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Abstract. A key issue in the study of Ambient Intelligence is reasoning
about context. The aim of context reasoning is to deduce new knowledge,
based on the available context data. The endmost goal is to make the
ambient services more ”intelligent”; closer to the specific needs of their
users. The main challenges of this effort derive from the imperfect context
information, and the dynamic and heterogeneous nature of the ambient
environments. In this paper, we focus on semantics-based approaches
for reasoning about context. We describe how each approach addresses
the requirements of ambient environments, identify their limitations, and
propose possible future research directions.

1 Introduction

Pervasive applications aim at providing the right information to the right users,
at the right time, in the right place, and on the right device. In order to achieve
this, a system must have a thorough knowledge and, as one may say, ”understand-
ing” of its environment, the people and devices that exist in it, their interests
and capabilities, and the tasks and activities that are being undertaken. All this
information falls under the notions of context.

The need for reasoning in context aware systems derives from the basic char-
acteristics of context data. Two of these are imperfection and uncertainty. Hen-
ricksen and Indulska [1] characterize four types of imperfect context information:
unknown, ambiguous, imprecise, and erroneous. Sensor or connectivity failures
result in situations, that not all context data is available at any time. When
the data about a context property comes from multiple sources, the context
information may become ambiguous. Imprecision is common in sensor-derived
information, while erroneous context information arises as a result of human or
hardware errors. The role of reasoning in these cases is to detect possible errors,
make predictions about missing values, and decide about the quality and the
validity of the sensed data. The raw context data needs, then, to be transformed
into meaningful information so that it can later be used in the application layer.
In this direction, some suitable sets of rules can exploit the real meaning of some
raw values of context properties. Finally, context reasoning may play the role of
a decision making mechanism. Based on the collected context information, and



on a set of decision rules provided by the user, the system can be configured to
change its behavior, whenever certain changes are detected in its context.

If we also consider the high rates in which context changes and the poten-
tially vast amount of available context information, the reasoning tasks become
even more challenging. Overall, Knowledge Management in Ambient Intelligence
should enable: (a) Reasoning with the highly dynamic and ambiguous context
data; (b) Managing the potentially huge piece of context data, in a real-time
fashion, considering the restricted computational capabilities of some mobile de-
vices; and (c) Collective intelligence, by supporting information sharing, and
distributed reasoning between the entities of the ambient environment.

In this paper, we present the various solutions that have been proposed to
date, giving more attention to those that employ Semantic Web-based represen-
tations to describe context. The use of ontology languages is becoming common
in such applications mainly because they offer enough representational capabil-
ities to develop a formal context model that can be shared, reused, extended
for the needs of specific domains, but also combined with data originating from
other sources. Moreover, the development of the Semantic Web logic layer is
resulting in rule languages that will enable reasoning with the user’s needs and
preferences and with the available ontology knowledge. According to the discus-
sion on Interactive Context-Aware Systems Interacting with Ambient Intelligence
in [2], ontology-based models manage to satisfy all demands placed concerning
context modeling, such as distributed composition, partial validation, richness
and quality of information, incompleteness and ambiguity, level of formality and,
also, applicability to existing environments.

The rest of the paper is structured as follows: Section 2 focuses on onto-
logical reasoning solutions, and Section 3 on rule-based approaches. Section 4
describes methods and techniques for distributed reasoning, while Section 5 dis-
cusses additional reasoning techniques concerning learning, offline reasoning and
probabilistic reasoning. The last section proposes future research directions that
may lead to more efficient reasoning solutions.

2 Ontological Reasoning

The SW Languages of RDF(S) and OWL are common formalisms for context rep-
resentation. Along with their evolution, a number of SW Query languages (e.g.
RDQL [3], RQL [4], TRIPLE [5]) and reasoning tools (e.g. FaCT [6], RACER
[7], Pellet [8]) have been developed. Their aim is to retrieve relevant informa-
tion, check the consistency of the available data, and derive implicit ontological
knowledge. The studies of [9] and [10] describe the use of RDQL for accessing
RDF context data, while the Context-Aware Guide described in [11] demon-
strates the use of RQL in location-based mobile services. An interesting study
that describes and evaluates the use of description logic for both representation
and reasoning over context is presented in [12]. Below, we present representative
examples of systems that reason with context data using Description Logics.



The P2P-based mobile environment in [13] consists of stations that provide
semantic services and users with mobile devices, which manage their owner’s
semantic profile. Both the semantic services and the users’ profiles are modeled
as description logic predicates. The semantic matching between the services and
the profiles, which determines whether a given profile is semantically compatible
to a particular service and, if so, how well both do match, is accomplished by
applying a set of DL rules, which are processed by a RACER reasoning engine.

In [14], they use a case study from the smart home domain (specifically a
context-aware door-lock) to present their approach for modeling and reasoning
about context using Description Logics. They have built an OWL schema to
model the required context entities, and test three DL reasoners (RACER, its
commercial successor RacerPro [15], and Pellet) using a real-case application
scenario. However, their scenario is rather too simple to evaluate the performance
of these reasoners in much broader context-aware applications.

The ontological reasoning approaches have two significant advantages. They
integrate well with the ontology model, which is widely used for the representa-
tion of context; and most of them have relatively low computational complexity,
allowing them to deal well with situations of rapidly changing context. However,
their limited reasoning capabilities are a trade-off that we cannot neglect. They
cannot deal with missing or ambiguous information, which is a common case in
ambient environments, and are not able to provide support for decision making.
Thus, we argue, that although we can use them in cases where we just want to
retrieve information from the context knowledge base, check if the available con-
text data is consistent or derive implicit ontological knowledge, they cannot serve
as a standalone solution for the needs of ambient context-aware applications.

3 Rule-based Reasoning

In the Ambient Intelligence domain, rules are primarily used to express policies,
constraints and preferences. Below, we present some representative examples.

In the SOCAM architecture, they use FOL rules to reason about context
([16]). To resolve possible conflicts, they have defined sets of rules on the classi-
fication and quality information of the context data. They suggest that different
types of context have different levels of confidence and reliability. For example,
defined context is more reliable compared to sensed and deduced context. They
also have different levels of quality; for example, an RFID-based location sensor
may have a 80% accuracy rate whereas a Bluetooth-based sensor may only have
a 60% accuracy rate. The reasoning engine is implemented in Jena2.

In the Semantic Space Architecture, there are two modules for retrieving and
deriving new information from the OWL Knowledge Base ([17]). The Context
Query Engine provides an interface for applications to extract desired context
information from the knowledge base. The Context Reasoner enables the users
to deduce higher level knowledge, based on the context data of the KB, using
FOL rules. The system uses Jena2 to perform forward-chaining reasoning over



the KB, based on the rules provided by the user. The same approach is also
followed in the prototype context-aware implementation descibed in [18].

As part of Gaia, Ranganathan and Campbell propose a FOL-based context
infrastructure ([19]). The context information is represented as first-order pred-
icates, with the name of a predicate being the type of context described. The
model allows both universal and existential quantification over variables. This
allows parameterizing context and representing a much richer set of contexts.
A predefined set of rules is used to deduce higher-level knowledge based on the
raw context data. Whenever a change occurs in the system’s context, the rules
are re-evaluated and the new inferred context replaces the old one. To resolve
conflicts that occur when multiple rules are activated in the same time, they
have developed a priority base mechanism, allowing only one rule to fire at each
time. For the evaluation of the rules, they use the XSB reasoning engine.

In [20], the use of OWL is proposed both for context representation data, and
for the rules expressing the user preferences and security constraints. Once all
the context knowledge has been loaded in system (implemented on Jess), some
predefined forward-chaining rules are used to complete the core knowledge base.
The service invocation rules, and the privacy enforcing rules, both represented
as backward-chaining rules are then applied to the knowledge base.

The Semantic Context-Aware Access Control Framework in [21] uses a com-
bination of Description Logics and Logic Programming reasoning. Specifically,
they define two types of rules: (a)context aggregation rules to support reason-
ing using property path relationships; (b) context instantiation rules to provide
OWL assertions for attribute values. Both types of rules are expressed according
to the following pattern: if context attributes C1...Cn then context attribute
Cm, which corresponds to a Horn clause, where predicates in the head and in
the body are represented by classes and properties defined in the context and
application-specific ontologies. A similar hybrid reasoning approach is also im-
plemented in the context-aware service adaptation middleware described in [22]).

Rule languages provide a formal model for context reasoning. Furthermore,
they are easy to understand and widespread used, and there are many systems
that integrate them with the ontology model. However, all these approaches share
a common deficiency; they cannot handle the highly changeable, ambiguous and
imperfect context information. In many of the cases that we described, they had
to build additional reasoning mechanisms to deal with conflicts, uncertainty and
ambiguities. The proposed logic models suit better in cases, where we are certain
about the quality of the collected data. Consequently, neither of these models
can serve as the solution to the required reasoning tasks.

4 Distributed Reasoning Techniques

In an Ambient Intelligence environment, there coexist many different entities
that collect, process, and change the context information. Although they all
share the same context, they face it from different viewpoints based on their
perceptive capabilities, their experiences and their goals. Moreover, they may



have different reasoning, storage and computing capabilities; they may ”speak”
different languages; they may even have different levels of sociality. This diver-
sity raises additional research challenges in the study of smart spaces, which
only few recent studies have addressed. In the following paragraphs, we present
these approaches, which have the common feature of employing methods and
techniques from the field of Distributed Artificial Intelligence.

One such approach is sTuples ([23]). This framework extends Tuple Spaces
using SW technologies to represent and retrieve tuples from a Tuple Space. The
Tuple Space model uses a logically shared memory, where producers add tuples
to a common space, while consumers read or extract tuples from the space using
a search template. The sTuples model advances the space lookup operations
using DAML+OIL for the representation of context entities and RACER as
the reasoning engine. It provides a generic framework to implement clients and
services in a pervasive environment by using service and data tuples. Data tuples
are semantic descriptions of the context data that an entity is willing to share
with other entities in the environment, while service tuples are advertisements
of the services offered in the same environment. Each entity uses various types
of agents to gain access to the Tuple Space, each of which has a distinct role.
Examples of such roles are, managing the addition, removal and state changes
of tuples, searching in the Tuple Space, recommending services to the user, and
notifying the user about tuple changes.

Similar approaches, which combine SW technologies and shared memory
models to support asynchronous communications in ambient environments, are
the Semantic Spaces ([24]), and the context management framework presented
in [25]. The latter follows a blackboard -based approach. A mobile terminal sys-
tem uses a central context manager, which stores context information from any
available source. Clients can directly query the manager to gain context infor-
mation, subscribe to various context change notification services, or use higher
level contexts transparently. In the latter case, the context manager assigns the
reasoning tasks to dedicated recognition services.

The OWL-SF framework ([26]) combines the OMG’s Super Distributed Ob-
jects (SDO) technology and the OWL language to allow the distribution of
semantically annotated services for the needs of ambient context-aware systems.
SDOs are logical representations of hardware and software entities that are used
to enable distributed interoperability. The proposed framework integrates two
basic building blocks, OWL-SDOs and Deduction Servers. The OWL-SDOs are
semantic extensions of SDOs; they use the OWL language to describe their sta-
tus, services and communication interface. Deduction servers are specific OWL-
SDOs that provide reasoning services. They contain a deduction engine coordi-
nating reasoning tasks, an RDF inference layer providing rule reasoning support
and an OWL-DL reasoner. Besides providing reasoning support, they are re-
sponsible for collecting the status of SDOs published using the OWL format,
and for building an integrated OWL description accessible to reasoning.

The main feature that distinguishes the latter study is the lack of a central
reasoning or control entity; it is fully decentralized. Collecting the reasoning



tasks in a central entity certainly has many advantages; we can achieve better
control, and better coordination between the various entities that have access
to the central entity. Blackboard-based and shared-memory models have been
thoroughly studied and used in many different types of distributed systems and
have proved to work well in practice. The requirements are, though, much dif-
ferent in this setting. Context may not be restricted to a small room, office or
apartment; we must also study cases of broader areas. The communication with
a central entity is not guaranteed; we must assume unreliable and restricted
wireless communications. Thus, a fully distributed scheme is a necessity. The
OWL-SF framework is a step towards the right direction, but certainly not the
last one. In order to deal with more realistic ambient environments, we need
to eliminate some of the assumptions that they make. For example, different
entities are not required to use the same representation and reasoning models,
and we cannot always assume the existence of dedicated reasoning machines.

5 Other Reasoning Techniques

This section presents additional techniques that have been used to enhance the
reasoning capabilities of AmI applications to deal with certain challenges, such
as the ambiguity of context information, and the vast amount of context data.

In AmbieSense ([27]), they deal with the potentially vast amount of context
data, using Case Based Reasoning. The reasoning mechanism is split into two
different parts; the on-line part that resides on the user’s mobile device, and the
off-line part that resides on the user’s backbone system. When new information
arrives from the context retrieval module, it is translated to fit a preexistent
ontology and sent to a CBR agent. The agent tries to retrieve a known context
or case, and classifies the current situation based on the retrieved one. The
associated goal is then presented to the task decomposition agent, and the case
is stored in the case base. Since the user is expected to experience a few different
situations daily, the storage of the cases will quickly fill up the mobile device
and the CBR searching process will be hampered. To remedy this, some of the
reasoning process is moved into the user’s backbone servers.

The ec(h)o audio museum guide, described in [28], uses DAML+OIL ontolo-
gies for the representation of context data and user profiles. Its reasoning engine
uses a forward-chaining reasoning mechanism to select the sound objects to be
presented. The rules use several criteria that correspond to the semantic de-
scriptions of the museum artifacts, the visitor’s profile, and the way the visitor
moves and interacts with the artifacts. To perform reasoning more efficiently,
they build a virtual network that keeps track of possible combinations of facts,
and support rule activation using the RETE algorithm (implemented in Jess).

The use of a Bayesian network to deal with the ambiguity of context data
has been proposed in some recent studies. In MIRA, a context-based retrieval
system capable of recording and indexing MBone videoconferences, they use a
Bayesian network, coupled to a cost model, to describe a context-retrieval ser-
vice that provides performance measures based on reliability and resource usage



cost ([29]). In [30], a probabilistic model is used to define uncertain contexts.
This model extends the OWL ontology model of SOCAM, by attaching proba-
bility values to the context predicates. They also adopt a Bayesian network as
an underlying reasoning mechanism, as it has efficient probabilistic reasoning ca-
pabilities and allows representing causal relationships between various contexts.
Bayesian networks to recognize high-level contexts have also been used in [25].1

6 Discussion

The special requirements of ambient environments impose the need of logic mod-
els that inherently deal with the imperfect nature of context data. Models that
embody the notions of uncertainty, temporal and spatial change, and incom-
pleteness would provide more robust and efficient solutions. A possible solution
is the use of nonmonotonic reasoning, which has already been studied and used
in other settings with similar requirements, such as the Web, e-learning environ-
ments, business rules, security specifications, negotiation protocols, and others.
Recently, a number of nonmonotonic rule languages have been studied and rea-
soners that integrate them well with ontologies have been developed.

The main drawback of this approach is its relatively higher computational
complexity, which becomes even worse, if we consider the potentially vast amount
of available context data. A possible solution is to partition the large knowledge
bases into smaller pieces, share these pieces with other computing devices, and
deploy some form of partition-based reasoning. This is of course not an easy
task, and only few recent studies have focused on this problem. An interesting
approach is proposed in [31], which studies the partitioning of a large OWL
ABox with respect to a TBox so that specific kinds of reasoning can be performed
separately on each partition and the results trivially combined in order to achieve
complete answers. In [32], they propose algorithms for reasoning with partitions
of related logical axioms in propositional and first-order logic, and a greedy
algorithm that automatically decomposes a set of logical axioms into partitions.
Applying these ideas in AmI seems to be a very promising research direction.

Finally, to achieve collective intelligence, we must study methods for inte-
grating and reasoning with data coming from heterogeneous sources and pos-
sibly described in different vocabularies. Translating all the data in a common
format (schema) and performing centralized reasoning (followed by most of the
studies that we presented) is one of some possible solutions. This approach is
described as the Local-As-View approach in the Data Integration research area
([33]). Other approaches, concerning mainly the integration of heterogeneous
data, are the Global-As-View approach and the Both-As-View approach ([33]),
which have been recently studied and implemented in semantic P2P manage-
ment systems. GAV assumes a global virtual schema, which is defined as a set of
views over the data source schemas. This enables writing queries and rules using
the local language of each data source. In BAV, local schemas are mapped to
1 The modeling and reasoning approaches, along with the architecture and the aim of

the systems referenced in Sections 2-6 are summarized in Table 1.



Table 1. Main Features of Context-Aware Frameworks

System Modeling Reasoning Architecture Aim

CoBrA [9] OWL RDQL centralized context-aware
(agent-based) services

Context Awareness RDF RDQL centralized service
Framework [10] prioritization

CG Platform [11] RDF RQL centralized location-based
services

Semantic Mobile DL DL distributed profile-service
Environment [13] (P2P) matchmaking

Context-Aware Door
Lock [14]

OWL DL centralized automatic door lock

SOCAM [16],[30] OWL FOL + centralized middleware for
Bayesian (middleware) mobile services

Semantic Space [17] OWL RDQL+FOL centralized smart space
mobile services

Gaia Context FOL FOL centralized context-aware
Infrastructure [19] services

CONON OWL DL+FOL centralized context-aware
Prototype [18] services

eWallet [20] OWL Jess centralized context-aware
(agent-based) services

Context-Aware OWL DL+LP centralized policy evaluation
Access Control
Framework [21]

CARE [22] OWL DL+LP centralized service adaptation
(middleware)

sTuples [23] DAML+OIL DL decentralized mobile services
shared memory

Semantic Spaces [24] RDF decentralized information sharing
shared memory

Context RDF Bayesian decentralized information sharing
Management (blackboard- notification services
Framework [25] based)

OWL-SF [26] OWL DL distributed distributed services
(SDOs)

AmbieSense [27] taxonomies CBR centralized context manage-
ment

ec(h)o system [28] DAML+OIL Jess centralized audio museum
guide

MIRA [29] XML Bayesian centralized videoconferences
management



each other using a sequence of schema transformations (mappings). Reasoning
with multiple ontologies interrelated with semantic mappings is studied in [34].
Examples of totally distributed reasoning algorithms, where the whole reasoning
procedure can be viewed as a chain of reasoning tasks performed by different
entities, can be found in [35]. These approaches can also lead to new ideas on
how to exploit the different reasoning capabilities of each entity in an ambient
environment, in order to make the whole system of entities more intelligent.
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