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Abstract 

Defeasible reasoning is a rule-based approach for efficient 
reasoning with incomplete and inconsistent information. 
Such reasoning is, among others, useful for ontology 
integration, where conflicting information arises 
naturally; and for the modeling of business rules and 
policies, where rules with exceptions are often used. This 
paper describes these scenarios in more detail, and reports 
on the implementation of a system for defeasible 
reasoning on the Web. The system (a) is syntactically 
compatible with RuleML; (b) features strict and 
defeasible rules, priorities and two kinds of negation; (c) 
is based on a translation to logic programming with 
declarative semantics; (d) is flexible and adaptable to 
different intuitions within defeasible reasoning; and (e) 
can reason with rules, RDF, RDF Schema and (parts of) 
OWL ontologies. 

Introduction 

The development of the Semantic Web (Berners Lee et 
al., 2001) proceeds in layers, each layer being on top of 
other layers. At present, the highest layer that has reached 
sufficient maturity is the ontology layer in the form of the 
description logic based languages of DAML+OIL 
(Connolly et al., 2001) and OWL (Dean and Schreiber, 
2004).  
The next step in the development of the Semantic Web 
will be the logic and proof layers that will offer enhanced 
representation and reasoning capabilities. Rule systems 
appear to lie in the mainstream of such activities. 
Moreover, rule systems can also be utilized in ontology 
languages. So, in general rule systems can play a twofold 
role in the Semantic Web initiative: (a) they can serve as 
extensions of, or alternatives to, description logic based 
ontology languages; and (b) they can be used to develop 
declarative systems on top of (using) ontologies. Reasons 
why rule systems are expected to play a key role in the 
further development of the Semantic Web include the 
following: 

• Seen as subsets of predicate logic, monotonic rule 
systems (Horn logic) and description logics are 
orthogonal; thus they provide additional expressive 
power to ontology languages. 

• Efficient reasoning support exists to support rule 
languages. 

• Rules are well known in practice, and are reasonably 
well integrated in mainstream information technology. 

Possible interactions between description logics and 
monotonic rule systems were studied in (Grosof et al., 
2003). Based on that work and on previous work on 
hybrid reasoning (Levy and Rousset, 1998) it appears 
that the best one can do at present is to take the 
intersection of the expressive power of Horn logic and 
description logics; one way to view this intersection is 
the Horn-definable subset of OWL. 
This paper is devoted to a different problem, namely 
conflicts among rules. Here we just mention the main 
sources of such conflicts, which are further expanded in 
the next section. At the ontology layer:  

• Default inheritance within ontologies 

• Ontology merging 

And at the logic and reasoning layers: 

• Rules with exceptions as a natural representation of 
business rules 

• Reasoning with incomplete information 
Defeasible reasoning is a simple rule-based approach to 
reasoning with incomplete and inconsistent information. 
It can represent facts, rules, and priorities among rules. 
This reasoning family comprises defeasible logics (Nute, 
1994;  Antoniou et al., 2001) and Courteous Logic 
Programs (Grosof 1997). The main advantage of this 
approach is the combination of two desirable features: 
enhanced representational capabilities allowing one to 
reason with incomplete and contradictory information, 
coupled with low computational complexity compared to 
mainstream nonmonotonic reasoning. 
In this paper we report on the implementation of a 
defeasible reasoning system for reasoning on the Web. Its 
main characteristics are the following: 

• Its user interface is compatible with RuleML (RuleML), 
the main standardization effort for rules on the 
Semantic Web. 

• It is based on Prolog. The core of the system consists of 
a well-studied translation (Antoniou et. al., 2001) of 
defeasible knowledge into logic programs under Well-
Founded Semantics (van Gelder et al., 1991). This 
declarative translation distinguishes our work from 
other implementations (Grosof et al., 2002; Maher et 
al., 2001). 

• The main focus is on flexibility. Strict and defeasible 
rules and priorities are part of the interface and the 
implementation. Also, a number of variants were 
implemented (ambiguity blocking, ambiguity 



propagating, conflicting literals; see below for further 
details). 

• The system can reason with rules and ontological 
knowledge written in RDF Schema (RDFS) or OWL. 

As a result of the above, DR-Prolog is a powerful 
declarative system supporting: 

• rules, facts and ontologies 

• all major Semantic Web standards: RDF, RDFS, OWL, 
RuleML 

• monotonic and nonmonotonic rules, open and closed 
world assumption, reasoning with inconsistencies. 

The paper is organized as follows. The next section 
describes the main motivations for conflicting rules on 
the Semantic Web. The third section describes the basic 
ideas of defeasible reasoning, and the forth one describes 
the translation of defeasible logic, and of RDF, RDFS 
and (parts of) OWL into logic programs. The fifth 
section reports on the implemented system. The sixth 
section discusses related work, and the last section 
concludes with a summary and some ideas for future 
work. 

Motivation for Nonmonotonic Rules on the 

Semantic Web  

We believe that we have to distinguish between two types 
of knowledge on the Semantic Web. One is static 
knowledge, such as factual and ontological knowledge 
which contains general truths that do not change often. 
And the other is dynamic knowledge, such as business 
rules, security policies etc. that change often according to 
business and strategic needs. The first type of knowledge 
requires monotonic reasoning based on an open world 
assumption to guarantee correct propagation of truths. 
But for dynamic knowledge flexible, context-dependent 
and inconsistency tolerant nonmonotonic reasoning is 
more appropriate for drawing practical conclusions. 
Obviously, a combination of both types of knowledge is 
required for practical systems. Defeasible logic, as 
described in the next section, supports both kinds of 
knowledge. Before presenting its technical details, we 
motivate the use of nonmonotonic rules in more detail. 

Reasoning with Incomplete Information: Antoniou 
and Arief (2002) describe a scenario where business 
rules have to deal with incomplete information: in the 
absence of certain information some assumptions have to 
be made which lead to conclusions that are not supported 
by classical predicate logic. In many applications on the 
Web such assumptions must be made because other 
players may not be able (e.g. due to communication 
problems) or willing (e.g. because of privacy or security 
concerns) to provide information. This is the classical 
case for the use of nonmonotonic knowledge 
representation and reasoning (Marek and Truszczynski, 
1993). 

Rules with Exceptions: Rules with exceptions are a 
natural representation for policies and business rules 
(Antoniou et. al, 1999). And priority information is often 
implicitly or explicitly available to resolve conflicts 
among rules. Potential applications include security 

policies (Ashri et al., 2004; Li et al., 2003), business 
rules (Antoniou and Arief 2002), personalization, 
brokering, bargaining, and automated agent negotiations 
(Governatori et al., 2001). 

Default Inheritance in Ontologies: Default inheritance 
is a well-known feature of certain knowledge 
representation formalisms. Thus it may play a role in 
ontology languages, which currently do not support this 
feature. Grosof and Poon (2003) present some ideas for 
possible uses of default inheritance in ontologies. A 
natural way of representing default inheritance is rules 
with exceptions, plus priority information. Thus, 
nonmonotonic rule systems can be utilized in ontology 
languages. 

Ontology Merging: When ontologies from different 
authors and/or sources are merged, contradictions arise 
naturally. Predicate logic based formalisms, including all 
current Semantic Web languages, cannot cope with 
inconsistencies. 

If rule-based ontology languages are used and if rules are 
interpreted as defeasible (that is, they may be prevented 
from being applied even if they can fire) then we arrive at 
nonmonotonic rule systems. A skeptical approach, as 
adopted by defeasible reasoning, is sensible because it 
does not allow for contradictory conclusions to be drawn. 
Moreover, priorities may be used to resolve some 
conflicts among rules, based on knowledge about the 
reliability of sources or on user input. Thus, 
nonmonotonic rule systems can support ontology 
integration. 

Defeasible Logics 

Basic Characteristics  

The root of defeasible logics lies on research in 
knowledge representation, and in particular on 
inheritance networks. Defeasible logics can be seen as 
inheritance networks expressed in a logical rules 
language. In fact, they are the first nonmonotonic 
reasoning approach designed from its beginning to be 
implementable.  
Being nonmonotonic, defeasible logics deal with 
potential conflicts (inconsistencies) among knowledge 
items. Thus they contain classical negation, contrary to 
usual logic programming systems. They can also deal 
with negation as failure (NAF), the other type of negation 
typical of nonmonotonic logic programming systems; in 
fact, Wagner (2003) argues that the Semantic Web 
requires both types of negation. In defeasible logics, 
often it is assumed that NAF is not included in the object 
language. However, as Antoniou et al. (2000a) show, it 
can be easily simulated when necessary. Thus, we may 
use NAF in the object language and transform the 
original knowledge to logical rules without NAF 
exhibiting the same behavior. 
Conflicts among rules are indicated by a conflict between 
their conclusions. These conflicts are of local nature.  
The simpler case is that one conclusion is the negation of 
the other. The more complex case arises when the 
conclusions have been declared to be mutually exclusive, 



a very useful representation feature in practical 
applications.  
Defeasible logics are skeptical in the sense that 
conflicting rules do not fire. Thus consistency of drawn 
conclusions is preserved. 
Priorities on rules may be used to resolve some conflicts 
among rules. Priority information is often found in 
practice, and constitutes another representational feature 
of defeasible logics.  
The logics take a pragmatic view and have low 
computational complexity. This is, among others, 
achieved through the absence of disjunction and the local 
nature of priorities: only priorities between conflicting 
rules are used, as opposed to systems of formal 
argumentation where often more complex kinds of 
priorities (e.g. comparing the strength of reasoning 
chains) are incorporated. 
Generally speaking, defeasible logics are closely related 
to Courteous Logic Programs (Grosof, 1997); the latter 
were developed much later than defeasible logics. DLs 
have the following advantages: 

• They have more general semantic capabilities, e.g. in 
terms of loops, ambiguity propagation etc. 

• They have been studied much more deeply, with strong 
results in terms of proof theory (Antoniou et al., 
2001), semantics (Maher, 2002) and computational 
complexity (Maher, 2001). As a consequence, its 
translation into logic programs, a cornerstone of DR-
Prolog, has also been studied thoroughly (Maher et al., 
2001; Antoniou and Maher, 2002). 

However, Courteous Logic Programs have also had some 
advantages: 

• They were the first to adopt the idea of mutually 
exclusive literals, an idea incorporated in DR-Prolog. 

• They allow access to procedural attachments, 
something we have chosen not to follow in our work 
so far.  

Syntax 

A defeasible theory D is a triple (F,R,>) where F is a 
finite set of facts, R a finite set of rules, and > a 
superiority relation on R. In expressing the proof theory 
we consider only propositional rules. Rules containing 
free variables are interpreted as the set of their variable-
free instances. 
There are two kinds of rules (fuller versions of defeasible 
logics include also defeaters): Strict rules are denoted by  
 A → p, 
and are interpreted in the classical sense: whenever the 
premises are indisputable then so is the conclusion. An 
example of a strict rule is “Professors are faculty 
members”. Written formally:  
 professor(X) → faculty(X).  
Inference from strict rules only is called definite 
inference. Strict rules are intended to define relationships 
that are definitional in nature, for example ontological 
knowledge.  
Defeasible rules are denoted by  
 A ⇒ p,  
and can be defeated by contrary evidence. An example of 
such a rule is  

 faculty(X) ⇒ tenured(X)  

which reads as follows: “Professors are  typically 
tenured”. 
A superiority relation on R is an acyclic relation > on R 
(that is, the transitive closure of > is irreflexive). When  
 r1 > r2, 
then r1 is called superior to r2, and r2 inferior to r1. This 
expresses that r1 may override r2. For example, given the 
defeasible rules 
 r: professor(X) ⇒  tenured(X) 

 r’: visiting(X) ⇒ ¬tenured(X) 

which contradict one another: no conclusive decision can 
be made about whether a visiting professor is tenured. 
But if we introduce a superiority relation > with  
 r’ > r,  
then we can indeed conclude that a visiting professor 
cannot be tenured. 
A formal definition of the proof theory is found in 
(Antoniou et al., 2001). 

Simulation of Negation As Failure in the Object 

Language 

We follow a technique based on auxiliary predicates first 
presented in (Antoniou et al., 2000a), but which is often 
used in logic programming. According to this technique, 
a defeasible theory with NAF can be modularly 
transformed into an equivalent one without NAF. Every 
rule 
 r: L1,…,Ln, ~M1,…, ~Mk ⇒ L 

where L1,…,Ln, M1,…,Mk are atoms and ~Mi denotes the 
weak negation of Mi, is replaced by the  rules: 

 r: L1,…,Ln, neg(M1),…,neg(Mk) ⇒ L 

 ⇒ neg(M1) 

 … 

 ⇒ neg(Mk) 

 M1 ⇒ ¬neg(M1) 

 … 

 Mk ⇒ ¬neg(Mk) 

where neg(M1),…,neg(Mk) are new auxiliary atoms 
and ¬neg(Mi) denotes the strong negation of Mi. If we 
restrict attention to the original language, the set of 
conclusions remains the same. 

Ambiguity Blocking and Ambiguity Propagating 

Behavior 

A literal is ambiguous if there is a chain of reasoning that 
supports a conclusion that p is true, another that supports 
that ¬p (where ¬p denotes strong negation of p) is true, 
and the superiority relation does not resolve this conflict. 
We can illustrate the concept of ambiguity propagation 
through the following example. 
 r1: quaker(X) ⇒ pacifist(X) 

 r2: republican(X) ⇒ ¬pacifist(X) 

 r3: pacifist(X) ⇒ ¬hasGun(X) 

 r4: livesInChicago(X) ⇒ hasGun(X) 

 quaker(a) 

 republican(a) 

 livesInChicago(a) 

 r3 > r4 



Here pacifist(a) is ambiguous. The question is 
whether this ambiguity should be propagated to the 
dependent literal hasGun(a). In one defeasible logic 
variant it is detected that rule r3 cannot fire, so rule r4 is 
unopposed and gives the defeasible conclusion 
hasGun(a). This behavior is called ambiguity blocking, 
since the ambiguity of pacifist(a) has been used to 
block r3 and resulted in the unambiguous conclusion 
hasGun(a). 
On the other hand, in the ambiguity propagation variant, 
although rule r3 cannot lead to the conclusion 
hasGun(a) (as pacifist(a) is not provable), it 
opposes rule r4 and  the conclusion hasGun(a) cannot 
also be drawn.  
This question has been extensively studied in artificial 
intelligence, and in particular in the theory of inheritance 
networks. A preference for ambiguity blocking or 
ambiguity propagating behavior is one of the properties 
of nonmonotonic inheritance nets over which intuitions 
can clash. Ambiguity propagation results in fewer 
conclusions being drawn, which might make it preferable 
when the cost of an incorrect conclusion is high. For 
these reasons an ambiguity propagating variant of DL is 
of interest. 

Conflicting Literals 

Usually in Defeasible Logics only conflicts among rules 
with complementary heads are detected and used; all 
rules with head L are considered as supportive of L, and 
all rules with head ¬L as conflicting. However, in 
applications often literals are considered to be 
conflicting, and at most one of a certain set should be 
derived. For example, the risk an investor is willing to 
accept may be classified in one of the categories low, 
medium, and high. The way to solve this problem is to 
use a constraint rule of the form 
 conflict :: low, medium, high 

Now if we try to derive the conclusion high, the 
conflicting rules are not just those with head ¬high, but 
also those with head low and medium. Similarly, if we 
are trying to prove ¬high, the supportive rules include 
those with head low or medium. 
In general, given a conflict::L,M, we augment the 
defeasible theory by: 

 ri: q1,q2,…,qn →  ¬L  

  for all rules ri: q1,q2,…,qn → M 

 ri: q1,q2,…,qn →  ¬M  

  for all rules ri: q1,q2,…,qn →  L 

 ri: q1,q2,…,qn ⇒ ¬L   

  for all rules ri: q1,q2,…,qn⇒ M 

 ri: q1,q2,…,qn ⇒  ¬M  

  for all rules ri: q1,q2,…,qn ⇒ L 

The superiority relation among the rules of the defeasible 
theory is propagated to the “new” rules. 

Translation into Logic Programs 

Translation of Defeasible Theories 

The translation of a defeasible theory D into a logic 
program P(D) has a certain goal: to show that 
  p is defeasibly provable in D � 
  p is included in the Well-Founded Model of P(D) 
Two different translations have so far been proposed, 
sharing the same basic structure: 
The translation of (Antoniou et al., 2000b; Maher et al., 
2001) where a meta-program was used.  
The translation of (Antoniou and Maher, 2002), which 
makes use of control literals.  
It is an open question which is better in terms of 
computational efficiency, although we conjecture that for 
large theories the meta-program approach is better, since 
in the other approach a large number of concrete program 
clauses is generated. Therefore, we have adopted this 
approach in our implementation. 

Translation of Ambiguity Blocking Behavior. The 
metaprogram which corresponds to the ambiguity 
blocking behavior of the defeasible theories consists of 
the following program clauses: 
The first three clauses define the class of rules used in a 
defeasible theory. 

 supportive_rule(Name,Head,Body):- 

  strict(Name,Head,Body). 

 supportive_rule(Name,Head,Body):- 

  defeasible(Name,Head,Body). 

 rule(Name,Head,Body):- 

  supportive_rule (Name,Head,Body). 

The following clauses define the definite provability: a 
literal is definitely provable if it is a fact or is supported 
by a strict rule, the premises of which are definitely 
provable. 

 definitely(X):- fact(X). 

 definitely(X):-strict(R,X,L), 

  definitely_provable(L). 

 definitely_provable([]). 

 definitely_provable(X):- definitely(X). 

definitely_provable([X1|X2]):-  

definitely_provable(X1), 

definitely_provable(X2). 

The next clauses define the defeasible provability: a 
literal is defeasibly provable, either if it is definitely 
provable, or if its complementary is not definitely 
provable, and it is supported by a defeasible rule, the 
premises of which are defeasibly provable, and which is 
not overruled. The sk_not operator, which we use as the 
negation operator in the following clauses, is provided by 
XSB (the logic programming system that stands in the 
core of DR-Prolog), and allows for correct execution of 
programs according to the well-founded semantics. 

 defeasibly(X):- definitely(X). 

defeasibly(X):- negation(X,X1), 



supportive_rule(R,X,L), 

defeasibly_provable(L), 

sk_not(definitely(X1)),  

  sk_not(overruled(R,X)). 

 defeasibly_provable([]). 

 defeasibly_provable(X):- defeasibly(X). 

defeasibly_provable([X1|X2]):-  

defeasibly_provable(X1), 

defeasibly_provable(X2). 

The next clause defines that a rule is overruled when 
there is a conflicting rule, the premises of which are 
defeasible provable, and which is not defeated. 

 overruled(R,X):- negation(X,X1), 

  supportive_rule(S,X1,U), 

defeasibly_provable(U),  

  sk_not(defeated(S,X1)). 

The next clause defines that a rule is defeated when there 
is a superior conflict rule, the premises of which are 
defeasibly provable. The last two clauses are used to 
define the negation of a literal. 

 defeated(S,X):-sup(T,S), negation(X,X1), 

supportive_rule(T,X1,V), 

defeasibly_provable(V). 

 negation(~(X),X):- !. 

 negation(X,~(X)). 

For a defeasible theory D = (F,R,>), where F is the set of 
the facts, R is the set of the rules, and > is the set of the 
superiority relations between the rules of the theory, we 
add facts according to the following guidelines: 

 fact(p).   

  for each p∈F 
 strict(ri,p,[q1,…,qn]).   
  for each rule r: q1,q2,…,qn → p ∈R 
 defeasible(ri,p,[q1,…,qn]). 
   for each rule r: q1,q2,…,qn ⇒ p ∈R 
 sup(r,s). 
   for each pair of rules such that r>s 

Translation of Ambiguity Propagating Behavior. In 
order to support the ambiguity propagation behavior of a 
defeasible theory, we only have to modify the program 
clauses which define when a rule is overruled. In 
particular, in this variant a rule is overruled when there is 
a conflicting rule, the premises of which are supported, 
and which is not defeated. 

 overruled(R,X):- negation(X,X1), 

supportive_rule(S,X1,U), 

supported_list(U), 

  sk_not(defeated(S,X1)). 

The next clauses define that a literal is supported, either 
if it is definitely provable, or if there is a supportive rule, 
the premises of which are supported, and which is not 
defeated. 

 supported(X):- definitely(X). 

 supported(X):-supportive_rule(R,X,L), 

supported_list(L), 

sk_not(defeated(R,X)). 

 supported_list([]). 

 supported_list(X):- supported(X). 

 supported_list([X1|X2]):- 

  supported_list(X1),  

  supported_list(X2). 

Translation of RDF(S) and parts of OWL 

ontologies 

In order to support reasoning with RDF/S and OWL 
ontologies, we translate RDF data into logical facts, and 
RDFS and OWL statements into logical facts and rules.  
For RDF data, the SWI-Prolog RDF parser (SWI) is used 
to transform it into an intermediate format, representing 
triples as  

 rdf(Subject, Predicate, Object).  

Some additional processing  
(i) transforms the facts further into the format 

 Predicate(Subject, Object);  

(ii) cuts the namespaces and the “comment” elements of 
the RDF files, except for resources which refer to the 
RDF or OWL Schema, for which namespace information 
is retained. 
In addition, for processing RDF Schema information, the 
following rules capturing the semantics of RDF Schema 
constructs are created:  

 a: C(X):- rdf:type(X,C). 

 b: C(X):- rdfs:subClassOf(Sc,C),Sc(X). 

 c: P(X,Y):- rdfs:subPropertyOf(Sp,P), 

         Sp(X,Y). 

 d: D(X):- rdfs:domain(P,D),P(X,Z). 

 e: R(Z):- rdfs:range(P,R),P(X,Z). 

Parts of OWL ontologies can also be translated using 
logical rules, which capture the semantics of some of the 
OWL constructs. 

Equality 

o1: D(X):- C(X),owl:equivalentClass(C,D). 

o2: C(X):- D(X),owl:equivalentClass(C,D). 

o3: P(X,Y):- Q(X,Y), 

   owl:equivalentProperty(P,Q). 

o4: Q(X,Y):- P(X,Y), 

   owl:equivalentProperty(P,Q). 

o5: owl:equivalentClass(X,Y):- 

   rdfs:subClassOf(X,Y), 

   rdfs:subClassOf(Y,X). 

o6 :owl:equivalentProperty(X,Y):-  

   rdfs:subPropertyOf(X,Y),  

   rdfs:subPropertyOf(Y,X) 

o7 : C(X):- C(Y), 

      owl:sameIndividualAs(X,Y). 

o8 : P(X,Z):- P(X,Y),  

   owl:sameIndividualAs(Y,Z). 

o9 : P(Z,Y):- P(X,Y), 

    owl:sameIndividualAs(X,Z). 

o10: owl:sameIndividualAs(X,Y):- 

   owl:sameIndividualAs(Y,X). 

o11: owl:sameIndividualAs(X,Z):- 

owl:sameIndividualAs(X,Y), 

owl:sameIndividualAs(Y,Z). 



Figure 1: The overall architecture of DR-Prolog 

o12: owl:sameAs(X,Y):- 

     owl:equivalentClass(X,Y). 

o13: owl:sameAs(X,Y):-  

    owl:equivalentProperty(X,Y). 

o14: owl:sameAs(X,Y):-  

    owl:sameIndividualAs(X,Y). 

Property Characteristics 

o15: P(X,Z):- P(X,Y), P(Y,Z),  

    rdf:type(P,owl:TransitiveProperty). 

o16: P(X,Y):- P(Y,X),  

    rdf:type(P,owl:SymmetricProperty). 

o17: P(X,Y):- Q(Y,X),owl:Inverseof(P,Q).  

o18: Q(X,Y):- P(Y,X),owl:Inverseof(P,Q).  

o19: owl:sameIndividualAs(X,Y):- 

   P(A,X),P(A,Y), 

   rdf:type(P,owl:FunctionalProperty). 

o20: owl:sameIndividualAs(X,Y):-  

   P(X,A),P(Y,A),  

rdf:type(P,owl:InverseFunctionalProperty) 

Property Restrictions 

o21: D(Y):- C(X),P(X,Y), 

    rdfs:subClassOf(C,R), 

    rdf:type(R,owl:Restriction),  

   owl:onProperty(R,P),  

    owl:allValuesFrom(R,D),  

   rdf:type(D,owl:Class). 

o22: C(X):- P(X,V),rdfs:subClassOf(C,R),  

   rdf:type(R,owl:Restriction),  

  owl:onProperty(R,P),owl:hasValue(R,V). 

o23: P(X,V):- C(X),rdfs:subClassOf(C,R),  

    rdf:type(R,owl:Restriction),  

  owl:onProperty(R,P),owl:hasValue(R,V). 

Collections 

o24: D(X):- C1(X), C2(X), 

   owl:IntersectionOf(D,Collect),  

  rdf:type(Collect,Collection), 

  memberOf(C1,Collect), 

   memberOf(C2,Collect). 

o25: C1(X):- D(X), 

    owl:IntersectionOf(D,Collect), 

  rdf:type(Collect,Collection),  

  memberOf(C1,Collect),  

   memberOf(C2,Collect). 

o26: C2(X):- D(X), 

    owl:IntersectionOf(D,Collect), 

  rdf:type(Collect,Collection),  

  memberOf(C1,Collect),  

  memberOf(C2,Collect). 

o27: C(X):- owl:oneOf(C,Collect),      

   rdf:type(Collect,Collection),  

  memberOf(X,Collect). 

Implementation 

DR-Prolog, in accordance with the general philosophy of 
logic programming, is designed to answer queries. In 
fact, there are two kinds of queries, depending on which 

strength of proof we are interested in: definite or 
defeasible provability.  
In Figure 1 we present the overall architecture of our 
system. The system works in the following way: The user 
imports defeasible theories, either using the syntax of 
defeasible logic, or in the RuleML syntax, that we 
describe below in this section. The former theories are 
checked by the DL Parser, and if they are syntactically 
correct, they are passed to the Logic Translator, which 
translates them into logic programs. The RuleML 
defeasible theories are checked by the RuleML Parser 
and translated into defeasible theories, which are also 
passed to the Logic Translator and transformed into logic 
programs. The Reasoning Engine compiles the logic 
programs and the metaprogram which corresponds to the 
user’s choice of the defeasible theory variants (ambiguity 
blocking / propagating), and evaluates the answers to the 
user’s queries. The logic programming system that we 
use as the Reasoning Engine is XSB. The advantages of 
this system are two: (a) it supports the well-founded 
semantics of logic programs through the use of tabled 
predicates, and its sk_not negation operator; and (b) it 
offers an easy and efficient way to communicate with the 
other parts of the system. The RDF&OWL Translator is 
used to translate the RDF/S and OWL information into 
logical facts and rules, which can be processed by the 
rules, provided by the user. 
The DTD that we have developed to represent defeasible 
theories in XML format, is in fact an extension of the 
RuleML DTDs (RuleML). The elements that we add / 
modify to support the defeasible theories are: 

• The “rulebase” root element which uses strict and 
defeasible rules, fact assertions and superiority 
relations. 

• The “imp” element, which consists of a “_head” and a 
“_body” element, accepts a “name” attribute, and 
refers to the strict rules.  

• The “def” element, which consists of a “_head” and a 
“_body” element, accepts a “name” attribute, and 
refers to the defeasible rules.  



• The “superiority” empty element, which accepts the 
name of two rules as its attributes (“sup” & “inf”), and 
refers to the superiority relation between these two 
rules. 

Below, we present the modified DTD: 

 <!ELEMENT rulebase ((imp|def|fact|greater)*)> 
 <!ELEMENT imp ((head, body) | (body, head))> 
 <!ATTLIST imp  
   name ID #IMPLIED> 
 <!ELEMENT def ((head, body) | (body, head))> 
 <!ATTLIST def 
   name ID #IMPLIED> 
 <!ELEMENT fact (atom|neg) > 
 <!ELEMENT greater EMPTY> 
 <!ATTLIST greater 
   sup IDREF #REQUIRED 
   inf IDREF #REQUIRED> 
 <!ELEMENT head (atom|neg)> 
 <!ELEMENT body (atom|neg)*> 
 <!ELEMENT neg (atom)> 
 <!ELEMENT atom ((op,(ind | var)*) | ((ind | var)+, 
op))> 
 <!ELEMENT ind (#PCDATA)> 
 <!ELEMENT var (#PCDATA)> 
 <!ELEMENT op (#PCDATA)> 

All the DR-Prolog files are available at: 
http://www.csd.uoc.gr/~bikakis/DR-Prolog. 
 

Related Work 

There exist several previous implementations of 
defeasible logics. Conington et al. (2002) give the 
historically first implementation, D-Prolog, a Prolog-
based implementation. It was not declarative in certain 
aspects (because it did not use a declarative semantic for 
the not operator), therefore it did not correspond fully to 
the abstract definition of the logic. Also, D-Prolog 
supported only one variation thus it lacked the flexibility 
of the implementation we report on. Finally it did not 
provide any means of integration with Semantic Web 
layers and concepts, a central objective of our work. 
Deimos (Maher et al., 2001) is a flexible, query 
processing system based on Haskell. It implements 
several variants, but not conflicting literals. Also, it does 
not integrate with Semantic Web (for example, there is 
no way to treat RDF data and RDFS/OWL ontologies; 
nor does it use an XML-based or RDF-based syntax for 
syntactic interoperability). Thus it is an isolated solution. 
Finally, it is propositional and does not support variables. 
Delores (Maher et al., 2001) is another implementation, 
which computes all conclusions from a defeasible theory. 
It is very efficient, exhibiting linear computational 
complexity. Delores only supports ambiguity blocking 
propositional defeasible logic; so, it does support 
ambiguity propagation, nor conflicting literals and 
variables. Also, it does integrate with other Semantic 
Web languages and systems, and is thus an isolated 
solution.  
DR-DEVICE (Bassiliades, 2004) is another effort on 
implementing defeasible reasoning, albeit with a different 

approach. DR-DEVICE is implemented in Jess, and 
integrates well with RuleML and RDF. It is a system for 
query answering. Compared to the work of this paper, 
DR-DEVICE supports only one variant, ambiguity 
blocking, thus it does not offer the flexibility of this 
implementation. At present, it does not support RDFS 
and OWL ontologies. 
SweetJess (Grosof et al., 2002) is another 
implementation of a defeasible reasoning system 
(situated courteous logic programs) based on Jess. It 
integrates well with RuleML. Also, it allows for 
procedural attachments, a feature not supported by any of 
the above implementations, not by the system of this 
paper. However, SweetJess is more limited in flexibility, 
in that it implements only one reasoning variant (it 
corresponds to ambiguity blocking defeasible logic). 
Moreover, it imposes a number of restrictions on the 
programs it can map on Jess. In comparison, our system 
implements the full version of defeasible logic. 

Conclusion 

In this paper we described reasons why conflicts among 
rules arise naturally on the Semantic Web. To address 
this problem, we proposed to use defeasible reasoning 
which is known from the area of knowledge 
representation. And we reported on the implementation 
of a system for defeasible reasoning on the Web. It is 
Prolog-based, supports RuleML syntax, and can reason 
with monotonic and nonmonotonic rules, RDF facts and 
RDFS and OWL ontologies..  
Planned future work includes: 

• Adding arithmetic capabilities to the rule language, and 
using appropriate constraint solvers in conjunction 
with logic programs. 

• Implementing load/upload functionality in conjunction 
with an RDF repository, such as RDF Suite (Alexaki et 
al., 2001) and Sesame (Broekstra et al., 2003).  

• Applications of defeasible reasoning and the developed 
implementation for brokering, bargaining, automated 
agent negotiation, and security policies. 
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