
DR-Prolog: A System for Defeasible Reasoning with Rules and

Ontologies on the Semantic Web

Grigoris Antoniou and Antonis Bikakis

Computer Science Department, University of Crete, Greece

Institute of Computer Science, FORTH, Greece

{antoniou,bikakis}@ics.forth.gr

Abstract

Non-monotonic rule systems are expected to play an important role in the layered devel-

opment of the Semantic Web. Defeasible reasoning is a direction in nonmonotonic rea-

soning that is based on the use of rules that may be defeated by other rules. It is a simple,

but often more efficient approach than other nonmonotonic rule systems, for reasoning

with incomplete and inconsistent information. This paper reports on the implementation

of a system for defeasible reasoning on the Web. The system (a) is syntactically compati-

ble with RuleML; (b) features strict and defeasible rules, priorities and two kinds of nega-

tion; (c) is based on a translation to logic programming with declarative semantics; (d) is

flexible and adaptable to different intuitions within defeasible reasoning; and (e) can rea-

son with rules, RDF, RDF Schema and (parts of) OWL ontologies.

Keywords: rules, semantic web reasoning, nonmonotonic reasoning

1 Introduction

The development of the Semantic Web [Berners Lee et al., 2001] proceeds in layers, each layer

being on top of other layers. At present, the highest layer that has reached sufficient maturity is

the ontology layer in the form of the description logic based languages of DAML+OIL [Con-

nolly et al., 2001] and OWL [Dean and Schreiber, 2004].

On top of the ontology layer sit the logic and proof layers. The implementation of these two

layers will allow the user to state any logical principles, and permit the computer to infer new

knowledge by applying these principles on the existing data. Rule systems can be utilized in two

stages of the layered development of the Semantic Web. In the ontology layer, they can serve as

extensions to the description logic based ontology languages, by enriching them with more ex-

pressive power and representational capabilities. On top of the ontologies, they can be used for

the development of automated reasoners that can deduce new knowledge based on the given

knowledge. Among the studies regarding rule languages and rule systems for the Semantic Web,

we distinguish: (a) the Semantic Web Rules Language [Horrocks et al., 2005], a Horn clause ex-

tension of OWL; (b) the study made by Rosati, dealing with reasoning in description logic

knowledge bases augmented with rules expressed in Datalog [Rosati, 2005]; (c) the Description

Logic Programs and Description Horn Logic presented in [Grosof et al., 2003]; and (d) Xcerpt, a

rule-based, declarative query and transformation language for XML data [Bry, 2004]. Much

work on the same subject is also undergoing in the context of REWERSE, a research program on

“Reasoning on the Web” that is funded by the European Commission and Switzerland. Recently,

W3C launched the Rule Interchange Format (RIF) Working Group. The group is chartered to

produce a language for the exchange of rules and their transfer between rule systems.

 Most studies have focused on the employment of monotonic logics in the layered development

of the Semantic Web. Nonmonotonic rule systems, on the other hand, seem also to be a good so-

lution, as they offer more expressive capabilities and are closer to commonsense reasoning. Sev-

eral nonmonotonic logics have been proposed and studied during the last decades, among them

default logic [Reiter, 1980], autoepistemic logic [Moore, 1985], circumscription [McCarthy,

1977]. Our work is based on defeasible reasoning.

 Defeasible reasoning is a simple rule-based approach to reasoning with incomplete and incon-

sistent information. It can represent facts, rules, and priorities among rules. This reasoning fam-

ily comprises defeasible logics [Nute, 1994; Antoniou et. al, 2001] and Courteous Logic Pro-

grams [Grosof, 1997]. The main advantage of this approach is the combination of two desirable

features: enhanced representational capabilities allowing one to reason with incomplete and con-

tradictory information, coupled with low computational complexity compared to mainstream

nonmonotonic reasoning.

 Due to its features, Defeasible Reasoning is appropriate for cases of highly dynamic environ-

ments, where the available data is not always complete and unambiguous, or it is continually

changing. There is a study comparing various nonmonotonic approaches with human reasoning

strategies [Ford and Billington, 2000], in which Defeasible Reasoning performs very well.

 Some interesting applications that have so far been developed are: (a) embedded control sys-

tems, which use a set of defeasible rules for logically controlling an air-conditioning system

[Covington, 1997] and an elevator [Covington, 2000]; (b) the integration of defeasible logic in a

decision support system for the legal domain [Johnston and Governatori, 2003]; (c) a stock mar-

ket agent responsible for gathering stock market information via the Web, and for making deci-

sions according to the stock trading strategies expressed as defeasible theories [Garcia et al.,

2000]; and (d) a system for automated agent negotiation, in which the strategies of the negotiat-

ing parties are represented in Defeasible Logic [Skylogiannis et al., 2001]. The application of

defeasible rules for automated negotiation is also studied in [Governatori et al., 2000].

The main contribution of this paper is that it presents an implemented defeasible reasoning

system (DR-Prolog), which has been tested, evaluated and compared with existing similar im-

plementations. Through the description of the system, we also show how we can combine the

expressive power of a nonmonotonic logic (defeasible logic) with the Semantic Web technolo-

gies (RDF(S), OWL, RuleML) to build applications for the logic and proof layers of the Seman-

tic Web. The main characteristics of DR-Prolog are the following:

� Its user interface is compatible with RuleML [RuleML], the main standardization effort for

rules on the Semantic Web.

� It is based on Prolog. The core of the system consists of a well-studied translation [Antoniou

et. al., 2006] of defeasible knowledge into logic programs under Well-Founded Semantics

[van Gelder et al., 1991]. This declarative translation distinguishes our work from other im-

plementations [Grosof et al., 2002; Maher et al., 2001].

� The main focus is on flexibility. Strict and defeasible rules and priorities are part of the in-

terface and the implementation. Also, a number of variants are implemented (ambiguity

blocking, ambiguity propagating, conflicting literals; see below for further details).

� The system can reason with rules and ontological knowledge written in RDF Schema

(RDFS) or OWL. The latter happens through the transformation of the RDFS constructs and

many OWL constructs into rules. Note, however, that a number of OWL constructs cannot

be captured by the expressive power of rule languages.

As a result of the above, DR-Prolog is a powerful declarative system supporting (a) rules, facts

and ontologies; (b) all major Semantic Web standards: RDF(S), OWL, RuleML; and (c) mono-

tonic and nonmonotonic rules, open and closed world assumption, and reasoning with inconsis-

tencies.

The paper is organized as follows. Section 2 presents the main motivations for nonmonotonic

rule systems on the Semantic Web. Section 3 describes the basic ideas of defeasible reasoning.

Sections 4 reports on the translation of (a) defeasible theories and (b) RDF, RDFS and (parts of)

OWL ontologies into logic programs. Section 5 describes the architecture of the implemented

system. Section 6 presents the results of the performance evaluation. Section 7 presents a con-

crete example of travel packages brokering, showing the functionality of DR-Prolog. Section 8

discusses related work, and Section 9 concludes with a summary and some ideas for future work.

2 Motivation for Nonmonotonic Rules on the Semantic Web

We believe that we have to distinguish between two types of knowledge on the Semantic Web.

One is static knowledge, such as factual and ontological knowledge which contains general

truths that do not change often. And the other is dynamic knowledge, such as business rules, se-

curity policies etc. that change often according to business and strategic needs. The first type of

knowledge requires monotonic reasoning based on an open world assumption to guarantee cor-

rect propagation of truths. But for dynamic knowledge, flexible, context-dependent and inconsis-

tency tolerant nonmonotonic reasoning is more appropriate for drawing practical conclusions.

Obviously, a combination of both types of knowledge is required for practical systems. Defea-

sible logic, as described in section 3, supports both kinds of knowledge. Before presenting its

technical details, we motivate the use of nonmonotonic rules in more detail.

Reasoning with Incomplete Information: Antoniou and Arief [2002] describe a scenario where

business rules have to deal with incomplete information: in the absence of certain information

some assumptions have to be made which lead to conclusions not supported by classical predi-

cate logic. In many applications on the Web such assumptions must be made because other play-

ers may not be able (e.g. due to communication problems) or willing (e.g. because of privacy or

security concerns) to provide information. This is the classical case for the use of nonmonotonic

knowledge representation and reasoning [Marek and Truszczynski, 1993].

Rules with Exceptions: Rules with exceptions are a natural representation for policies and

business rules [Antoniou et. al, 1999]. And priority information is often implicitly or explicitly

available to resolve conflicts among rules. Potential applications include security policies [Ashri

et al., 2004; Li et al., 2003], business rules [Antoniou and Arief 2002], personalization, broker-

ing, bargaining, and automated agent negotiations [Governatori et al., 2001].

Default Inheritance in Ontologies: Default inheritance is a well-known feature of certain

knowledge representation formalisms. Thus it may play a role in ontology languages, which cur-

rently do not support this feature. Grosof and Poon [2003] present some ideas for possible uses

of default inheritance in ontologies. A natural way of representing default inheritance is rules

with exceptions, plus priority information. Thus, nonmonotonic rule systems can be utilized in

ontology languages.

Ontology Merging: When ontologies from different authors and/or sources are merged, contra-

dictions arise naturally. Predicate logic based formalisms, including all current Semantic Web

languages, cannot cope with inconsistencies.

If rule-based ontology languages are used (e.g. DLP [Grosof et al., 2003]) and if rules are in-

terpreted as defeasible (that is, they may be prevented from being applied even if they can fire)

then we arrive at nonmonotonic rule systems. A skeptical approach, as adopted by defeasible

reasoning, is sensible because it does not allow for contradictory conclusions to be drawn. More-

over, priorities may be used to resolve some conflicts among rules, based on knowledge about

the reliability of sources or on user input. Thus, nonmonotonic rule systems can support ontology

integration.

3 Defeasible Logics

3.1 Basic Characteristics

The root of defeasible logics lies on research in knowledge representation, and in particular on

inheritance networks. Defeasible logics can be seen as inheritance networks expressed in a logi-

cal rules language. In fact, they are the first nonmonotonic reasoning approach designed from its

beginning to be implementable.

 Being nonmonotonic, defeasible logics deal with potential conflicts (inconsistencies) among

knowledge items. Thus they contain classical negation, contrary to usual logic programming sys-

tems. They can also deal with negation as failure (NAF), the other type of negation typical of

nonmonotonic logic programming systems; in fact, Wagner [2003] argues that the Semantic Web

requires both types of negation. In defeasible logics, often it is assumed that NAF is not included

in the object language. However, as Antoniou et al. [2000a] show, it can be easily simulated

when necessary. Thus, we may use NAF in the object language and transform the original

knowledge to logical rules without NAF exhibiting the same behavior.

 Conflicts among rules are indicated by a conflict between their conclusions. These conflicts

are of local nature. The simpler case is that one conclusion is the negation of the other. The

more complex case arises when the conclusions have been declared to be mutually exclusive, a

very useful representation feature in practical applications.

 Defeasible logics are skeptical in the sense that conflicting rules do not fire. Thus consistency

of drawn conclusions is preserved.

 Priorities on rules may be used to resolve some conflicts among rules. Priority information is

often found in practice, and constitutes another representational feature of defeasible logics.

 The logics take a pragmatic view and have low computational complexity. This is, among oth-

ers, achieved through the absence of disjunction and the local nature of priorities: only priorities

between conflicting rules are used, as opposed to systems of formal argumentation where often

more complex kinds of priorities (e.g. comparing the strength of reasoning chains) are incorpo-

rated.

 Generally speaking, defeasible logics are closely related to Courteous Logic Programs [Gro-

sof, 1997]; the latter were developed much later than defeasible logics. DLs have the following

advantages:

� They have more general semantic capabilities, e.g. in terms of loops, ambiguity propagation

� They have been studied much more deeply, with strong results in terms of proof theory [An-

toniou et al., 2001], semantics [Governatori et al, 2004; Maher, 2002] and computational

complexity [Maher, 2001]. As a consequence, its translation into logic programs, a corner-

stone of DR-Prolog, has also been studied thoroughly [Maher et al., 2001; Antoniou and

Maher, 2002; Antoniou et al., 2006].

 In the following we discuss in more detail some of the ideas and concepts mentioned here.

3.2 Syntax

A defeasible theory D is a triple (F ,R ,>) where F a finite set of facts, R a finite set of rules, and

> a superiority relation on R. In expressing the proof theory we consider only propositional rules.

Rules containing free variables are interpreted as the set of their variable-free instances.

There are two kinds of rules (fuller versions of defeasible logics include also defeaters): Strict

rules are denoted by A � p, and are interpreted in the classical sense: whenever the premises are

indisputable then so is the conclusion. An example of a strict rule is “Professors are faculty

members”. Written formally: professor(X) � faculty(X). Inference from strict rules only

is called definite inference. Strict rules are intended to define relationships that are definitional in

nature, for example ontological knowledge.

Defeasible rules are denoted by A � p, and can be defeated by contrary evidence. An example

is: faculty(X) � tenured(X) which reads as follows: “Professors are typically tenured”.

A superiority relation on R is an acyclic relation > on R (that is, the transitive closure of > is

irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior to r1. This expresses

that r1 may override r2. For example, given the defeasible rules

r: professor(X) � tenured(X)

r’: visiting(X) � ¬tenured(X)

that contradict one another, no conclusive decision can be made about whether a visiting profes-

sor is tenured. But if we introduce a superiority relation > with r’>r, then we can indeed con-

clude that a visiting professor cannot be tenured.

3.3 Proof Theory

We now give a short informal presentation of how conclusions are drawn in Defeasible Logic. A

conclusion P can be derived if there is a rule whose conclusion is P, whose prerequisites (antece-

dents) are either already been proved or given in the case at hand (i.e. facts), and any stronger

rule whose conclusion is in C(P) has prerequisites that fail to be derived. In other words, a con-

clusion P is (defeasibly) derivable when:

 • P is a fact; or

 • there is an applicable strict or defeasible rule for P, and either

 – all the rules for P-complementary literals are discarded or

 – every rule for a P-complementary literal is weaker than an applicable rule for P.

A full definition of the proof theory can be found in [Antoniou et al., 2001]. Roughly, the rules

with head P form a team that competes with the team consisting of the rules for P-

complementary rules. If the former team wins P is defeasibly provable, whereas if the opposing

team wins, P is non-provable.

Governatori et. al [2004] describe Defeasible Logic and its variants in argumentation-theoretic

terms. A model theoretic semantics is found in [Maher, 2002], and denotational semantics is dis-

cussed in [Maher, 2000].

3.4 Simulation of Negation As Failure in the Object Language

We follow a technique based on auxiliary predicates first presented in [Antoniou et al., 2000a],

but which is often used in logic programming. According to this technique, a defeasible theory

with NAF can be modularly transformed into an equivalent one without NAF. Every rule

 r: L1,…,Ln, ¬M1,…, ¬Mk � L

can be replaced by the rules:

r: L1,…,Ln, neg(M1),…,neg(Mk) � L

 � neg(M1) M1 � ¬neg(M1)

 … …

 � neg(Mk) Mk � ¬neg(Mk)

where neg(M1),…,neg(Mk) are new auxiliary atoms. If we restrict attention to the original lan-

guage, the set of conclusions remains the same.

3.5 Ambiguity Blocking and Ambiguity Propagating Behavior

A literal is ambiguous if there is a chain of reasoning that supports a conclusion that p is true,

another that supports that ¬p is true, and the superiority relation does not resolve this conflict.

We can illustrate the concept of ambiguity propagation through the following example.

r1: quaker(X) � pacifist(X) quaker(a)

r2: republican(X) � ¬pacifist(X) republican(a)

r3: pacifist(X) � ¬hasGun(X) livesInChicago(a)

r4: livesInChicago(X) � hasGun(X) r3 > r4

Here pacifist(a) is ambiguous. The question is whether this ambiguity should be propagated

to the dependent literal hasGun(a). In one defeasible logic variant it is detected that rule r3 can-

not fire, so rule r4 is unopposed and gives the defeasible conclusion hasGun(a). This behavior is

called ambiguity blocking, since the ambiguity of pacifist(a) has been used to block r3 and

resulted in the unambiguous conclusion hasGun(a).

On the other hand, in the ambiguity propagation variant, although rule r3 cannot lead to the

conclusion hasGun(a) (as pacifist(a) is not provable), it opposes rule r4 and the conclusion

hasGun(a) cannot also be drawn.

This question has been extensively studied in artificial intelligence, and in particular in the

theory of inheritance networks. A preference for ambiguity blocking or ambiguity propagating

behavior is one of the properties of nonmonotonic inheritance nets over which intuitions can

clash. Ambiguity propagation results in fewer conclusions being drawn, which might make it

preferable when the cost of an incorrect conclusion is high. For these reasons an ambiguity

propagating variant of DL is of interest.

3.6 Conflicting Literals

Usually in Defeasible Logics only conflicts among rules with complementary heads are detected

and used; all rules with head L are considered as supportive of L, and all rules with head ¬L as

conflicting. However, in applications often literals are considered to be conflicting, and at most

one of a certain set should be derived. For example, the risk an investor is willing to accept may

be classified in one of the categories low, medium, and high. The way to solve this problem is to

use a constraint rule of the form

 conflict :: low, medium, high

Now if we try to derive the conclusion high, the conflicting rules are not just those with head

¬high, but also those with head low and medium. Similarly, if we are trying to prove ¬high, the

supportive rules include those with head low or medium.

In general, given a conflict :: L, M, we augment the defeasible theory by:

ri: q1,q2,…,qn � ¬L for all rules ri: q1,q2,…,qn � M

 ri: q1,q2,…,qn � ¬M for all rules ri: q1,q2,…,qn � L

 ri: q1,q2,…,qn � ¬L for all rules ri: q1,q2,…,qn� M

 ri: q1,q2,…,qn � ¬M for all rules ri: q1,q2,…,qn � L

The superiority relation among the rules of the theory is propagated to the “new” rules.

4 Translation into Logic Programs

4.1 Translation of Defeasible Theories

The translation of a defeasible theory D into a logic program P(D) has the goal to show that

 p is defeasibly provable in D �

 p is included in the Well-Founded Model of P(D)

 The main reason for the choice of well-founded semantics is its low computational complexity.

The connection between defeasible logics and the Stable Model Semantics is thoroughly studied

and discussed in [Antoniou et al., 2006].

Two different translations have been so far been proposed, sharing the same basic structure:

� The translation of [Antoniou et al., 2006; Maher et al., 2001] where a meta-program is used.

� The translation of [Antoniou and Maher, 2002], which makes use of control literals.

It is an open question which is better in terms of computational efficiency, although we conjec-

ture that for large theories the meta-program approach is better, since the latter approach gener-

ates a large number of program clauses. Therefore, we have adopted the meta-program approach.

Translation into logical facts

For a defeasible theory D = (F,R,>), where F is the set of the facts, R is the set of the rules, and

> is the set of the superiority relations between the rules of the theory, we add facts according to

the following guidelines:

fact(p). for each p�F

strict(ri,p,[q1,…,qn]). for each rule r: q1,q2,…,qn � p �R

defeasible(ri,p,[q1,…,qn]). for each rule r: q1,q2,…,qn � p �R

sup(r,s). for each pair of rules such that r>s

Ambiguity Blocking Metaprogram

The metaprogram for the ambiguity blocking version of defeasible logic consists of the follow-

ing program clauses:

The first two clauses define the class of rules used in a defeasible theory.

 c1: supportive_rule(Name,Head,Body):- strict(Name,Head,Body).

 c2: supportive_rule(Name,Head,Body):- defeasible(Name,Head,Body).

The following clauses define the definite provability: a literal is definitely provable if it is a fact

or is supported by a strict rule, the premises of which are definitely provable.

 c3: definitely(X):- fact(X).

c4: definitely(X):- strict(R,X,[Y1,…,Yn]), definitely(Y1),…,definitely(Yn).

The next clauses define the defeasible provability: a literal is defeasibly provable, either if it is

definitely provable, or if its complementary is not definitely provable, and the literal is supported

by a defeasible rule, the premises of which are defeasibly provable, and which is not overruled.

The sk_not operator, which we use as the negation operator in the following clauses, is provided

by XSB (the logic programming system that stands in the core of DR-Prolog), and allows for

correct execution of programs according to the well-founded semantics.

c5: defeasibly(X):- definitely(X).

c6: defeasibly(X):- sk_not definitely(~X), supportive_rule(R,X,[Y1,…,Yn]),

defeasibly(Y1),…,defeasibly(Yn), sk_not overruled(R,X).

The next clause defines that a rule is overruled when there is a conflicting rule, the premises of

which are defeasibly provable, and which is not defeated.

c7: overruled(R,X):- supportive_rule(S,~X, [U1,…,Un]),

 defeasibly(U1),…,defeasibly(Un),sk_not(defeated(S,~X)).

The last clause defines that a rule is defeated when there is a superior conflicting rule, the prem-

ises of which are defeasibly provable.

c8: defeated(S,X):- sup(T,S), supportive_rule(T,~X, [U1,…,Un]),

defeasibly(U1),…,defeasibly(Un).

Ambiguity Propagating Metaprogram

In order to support the ambiguity propagation behavior of a defeasible theory, we have to modify

the program clauses that define when a rule is overruled. In this variant, a rule is overruled when

there is a conflicting rule, the premises of which are supported, and which is not defeated.

c7’: overruled(R,X):- supportive_rule(S,~X, [U1,…,Un]),

 supported(U1),…,supported(Un),sk_not(defeated(S,~X)).

The next clauses define that a literal is supported, either if it is definitely provable, or if there is a

supportive rule, the premises of which are supported, and which is not defeated.

c5: supported(X):- definitely(X).

c6: supported(X):- sk_not definitely(~X), supportive_rule(R,X,[Y1,…,Yn]),

 supported(Y1),…,supported(Yn), sk_not defeated(R,X).

4.2 Translation of RDF(S) and parts of OWL ontologies

In order to support reasoning with RDF/S and OWL ontologies, we translate RDF data into logi-

cal facts, and RDFS and OWL statements into logical facts and rules.

 For RDF data, the SWI-Prolog RDF parser [SWI] is used to transform it into an intermediate

format, representing triples as rdf(Subject, Predicate, Object). Some additional processing (i)

transforms the facts further into the format Predicate(Subject, Object); (ii) cuts the namespaces

and the “comment” elements of the RDF files, except for resources which refer to the RDF or

OWL Schema, for which namespace information is retained.

 In addition, for processing RDF Schema information, the following rules capturing the seman-

tics of RDF Schema constructs are created:

a: C(X):- rdf:type(X,C).

b: C(X):- rdfs:subClassOf(Sc,C),Sc(X).

c: P(X,Y):- rdfs:subPropertyOf(Sp,P),Sp(X,Y).

d: D(X):- rdfs:domain(P,D),P(X,Z).

e: R(Z):- rdfs:range(P,R),P(X,Z).

Parts of OWL ontologies can also be translated using the following rules, which capture the

semantics of some of the OWL constructs.

� Equality

o1: D(X):- C(X),owl:equivalentClass(C,D).

o2: C(X):- D(X),owl:equivalentClass(C,D).

o3: P(X,Y):- Q(X,Y),owl:equivalentProperty(P,Q).

o4: Q(X,Y):- P(X,Y),owl:equivalentProperty(P,Q).

o5: owl:equivalentClass(X,Y):- rdfs:subClassOf(X,Y), rdfs:subClassOf(Y,X).

o6 :owl:equivalentProperty(X,Y):- rdfs:subPropertyOf(X,Y),

rdfs:subPropertyOf(Y,X).

o7 : C(X):- C(Y),owl:sameIndividualAs(X,Y).

o8 : P(X,Z):- P(X,Y), owl:sameIndividualAs(Y,Z).

o9 : P(Z,Y):- P(X,Y), owl:sameIndividualAs(X,Z).

o10: owl:sameIndividualAs(X,Y):- owl:sameIndividualAs(Y,X).

o11: owl:sameIndividualAs(X,Z):- owl:sameIndividualAs(X,Y),

 owl:sameIndividualAs(Y,Z).

o12: owl:sameAs(X,Y):- owl:equivalentClass(X,Y).

o13: owl:sameAs(X,Y):- owl:equivalentProperty(X,Y).

o14: owl:sameAs(X,Y):- owl:sameIndividualAs(X,Y).

� Property Characteristics

o15: P(X,Z):- P(X,Y), P(Y,Z), rdf:type(P,owl:TransitiveProperty).

o16: P(X,Y):- P(Y,X), rdf:type(P,owl:SymmetricProperty).

o17: P(X,Y):- Q(Y,X),owl:Inverseof(P,Q).

o18: Q(X,Y):- P(Y,X),owl:Inverseof(P,Q).

o19: owl:sameIndividualAs(X,Y):- P(A,X),P(A,Y),

 rdf:type(P,owl:FunctionalProperty).

o20: owl:sameIndividualAs(X,Y):- P(X,A),P(Y,A),

rdf:type(P,owl:InverseFunctionalProperty).

� Property Restrictions

o21: D(Y):- C(X),P(X,Y),rdfs:subClassOf(C,R),

 rdf:type(R,owl:Restriction),owl:onProperty(R,P),

 owl:allValuesFrom(R,D),rdf:type(D,owl:Class).

o22: C(X):- P(X,V),rdfs:subClassOf(C,R),

 rdf:type(R,owl:Restriction),owl:onProperty(R,P),

owl:hasValue(R,V).

o23: P(X,V):- C(X),rdfs:subClassOf(C,R),

rdf:type(R,owl:Restriction),owl:onProperty(R,P),

owl:hasValue(R,V).

� Collections

o24: D(X):- C1(X),C2(X),owl:IntersectionOf(D,Collect),

 rdf:type(Collect,Collection),memberOf(C1,Collect),

memberOf(C2,Collect).

o25: C1(X):- D(X),owl:IntersectionOf(D,Collect),

rdf:type(Collect,Collection),memberOf(C1,Collect),

memberOf(C2,Collect).

o26: C2(X):- D(X),owl:IntersectionOf(D,Collect),

 rdf:type(Collect,Collection),memberOf(C1,Collect),

Figure 1: The overall architecture of DR-Prolog

memberOf(C2,Collect).

o27: C(X):- owl:oneOf(C,Collect),

 rdf:type(Collect,Collection),memberOf(X,Collect).

All the above rules are created at compile-time, i.e. before the actual querying takes place.

Therefore, although at first they seem second-order, because they contain variables in place of

predicate names, they are actually first-order rules, i.e. predicate names are constant at run-time.

5 Implementation

DR-Prolog, in accordance with the general philosophy of logic programming, is designed to an-

swer queries. In fact, there are two kinds of queries, depending on which strength of proof we are

interested in: definite or defeasible provability.

In Figure 1 we present the overall architecture of the system. The system works in the follow-

ing way: The user imports defeasible theories, either using the syntax of defeasible logic, or in

the RuleML syntax, which is described below. The former theories are checked by the DL

Parser, and if they are syntactically correct, they are passed to the Logic Translator, and are

translated into logic programs. The RuleML theories are checked by the RuleML Parser and

translated initially into defeasible theories, and then into logic programs. The Reasoning Engine

compiles the logic programs and the meta-program which corresponds to DL version that the

user selects (ambiguity blocking / propagating), and evaluates the answers to the user’s queries.

The logic programming system that we use as the Reasoning Engine is XSB. The advantages of

this system are basically two: (a) it supports the well-founded semantics of logic programs

through the use of tabled predicates and its sk_not negation operator; and (b) it offers an easy and

efficient way to communicate with the other parts of the system. The RDF&OWL Translator is

used to translate the RDF/S and OWL information into logical facts and rules.

The DTD that we have developed to represent defeasible theories in XML format is in fact an

extension of the RuleML DTDs [RuleML]. The elements that we add / modify to support the de-

feasible theories are:

� The “rulebase” root element which uses strict and defeasible rules, fact assertions and supe-

riority relations.

� The “imp” and “def” elements, which consist of a “_head” and a “_body” element, accept a

“name” attribute, and refer respectively to the strict and the defeasible rules of the theory.

� The “superiority” empty element, which accepts the name of two rules as its attributes

(“sup” & “inf”), and refers to the superiority relation between these two rules.

6 Performance Evaluation

In this Section we report on the experimental evaluation that we conducted in order to measure

the performance of DR-Prolog, and compare it with the performance of other defeasible reason-

ing systems, namely Deimos [Maher et al., 2001], and d-Prolog [Covington et al., 1997]. The

basic characteristics of these two systems are presented in Section 8.

6.1 Design of the experiments

We employed the DTScale tool of Deimos to create the experimental tests for the evaluation. The

tests are defeasible theories, consisting of a large number of facts, rules and superiority relations.

The test theories do not contain user-defined conflicting literals, as this feature is not supported

by the other systems. In the experiments we focus on defeasible inference, assuming the ambigu-

ity blocking behavior of the test theories (Deimos and d-Prolog do not support the ambiguity

propagation). The types of defeasible theories that we created are:

� Chain theories, chain(n): They start start with a fact ao and continue with a chain of defea-

sible rules of the form ai-1 � ai. A variant chains(n) uses only strict rules.

� Circle theories, circle(n): They consist of n defeasible rules ai � a(i+1) mod n. A variant cir-

cles(n) uses only strict rules.

� Levels theories, levels(n): They consist of a cascade of 2n+2 disputed conclusions ai, i�

[0…2n +1]. For each i, there are rules � ai and ai+1� ¬ai. For each odd i a priority asserts

that the latter rule is superior. A final rule � a2n+2 gives uncontested support for a2n+2. A

variant levels-(n) omits the priorities.

� Teams theories, teams(n): They consist of conclusions ai which are supported by a team of

two defeasible rules and attacked by another team of two defeasible rules. Priorities ensure

that each attacking rule is beaten by one of supporting rules. The antecedents of these rules

are in turn supported and attacked by cascades of teams of rules.

� Tree theories, tree(n,k): In tree theories a0 is at the root of a k-branching tree of depth n in

which every literal occurs once.

� Directed acyclic graph theories, dag(n,k): In directed acyclic graph theories, ao is a the

root of a k-branching tree of depth n in which every literal occurs k times.

In Table 1, we record the size of the test theories. The reported metrics are: the number of facts

in the theory (facts); the number of rules in the theory (rules); the number of priorities in the the-

ory (priorities); the overall “size” of the theory, defined as the sum of the number of facts, rules,

priorities and literals in the bodies of all rules.

6.2 Configuration for the experiments

All the experiments were performed on an Intel Pentium M 1.3 GHz with 256MB DDR SDRAM

machine, running Windows XP with a paging file of 1440MB.

Table 1: The size of the test theories

For the evaluation of DR-Prolog we used the 2.6 version of XSB for Windows. For maximum

space used by the global (heap) and local (environment) stack of XSB, we invoke XSB with the

‘-s’ command-line option. For the measurement of the execution time, we used the cputime(-

CPU_Time) predicate, which returns the CPU_Time at the time of the call in seconds. The dif-

ference between results of successive calls to this predicate can measure the time spent in spe-

cific predicates.

The execution times of Deimos were measured using the –m option of DTScale. We also used

the RTS options: -K20M, -M100M. In this way, the system begins with a stack space of 20M

and a heap of 100M.

For the compilation of d-Prolog, we used the 5.2.13 version of SWI-Prolog for Windows. The

times were measured using the SWI-Prolog statistics built-in. When timing several experiments

in the same Prolog session, the first experiment consistently took significantly longer than later

identical experiments. In our data we have omitted the first timing in a session.

6.3 Experimental Results

Tables 2 and 3 present the time (in CPU seconds) required to find the appropriate conclusion for

a0. The experiments are designed to execute all rules and literals of each test theory.

The times for Deimos include time spent garbage collecting, whereas the times for our system

and d-Prolog do not. This adds significantly to the time in problems where the space usage ap-

proaches the heap space allocated to the Haskell run-time environment. We must note that the

times presented in the tables below do not include the time spent to build and compile the test

theories. In the case of our system and d-Prolog, the compilation of the test theories adds a sig-

nificant amount of time to the overall time of the execution of the experiments. There are also

cases that XSB and SWI-Prolog could not compile the test theories, because the default memory

allocation was exhausted. As a result, we could not test our system in cases of theories with more

than 20000 logical rules.

 Size DR-Prolog Deimos d-Prolog

chains(n)
n = 1000 2001 0.29 0.19 0.00

n = 2000 4001 1.08 0.64 0.01

n = 5000 10001 6.58 4.72 0.02

chain(n)

n = 1000 2001 0.56 0.43 0.13

n = 2000 4001 1.98 1.48 0.25

n = 5000 10001 11.81 8.81 0.62

circles(n)

n = 1000 2000 0.49 0.16 �

n = 2000 4000 1.75 0.61 �

n = 5000 10000 10.57 3.67 �

circle(n)

n = 1000 2000 0.48 0.25 �

n = 2000 4000 1.73 0.90 �

n = 5000 10000 10.44 5.60 �

tree(n,k)

n = 6, k = 3 2185 0.22 0.22 0.06

n = 7, k = 3 6559 1.16 1.37 0.15

n = 8, k = 3 19681 9.61 5.27 0.38

Dag(n,k)

n = 3, k = 3 43 0.01 0.00 0.06

n = 4, k = 4 89 0.01 0.00 8.80

n = 50, k = 5 1511 0.13 0.06 *

n = 100, k = 11021 2.46 0.49 *

Table 2: Execution times for theories with Undisputed Inferences

In Tables 2, 3 � denotes that the system will not terminate, * denotes that the default memory

allocation for XSB or SWI-Prolog was exhausted, - denotes that the experiment was not per-

formed because the runtime required was excessive, ? denotes that the experiment could not be

performed. In Table 2 we record the times in the case of theories with undisputed inferences,

namely chain(n), chains(n), circle(n), circles(n), tree(n,k) and dag(n,k). In Table 3 we record the

times in the case of theories with disputed references, namely levels(n), levels-(n) and teams.

 Size DR-Prolog Deimos d-Prolog

levels-(n)

n = 10 67 0.01 0.00 1.61

n = 20 127 0.01 0.01 -

n = 100 607 0.11 0.06 -

n = 1000 6007 3.59 3.53 -

n = 2000 12007 17.96 23.57 -

levels(n)

n = 10 78 0.01 0.00 1.70

n = 20 148 0.02 0.01 -

n = 100 708 0.09 0.06 -

n = 1000 7008 3.97 3.78 -

n = 2000 14008 19.32 24.06

teams(n)

n = 3 594 0.06 0.05 -

n = 4 2386 0.34 0.26 -

n = 5 9554 4.46 1.15 -

Table 3: Execution times for theories with Disputed Inferences

In general, the performance of DR-Prolog is proportional to the size of the problem. This is be-

cause the defeasible theories are translated into logical programs with the same number of rules.

DR-Prolog performs better in the case of theories that contain strict rules, as in these cases the

system has to process a smaller number of rules in order to find the appropriate conclusion.

Comparing to Deimos, DR-Prolog performs a little worse in most of the cases of theories with

undisputed inferences. Especially in the case of circle theories, the time that DR-Prolog spends to

prove a goal can be more than double of the corresponding time of Deimos. In the case of theo-

ries with disputed inferences, the two systems perform almost the same. The only cases that DR-

Prolog performs better are the cases of large levels theories. We must say, though, that DR-

Prolog is designed to support rules with variables, while Deimos supports only proportional

rules, and this additional feature aggravates the performance of the system.

Comparing to d-Prolog, DR-Prolog performs better in the cases of complex theories (theories

with a large number of rules and priorities). Especially in the case of theories with disputed in-

ferences, d-Prolog performs very badly, with time growing exponentially in the problem size. d-

Prolog is substantially more efficient than our system when there are only strict rules, due to the

direct execution of such rules. However, d-Prolog shows its incompleteness, comparing to the

other two systems, when it loops on cyclic theories. We must also note, that d-Prolog spends

much more time than DR-Prolog to compile the programs that correspond to the test theories.

We conducted the same experiments for the implementation which is based on the translation,

described in [Antoniou and Maher, 2002]. Following this approach, the theories are directly

translated into sets of logical rules that the system processes in order to find the appropriate con-

clusions.

chain(5000) circle(5000) tree(8,3) dag(100,10) levels-(1000) levels(1000) teams(5)

0.10 0.13 0.22 0.11 0.12 0.39 2.3

Table 4: Execution times for the implementation based on the direct translation of the rules

 As it is obvious from the results presented in Table 4, by following this implementation the

system can succeed much better performance, in terms of execution time. The system performs

in this case better than the other two systems in almost all the cases of the test theories.

 However, this implementation has two significant drawbacks, comparing to the implementa-

tion based on the metaprogram: (a) It does not support queries that contain variables, meaning

that it cannot compute at once all the literals that are proved in a defeasible theory; and (b) The

translation of defeasible theories results in logical programs, with much bigger size than the cor-

responding theories, depending on the number of conflicting rules and priorities. Following this

translation, the systems cannot process very large sets of rules, and has to spend too much time

compiling the logical programs.

7 A Concrete Example of Travel Packages Brokering

7.1 Used Ontologies and Data

In this section, we present a concrete example in order to show the way that DR-Prolog works

and interacts with the user’s queries. We define an ontology in RDFS to model concepts and

their relationships in the domain of travel industry. Part of the ontology is depicted in Fig.2.

<?xml version="1.0" ?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<rdfs:Class rdf:ID="Itinerary">
 <rdfs:comment>The class of travel packages offered by travel agents</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="service">
 <rdfs:comment>The class of services included into a travel package</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="hotel">
 <rdfs:comment>The class of hotels.</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="fivestarHotel">
 <rdfs:comment>The class of 5-star hotels.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#hotel"/>
</rdfs:Class>

...
<rdf:Property rdf:ID="includesService">
 <rdfs:comment>It relates a service to a particular itinerary</rdfs:comment>
 <rdfs:domain rdf:resource="#itinerary"/>
 <rdfs:range rdf:resource="#service"/>
</rdf:Property>
<rdf:Property rdf:ID="parking">
 <rdfs:comment>A boolean indicator for the existence of parking</rdfs:comment>
 <rdfs:domain rdf:resource="#hotel"/>
 <rdfs:range rdf:resource="&xsd;boolean"/>
</rdf:Property>
</rdf:RDF>

Fig. 2 Part of the Tourism Domain Ontology

We also define a few initial instances regarding descriptions about hotels, islands, travel

agents, means of transport, airline companies etc. (example in Fig. 3). The terms which are used

for the definition of the instances are reference to the RDFS ontology.

<?xml version="1.0"?>
 <!DOCTYPE rdf:RDF [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
 <!ENTITY schema "http://www.csd.uoc.gr/~dogjohn/ontology/TravelOntology.rdfs#">
 <!ENTITY inst "http://www.csd.uoc.gr/~dogjohn/data/TravelOntologyInstances.rdf#">]>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:instances="&inst;"
 xmlns:schema="&schema;">
 <rdf:Description rdf:about="CretaMareRoyal">
 <rdf:type rdf:resource="&schema;fivestarHotel" />
 <schema:resortID rdf:datatype="&xsd;string">1</schema:resortID>
 <schema:hotelName rdf:datatype="&xsd;string">Creta Mare Royal</schema:hotelName>
 <schema:hotelCategory rdf:datatype="&xsd;string">Business</schema:hotelCategory>
 <schema:parking rdf:datatype="&xsd;boolean">true</schema:parking>
 <schema:swimmingPool rdf:datatype="&xsd;boolean">true</schema:swimmingPool>
 <schema:breakfast rdf:datatype="&xsd;boolean">true</schema:breakfast>
 <schema:distanceFromSea rdf:datatype="&xsd;integer">10</schema:distanceFromSea>
 </rdf:Description>
</rdf:RDF>

Fig. 3 Part of the Travel Ontology Instances

<?xml version="1.0"?>
 <!DOCTYPE rdf:RDF [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
 <!ENTITY schema "http://www.csd.uoc.gr/~dogjohn/ontology/TravelOntology.rdfs#">
 <!ENTITY inst "http://www.csd.uoc.gr/~dogjohn/data/TravelOntologyInstances.rdf#">]>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:instances="&inst;"
 xmlns:schema="&schema;">
 <rdf:Description rdf:about="IT1">
 <rdf:type rdf:resource="&schema;itinerary"/>
 <schema:from rdf:datatype="&xsd;string">athens</schema:from>
 <schema:to rdf:datatype="&xsd;string">Creta</schema:to>
 <schema:departureDate rdf:datatype="&xsd;string">3/8/2004</schema:departureDate>
 <schema:returnDate rdf:datatype="&xsd;string">15/8/2004</schema:returnDate>
 <schema:persons rdf:datatype="&xsd;integer">2</schema:persons>
 <schema:price rdf:datatype="&xsd;integer">1000</schema:price>
 <schema:offeredBy rdf:resource="&inst;ZORP" />
 <schema:includesResort rdf:resource="&inst;CretaMareRoyal" />
 <schema:includesTransportation rdf:resource="&inst;Minoan" />
 <schema:includesService rdf:resource="&inst;AVIS" />
 <schema:forPlace rdf:resource="&inst;Creta" />
 </rdf:Description>
</rdf:RDF>

Figure 4. Expression of an advertisement in RDF

7.2 Expression of Offers

Every travel agency, which is a potential service provider, can publish an offer to the broker. Af-

ter publication, the offer is considered as an advertisement. The advertisement regards a com-

plete travel package and its format is depicted in Fig. 4. The advertisement of this example is

submitted by the travel agency “Zorpidis S.A” and regards a travel package for two persons for

the island of Crete. It includes a hotel, local transportation service (a car) and tickets for the

ferry, and costs 1000 money units.

7.3 Formalization of Requirements and Preferences

On the other hand, every customer who is a potential service requester can express his require-

ments and preferences to the broker. Consider the following example: “Teo, a busy businessman,

has the following preferences about his holiday travel package: First of all, he wants to depart

from Athens and he considers that the hotel at the place of vacation must offer breakfast. In addi-

tion, he would like either the existence of a swimming pool at the hotel to relax all the day, or a

car equipped with A/C, to make daily excursions at the island. However, Teo believes that if

there is no parking area at the hotel, the car is useless, because he adds to him extra effort and

fatigue. Lastly, if the tickets for his transportation to the island are not included in the travel

package, he is not willing to accept it…”

Figure 5. Expression of User’s Requirements in Defeasible Logic

r1: itinerary(X),from(X,athens),includesResort(X,Y),hotel(Y),
 breakfast(Y,true) � accept(X)
r2: itinerary(X),from(X,athens),includesResort(X,Y),hotel(Y),
 swimmingPool(Y,true) � accept(X)
r3: itinerary(X),from(X,athens),includesService(X,Z),hasVehicle(Z,W),
 vehicleAC(W,true) � accept(X)
r4: itinerary(X),includesResort(X,Y),hotel(Y),parking(Y,false)
 � ~accept(X)
r5: itinerary(X),~includesTransportation(X,Z) � ~accept(X)

r4 > r3, r1 > r4, r2 > r4, r5 > r1, r5 > r2, r5 > r3

This verbal description of Teo’s requirements about acceptable offers can be modeled through

the following rules, depicted in Fig. 5. More rules and priorities could be used to express selec-

tion preferences among acceptable offerings.

The id of the travel package described in Figure 4 will be returned as an answer, as its specifi-

cations comply with the rules described in Figure 5. To perform the reasoning, DR-Prolog trans-

lates the RDF / RDFS descriptions of the available data (travel packages, hotels, etc.) into logical

facts, and the rules describing the user’s preferences into logical facts and rules; it then uses the

metaprogram (described in section 4) and the rules capturing the semantics of RDF Schema to

reason with the rules and the ontology data. Among the user’s rules, r1 will fire when ‘X’ takes

the value “IT1” (the id of the travel package described in Figure 4) and ‘Y’ takes the value ‘Cre-

taMareRoyal” (the id of the hotel included in that package). Although ‘CretaMareRoyal’ is de-

scribed as an instance of the 5-star hotels’ class, it can also be regarded as an instance of the class

“hotels” using the rdfs schema information that 5-star hotels are a subclass of the class “hotels”

(Figure 2) and the rule describing the rdfs:subclass relation (section 4). The only rule that can

override r1, r5, will not fire as for ‘IT1’ the includesTransportation property is evaluated to true.

8 Related Work

There exist several previous implementations of defeasible logics. Conington et al. [1997] give

the historically first implementation, D-Prolog, a Prolog-based implementation. It was not de-

clarative in certain aspects (because it did not use a declarative semantic for the not operator),

therefore it did not correspond fully to the abstract definition of the logic. Also, D-Prolog sup-

ported only one variation thus it lacked the flexibility of the implementation we report on. Fi-

nally it did not provide any means of integration with Semantic Web layers and concepts, a cen-

tral objective of our work.

Deimos [Maher et al., 2001] is a flexible, query processing system based on Haskell. It imple-

ments several variants, but not conflicting literals. Also, it does not integrate with Semantic Web

(for example, there is no way to treat RDF data and RDFS/OWL ontologies; nor does it use an

XML-based or RDF-based syntax for syntactic interoperability). Thus it is an isolated solution.

Finally, it is propositional and does not support variables.

Delores [Maher et al., 2001] is another implementation, which computes all conclusions from

a defeasible theory. It is very efficient, exhibiting linear computational complexity. Delores only

supports ambiguity blocking propositional defeasible logic; so, it does support ambiguity propa-

gation, nor conflicting literals and variables. Also, it does integrate with other Semantic Web

languages and systems, and is thus an isolated solution.

DR-DEVICE [Bassiliades, 2004] is another effort on implementing defeasible reasoning, albeit

with a different approach. DR-DEVICE is implemented in Jess, and integrates well with RuleML

and RDF. It is a system for query answering. Compared to the work of this paper, DR-DEVICE

supports only one variant, ambiguity blocking, thus it does not offer the flexibility of this imple-

mentation. At present, it does not support RDFS and OWL ontologies. In addition, DR-Prolog

uses Logic Programs with Well Founded Semantics, which is formally equivalent to the formal

model described in section 3. In contrast, DR-DEVICE uses the logic metaprogram as a guiding

principle, but there is no formal proof of the correctness of the implementation. On the other

hand, DR-DEVICE has the relative advantage of easier integration with mainstream software

technologies.

SweetJess [Grosof et al., 2002] is another implementation of a defeasible reasoning system

(situated courteous logic programs) based on Jess. It integrates well with RuleML. Also, it al-

lows for procedural attachments, a feature not supported by any of the above implementations,

not by the system of this paper. However, SweetJess is more limited in flexibility, in that it im-

plements only one reasoning variant (it corresponds to ambiguity blocking defeasible logic).

Moreover, it imposes a number of restrictions on the programs it can map on Jess. In compari-

son, our system implements the full version of defeasible logic.

Apart from relating DR-Prolog to previous implementations of similar logical systems, there is

an interesting theoretical question concerning the relationship of defeasible logics with preferen-

tial logics [Shoham, 1987]. Preferential logics provide a framework in which a monotonic logic

is augmented by a preference relation on models, thus supporting both monotonic and non-

monotonic conclusions; for defeasible logics their counterpart would be strict and defeasible con-

clusions. The model theoretic semantic of defeasible logic [Maher 2002] may be a starting point

for this investigation. Obstacles to be addressed include the different target of preference in the

two approaches (rules versus models) and required properties of the preference relation (in pref-

erential logics it is usually a partial order or a strict partial order, while defeasible logics just re-

quire the preference relation to be acyclic).

9 Conclusion

In this paper we described reasons why conflicts among rules arise naturally on the Semantic

Web. To address this problem, we proposed to use defeasible reasoning that is known from the

area of knowledge representation, and we reported on the implementation of a system for defea-

sible reasoning on the Web. The proposed system is Prolog-based, supports RuleML syntax, and

can reason with monotonic and nonmonotonic rules, RDF facts and RDFS and OWL ontologies.

Planned future work includes:

� Adding arithmetic capabilities to the rule language and using appropriate constraint solvers

in conjunction with logic programs.

� Implementing load/upload functionality in conjunction with an RDF repository, such as

RDF Suite [Alexaki et al., 2001] and Sesame [Broekstra et al., 2003].

� Applications of defeasible reasoning and the developed implementation for brokering, bar-

gaining, automated agent negotiation, mobile computing and security policies.

References

[Alexaki et al., 2001] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The ICS-

FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc. 2nd International Workshop on the

Semantic Web, Hongkong, May 1, 2001.

[Antoniou and Arief, 2002] G. Antoniou and M. Arief. Executable Declarative Business rules and their use in Elec-

tronic Commerce. In Proc. ACM Symposium on Applied Computing, 2002.

[Antoniou et al., 1999] G. Antoniou, D. Billington, and M.J. Maher. On the analysis of regulations using defeasible

rules. In Proc. 32nd Hawaii International Conference on Systems Science, 1999.

 [Antoniou et al., 2000a] G. Antoniou, M. J. Maher and D. Billington. ‘Defeasible Logic versus Logic Programming

without Negation as Failure’. Journal of Logic Programming 41,1(2000): 45-57.

[Antoniou et al., 2000b] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. A Flexible Framework for

Defeasible Logics. In Proc. AAAI’ 2000, 405-410, 2000.

[Antoniou et al., 2001] G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. ‘Representation results for de-

feasible logic’. ACM Transactions on Computational Logic 2, 2 (2001): 255 - 287

[Antoniou et al., 2006] G. Antoniou, D. Billington, G. Governatori, and M. Maher. ‘Embedding Defeasible Logic

into Logic Programming’, Theory and Practice of Logic Programming, to appear

[Antoniou and Maher, 2002] G. Antoniou and M.J. Maher. Embedding Defeasible Logic into Logic Programs. In

Proc. ICLP 2002, 393-404, 2002

[Ashri et al., 2004] R. Ashri, T. Payne, D. Marvin, M. Surridge, and S. Taylor. Towards a Semantic Web Security

Infrastructure. In Proc. of Semantic Web Services 2004 Spring Symposium Series. Stanford University, 2004.

[Bassiliades et al., 2004] N. Bassiliades, G. Antoniou, and I. Vlahavas (2004). DR-DEVICE: A Defeasible Logic

System for the Semantic Web. In Proc. 2nd Workshop on Principles and Practice of Semantic Web Reasoning

(PPSWR04), LNCS, Springer 2004 (accepted)

[Berners-Lee et al., 2001] T. Berners-Lee, J. Hendler, and O. Lassila. ‘The Semantic Web’. Scientific American,

284, 5 (2001): 34-43

[Broekstra et al., 2003] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An Architecture for Storing and

Querying RDF Data and Schema Information. In: D. Fensel, J. A. Hendler, H. Lieberman and W. Wahlster

(Eds.), Spinning the Semantic Web, MIT Press, 197-222, 2003

[Bry, 2004] F. Bry and S. Schaffert: Querying the Web Reconsidered: A Practical Introduction to Xcerpt. Extreme

Markup Languages, 2004

[Connolly et al., 2001] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L.

A. Stein. DAML+OIL Reference Description. www.w3.org/TR/daml+oil-reference, 2001.

[Covington, 1997] M. Covington. Defeasible Logic on an Embedded Microcontroller. Proceedings, Tenth Interna-

tional Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA-

AIE), 1997.

[Covington, 2000] M. Covington. ‘Logical control of an elevator with defeasible logic’. IEEE Transactions on Auto-

matic Control, 45(7):1347--1349, 2000

[Covington et al., 1997] M. A. Covington, D. Nute and A. Vellino. Prolog Programming in Depth, 2nd ed. Prentice-

Hall, 1997.

[Dean and Schreiber, 2004] M. Dean and G. Schreiber (Eds.) (2004). OWL Web Ontology Language Reference.

www.w3.org/TR/2004/REC-owl-ref-20040210/

[Ford and Billington, 2000] M. Ford and D. Billington. ‘Strategies in human nonmonotonic reasoning’. Computa-

tional Intelligence 16,3(2000):446 -468.

[Garcia et al., 2000] A. Garcia, D. Gollapally, P. Tarau, and G. Simari. Deliberative stock market agents using Jinni

and defeasible logic programming. In Proc. of the ECAI Workshop on Engineering Societies in the Agents'

World, Berlin, Germany, August 2000

[van Gelder et al., 1991] A. van Gelder, K. Ross, and J. Schlipf. ‚The well-founded semantics for general logic pro-

grams’. Journal of the ACM 38 (1991): 620—650

[Governatori et al., 2000] G. Governatori, A.H.M. ter Hofstede, and P. Oaks. Defeasible Logic for Automated Ne-

gotiation, P.M. Swatman and P. Swatman (Eds.), Proceedings of ColleCTeR, Deakin University, 2000

[Governatori et al., 2001] G. Governatori, M. Dumas, A. ter Hofstede, and P. Oaks. A formal approach to legal ne-

gotiation. In Proc. ICAIL 2001, 168-177, 2001

[Governatori et al., 2004] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. ‘Argumentation Semantics

for Defeasible Logics’. Journal of Logic and Computation 14,5 (2004): 675-702

[Grosof, 1997] B. N. Grosof (1997). Prioritized conflict handing for logic programs. In Proc. of the 1997 Interna-

tional Symposium on Logic Programming, 197-211

[Grosof et al., 2002] B. N. Grosof, M. D. Gandhe and T. W. Finin: SweetJess: Translating DAMLRuleML to JESS.

In: Proc. International Workshop on Rule Markup Languages for Business Rules on the Semantic Web, 2002.

[Grosof et al., 2003] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining

Logic Programs with Description Logic". In: Proc. 12th Intl. Conf. on the World Wide Web, ACM Press, 2003

[Grosof and Poon, 2003] B. N. Grosof and T. C. Poon. SweetDeal: representing agent contracts with exceptions

using XML rules, ontologies, and process descriptions. In Proc. 12th International Conference on World Wide

Web. ACM Press, 340 – 349, 2003.

[Horrocks et al., 2005] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. ‘OWL Rules: A Proposal

and Prototype Implementation’. Journal of Web Semantics, Vol. 3, No. 1, pp 23-40, 2005.

[Johnston and Governatori, 2003] B. Johnston and G. Governatori. Induction of Defeasible Logic Theories in the

Legal Domain. In Sartor, Giovanni, Eds. Proceedings of the 9th International Conference on Artificial Intelli-

gence and Law (ICAIL-03), 24--28, pages 204-213, Edinburgh, Scotland, June, 2003.

 [Li et al., 2003] N. Li, B. N. Grosof and J. Feigenbaum. ‘Delegation Logic: A Logic-based Approach to Distributed

Authorization’. In: ACM Transactions on Information Systems Security 6,1 (2003)

[Maher, 2000] M. J. Maher. A Denotational Semantics for Defeasible Logic, Proc. First International Conference

on Computational Logic, LNAI 1861, Springer, 209-222, 2000.

[Maher, 2001] M. J. Maher. Propositional Defeasible Logic has Linear Complexity. Logic Programming Theory and

Practice 1,6(2001): 691-711.

[Maher et al., 2001] M. J. Maher, A. Rock, G. Antoniou, D. Billington and T. Miller. ‘Efficient Defeasible Reason-

ing Systems’. International Journal of Tools with Artificial Intelligence 10,4 (2001): 483—501

[Maher, 2002] M. J. Maher: A Model-Theoretic Semantics for Defeasible Logic. In Proc. Paraconsistent Computa-

tional Logic 2002, Datalogisker Srkifter 95 ,67-80, 2002.

[Marek and Truszczynski, 1993] V.W. Marek and M. Truszczynski. Nonmonotonic Logics; Context Dependent Rea-

soning. Springer Verlag, 1993.

[McCarthy, 1977] J. McCarthy. Epistemological problems of artificial intelligence. In Proceedings of the Interna-

tional Conference on Artificial Intelligence, pages 223-227, Cambridge, MA, 1977.

[Moore, 1985] R. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence,25,1(1985):75-94

[Nute, 1994] D. Nute. Defeasible logic. In Handbook of logic in artificial intelligence and logic programming (vol.

3): nonmonotonic reasoning and uncertain reasoning. Oxford University Press, 1994.

[Reiter, 1980] R. Reiter. ‘A Logic for Default Reasoning’. Artificial Intelligence 13(1980):81-132, 1980.

[Rosati, 2005] R. Rosati, ‘On the decidability and complexity of integrating ontologies and rules’. Journal of Web

Semantics, 3, 1 (2005): 41-60.

[RuleML] RuleML. The Rule Markup Language Initiative. www.ruleml.org, 2006.

[Shoham, 1987] Y. Shoham. Nonmonotonic logics: Meaning and utility. In J. Mc-Dermott, editor, Proceedings 10th

International Joint Conference on Artificial Intelligence, pages 388-392. Morgan Kaufmann, 1987.

 [Skylogiannis et al., 2001] T. Skylogiannis, G. Antoniou, N. Bassiliades, and G. Governatori, DR-NEGOTIATE:

A System for Automated Agent Negotiation with Defeasible Logic-Based Strategies. In Proc. 2005 IEEE Inter-

national Conference on e-Technology, e-Commerce and e-Service (EEE-05), 2005.

[SWI] SWI-Prolog, http://www.swi-prolog.org, 2006.

[Wagner, 2003] G. Wagner. Web Rules Need Two Kinds of Negation. In Proc. First Workshop on Semantic Web

Reasoning, LNCS 2901, Springer, 33-50, 2003.

[XSB] XSB, Logic Programming and Deductive Database System for Unix and Windows. http://xsb.sourceforge.net

