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Introduction  
The development of the Semantic Web [Berners Lee et al., 
2001] proceeds in layers, each layer being on top of the 
others. At present, the highest layer that has reached 
sufficient maturity is the ontology layer in the form of the 
description logic based languages, DAML+OIL and OWL. 
 The next step in the development of the Semantic Web 
will be the logic and proof layers. Rule systems can play a 
twofold role in the Semantic Web initiative: (a) they can 
serve as extensions of, or alternatives to, description logic 
based ontology languages; and (b) they can be used to 
develop declarative systems on top (using) ontologies. 
 Defeasible reasoning is a simple rule-based approach to 
reasoning with incomplete and inconsistent information. It 
can represent facts, rules, and priorities among rules. Its 
main advantage is the combination of enhanced 
representational capabilities allowing one to reason with 
incomplete and contradictory information, coupled with 
low computational complexity compared to mainstream 
nonmonotonic reasoning . 
 In this paper we report on the implementation of a 
defeasible reasoning system for reasoning on the Web. Its 
main characteristics are the following: (a) It is compatible 
with RuleML (details in full paper1); (b) It is based on 
Prolog. The core of the system consists of a well-studied 
translation [Antoniou et. al., 2001] of defeasible 
knowledge into logic programs under Well-Founded 
Semantics [van Gelder et al., 1991]; (c) The main focus is 
on flexibility. Strict and defeasible rules and priorities are 
part of the interface and the implementation. Also, a 
number of variants are implemented (ambiguity 
blocking/propagation, conflicting literals); (d) The system 
can reason with rules and ontological knowledge, through 
the transformation of the RDFS constructs and many OWL 
constructs into rules. 

Basic Characteristics of Defeasible Logics  
The root of defeasible logics lies on research in knowledge 
representation, and in particular on inheritance networks. 

Defeasible logics can be seen as inheritance networks 
expressed in a logical rules language. In fact, they are the 
first nonmonotonic reasoning approach designed from its 
beginning to be implementable.  
 Being nonmonotonic, defeasible logics deal with 
potential conflicts (inconsistencies) among knowledge 
items. Thus they contain classical negation, contrary to 
usual logic programming systems. They can also deal with 
negation as failure, the other type of negation typical of 
nonmonotonic logic programming systems. In defeasible 
logics, often it is assumed that NAF is not included in the 
object language. However, as Antoniou et al. [2000a] 
show, it can be easily simulated when necessary.  
 Conflicts among rules are indicated by a conflict 
between their conclusions. These conflicts are of local 
nature.  The simpler case is that one conclusion is the 
negation of the other. The more complex case arises when 
the conclusions are declared to be mutually exclusive. 
Priorities on rules may be used to resolve some conflicts 
among rules.   
 Defeasible logics are skeptical in the sense that 
conflicting rules do not fire. Thus consistency of drawn 
conclusions is preserved.  

Translation into Logic Programs 

Translation of Defeasible Theories 
The translation of a defeasible theory D into a logic 
program P(D) has a certain goal: to show that 
  p is defeasibly provable in D � 
  p is included in the Well-Founded Model of P(D) 

Two different translations have been so far been 
proposed, sharing the same basic structure: 
• The translation of [Antoniou et al., 2000b; Maher et al., 

2001] where a meta-program was used. 
• The translation of [Antoniou and Maher, 2002], which 

makes use of control literals. 
 In DR-Prolog, we have adopted the second approach, 
mainly because of its better computational efficiency,. The 
system uses two different metaprograms (the ambiguity 



Figure 1: The overall architecture of DR-Prolog 

blocking and the ambiguity propagation metaprograms), 
which consist of logical clauses that define the definite and 
defeasible provability of DL theories. 

Translation of RDF(S) and parts of OWL 
ontologies 
In order to support reasoning with RDF/S and OWL 
ontologies, we translate RDF data into logical facts, and 
RDFS and OWL statements into logical facts and rules.  
 The RDF data are transformed into logical facts of the 
form: Predicate(Subject,Object). To capture the semantics 
of RDF Schema constructs, we create the following rules. 
a: C(X):- rdf:type(X,C). 
b: C(X):- rdfs:subClassOf(Sc,C),Sc(X). 
c: P(X,Y):- rdfs:subPropertyOf(Sp,P),Sp(X,Y). 
d: D(X):- rdfs:domain(P,D),P(X,Z). 
e: R(Z):- rdfs:range(P,R),P(X,Z). 
 Parts of OWL ontologies can also be translated using 
logical rules, which capture the semantics of some OWL 
constructs. For example the following rules capture the 
semantics of transitive and symmetric properties. 
o1: P(X,Z):- P(X,Y), P(Y,Z), 
 rdf:type(P,owl:TransitiveProperty). 
o2: P(X,Y):- P(Y,X), rdf:type(P,owl:SymmetricProperty). 
 Other OWL constructs which are also supported by our 
system are: owl:equivalentClass, owl:equivalentProperty, 
owl:sameIndividualAs, owl:sameAs, property restrictions , 
owl collections etc. 

Implementation 
DR-Prolog, in accordance with the general philosophy of 
logic programming, is designed to answer queries. There 
are two kinds of queries, depending on which strength of 
proof we are interested in: definite / defeasible provability.  
 In Figure 1 we present the overall architecture of our 
system. The system works in the following way: The user 
imports defeasible theories, either using the syntax of 
defeasible logic, or in the RuleML syntax. The theories are 
checked by the DL Parser, and if syntactically correct, they 
are passed to the Logic Translator, which translates them 
into logic programs. The RuleML theories are checked by 
the RuleML Parser and translated into defeasible theories, 
which are also passed to the Logic Translator. The 
Reasoning Engine compiles the logic programs and the 
metaprogram, and evalutes the answers to the user’s 
queries. The logic programming system that we use is 
XSB, basically because: (a) it supports the well-founded 
semantics of logic programs through the use of tabled 
predicates and its sk_not negation operator; and (b) it 
offers an easy and efficient way to communicate with the 
other parts of the system. The RDF&OWL Translator is 
used to translate the RDF/S and OWL data into logical 
facts & rules, which can be processed by the defeasible 
rules, provided by the user. 
 There exist several previous implementations of 
defeasible logic, as d-Prolog  [Covington et al, .2002], 

Deimos and Delores [Maher et al., 2001], and SweetJess 
[Grosof et al., 2002]. Comparing to our system the former 
three do not integrate with Semantic Web, and SweetJess 
implements only one reasoning variant of defeasible logic. 
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