with boundary, whose boundary is precisely F ∩ ∂Δn, hence
homeomorphic to Sn−2, and therefore ∂D ⊂ ∂Δn \ Bn+1. Also, D \ ∂D ⊂ intΔn and
D ⊂ Δn \ f−1(0), by construction.

Since f vanishes nowhere on ∂Δn \ {(0, 0, ..., 0)} ∪ intBn+1, it vanishes nowhere on
D. Consequently, the continuous map f |∂D : ∂D → R

n−1 \ {0} has Brouwer degree
zero and so does the continuous map f |∂Bn+1 for the same reason, that is because
it is the restriction of a continuous map, namely f , from the compact connected
(n − 1)-dimensional manifold D ∪ (∂Δn \ (I0 ∪ intBn+1)) with boundary ∂Bn+1 to
R

n−1 \{0}. However, this contradicts Proposition 2.1, because f |∂Bn+1 is identified with
Fn−1|∂Δn−1 . �

We can now state and prove the main result of this section from which the existence
of solution to the general equipartition problem follows.

Theorem 2.5. Let d : Δ2 → R
+ be a continuous function such that d(s1, s2) = 0 if and

only if s1 = s2. Then for every positive integer n and real numbers λ0 > 0, λ1 > 0,...,
λn > 0, there exists a partition 0 < s1 < s2 < · · · < sn < 1 such that

λ0d(0, s1) = λ1d(s1, s2) = · · · = λn−1d(sn−1, sn) = λnd(sn, 1).

Proof. This follows from Lemma 2.4 in the same manner as Proposition 2.3 follows
from Lemma 2.2, since on one hand fn(0, 0, ..., 0) = λnd(0, 1) > 0 and on the other
fn(s1, s2, ..., sn−1, 1) = −λn−1d(sn−1, 1) < 0 for (s1, s2, ..., sn−1, 1) ∈ intBn+1. �

Let now (X, ρ) be a metric space or even more generally let X be a topological space
and ρ : X ×X → R

+ be a continuous function such that ρ(x, y) = 0 if and only if x = y.
Let c : [0, 1] → X be an injective continuous curve, that is c is a topological embedding.
Taking the continuous function d : Δ2 → R

+ defined by d(s1, s2) = ρ(c(s1), c(s2))2, we
see that d(s1, s2) = 0 if and only if s1 = s2, since c is injective. In this case, F−1

n (0) is the
set of solutions to the equipartition problem in n + 1 pieces for c. A direct application
of Theorem 2.5 gives now the existence of solution to the general equipartition problem.

Theorem 2.6. Let X be a topological space and c : [0, 1] → X be a topological embedding.
Then for every continuous function ρ : X ×X → R

+ with the property ρ(x, y) = 0 if and
only if x = y, and every positive integer n and real numbers λ0 > 0, λ1 > 0,..., λn > 0,
there exist 0 < s1 < s2 < ... < sn < 1 such that

λ0ρ(c(0), c(s1)) = λ1ρ(c(s1), c(s2)) = · · · = λn−1ρ(c(sn−1), c(sn)) = λnρ(c(sn), c(1)). �
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3 Iso-level algorithm (ILA)

3.1 Description of the algorithm

In this section we propose a new approximate algorithm inspired from the level set
approach to the EP of Section 2. To our knowledge, this kind of algorithm is used for
the first time for the EP problem. It is named Iso-Level Algorithm (ILA), because an
equipartition in n + 1 pieces is determined by a finite sequence (0, s1), (s1, s2),...,(sn, 1)
of points in Δ2, which belong to the same level set of the function d : Δ2 → R

+ of
Theorem 2.5, if we take λ0 = λ1 = · · · = λn = 1, which we do in the sequel. In order
to implement ILA we approximate d by a piecewise linear function d̂ and solve precisely
the problem for d̂. The ILA computes all the solutions and is inductive. Thus, when it
is executed for n, it also solves the problem for any positive integer number less than n.

We proceed now to the description of the ILA. Let d : Δ2 → R
+ be a continuous

function such that d(s1, s2) = 0 if and only if s1 = s2.
Let P = {0 = t0 < t1 < t2 < ... < tm−1 < tm = 1} be a partition of [0, 1]. On Δ2 we

consider the triangulation into triangles of the form

D1
ij = {(s1, s2) ∈ [ti, ti+1] × [tj , tj+1] : s2 − tj ≤ s1 − ti},

D2
ij = {(s1, s2) ∈ [ti, ti+1] × [tj , tj+1] : s1 − ti ≤ s2 − tj},

for 0 ≤ i < j < m, or

D2
ii = {(s1, s2) ∈ [ti, ti+1] × [ti, ti+1] : ti ≤ s1 ≤ s2 ≤ ti+1},

for 0 ≤ i < m.
We take d̂ : Δ2 → R

+ to be the simplicial function defined by the vertex map which
sends each vertex (ti, tj) of this triangulation to d(ti, tj), 0 ≤ i ≤ j ≤ m. Then d̂ is
continuous and d̂(s1, s2) = 0 if and only if s1 = s2. For each 1 ≤ j ≤ n let f̂j : Δn → R

be the function defined by

f̂j(s1, s2, ..., sn) = d̂(sj , sj+1) − d̂(sj−1, sj),

where s0 = 0 and sn+1 = 1. We put f̂ = (f̂1, f̂2, ..., f̂n−1) and F̂n = (f̂1, f̂2, ..., f̂n−1, f̂n).
The points of F̂−1

n (0) are approximate solutions to the EP for d.
At each iteration step k, k = 1, 2, ..., n, the algorithm computes a (possibly non-

connected) polygonal curve Lk from the corresponding polygonal curve Lk−1 of the
previous step. At the initial step we take L1 = {0} × [0, 1] and at the k-th step we put

Lk = {(u, z) ∈ Δ2 : 0 < u < z and d̂(u, z) = d̂(v, u) for some v < u with (v, u) ∈ Lk−1}.

Since Lk−1 is a polygonal curve and d̂ is a simplicial function, it is elementary to see that
Lk is polygonal (possibly non-connected). Actually, a line segment of Lk−1 in a triangle
of the triangulation gives a set of line segments of Lk, each one of them is contained in
a different triangle of the triangulation.

Note that if (sn−1, sn) ∈ Ln, there exist 0 < s1 < s2 < · · · < sn−1 < sn < 1, such
that (sn−2, sn−1) ∈ Ln−1, ..., (0, s1) ∈ L1 and

d̂(0, s1) = d̂(s1, s2) = · · · = d̂(sn−1, sn).
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Fig. 2: An example of a tree data structure.

Using the notations of section 2, the level set

f̂−1(0) = {(s1, s2, ..., sn) ∈ Δn : (0, s1) ∈ L1, (s1, s2) ∈ L2, ..., (sn−1, sn) ∈ Ln}

approximates f−1(0). The points of f̂−1(0) at which f̂n vanishes are the solutions for
the EP for d̂ and approximate solutions for d in n + 1 pieces.

We shall describe now a pseudo-code of the above procedure (see the end of this sec-
tion). At each iteration step k, for each line segment Lk−1(i) in Lk−1, i = 1, 2, ..., |Lk−1|,
where |Lk−1| denotes the number of the line segments composing Lk−1, which belongs to
a specific triangle Dτ ′

i′j , τ ′ = 1, 2, i′ ≤ j, of the triangulation (we get it by using the get-
Triangle() function), we compute the line segment LS(Lk−1(i),Dτ

jh). LS(Lk−1(i),Dτ
jh)

corresponds to Lk−1(i), according to the definition of Lk, and is contained in the trian-
gle Dτ

jh, τ = 1, 2, j ≤ h. An efficient way to store the line segments is by using their
endpoints. In the initial step we break L1 as follows:

L1 = [(0, 0), (0, t1)] ∪ [(0, t1), (0, t2)] ∪ · · · ∪ [(0, tm−1), (0, 1)].

At each step we store the correspondence between Lk−1(i) (parent node) and
LS(Lk−1(i),Dτ

jh) (child node) in a tree data structure. The root of tree data structure
is the trivial segment [(0, 0), (0, 0)]. The function addNode(Lk−1(i), LS(Lk−1(i),Dτ

jh))
connects the new child node LS(Lk−1(i),Dτ

jh) to the parent node Lk−1(i). Finally, line
segments of Ln are leaves of the Tree. Fig. 2 illustrates an example of tree data structure.

In the final n-th step we also compute the roots of f̂n on Ln, which are points
(sn−1, sn) ∈ Ln and by moving backwards we compute the points (sn−2, sn−1) ∈
Ln−1,...,(0, s1) ∈ L1, by backtracking (from leaves to root) the Tree. Fig. 3 illustrates a
triangulation, the recursive computation of {s1, s2, s3}, and the curves L1, L2 and L3.

There does not exist an upper bound of the number of line segments in Lk. As our
experiments show, it may increase exponentially with k. In order to reduce this number
and the computational cost, an optional line segments simplification procedure can be
applied. If we want to bound the maximum number of line segments in Lk that belong
to a triangle of the triangulation, we merge successive line segments in Lk in the same
triangle that are almost colinear. We give more details about this optional procedure in
the next section.
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Tree.root = [(0, 0), (0, 0)]
for i = 1 to m do

L1(i) = [(ti−1, 0), (ti, 0)]
Tree.addNode(Tree.root, L1(i))

end
for k = 2 to n do

count = 0
for i = 1 to |Lk−1| do

Dτ ′
i′j = Lk−1(i).getTriangle()

for h = j to m do
for τ = 1 to 2 do

if LS(Lk−1(i),Dτ
jh) �= ∅ then

count = count + 1
Lk(count) = LS(Lk−1(i),Dτ

jh)
Tree.addNode(Lk−1(i), LS(Lk−1(i),Dτ

jh))
end

end
end

end
(Lk line segments simplification)

end
The solutions are computed inductively as the roots of f̂n and by
backtracking the tree data structure

Algorithm 1: Iso-Level Algorithm.

Fig. 3: An example of curve equipartition into 4 chords.
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3.2 Computational Complexity and Error Analysis

Concerning the method complexity, the computational cost for each line segment Lk−1(i),
i = 1, 2, ..., |Lk−1| of Lk−1 is O(m), since the search space for the LS computation has
O(m) triangles. The number |Lk| of the line segments composing Lk is normally O(m)
and the total computational cost is O(n · m2).

However, |Lk| may increase exponentially. In these cases, the line segment simplifi-
cation procedure is executed by keeping a limited number of line segments per triangle.
Let |Lτ,ij

k | be the number of line segments of Lk that belong to the triangle Dτ
ij , τ = 1, 2,

i ≤ j. According to the procedure, we merge the most collinear line segments of each
triangle until |Lτ,ij

k | ≤ T . T is a threshold denoting the maximum allowed number of
line segments that belong to the same triangle and is predifined by the user. Thus, in
the worst case, |Lk| is O(T · m2), since there are O(m2) triangles on Δ2. The total
computational cost is O(T · n · m3).

We can estimate the normalized error (NE) of an approximated equipartition
of length chords r1 = d(0, s1), r2 = d(s1, s2), · · · , rn = d(sn−1, sn), rn+1 = d(sn, 1)
(d̂(0, s1) = d̂(s1, s2) = · · · = d̂(sn−1, sn) = d̂(sn, 1)) by getting the standard devia-
tion of the n + 1 estimated length chords of this equipartition σ divided by the mean
length segment of this equipartition (r̄), NE = σ

r̄ .
It holds that NE decreases as m increases. Therefore, the mean error of the approx-

imation d̂ of d is
E(|d̂ − d|) = O(

1
m2

).

Let e(u, v) = d̂(u, v)− d(u, v) = O( 1
m2 ). Under the assumption that e has zero mean and

e and d are independent, we can prove that NE decreases by the same factor O( 1
m2 ) (see

Fig. 4(a)) when the line segment simplification procedure is not executed.

NE2 =
var(r)

r̄2
=

∑n+1
i=1 d2(si−1,si)

(n+1)2
− r̄2

r̄2
⇒

NE =

√∑n+1
i=1 (e(si−1, si))2

(n + 1)r̄
(by hypothesis) ⇒

NE ≤
∑n+1

i=1 (|e(si−1, si)|)
(n + 1)r̄

= O(
1

r̄m2
)

When the simplification procedure is executed, the error can not be bounded.
Moreover, NE is not straightforwardly affected as n increases (see Fig. 4(b)). How-

ever, NE = O( 1
r̄m2 ) increases when r̄ decreases, that is true when n is getting very high.

For example, in the case of the Euclidean distance it holds that d(1,0)
n+1 < r̄ < curveLength

n+1 .
This is the main reason why m should be greater than n, while our experiments show
that it should be m > 2n. Moreover, m can be bounded by bounding NE or E. There-
fore, m is an intrinsic input parameter of the algorithm and it is related to the error of
the approximation.

3.3 Experimental Results

The method has been implemented using C and Matlab. For our experiments, we used
a Pentium 4 CPU at 2.8 GHz. A typical processing time, when m = 100 and n = 10,
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Fig. 4: The normalized error (NE) computed on a curve on which the EP has an infinite
number of solutions for 4 segmets. When we get more than one solutions, the NE was computed
by the mean of normalized errors on these solutions. (a) The NE and its approximation function
J(m) = 3

m2 computed for different values of M and for n = 3. (b) The NE computed for different
values of N and for m = 50.

is about 4 seconds. Figs. 5 and 6 illustrate the results of the proposed algorithm for
different 2-D or 3-D curves and values of n. The estimated solutions are projected via d̂
with black circles and on input curve c(t) (right) with the same color points belonging
to the same equipartition.

The curves Lk, k > 1, are projected via d̂, with gray colors, at both sides of the
diagonal x = y, by mirroring Lk for odd values of k, for illustration reasons. L1 is not
projected, since it is always the trivial polygonal curve:

[(0, 0), (0, t1)] ∪ [(0, t1), (0, t2)] ∪ · · · ∪ [(0, tm−1), (0, 1)].

For each k, there exists a continuous curve from (0, 0) with endpoint on the axis y =
1. The second coordinate of Lk corresponds to a continuous path (sweep) along the
curve c(t) that starts at c(0) ((0, 0) ∈ Lk) and ends at c(1) (intersection of Lk with the
axis y = 1, see Fig. 3). The first coordinate of Lk gives the correspondence to Lk−1

(isolevel). The complexity |Lk| of Lk varies depending on the curve c. At least one
solution approximately belongs to the connected component of f−1(0) which contains
(0, 0, ..., 0).

We shall give now a detailed description for how the Lk’s and the tree data structure
are developed using the curve of Fig. 5(f). In this example, we divide the curve into 12
pieces. Therefore, L1, L2, · · · , L11 are computed. Fig. 5(e) illustrates them apart from
L1. The curve L2 is illustrated with black color on Fig. 5(e), consisting of two connected
polygonal curves. It holds that some nodes of the first level (L1 nodes) of the tree data
structure are connected with at least two nodes of the next level (L2 nodes), having at
least two child nodes, e.g. the nodes that correspond to the second connected polygonal
curve. In the case of two child nodes, it holds that there exists some pair of points of L2:
(u1, v), (u2, v), 0 < v < u1 < 1, 0 < v < u2 < 1, so that c(u1) and c(u2) are equidistant
from c(v), that is d̂(v, u1) = d̂(v, u2) = d̂(0, v). Some of the nodes of first level (L1

nodes) of the tree data structure are connected with a node of the next level (L2 nodes),
having one child node. According to the Fig. 5(e), about 15% of the nodes of the first
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level (L1 nodes) are not connected with nodes of the next level (L2 nodes), these nodes
correspond to points close to the end of the curve. This is due to the fact that there
exists v, 0 < v < 1, so that there does not exist u, v < u < 1 with d̂(0, v) = d̂(u, v).
L3 is illustrated with dark gray color on Fig. 5(e) consisting of two connected polygonal
curves. Lk, k > 3, are illustrated with lighter gray colors as k increases on Fig. 5(e),
consisting of one connected polygonal curve.

4 Applications

In this section, we present two EP based applications and the properties of the extracted
solutions are discussed. First, an algorithm based on equal errors principle is proposed,
which solves the General Polygonal Approximation problem (GPA) [19].

The EP can be also applied to the key frames selection problem [16] yielding a
key frames selection algorithm based on Iso-Content Distance, Distortion principles. In
both cases, the equality principle provides selected key frames with the property that
they are equivalent in terms of content video summarization. Moreover, the EP has
been successfully applied to snake motion analysis [18] yielding equally spaced skeleton
points, so that the time correspondence between the tracked skeleton points is done
automatically.

The polygonal approximation [19] is an important topic in the area of pattern recog-
nition, computer graphics and computer vision, because the polygonal approximation
process saves memory space, reduces the rendering time on graphics applications and
gives a more compact representation.

Given a polygonal curve c in R
m with N vertices, a curve approximation of c

is another polygonal curve c′ with, say, M vertices that approximates the original
curve c, according to a predefined error criterion. Let P = {p1, p2, · · · , pN} and
P ′ = {p′1, p′2, · · · , p′M} be the set of the vertices of the given polygonal curve c and
its approximation c′, respectively. According to the general polygonal approximation
problem (GPA), the vertices of c′ are an ordered finite sequence of points on the trace
of c, which need not be vertices of c as the polygonal approximation problem (PA) de-
mands (see Fig. 7). Therefore, under this constraint relaxation, the solutions of the
GPA problem give approximations of the polygonal curve c with possibly smaller error
than the error of the solutions of PA problem.

Different error criteria have been proposed for polygonal approximation problems.

• A frequently used error criterion is the tolerance zone criterion [3], [8]. Let p′kp
′
k+1

be a segment of c′, for some 1 ≤ k < M , and S = [p′k, pm, pm+1, · · · , pm+s, p
′
k+1] be

the corresponding part of c. Under this criterion, the error between the segment
p′kp

′
k+1 and S is defined to be the maximum distance between p′kp

′
k+1 and each

point on S, with respect to one of the distance functions L1, L2 or L∞.

• Another frequently used error criterion is the local integral square error (LISE) [4].
Under this criterion, the error between the segment p′kp

′
k+1 and S is defined to be

the sum of squared Euclidean distances of p′kp
′
k+1 from each vertex of S.

• Finally, according to these error criteria the approximation error between c′ and
c is defined to be the maximum error between the segments of c′ and their corre-
sponding parts of c like S.

12
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Fig. 5: Results of the of ILA for 2-D input curves.

13



0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

(a)

−0.1
−0.05

0
0.05

0.1 −0.1

−0.05

0

0.05

0.1

0

0.05

0.1

 

Y

A

N = 6

X

B

 

Z

P
P’

(b)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.1

−0.05

0

0.05

0.1
0

0.02

0.04

0.06

0.08

 

A

B

X

N = 6  

Y 

Z

P
P’

(c)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08−0.1

−0.05

0

0.05

0.1

0

0.02

0.04

0.06

0.08  

A

B

N = 6

X

 

Z

Y

P
P’

(d)

−0.1
−0.05

0
0.05

0.1 −0.1

−0.05

0

0.05

0.1

0

0.02

0.04

0.06

0.08

 

Y

A

N = 6

B

X

 

Z

P
P’

(e)

Fig. 6: Results of ILA for a helix [14] for N = 6. (a) The four solutions are projected via ĝ with
black circles and (b), (c), (d), (e) on c(t) (blue curve) with the green color points connected
with red line segments.

The polygonal approximation problem can be formulated in two ways: The problem
of minimum error (min−ε) and the problem of minimum number of segments (min−#)
[8], [10]:

• The problem of minimum error (min − ε), where the approximation error is mini-
mized given the number of segments.

• The problem of minimum number of segments (min−#), where the approximation
error is bounded and the goal is to find the minimum number of segments that
gives error lower than the given error.

Concerning the 2-D min−# problem and the min− ε problem under the tolerance zone
criterion [8], the lowest computation cost method [2] has cost O(M2) and O(M2 log M),
respectively, M being the initial number of segments. The 3-D and 4-D polygonal ap-
proximation problems require near-quadratic time and sub-cubic time, respectively [1].

A near optimal solution of the GPA problem is achieved when the approximation
errors per line segment D(p′1, p

′
2), · · · ,D(p′M−1, p

′
M ) are equal, as the error is shared

between all the segments and the total (maximum) error ε (e.g. under tolerance zone
criterion or LISE) is minimized [19], that is

ε = D(p′1, p
′
2) = D(p′2, p

′
3) = · · · = D(p′M−1, p

′
M ). (1)

The solution under the Equal Error (EE) criterion can be computed approximately
using the EquiPartition method (EP). We have seen that for a specific M the EP algo-
rithm computes M vertices of c′ under the EE criterion and a predefined error distance
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Fig. 7: Polygonal approximations (red polygon) with six segments of the same given curve (blue
polygon). (a) A general polygonal approximation and (b) a “classical” polygonal approximation
of the given curve.

function. The input of the EP algorithm is the number M and the symmetric matrix
D(tk, tl), k, l = 1, 2, · · · , N solving the min− ε problem directly. The min−# problem
can be solved by the EP method under the same time-space requirements as the min− ε
problem [19].

We have approximated various 2-D, 3-D and higher dimensional polygonal curves
under the tolerance zone or the LISE criterion using the distance function L2. We
compare our method with the optimal PA methods for min − # [8] and min − ε [20].
Fig. 8 illustrates results of Perez-Vidal [20] and proposed GPA methods under LISE or
tolerance zone criterion for different values of M .

Consequently, the proposed GPA algorithm approximates in a lot of cases the given
curve with lower error than the optimal PA algorithm. When,

1. c′, derived by the EE criterion, is the optimal solution of the GPA problem,

2. the EP method accuracy is high

3. and the error of the optimal GPA approximation is significantly lower than the
error of optimal PA approximation,

the proposed solution will be, with a great probability, better than the optimal solution
of the PA problem. It holds that when the given polygonal curve is smooth, the pro-
posed algorithm yields, with a great probability, lower error results than the optimal PA
method. Otherwise, the result of which algorithm gives better solution is unpredictably
changing with M . A detailed analysis on optimality of the proposed solutions and more
comparisons are given in [19].

5 Conclusions and Discussion

In this paper, we have discussed the curve equipartition problem (EP). We have given a
new geometric proof that it has at least one solution for every injective continuous curve
and for any number of chords. Our approach is based on the analysis of the connected
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Fig. 8: Min− ε results of the Perez-Vidal and proposed GPA methods under LISE or tolerance
zone criterion for different values of M . The curves P , P ′ are projected with blue and red colors.

components of the zero level set of a certain function using methods of Combinatorial
and Algebraic Topology. Inspired by this proof, we have implemented a new approximate
algorithm (ILA) for solving the equipartition problem, which is the first EP algorithm.

The EP is a generic problem and can be applied to many applications. Energy min-
imizations problems that MINimize the MAXimum “per segment” (frame) distortion
(MINMAX) [11] can be solved (almost optimally [19]) under equal error criterion. Ap-
plying the EP to polygonal approximation under LISE or tolerance zone criterion, we
get equal errors per segment, yielding low error values, since the global error will be
shared between all the segments. The derived approximations are sufficient to provide a
lower error than the optimal polygonal simplification methods with about the same com-
putational cost. This result comes from the relaxation of constraint that approximate
polygon vertices are a subset of the initial polygon vertices.

Another challenging application is the key-frames extraction out of a video sequence.
The equipartition applied to video summarization provides selected key frames with
the property of equivalent content. We can use any distance function relevant to the
video content. Moreover, undulatory locomotion analysis can be based on the proposed
method. Until now, we have applied the methodology to snake motion analysis [18].
The time correspondence between the tracked points is done automatically, since they
are equally spaced. The EP can be probably applied to approximate curves [6] and to
compute minimal energy curves [14].
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