
 1 http://www.csd.uoc.gr/~bikakis/DR-Prolog.pdf

DR-Prolog:A System for Reasoning with Rules and Ontologies on the
Semantic Web

Antonis Bikakis and Grigoris Antoniou

Computer Science Department, University of Crete, Greece
Institute of Computer Science, FORTH, Greece

14 M. Kalivianis Str., Heraklio, Crete, Tel: +306945894785
{bikakis,antoniou}@ics.forth.gr

Introduction
The development of the Semantic Web [Berners Lee et al.,
2001] proceeds in layers, each layer being on top of the
others. At present, the highest layer that has reached
sufficient maturity is the ontology layer in the form of the
description logic based languages, DAML+OIL and OWL.
 The next step in the development of the Semantic Web
will be the logic and proof layers. Rule systems can play a
twofold role in the Semantic Web initiative: (a) they can
serve as extensions of, or alternatives to, description logic
based ontology languages; and (b) they can be used to
develop declarative systems on top (using) ontologies.
 Defeasible reasoning is a simple rule-based approach to
reasoning with incomplete and inconsistent information. It
can represent facts, rules, and priorities among rules. Its
main advantage is the combination of enhanced
representational capabilities allowing one to reason with
incomplete and contradictory information, coupled with
low computational complexity compared to mainstream
nonmonotonic reasoning .
 In this paper we report on the implementation of a
defeasible reasoning system for reasoning on the Web. Its
main characteristics are the following: (a) It is compatible
with RuleML (details in full paper1); (b) It is based on
Prolog. The core of the system consists of a well-studied
translation [Antoniou et. al., 2001] of defeasible
knowledge into logic programs under Well-Founded
Semantics [van Gelder et al., 1991]; (c) The main focus is
on flexibility. Strict and defeasible rules and priorities are
part of the interface and the implementation. Also, a
number of variants are implemented (ambiguity
blocking/propagation, conflicting literals); (d) The system
can reason with rules and ontological knowledge, through
the transformation of the RDFS constructs and many OWL
constructs into rules.

Basic Characteristics of Defeasible Logics
The root of defeasible logics lies on research in knowledge
representation, and in particular on inheritance networks.

Defeasible logics can be seen as inheritance networks
expressed in a logical rules language. In fact, they are the
first nonmonotonic reasoning approach designed from its
beginning to be implementable.
 Being nonmonotonic, defeasible logics deal with
potential conflicts (inconsistencies) among knowledge
items. Thus they contain classical negation, contrary to
usual logic programming systems. They can also deal with
negation as failure, the other type of negation typical of
nonmonotonic logic programming systems. In defeasible
logics, often it is assumed that NAF is not included in the
object language. However, as Antoniou et al. [2000a]
show, it can be easily simulated when necessary.
 Conflicts among rules are indicated by a conflict
between their conclusions. These conflicts are of local
nature. The simpler case is that one conclusion is the
negation of the other. The more complex case arises when
the conclusions are declared to be mutually exclusive.
Priorities on rules may be used to resolve some conflicts
among rules.
 Defeasible logics are skeptical in the sense that
conflicting rules do not fire. Thus consistency of drawn
conclusions is preserved.

Translation into Logic Programs

Translation of Defeasible Theories
The translation of a defeasible theory D into a logic
program P(D) has a certain goal: to show that
 p is defeasibly provable in D �
 p is included in the Well-Founded Model of P(D)

Two different translations have been so far been
proposed, sharing the same basic structure:
• The translation of [Antoniou et al., 2000b; Maher et al.,

2001] where a meta-program was used.
• The translation of [Antoniou and Maher, 2002], which

makes use of control literals.
 In DR-Prolog, we have adopted the second approach,
mainly because of its better computational efficiency,. The
system uses two different metaprograms (the ambiguity

Figure 1: The overall architecture of DR-Prolog

blocking and the ambiguity propagation metaprograms),
which consist of logical clauses that define the definite and
defeasible provability of DL theories.

Translation of RDF(S) and parts of OWL
ontologies
In order to support reasoning with RDF/S and OWL
ontologies, we translate RDF data into logical facts, and
RDFS and OWL statements into logical facts and rules.
 The RDF data are transformed into logical facts of the
form: Predicate(Subject,Object). To capture the semantics
of RDF Schema constructs, we create the following rules.
a: C(X):- rdf:type(X,C).
b: C(X):- rdfs:subClassOf(Sc,C),Sc(X).
c: P(X,Y):- rdfs:subPropertyOf(Sp,P),Sp(X,Y).
d: D(X):- rdfs:domain(P,D),P(X,Z).
e: R(Z):- rdfs:range(P,R),P(X,Z).
 Parts of OWL ontologies can also be translated using
logical rules, which capture the semantics of some OWL
constructs. For example the following rules capture the
semantics of transitive and symmetric properties.
o1: P(X,Z):- P(X,Y), P(Y,Z),
 rdf:type(P,owl:TransitiveProperty).
o2: P(X,Y):- P(Y,X), rdf:type(P,owl:SymmetricProperty).
 Other OWL constructs which are also supported by our
system are: owl:equivalentClass, owl:equivalentProperty,
owl:sameIndividualAs, owl:sameAs, property restrictions ,
owl collections etc.

Implementation
DR-Prolog, in accordance with the general philosophy of
logic programming, is designed to answer queries. There
are two kinds of queries, depending on which strength of
proof we are interested in: definite / defeasible provability.
 In Figure 1 we present the overall architecture of our
system. The system works in the following way: The user
imports defeasible theories, either using the syntax of
defeasible logic, or in the RuleML syntax. The theories are
checked by the DL Parser, and if syntactically correct, they
are passed to the Logic Translator, which translates them
into logic programs. The RuleML theories are checked by
the RuleML Parser and translated into defeasible theories,
which are also passed to the Logic Translator. The
Reasoning Engine compiles the logic programs and the
metaprogram, and evalutes the answers to the user’s
queries. The logic programming system that we use is
XSB, basically because: (a) it supports the well-founded
semantics of logic programs through the use of tabled
predicates and its sk_not negation operator; and (b) it
offers an easy and efficient way to communicate with the
other parts of the system. The RDF&OWL Translator is
used to translate the RDF/S and OWL data into logical
facts & rules, which can be processed by the defeasible
rules, provided by the user.
 There exist several previous implementations of
defeasible logic, as d-Prolog [Covington et al, .2002],

Deimos and Delores [Maher et al., 2001], and SweetJess
[Grosof et al., 2002]. Comparing to our system the former
three do not integrate with Semantic Web, and SweetJess
implements only one reasoning variant of defeasible logic.

References
[Antoniou et al., 2000a] G. Antoniou, M. J. Maher and D.
Billington (2000). Defeasible Logic versus Logic
Programming without Negation as Failure. Journal of
Logic Programming 41,1 (2000): 45-57
[Antoniou et al., 2000b] G. Antoniou, D. Billington, G.
Governatori, M. J. Maher: A Flexible Framework for
Defeasible Logics. In Proc. AAAI’ 2000, 405-410
 [Antoniou et al., 2001] G. Antoniou, D. Billington, G.
Governatori and M.J. Maher (2001). Representation results
for defeasible logic. ACM Transactions on Computational
Logic 2, 2 (2001): 255 - 287
[Antoniou and Maher, 2002] G. Antoniou, M.J. Maher
(2002). Embedding Defeasible Logic into Logic Programs.
In Proc. ICLP 2002, 393-404
[Berners-Lee et al., 2001]T. Berners-Lee, J. Hendler, and
O. Lassila (2001). The Semantic Web. Scientific American,
284, 5 (2001): 34-43
[Covington et al., 1997] M. A. Covington, D. Nute and A.
Vellino (1997). Prolog Programming in Depth, 2nd ed.
Prentice-Hall
[van Gelder et al., 1991] A. van Gelder, K. Ross and J.
Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM 38 (1991): 620—650
[Grosof et al., 2002] B. N. Grosof, M. D. Gandhe and T.
W. Finin: SweetJess: Translating DAMLRuleML to JESS.
RuleML 2002. In: Proc. International Workshop on Rule
Markup Languages for Business Rules on the SW
[Maher et al., 2001]M. J. Maher, A. Rock, G. Antoniou, D.
Billington and T. Miller (2001). Efficient Defeasible
Reasoning Systems. International Journal of Tools with
Artificial Intelligence 10,4 (2001): 483--501

