
Distributed Reasoning with Conflicts in a

Peer-to-Peer Setting

January 31, 2008

1 Definitions

We assume a peer-to-peer system P as a collection of peer local theories:

P = {Pi}, i = 1, 2, ..., n

Each peer has a proper distinct vocabulary VPi and a unique identifier i.
Each local theory is a set of rules that contain only local literals (literals
from the local vocabulary). These rules are of the form:

ri : a1
i , a

2
i , ...a

n−1
i → an

i

where i denotes the peer identifier.

Each peer also defines mappings that associate literals from its own
vocabulary (local literals) with literals from the vocabulary of other peers
(remote literals). The acquaintances of peer Pi, ACQ(Pi) are the set of
peers that at least one of Pi’s mappings involves at least one of their local
literals. The mappings are rules of the form:

mi : a1
i , a

2
j , ...a

n−1
k ⇒ an

The above mapping rule is defined by Pi, and associates some of its own local
literals with some of the literals defined by Pj , Pk and other system nodes.
Literal an may belong to whichever of these system nodes’ vocabulary.

1



Finally, each node Pi defines a trust level order Ti, which includes a
subset of the system nodes, and expresses the trust that Pi has on the other
system nodes. This is of the form:

Ti = [Pk, Pl, ..., Pn]

The nodes that are not included in Ti are less trusted by Pi than those that
are part of this ordering list.



2 Problem Statement

Given a peer-to-peer system P , and a query about literal xi issued at peer
Pi, find the truth value of xi considering Pi’s local theory, its mappings and
the theories of the other nodes in the system.

We assume that the local theories are consistent, but this is not neces-
sarily true for the case of the unified theory T (P ), which is the collection
of the theories (local rules and mappings) of the system nodes. The incon-
sistencies result from interactions between local theories and are caused by
mappings.

An example of such conflicts derives in the following system of theories,
which are defined by peers P1, P2 and P3:

P1

r11 : a1 → x1

m11 : a2 → a1

m12 : a3 → ¬a1

P2

r21 :→ a2

P3

r31 :→ a3

Pi’s theory is locally consistent, but with the addition of the the two
mapping rules (m11,m12), which associate the literals of P1,P2 and P3, a
conflict about literal a1 derives from the interaction of the three theories.



3 The 1st Approach

3.1 The Algorithm

The algorithm that we propose follows four main steps. In the first step, it
uses Pi’s local theory to determine the truth value of xi. If xi or its negation,
¬xi derive from the peer’s local theory, the algorithm terminates returning
Y es/No respectively, without considering the peer’s mappings.

In the second step, if neither xi nor ¬xi derive from the local theory, the
algorithm also uses Pi’s mappings. It collects all the rules that support xi.
For each such rule, it checks the truth value of the literals in its body. For
each local/remote literal, it issues similar queries (recursive calls of the algo-
rithm) to Pi (local literals) or to the appropriate Pi’s acquaintances (remote
literals). To avoid circles, before each new call, the algorithm checks if the
same query has been issued before, during the algorithm call. At the end of
this step, the algorithm builds the mapping supportive set of xi; this con-
tains the set of foreign literals (literals that are defined by peers that belong
in ACQ(Pi)) that are contained in the body of the Pi’s mapping rules, which
can be applied to prove xi in the absence of any possible contradictions.

The third step involves the rules that contradict xi. The algorithm
builds the mapping conflicting set of xi, by collecting the foreign literals in
the bodies of the mapping rules that are used to support ¬xi.

Finally, the algorithm determines the truth value of xi by comparing
the supportive and conflicting sets. To compare two mapping sets, there
are several different approaches. One approach is to compare the number
of distinct peers, np, that at least one of their local literals is contained in
the mapping set. The mapping set with the smallest np is considered to be
stronger. Another general approach is to have each peer define an ordering
between the peers of the system based on the trust it has on them. According
to this ordering, a literal ak is considered to be stronger than bl from Pi’s
viewpoint if Pi trusts Pk more than Pl. Having defined this ordering, we just
need a function that calculates the strength of a mapping set based on the
strength of the literals it contains. In the following algorithm, the strength
of a mapping set is determined by the weakest literal in this set. In the
followings, we denote as:

rl
i: a local rule of Pi



rm
i : a mapping rule of Pi

rlm
i : a rule (local/mapping) of Pi

Rm: the set of all mapping rules

Rs(xi): the set of supportive rules for xi

Rc(xi): the set of conflicting rules for xi

When a node Pi receives a query about xi, it runs the P2P DR algo-
rithm. The algorithm parameters are:

xi: the queried literal

P0: the peer that issued the query

Pi: the local node

SSxi : the set of supportive foreign literals for xi (initially empty)

CSxi : the set of conflicting foreign literals for xi (initially empty)

Histxi : the list of pending queries of the form: [x1, ..., xi]

Ansxi : the answer returned for xi (initially empty)

Ti: the trust level order of Pi

P2P DR(xi, P0, Pi, SSxi , CSxi ,Histxi , Ansxi , Ti)
1: if ∃rl

i ∈ Rs(xi) then
2: localHistxi ← [xi]
3: run local alg(xi, localHistxi , localAnsxi)
4: if localAnsxi = Y es then
5: Ansxi ← localAnsxi

6: terminate
7: end if
8: end if
9: if ∃rl

i ∈ Rc(xi) then
10: localHistxi ← [xi]
11: run local alg(¬xi, localHistxi , localAns¬xi)
12: if localAns¬xi = Y es then
13: Ansxi ← ¬localAns¬xi

14: terminate



15: end if
16: end if
17: for all rlm

i ∈ Rs(xi) do
18: SSri ← {}
19: for all bt ∈ body(rlm

i ) do
20: if bt ∈ Histxi then
21: stop and check the next rule
22: else
23: Histbt ← Histxi ∪ bt

24: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt , Tt)
25: if Ansbt = No then
26: stop and check the next rule
27: else if Ansbt = Y es and bt /∈ Vi then
28: SSri ← SSri ∪ bt

29: else
30: SSri ← SSri ∪ SSbt

31: end if
32: end if
33: end for
34: if SSxi = {} or Stronger(SSri , SSxi , Ti) = SSri then
35: SSxi ← SSri

36: end if
37: end for
38: if SSxi = {} then
39: return Ansxi = No and terminate
40: end if
41: for all rlm

i ∈ Rc(xi) do
42: SSri ← {}
43: for all bt ∈ body(rlm

i ) do
44: if bt ∈ Histxi then
45: stop and check the next rule
46: else
47: Histbt ← Histxi ∪ bt

48: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt , Tt)
49: if Ansbt = No then
50: stop and check the next rule
51: else if Ansbt = Y es and bt /∈ Vi then
52: SSri ← SSri ∪ bt

53: else
54: SSri ← SSri ∪ SSbt



55: end if
56: end if
57: end for
58: if CSxi = {} or Stronger(SSri , CSxi , Ti) = SSri then
59: CSxi ← SSri

60: end if
61: end for
62: if CSxi = {} then
63: return Ansxi = Y es and SSxi and terminate
64: end if
65: if Stronger(SSxi , CSxi , Ti) = SSxi then
66: return Ansxi = Y es and SSxi

67: else
68: return Ansxi = No
69: end if

local alg(xi, localHistxi , localAnsxi) is used to determine if xi is a con-
sequence of Pi’s local theory. The algorithm parameters are:

xi: the queried literal

localHistxi : the list of pending queries in Pi of the form: [x1
i , ..., x

m
i ]

localAnsxi : the local answer returned for xi (initially No)

local alg(xi, localHistxi , localAnsxi)
1: for all rl

i ∈ Rs(xi) do
2: if body(rl

i) = {} then
3: return localAnsxi = Y es
4: terminate
5: else
6: for all bi ∈ body(rl

i) do
7: if bi ∈ localHistxi then
8: stop and check the next rule
9: else

10: localHistbi ← localHistxi ∪ bi

11: run local alg(bi, localHistbi , localAnsbi)
12: end if
13: end for
14: if for every bi: localAnsbi = Y es then
15: localAnsxi ← Y es



16: terminate
17: end if
18: end if
19: end for

The Stronger(S,C, T ) function is used by a peer P to check which of
S,C sets of mappings is stronger, based on T .

Stronger(S, C, T )
1: aw ← ak ∈ S s.t. for all ai ∈ S : Pk does not precede Pi in T )
2: bw ← al ∈ C s.t. for all bj ∈ C : Pl does not precede Pj in T )
3: if Pk precedes Pl in T then
4: Stronger = S
5: else if Pl precedes Pk in T then
6: Stronger = C
7: else
8: Stronger = None
9: end if

3.2 Algorithm Properties

3.2.1 Termination

Theorem 1 The P2P DR algorithm always terminates.

Proof. We assume that there are a finite number of nodes in the system,
each of which with a finite number of literals in its vocabulary. As a con-
sequence, there are a finite number of (local or mapping) rules that a peer
can define. At each recursive call of the algorithm, we augment the history
with a new pending query qi, where qi is one of Pi’s local literals, and Pi

is one of the system nodes. Each call of the algorithm terminates either
by computing and returning a Y es/No answer (based on the provability of
qi) or by detecting a cycle. If the algorithm did not terminate, it would
have to make indefinite recursive calls, adding each time a new query to the
history, without ever returning an answer or detecting a cycle. However,
this is impossible, because: (a) the number of recursive calls is bounded by
the total finite number of literals in the system; and (b), there can be a
finite number of independent (with different history) algorithm calls that
the system may process. These are bounded by the total finite number of



rules in the system. Consequently, the algorithm will eventually terminate.

3.2.2 Algorithm Optimizations

To reduce the complexity of the basic algorithm with regard to the number
of messages that the system nodes have to exchange, and the computational
overhead of the algorithm on each system node, we can optimize the algo-
rithm as follows:

Each node is required to retain two states: (a)the state of queries it
has been requested to process, INC Q; this contains tuples of the form
(qi, Ansqi , localAnsqi), where qi is the queried local literal, and Ansqi and
localAnsqi are true/false in the case the node has completed the computa-
tion, or undetermined otherwise; and (b) the state of queries it has issued
to other peers, OUT Q (of the same form). Before sending a query to one
of Pj ∈ ACQ(Pi), Pi checks if the same query is in its OUT Q. If this is
the case, it retrieves the answer stored in OUT Q in case the answer has a
true/false value; otherwise it suspends until the pending query returns a
true/false answer. When a new query is issued at Pi, the node checks if the
same query is in its INC Q. If it is, the node returns the stored true/false
answer for that query if this has already been computed, or suspends the
new query until the pending query returns a true/false answer. The space
overhead of INC Q is proportional to the number of local literals in Pi,
while the size of OUT Q is in the worst case proportional to the number
of peers Pj ∈ ACQ(Pi) and the number of their local literals (aj ∈ Vj).
The two states need to be updated every time a new query is issued at the
system from an external source (we assume that the state of the network
remains unchanged during the computation of each such query).

In order to reduce the overhead of searching in Hist and OUT Q, these
can be structured as collections of fields, where each field corresponds to
a peer identifier. In this way, checking whether qi is included in Hist (or
whether (qi, answer) is in OUT Q) requires checking only the i − field of
Hist (or of OUT Q).



3.2.3 Number of Messages

Theorem 2 The total number of messages that need to be exchanged between
the system nodes for the computation of a single query with regard to the
total number of system nodes is in the worst case O(n2).

Proof. With the optimizations that we describe in the previous section,
each node will have to make at most one query for each of the remote
literals that appear in the body of its mapping rules. In the case, that a
peer Pi needs to apply all mapping rules during a query evaluation process,
Pi will have to make O(nACQi × nl) queries, where nACQi is the number
of Pj ∈ ACQ(Pi) and nl is the maximum number of literals that each of
these nodes may define. So, the total number of messages that need to be
exchanged for the computation of a single query is O(n×nACQ×nl), where
nACQ is the maximum number of acquaintances a system node may have.
In the worst case, that all peers have defined mappings that involve all the
other system nodes, the total number of messages is O(n× n× nl) = O(n2)
(assuming that the number of nodes is the most critical parameter in the
system).

3.2.4 Single Node Complexity

In this section, we estimate the computational complexity of the distributed
algorithm on a single node.

The first part of the algorithm requires checking the local rules of a peer,
to determine if the query can be locally resolved. In the worst case, to reach
to an answer, the algorithm will have to use all its local rules. For each literal
in the body of each such rule, the algorithm (a) checks if a query about it
is contained in localHist, (b) checks if it is included in INC Q; and (c) if
not, it issues a recursive call of the algorithm to compute a local answer.
Considering the structural form of Hist and INC Q, each of the (a) and (b)
steps require O(nl) checks (matching operations), where nl is the maximum
number of literals a node may define. Thus, the total matching operations
required for each rule are O(nrloc

l ×nl), where nrloc
l is the number of literals

in the body of a local rule, and the total computational complexity of the
local answer resolution is in the worst case O(nrloc×nrloc

l ×nl), where nrloc

is the maximum number of local rules a peer may define.



With the optimizations described in Section 4.2.1, in the worst case, each
peer will have to compute the truth value of all its local literals at most once.
This means that it will have to build and compare the Supportive Set and
Conflicting Set for each of its local literals.

To build the Supportive Set of a literal xi (SSxi), a peer has to compute
the Supportive Sets of the rules that support it (SSri). For each literal in
the body of each such rule, the algorithm (a) checks if a query about it is
contained in Hist, (b) checks if it is included in INC Q or OUT Q; and (c)
if not, it issues a recursive call of the algorithm to compute an answer about
its truth value. Considering the structural form of Hist and OUT Q, each of
(a) and (b) steps require at most O(nr

l ×nl) operations for each rule, where
nr

l is the number of literals in the body of a local / mapping rule. Building
the Supportive Set of a rule then requires only unifying the Supportive Sets
of its body literals. Given that each Supportive Set may contain (in the
worst case) O(nACQ × nl) literals, where nACQ is the maximum number of
acquaintances a system node may have, the complexity of building this set
is O(nr

l × nACQ × nl).

Computing the Supportive Set of a literal (SSxi), given the Support-
ive Sets of its supportive rules (SSri), requires finding the strongest SSri

through the Stronger function. Considering that (a) the complexity of
this function is proportional to the total number of elements of its two set
arguments; and (b) each Supportive Set may contain (in the worst case)
O(nACQ × nl) literals,comparing two SSri has a O(nACQ × nl) overhead.

Thus, the overall complexity of building the supportive set of a literal is
O(nrxi×(nr

l ×nl +nr
l ×nACQ×nl +nACQ×nl)) = O(nrxi×nr

l ×nACQ×nl),
where nrxi is the number of rules that support it. This is also equal to
the complexity of computing the conflicting set of the same literal (CSxi).
The complexity of comparing the two sets through the Stronger function
to determine about the truth value of xi is O(nACQ × nl), considering that
each such set may contain O(nACQ × nl) literals.

During the execution of the algorithm, a peer may have to compute the
supportive and conflicting sets, and the truth value of all its local literals.
Putting it all together, the overall complexity of the algorithm on a single
node is

O(nrloc × nrloc
l × nl + nr × nr

l × nACQ × nl + nl × nACQ × nl)



nrloc is the number of local rules defined by a peer
nr is the number of (local and mapping) rules defined by a peer
nr

l is the number of literals in the body of a rule
nrloc

l is the number of literals in the body of a local rule
nl is the number of literals defined by one peer
nACQ is the number of a peer’s acquaintances

Assuming that

(a) nr
l = O(nACQ × nl) (the body of a rule may contain all the literals

defined in the local theory or in the theory of the peer’s acquaintances); and

(b) nrloc
l = O(nl) (the body of a local rule may involve all local literals), the

overall complexity is

O(n2
ACQ × n2

l × nr)

In the worst case, that that all peers have defined mappings that involve
all the other system nodes: nACQ = O(n), and the overall complexity is

O(n2 × n2
l × nr)

3.3 Equivalent Unified Defeasible Theory

The next issue of this study is to build a unified defeasible theory T (P ),
which is equivalent to the distributed theories with regard to the conclusions
that they draw. A naive approach would be to just copy the local and
mapping rules of each node in a single theory, and represent the local rules
as strict rules, and the mappings as defeasible rules of a defeasible theory.
This approach suffers from the following problems:

If a query about a literal xi, which is part of Pi’s local theory is issued to
a different peer, Pj , the distributed algorithm will return No as a result. In
the case of the unified theory, we could have a different result based on the
rules that derive from Pi. We can deal with this problem by employing an
additional routing mechanism, which is responsible for routing queries to the
appropriate peers. Given the fact that each peer defines its own vocabulary,
the routing mechanism is able to figure out the peer that has defined each
queried literal, just by reading the name of the literal. If the query is issued
to the appropriate node, then the same set of (local) rules will be considered



in the first step of the algorithm in both cases.

If the algorithm cannot return an answer based on Pi’s local rules, it
will use Pi’s mappings. For a query about literal xi, the algorithm will
consider the supportive and conflicting rules for xi, which are defined in
Pi. However, other nodes in the system may also have defined mapping
rules that support/contradict xi. These rules will not be considered by
the distributed algorithm, but are part of the unified theory. To achieve
consistency, we have to remove all mapping rules that support or contradict
remote literals (literals that are defined in a different theory from that which
defines the mapping rule).

If there is a conflict between two or more rules that support contra-
dictory conclusions (say xi and ¬xi), the distributed algorithm collects the
supportive and conflicting sets of foreign literals, and decides based on the
strength of these sets. In the unified theory, we must find a way to model
these strengths (levels of trust) as priorities between the conflicting rules.

Considering these problems, we build the unified defeasible theory Tυ(P )
as follows:

1. The local rules of each peer’s theory are represented as strict rules in
Tυ(P ).

2. The mapping rules of each peer are represented as defeasible rules in
Tυ(P ).

3. We remove from Tυ(P ) all mapping rules that support or contradict
remote literals. We do that, by comparing the name of the rule (which
includes the id of the peer that has defined the rule), with the name
of the literal at the head of the rule (which includes the id of the peer
that has defined the literal).

4. We add priorities between the conflicting rules according to the deriva-
tion process described below.

Priorities

The derivation of priorities between conflicting rules in Tυ(P ) is a fi-
nite sequence Pr = (Pr(1), ..., P r(n)), where each Pr(i) can be one of the
followings:



• The supportive set of a rule in Tυ(P ) (a set of literals).

• A priority relation between two conflicting rules in Tυ(P )

• The supportive set of a literal in Tυ(P ) (a set of literals).

Assuming that the first i steps of this derivation have computed Pr(1...i),
which is the initial part of the sequence Pr of length i, the next part of this
sequence (Pr(i + 1)) will be either the supportive set of a rule (Sri), or a
priority relation (ri > si), or the supportive set of a literal (Sai). In the
process that we describe below, w can be thought as an element, which is
weaker than any literal of the context theories. We use this element to build
sets of literals that cannot be stronger than any other set.

If Pr(i + 1) = Sri then either
(α) Sri =(

⋃
Sai) ∪ (

⋃
aj), and

∀ai: ai ∈ Vi, ai ∈ body(ri), Sai ∈ Pr(1...i) and
∀aj : aj /∈ Vi, aj ∈ body(ri), Saj ∈ Pr(1...i), w /∈ Saj or

(β) Sri = {w}, and
∃aj , s.t. aj /∈ Vi, aj ∈ body(ri), Saj ∈ Pr(1...i), w ∈ Saj

If Pr(i + 1) = ri > si then
Sri , Ssi ∈ Pr(1...i) and ri, si are conflicting (ri ∈ R[ai] ⇔ si ∈ R[¬ai]) and
Sri , Ssi 6= {} and w /∈ Sri and w /∈ Ssi and
Stronger(Sri , Ssi , Ti) = Sri

If Pr(i + 1) = Sai then either
(α) ∃ri ∈ R[ai]: Sri ∈ Pr(1...i) and Sai = Sri and

(α1) Sri = {} or
(α2) (α2.1) ∀si ∈ R[¬ai]: w ∈ Ssi or ri > si ∈ Pr(1...i) and

(α2.2) ∀ti ∈ R[ai]: Sti ∈ Pr(1...i) and Stronger(Sti , Sri , Ti) 6= Sti or
(β) Sai = {w} and

(β1) ∀ri ∈ R[ai]:
(β1.1) Sri ∈ Pr(1...i) and
(β1.2) Sri 6= {} and
(β1.3) ∃si ∈ R[¬ai]: Ssi ∈ Pr(1...i) and Stronger(Sri , Ssi , Ti) 6= Sri or

(β2) S¬ai ∈ Pr(1...i) and S¬ai = {}



Pr(1...n) will contain the supportive sets of all rules and literals in Tυ(P ),
and the required priority relations between all conflicting rules in Tυ(P ).

In the rest of this section, we prove the equivalence between the dis-
tributed theories and the defeasible unified theory Tυ(P ) (augmented with
the priority relations contained in Pr(1...n) following two assumptions:

1. Tυ(P ) is an acyclic defeasible theory

2. In the case of the distributed theories, there exists a routing mechanism
that routes the queries to the appropriate peers (a query about a literal
xi is always routed to Pi, which has defined this literal).

To prove equivalence under these assumptions, we will use the following
two theorems:

Theorem 3 For every literal xi,

(a) the set of strict rules in Tυ(P ) that support xi (Rs[xi]) is the same
with the set of local supportive rules rl

i used by P2P DR to compute Ansxi.

(b) the set of defeasible rules in Tυ(P ) that support xi (Rd[xi]) is the
same with the set of mapping supportive rules rm

i used by P2P DR to com-
pute Ansxi.

(c) (a) and (b) also hold for the rules that contradict xi

Proof.

(a). The local rules that support xi and are used by P2P DR to compute
Ansxi are those defined in Pi. These rules are represented as strict rules in
Tυ(P ). No other peer theory may contain a local rule that supports xi, so
these rules are the only strict rules that support xi in Tυ(P ).

(b). The mapping rules that support xi and are used by P2P DR to
compute Ansxi are those defined in Pi. These rules are represented as
defeasible rules in Tυ(P ). Even if some other peer theory contains a mapping
rule that supports xi, this rule is eliminated during the construction of
Tυ(P ), so Pi’s mapping supportive rules are the only defeasible rules that
support xi in Tυ(P ).

(c) The rules that contradict xi are in fact the rules that support ¬xi.



So, (a) and (b) also hold for the rules that contradict xi.

Theorem 4 If there are no cycles in Tυ(P ), P2P DR will never detect
a cycle (and vice versa)

Proof. In both the defeasible theory Tυ(P ) and the distributed theories
processed by P2P DR, the evaluation of a query is a sequence of iterative
steps, which compute the truth value of a literal, based on the truth value
of the literals in the bodies of the rules that support or contradict it. As we
have already proved in Theorem 3, the set of rules that are applied in each
step are the same. Thus, if there are cycles in the unified theory, P2P DR
will also detect the same cycles as well; if not, P2P DR will detect no cycle.

The next theorems concern the relations that hold between the support-
ive sets of the rules and literals in Pr(1...n) for the unified theory Tυ(P ),
and the supportive sets of rules and literals of the distributed system nodes,
as they are computed by P2P DR.

Theorem 5: For any literal xi,
localAnsxi = Y es (calculated by local alg) ⇔
Sxi ∈ Pr(1...n) and Sxi = {}

Left to right proof : Induction on the number of calls of local alg.

Base Case. We will prove that:

(1) If localAnsxi = Y es derives at the first call of local alg in Pi then
Sxi = {}

(1) localAnsxi = Y es derives at the first call of local alg in Pi ⇒
∃rl

i ∈ Rs(xi): body(rl
i) = {} ⇒ (using Theorem 3)

∃ri ∈ Tυ(P ): ri ∈ Rs[xi] and body(ri) = {} ⇒
∃ri ∈ Tυ(P ): ri ∈ Rs[xi] and Sri ∈ Pr(1...n) and Sri = {} ⇒
Sxi ∈ Pr(1...n) and Sxi = {}

Induction Step. Assume that

(2) localAnsxi = Y es derives during the first n calls of local alg in Pi ⇒
Sxi ∈ Pr(1...n) and Sxi = {}



If localAnsxi = Y es derives in the first (n + 1) calls of local alg in Pi:

localAnsxi = Y es ⇒
∃rl

i ∈ Rs(xi):
(α) body(rl

i) 6= {} and
(β) ∀α ∈ body(rl

i): localAnsα = Y es (in n calls) ⇒ ((2), Theorem 3)

∃ri ∈ Tυ(P ):
(α) ri ∈ Rs[xi] and body(ri) 6= {} and Sri ∈ Pr(1...n) and
(β) ∀α ∈ body(ri): α ∈ Vi, Sα ∈ Pr(1...n) and Sα = {} ⇒

Sxi ∈ Pr(1...n) and Sxi = Sri = {}

Right to left proof : Induction on the derivation steps in Pr(1...n).

Base Case. We will prove that:

(3) P (2) = Sxi = {} ⇒ localAnsxi = Y es
(The supportive set of a literal cannot derive in the first step of the derivation process,
unless it contains w)

(3) P (2) = Sxi = {} ⇒
∃ri ∈ Tυ(P ): ri ∈ Rs[xi] and Sri ∈ P (1) and body(ri) = {} ⇒ (using Theorem 3)
∃rl

i ∈ Rs(xi): body(rl
i) = {} ⇒

localAnsxi = Y es

Induction Step. Assume that

(4) Sxi ∈ P (n) and Sxi = {} ⇒ localAnsxi = Y es

Sxi ∈ P (n + 1) and Sxi = {} ⇒
∃ri ∈ Rs[xi]: Sri ∈ Pr(1...n) and

∀α ∈ body(ri): α ∈ Vi, Sα ∈ Pr(1...n) and Sα = {} ⇒ ((4), Theorem 3)

∃rl
i ∈ Rs(xi):

∀α ∈ body(rl
i): localAnsxi = Y es ⇒

localAnsxi = Y es

Theorem 6: For any literal xi,



(a) Ansxi = Y es and SSxi = Σ ⇔ Sxi ∈ Pr(1...n) and Sxi = Σ and w /∈ Sxi

(b) Ansxi = No ⇔ Sxi ∈ Pr(1...n) and w ∈ Sxi

Left to Right Proof : Induction on the number of calls of P2P DR.

Base Case. We will prove that:

(5) If Ansxi = Y es derives at the first call of P2P DR and SSxi = Σ then
Sxi ∈ Pr(1...n) and Sxi = Σ, and

(6) If Ansxi = No derives at the first call of P2P DR then
Sxi ∈ Pr(1...n) and w ∈ Sxi

(5) Ansxi = Y es derives at the first call of P2P DR ⇒
localAnsxi = Y es and SSxi = {} ⇒ (Theorem 5)
Sxi ∈ Pr(1...n) and Sxi = SSxi = {}

(6) Ansxi = No derives at the first call of P2P DR ⇒
localAns¬xi = Y es or @rlm

i ∈ Rs(xi) ⇒ (Theorems 3,5)
S¬xi ∈ Pr(1...n) and S¬xi = {} or @r ∈ Tυ(P ): r ∈ Rs[xi] ⇒
Sxi ∈ Pr(1...n) and w ∈ Sxi

Induction Step. Assume that

(7) Ansxi = Y es derives in the first n calls of P2P DR and SSxi = Σ ⇒
Sxi ∈ Pr(1...n) and Sxi = Σ, and

(8) Ansxi = No derives in the first n calls of P2P DR ⇒
Sxi ∈ Pr(1...n) and w ∈ Sxi

If Ansxi = Y es derives in (n + 1) calls of P2P DR and SSxi = Σ:

SSxi = Σ and Ansxi = Y es ⇒
(α) SSxi = Σ and
(β) localAnsxi 6= Y es and
(γ) localAns¬xi 6= Y es and
(δ) ∃rlm

i ∈ Rs(xi) :



(δ1) SSrlm
i

= Σ
(δ2) body(rlm

i ) 6= {} and
(δ3) ∀α ∈ body(rlm

i ): Ansα = Y es (in at most n calls) and
(δ4) ∀slm

i ∈ Rc(xi) either
(δ4.1) ∃β ∈ body(slm

i ) s.t. Ansβ = No (in at most n calls) or
(δ4.2) Stronger(SSrlm

i
, SSslm

i
, Ti) = SSrlm

i
and

(δ5) ∀tlmi ∈ Rs(xi) either
(δ5.1) ∃γ ∈ body(tlmi ) s.t. Ansγ = No (in at most n calls) or
(δ5.2) Stronger(SStlmi

, SSrlm
i

, Ti) 6= SStlmi
⇒

(α) SSxi = Σ and
(β) localAnsxi 6= Y es and
(γ) localAns¬xi 6= Y es and
(δ) ∃rlm

i ∈ Rs(xi) :
(δ1) SSrlm

i
= Σ

(δ2) body(rlm
i ) 6= {} and

(δ3) ∀α ∈ body(rlm
i ): Ansα = Y es (in at most n calls) and

(δ4) ∀slm
i ∈ Rc(xi) either

(δ4.1) ∃β ∈ body(slm
i ) s.t. Ansβ = No (in at most n calls) or

(δ4.2) (δ4.2.1) ∀β ∈ body(slm
i ): Ansβ = Y es (in n calls) and

(δ4.2.2) Stronger((
⋃

SSαi) ∪ (
⋃

αj), (
⋃

SSβi) ∪ (
⋃

βj), Ti) = (
⋃

SSαi) ∪ (
⋃

αj)
(∀i, j: αi, αj ∈ body(rlm

i ), βi, βj ∈ body(slm
i ), αi, βi ∈ Vi, αj , βj /∈ Vi) and

(δ5) ∀tlmi ∈ Rc(xi) either
(δ5.1) ∃γ ∈ body(tlmi ) s.t. Ansγ = No (in at most n calls) or
(δ5.2) (δ5.2.1) ∀γ ∈ body(tlmi ): Ansγ = Y es (in n calls) and

(δ5.2.2) Stronger((
⋃

SSγi) ∪ (
⋃

γj), (
⋃

SSαi) ∪ (
⋃

αj), Ti) 6= (
⋃

SSγi) ∪ (
⋃

γj)
(∀i, j: αi, αj ∈ body(rlm

i ), γi, γj ∈ body(tlmi ), αi, γi ∈ Vi, αj , γj /∈ Vi)
⇒ ((7)(8), Theorems 3 and 5)

(α) SSxi = Σ and
(β) Sxi 6= {} and
(γ) S¬xi 6= {} and
(δ) ∃ri ∈ Tυ(P ): r ∈ Rsd[xi] and

(δ1) SSri = Σ and
(δ2) body(ri) 6= {} and
(δ3) ∀α ∈ body(ri): Sα ∈ Pr(1...n) and Sα = SSα and
(δ4) ∀si ∈ Rsd[¬xi]: either

(δ4.1) ∃β ∈ body(si) s.t. w ∈ Sβ or
(δ4.2) (δ4.2.1) ∀β ∈ body(si): Sβ ∈ Pr(1...n) and Sβ = SSβ and



(δ4.2.2) Stronger((
⋃

SSαi) ∪ (
⋃

αj), (
⋃

SSβi) ∪ (
⋃

βj), Ti) = (
⋃

SSαi) ∪ (
⋃

αj)
(∀i, j: αi, αj ∈ body(ri), βi, βj ∈ body(si), αi, βi ∈ Vi, αj , βj /∈ Vi) and

(δ5) ∀ti ∈ Rsd[xi]: either
(δ5.1) ∃γ ∈ body(ti) s.t. w ∈ Sγ or
(δ5.2) (δ5.2.1) ∀γ ∈ body(ti): Sγ ∈ Pr(1...n) and Sγ = SSγ and

(δ5.2.2) Stronger((
⋃

SSγi) ∪ (
⋃

γj), (
⋃

SSαi) ∪ (
⋃

αj), Ti) 6= (
⋃

SSγi) ∪ (
⋃

γj)

(∀i, j: αi, αj ∈ body(ri), γi, γj ∈ body(ti), αi, γi ∈ Vi, αj , γj /∈ Vi) ⇒
Sxi = Sri = SSrlm

i
= Σ

If Ansxi = No derives in the first (n + 1) calls of P2P DR:

Ansxi = No ⇒
(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∀rlm

i ∈ Rs(xi) either
(γ1) ∃α ∈ body(rlm

i ) s.t. Ansα = No (in at most n calls) or
(γ2) ∃slm

i ∈ Rc(xi) :
(γ2.1) body(slm

i ) 6= {} and
(γ2.2) ∀β ∈ body(slm

i ): Ansβ = Y es (in at most n calls) and
(γ2.3) Stronger(SSrlm

i
, SSslm

i
, Ti) 6= SSrlm

i
⇒

(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∀rlm

i ∈ Rs(xi) either
(γ1) ∃α ∈ body(rlm

i ) s.t. Ansα = No (in at most n calls) or
(γ2) ∃slm

i ∈ Rc(xi) :
(γ2.1) body(slm

i ) 6= {} and
(γ2.2) ∀β ∈ body(slm

i ): Ansβ = Y es (in at most n calls) and
(γ2.3) Stronger((

⋃
SSαi) ∪ (

⋃
αj), (

⋃
SSβi) ∪ (

⋃
βj), Ti) 6= (

⋃
SSαi) ∪ (

⋃
αj)

(∀i, j: αi, αj ∈ body(rlm
i ), βi, βj ∈ body(slm

i ), αi, βi ∈ Vi, αj , βj /∈ Vi)
⇒ ((7)(8), Theorems 3 and 5)

(α) Sxi 6= {} and
(β) S¬xi 6= {} and
(γ) ∀ri ∈ Rsd[xi] either

(γ1) ∃α ∈ body(ri) s.t. Sα ∈ Pr(1...n) and w ∈ Sα or
(γ2) ∃si ∈ Tυ(P ): si ∈ Rsd[¬xi] and

(γ2.1) body(si) 6= {} and



(γ2.2) ∀β ∈ body(si): Sβ ∈ Pr(1...n) and Sβ = SSβ and
(γ2.3) Stronger((

⋃
SSαi) ∪ (

⋃
αj), (

⋃
SSβi) ∪ (

⋃
βj), Ti) 6= (

⋃
SSαi) ∪ (

⋃
αj)

(∀i, j: αi, αj ∈ body(ri), βi, βj ∈ body(si), αi, βi ∈ Vi, αj , βj /∈ Vi) ⇒
w ∈ Sxi

Right to Left Proof : Induction on the derivation steps in Pr(1...n).

Base Case. We will prove that:

(9) P (2) = Sxi = Σ and w /∈ Σ ⇒ Ansxi = Y es and SSxi = T , and

(10) P (1) = Sxi = Σ and w ∈ Σ ⇒ Ansxi = No

(The supportive set of a literal cannot derive in the first step of the derivation process,
unless it contains w)

(9) P (2) = Sxi = Σ and w /∈ Σ ⇒
Sxi = {} ⇒ (Theorem 5)
localAnsxi = Y es ⇒ Ansxi = Y es

(10) P (1) = Sxi = Σ and w ∈ Σ ⇒
@ri ∈ Tυ(P ): ri ∈ Rs[xi] ⇒ (Theorem 3)
@rlm

i ∈ Rs(xi) ⇒
Ansxi = No

Induction Step. Assume that

(11) Σ = Sxi ∈ P (n) and w /∈ Σ ⇒
Ansxi = Y es and SSxi = Σ, and

(12) Σ = Sxi ∈ P (n) and w ∈ Σ ⇒
Ansxi = No

Sxi= Σ ∈ Pr(n + 1) and w /∈ Σ ⇒
∃ri ∈ Tυ(P ): Sri = Σ ∈ Pr(1...n) and ri ∈ Rsd[xi] and w /∈ Σ and either
(α) Σ = {} or
(β) (β1) ∀si ∈ Rsd[¬xi]:



Ssi ∈ Pr(1...n) and Stronger(Sri , Ssi , Ti) = Sri and
(β2) ∀ti ∈ Rsd[xi]:

Sti ∈ Pr(1...n) and Stronger(Sti , Sri , Ti) 6= Sti ⇒

∃ri ∈ Tυ(P ): Sri = Σ ∈ Pr(1...n) and ri ∈ Rsd[xi] and
∀α ∈ body(ri): Sα ∈ Pr(1...n) and w /∈ Sα and either

(α) Σ = {} or
(β) (β1) ∀si ∈ Rsd[¬xi]:

(β1.1) Ssi ∈ Pr(1...n) and
(β1.2) ∀β ∈ body(si), Sβ ∈ Pr(1...n) and either
(β1.3) (β1.3.1) ∀β: w /∈ Sβ and

Stronger((
⋃

Sαi) ∪ (
⋃

αj), (
⋃

Sβi) ∪ (
⋃

βj), Ti) = (
⋃

Sαi) ∪ (
⋃

αj)
(∀i, j: αi, αj ∈ body(ri), βi, βj ∈ body(si), αi, βi ∈ Vi, αj , βj /∈ Vi) or

(β1.3.2) ∃β s.t. Sβ ∈ Pr(1...n) and w ∈ Sβ and
(β2) ∀ti ∈ Rsd[¬xi]:

(β2.1) Sti ∈ Pr(1...n) and
(β2.2) ∀γ ∈ body(ti), Sγ ∈ Pr(1...n) and either
(β2.3) (β2.3.1) ∀γ: w /∈ Sγ and

Stronger((
⋃

SSγi) ∪ (
⋃

γj), (
⋃

Sαi) ∪ (
⋃

αj), Ti) 6= (
⋃

Sγi) ∪ (
⋃

γj)
(∀i, j: αi, αj ∈ body(ri), γi, γj ∈ body(ti), αi, γi ∈ Vi, αj , γj /∈ Vi) or

(β2.3.2) ∃γ s.t. Sγ ∈ Pr(1...n) and w ∈ Sγ ⇒ ((11),(12), Theorems 3,5)

∃rlm
i : rlm

i ∈ Rs(xi) and Srlm
i

= Σ and
∀α ∈ body(rlm

i ): Ansα = Y es and SSα = Sα and either
(α) localAnsxi = Y es or
(β) (β1) ∀slm

i ∈ Rc(xi):
(β1.1) ∀β ∈ body(slm

i ): Ansβ = Y es and SSβ = Sβ and
Stronger((

⋃
SSαi) ∪ (

⋃
αj), (

⋃
SSβi) ∪ (

⋃
βj), Ti) = (

⋃
SSαi) ∪ (

⋃
αj)

(∀i, j: αi, αj ∈ body(rlm
i ), βi, βj ∈ body(slm

i ), αi, βi ∈ Vi, αj , βj /∈ Vi) or
(β1.2) ∃β ∈ body(slm

i ) s.t. Ansβ = No and
(β2) ∀tlmi ∈ Rs(xi):

∀γ ∈ body(tlmi ): Ansγ = Y es and SSγ = Sγ and
Stronger((

⋃
SSγi) ∪ (

⋃
γj), (

⋃
SSαi) ∪ (

⋃
αj), Ti) 6= (

⋃
SSγi) ∪ (

⋃
γj)

(∀i, j: αi, αj ∈ body(rlm
i ), γi, γj ∈ body(tlmi ), αi, γi ∈ Vi, αj , γj /∈ Vi) or

(β2.2) ∃γ ∈ body(tlmi ) s.t. Ansγ = No ⇒

Ansxi = Y es and SSxi = Sxi = Σ

Sxi= Σ ∈ Pr(n + 1) and w ∈ Σ ⇒



(α) ∀ri ∈ Tυ(P ) s.t. ri ∈ Rsd[xi]: Sri ∈ Pr(1...n) and body(ri) 6= {} and either
(α1) ∃α ∈ body(ri): Sα ∈ Pr(1...n) and w ∈ Sα or
(α2) ∃si ∈ Rsd[¬x]: Ssi ∈ Pr(1...n) and Stronger(Sri , Ssi , Ti) 6= Sri or

(β) S¬xi ∈ Pr(1...n) and S¬xi = {} ⇒

(α) ∀ri ∈ Tυ(P )
⋂

Rsd[xi]: body(ri) 6= {} and ∀α ∈ body(ri): Sα ∈ Pr(1...n) and either
(α1) ∃α ∈ body(ri): w ∈ Sα or
(α2) ∃si ∈ Rsd[¬xi]: ∀β ∈ body(si): Sβ ∈ Pr(1...n) and

(α2.1) ∀α ∈ body(ri): w /∈ Sα and ∀β ∈ body(si): w /∈ Sβ and
(α2.2) Stronger((

⋃
Sαi) ∪ (

⋃
αj), (

⋃
Sβi) ∪ (

⋃
βj), Ti) 6= (

⋃
Sαi) ∪ (

⋃
αj)

(∀i, j: αi, αj ∈ body(ri), βi, βj ∈ body(si), αi, βi ∈ Vi, αj , βj /∈ Vi) or
(β) S¬xi ∈ Pr(1...n) and S¬xi = {} ⇒ ((11),(12), Theorems 3,5)

(α) ∀rlm
i ∈ Rs(xi): body(rlm

i ) 6= {} and either
(α1) ∃α ∈ body(rlm

i ): Ansα = No or
(α2) ∃slm

i ∈ Rc(xi) and
(α2.1) ∀α ∈ body(rlm

i ), β ∈ body(slm
i ):

Ansα = Y es and SSα = Sα and Ansβ = Y es and SSβ = Sβ and
(α2.2) Stronger((

⋃
Sαi) ∪ (

⋃
αj), (

⋃
Sβi) ∪ (

⋃
βj), Ti) 6= (

⋃
Sαi) ∪ (

⋃
αj)

(∀i, j: αi, αj ∈ body(rlm
i ), βi, βj ∈ body(slm

i ), αi, βi ∈ Vi, αj , βj /∈ Vi) or
(β) S¬xi ∈ Pr(1...n) and S¬xi = {} ⇒

Ansxi = No

Using Theorem 6, it is straightforward to prove the following Lemma:

Lemma 7: For any literal xi for which,
localAnsxi = No and localAns¬xi = No

and for any two local or mapping rules rlm
i ∈ Rs(xi), slm

i ∈ Rc(xi) for which
∀a ∈ body(rlm

i ), β ∈ body(rlm
i ): Ansa = Ansβ = Y es

and for their corresponding rules ri, si ∈ Tυ(P ):

Stronger(SSrlm
i

, SSslm
i

, Ti) = SSrlm
i
⇔ ri > si ∈ Pr(1...n)

What we need to prove now is that, under the two assumptions described
previously, the conclusions that derive from Tυ(P ) based on the DL Proof
Theory are also returned by P2P DR, and vice versa. Tυ(P ) is a defeasible
theory that contains strict, defeasible rules and priorities between conflicting



rules, but no facts. A conclusion of Tυ(P ) is a tagged literal and can have
one of the following four forms:

1. +∆xi which is intended to mean that xi can be definitely proved Tυ(P )

2. −∆xi which is intended to mean that xi cannot be definitely proved
in Tυ(P )

3. +∂xi which is intended to mean that xi can be defeasibly proved Tυ(P )

4. −∂xi which is intended to mean that xi cannot be defeasibly proved
in Tυ(P )

Provability in DL is based on the concept of a derivation in the defeasible
theory in D = (F,R, >), where F is the set of facts in D, R denotes the set
rules, and > the priority relation on R. A derivation is a finite sequence P =
(P (1), , P (n)) of tagged literals satisfying the following conditions (P (1..i)
denotes the initial part of the sequence P of length i, Rs[q] the set of strict
rules that support q and Rd[q] the set of defeasible rules that support q):

+∆: If P (i + 1) = +∆q then either
q ∈ F or
∃r ∈ Rs[q]∀α ∈ body(r): +∆α ∈ P (1...i)

−∆: If P (i + 1) = +∆q then either
q /∈ F and
∀r ∈ Rs[q]∃α ∈ body(r): −∆α ∈ P (1...i)

+∂: If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1...i) or
(2) (2.1) ∃r ∈ Rsd[q]∀α ∈ body(r): +∂α ∈ P (1...i) and

(2.2) −∆¬q ∈ P (1...i) and
(2.3) ∀s ∈ R[¬q]

(2.3.1) ∃α ∈ body(s): −∂α ∈ P (1...i) or
(2.3.2) ∃t ∈ Rsd[q]:

∀α ∈ body(t): +∂α ∈ P (1...i) and t > s



−∂: If P (i + 1) = −∂q then
(1) −∆q ∈ P (1...i) and
(2) (2.1) ∀r ∈ Rsd[q]∃α ∈ body(r): −∂α ∈ P (1...i) or

(2.2) +∆¬q ∈ P (1...i) or
(2.3) ∃s ∈ R[¬q] such that

(2.3.1) ∀α ∈ body(s): +∂α ∈ P (1...i) and
(2.3.2) ∀t ∈ Rsd[q] either

∃α ∈ body(t): −∂α ∈ P (1...i) or t ≯ s

We should note that the distributed theories Pi contain no facts. Factual
knowledge is expressed in terms of rules with an empty body. Consequently,
Tυ(P ) also contains no facts. Therefore definite provability in Tυ(P ) can be
defined as follows:

+∆: If P (i + 1) = +∆q then
∃r ∈ Rs[q]∀α ∈ body(r): +∆α ∈ P (1...i)

−∆: If P (i + 1) = +∆q then
∀r ∈ Rs[q]∃α ∈ body(r): −∆α ∈ P (1...i)

Theorem 8: Tυ(P ) ` +∆xi is equivalent to localAnsxi = Y es and
Tυ(P ) ` −∆xi is equivalent to localAnsxi = No

Proof. Theorem 8 states that:

(a) If a positive (or negative) definite proof about a literal xi derives from
Tυ(P ), then given a query about xi, P2P DR returns localAnsxi = Y es (or
localAnsxi = No)

(b) vice versa

We can prove 8.a using Induction on the number of proof derivation
steps in Tυ(P ).

Base Case. We will prove that:

(13) P (1) = +∆xi ⇒ localAnsxi = Y es, and

(14) P (1) = −∆xi ⇒ localAnsxi = No



(13) P (1) = +∆xi ⇒
∃ri ∈ Rs[xi] s.t. ∀α ∈ body(ri): +∆α ∈ P (0) ⇒
∃ri ∈ Rs[xi] s.t. body(ri) = {} ⇒ (using Theorem 3)
∃rl

i ∈ Rs(xi): body(rl
i) = {} ⇒ localAnsxi = Y es

(14) P (1) = −∆xi ⇒
∀ri ∈ Rs[xi]: ∃α ∈ body(r) s.t. −∆α ∈ P (0) ⇒
@ri ∈ Rs[xi] ⇒ (using Theorem 3)
@rl

i ∈ Rs(xi) ⇒ localAnsxi = No

Induction Step. Assume that

(15) +∆xi ∈ P (1...n) ⇒ localAnsxi = Y es, and

(16) −∆xi ∈ P (1...n) ⇒ localAnsxi = No

For i = n + 1

+∆xi∈ P (1...n + 1) ⇒
∃r ∈ Rs[xi]: ∀α ∈ body(r): +∆α ∈ P (1...n) ⇒ (using (15) and Theorem 3)
∃rl

i ∈ Rs(xi) s.t. ∀α ∈ body(rl
i): localAnsα = Y es

⇒ localAnsxi = Y es

−∆xi∈ P (1...n + 1) ⇒
∀r ∈ Rs[xi]: ∃α ∈ body(r): −∆α ∈ P (1...n) ⇒ (using (16) and Theorem 3)
∀rl

i ∈ Rs(xi): ∃α ∈ body(rl
i): localAnsα = No

⇒ localAnsxi = No

We will now prove 8.b using Induction on the number of calls of local alg
that are required to compute a local answer for a literal xi.

Base Case. We will prove that:

(17) If localAnsxi = Y es derives at the first call of local alg in Pi then
Tυ(P ) ` +∆xi, and

(18) If localAnsxi = No derives at the first call of local alg in Pi then
Tυ(P ) ` −∆xi



(17) localAnsxi = Y es derives at the first call of local alg in Pi ⇒
∃rl

i ∈ Rs(xi): body(rl
i) = {} ⇒ (using Theorem 3)

∃r ∈ Tυ(P ): r ∈ Rs[xi] and body(r) = {} ⇒
Tυ(P ) ` +∆xi

(18) localAnsxi = No derives at the first call of local alg in Pi ⇒
@rl

i ∈ Rs(xi) and ∃sl
i ∈ Rc(xi): body(sl

i) = {} ⇒ (using Theorem 3)
@r ∈ Tυ(P ): r ∈ Rs[xi] and ∃s ∈ Tυ(P ): s ∈ Rc[xi] and body(s) = {} ⇒
Tυ(P ) ` −∆xi

Induction Step. Assume that

(19) localAnsxi = Y es derives in the first n calls of local alg in Pi ⇒
Tυ(P ) ` +∆xi, and

(20) localAnsxi = No derives in the first n calls of local alg in Pi ⇒
Tυ(P ) ` −∆xi

If localAnsxi = Y es derives in (n + 1) calls of local alg in Pi:

localAnsxi = Y es ⇒
∃rl

i∈ Rs(xi): body(rl
i) 6= {} and

∀α ∈ body(rl
i): localAnsα = Y es (in n calls) ⇒ ((19), Theorem 3)

∃r ∈ Tυ(P ): r ∈ Rs[xi] and body(r) 6= {} and
∀α ∈ body(r): +∆α ⇒ +∆xi

If localAnsxi = No derives in (n + 1) calls of local alg in Pi:

localAnsxi = No ⇒
∀rl

i∈ Rs(xi): body(rl
i) 6= {} and

∃α ∈ body(rl
i) s.t. localAnsα = No (in n calls) ⇒ ((20), Theorem 3)

∀r ∈ Tυ(P ) s.t. r ∈ Rs[xi]: body(r) 6= {} and
∃α ∈ body(r): −∆α ⇒ −∆xi

Theorem 9: Tυ(P ) ` +∂xi is equivalent to Ansxi = Y es and
Tυ(P ) ` −∂xi is equivalent to Ansxi = No



Proof. Theorem 9 states that:

(a) If a positive (or negative) defeasible proof about a literal xi derives
from Tυ(P ), then given a query about xi, P2P DR returns Ansxi = Y es
(or Ansxi = No)

(b) vice versa

We can prove 9.a using Induction on the number of proof derivation steps
in Tυ(P ). A defeasible proof about a literal q cannot derive in one step, as
even if there is only one supportive defeasible rule with empty body, in order
to prove +∂q, we should priorly derive −∆¬q. So the base of the induction
will be the first two steps of the derivation process. Furthermore, we should
note that there are no defeasible rules with empty body in Tυ(P ), as the
mapping rules in the distributed theories have (by definition) a non-empty
body.

Base Case. We will prove that:

(21) P (2) = +∂xi ⇒ Ansxi = Y es, and

(22) P (2) = −∂xi ⇒ Ansxi = No

(21) P (2) = +∂xi ⇒
(α) P (1) = +∆xi or
(β) (β1) ∃r ∈ Rsd[xi]: body(r) = {} and

(β2) P (1) = −∆¬xi and
(β3) @s ∈ R[¬xi] ⇒ (Theorems 3 and 8)

(α) localAnsxi = Y es or
(β) (β1) ∃rlm

i ∈ Rs(xi): body(rlm
i ) = {} and

(β2) localAns¬xi = No and
(β3) @slm

i ∈ Rc(xi) ⇒

(α) Ansxi = Y es or
(β) (β1) ∃rlm

i ∈ Rs(xi): body(rlm
i ) = {} and

(β2) localAns¬xi = No and
(β3) CSxi = {} ⇒

Ansxi = Y es



(22) P (2) = −∂xi ⇒
(α) P (1) = −∆xi and
(β) (β1) @r ∈ Rsd[xi]or

(β2) P (1) = +∆¬xi ⇒ (Theorems 3 and 8)

(α) localAnsxi = No and
(β) (β1) @rlm

i ∈ Rs(xi) or
(β2) localAns¬xi = Y es ⇒

(α) localAnsxi = No and
(β) (β1) SSxi = {} or

(β2) localAns¬xi = Y es ⇒
Ansxi = No

Induction Step. Assume that

(23) +∂xi ∈ P (1...n) ⇒ Ansxi = Y es, and

(24) −∂xi ∈ P (1...n) ⇒ Ansxi = No

For i = n + 1

+∂xi∈ P (1...n + 1) ⇒
(α) +∆xi ∈ P (1...n) or
(β) (β1) ∃r ∈ Rsd[xi] s.t. ∀α ∈ body(r): +∂α ∈ P (1...n) and

(β2) −∆¬xi ∈ P (1...n) and
(β3) ∀s ∈ Rsd[¬xi]

(β3.1) ∃β ∈ body(s): −∂β ∈ P (1...n) or
(β3.2) ∃t ∈ Rsd[xi]:

∀γ ∈ body(t): +∂γ ∈ P (1...n) and t > s ⇒ ((23),(24), Theorems 3,8, Lemma 7)

(α) localAnsxi = Y es or
(β) (β1) ∃rlm

i ∈ Rs(xi) s.t. ∀α ∈ body(rlm
i ): Ansα = Y es and

(β2) localAns¬xi = No and
(β3) ∀slm

i ∈ Rc(xi)
(β3.1) ∃β ∈ body(slm

i ): Ansβ = No or
(β3.2) ∃tlmi ∈ Rs(xi):

∀γ ∈ body(tlmi ): Ansγ = Y es and
Stronger(SStlmi

, SSslm
i

, Ti) = SStlmi
⇒



Ansxi = Y es

For negative provability:

−∂xi∈ P (1...n + 1) ⇒
(α) −∆xi ∈ P (1...n) and
(β) (β1) ∀r ∈ Rsd[xi]: ∃α ∈ body(r): −∂α ∈ P (1...n) or

(β2) +∆¬xi ∈ P (1...n) or
(β3) ∃s ∈ Rsd[¬xi] s.t.

(β3.1) ∀β ∈ body(s): +∂β ∈ P (1...n) and
(β3.2) ∀t ∈ Rsd[xi]:

∃γ ∈ body(t): −∂γ ∈ P (1...n) or t ≯ s ⇒ ((23),(24), Theorems 3,8, Lemma 7)

(α) localAnsxi = No and
(β) (β1) ∀rlm

i ∈ Rs(xi): ∃α ∈ body(r): Ansα = No or
(β2) localAns¬xi = Y es or
(β3) ∃slm

i ∈ Rc(xi):
(β3.1) ∀β ∈ body(slm

i ): Ansβ = Y es and
(β3.2) ∀tlmi ∈ Rs(xi):

∃γ ∈ body(tlmi ): Ansγ = No or
Stronger(SStlmi

, SSslm
i

, Ti) 6= SStlmi
⇒

Ansxi = No

We will now prove 9.b using Induction on the number of calls of P2P DR
that are required to compute an answer for a literal xi.

Base Case. We will prove that:

(25) If Ansxi = Y es derives at the first call of P2P DR then
Tυ(P ) ` +∂xi, and

(26) If Ansxi = No derives at the first call of P2P DR then
Tυ(P ) ` −∂xi

(25) Ansxi = Y es derives at the first call of P2P DR ⇒
localAnsxi = Y es ⇒ (Theorem 8)



Tυ(P ) ` +∆xi ⇒
Tυ(P ) ` +∂xi

(26) Ansxi = No derives at the first call of P2P DR ⇒
localAns¬xi = Y es or @rlm

i ∈ Rs(xi) ⇒ (Theorems 3,8)
Tυ(P ) ` +∂¬xi or @r ∈ Tυ(P ): r ∈ Rs[xi] ⇒
Tυ(P ) ` −∂xi

Induction Step. Assume that

(27) Ansxi = Y es derives in the first n calls of P2P DR ⇒
Tυ(P ) ` +∂xi, and

(28) Ansxi = No derives in the first n calls of P2P DR ⇒
Tυ(P ) ` −∂xi

If Ansxi = Y es derives in (n + 1) calls of P2P DR:

Ansxi = Y es ⇒
(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∃rlm

i ∈ Rs(xi) :
(γ1) body(rlm

i ) 6= {} and
(γ2) ∀α ∈ body(rlm

i ): Ansα = Y es (in n calls) and
(δ) ∀slm

i ∈ Rc(xi) either
(δ1) ∃β ∈ body(slm

i ) s.t. Ansβ = No (in n calls) or
(δ2) Stronger(SSrlm

i
, SSslm

i
, Ti) = SSrlm

i
⇒ ((27)(28), Theorems 3,8, Lemma 7)

(α) −∆xi and
(β) −∆¬xi and
(γ) ∃r ∈ Tυ(P ): r ∈ Rsd[xi] and

(γ1) body(r) 6= {} and
(γ2) ∀α ∈ body(r): +∂α and

(δ) ∀s ∈ Rsd[xi] either
(δ1) ∃β ∈ body(s) s.t. −∂β or
(δ2) r > s ⇒

+∂xi



If Ansxi = No derives in (n + 1) calls of P2P DR:

Ansxi = No ⇒
(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∀rlm

i ∈ Rs(xi) either
(γ1) ∃α ∈ body(rlm

i ) s.t. Ansα = No (in at most n calls) or
(γ2) ∃slm

i ∈ Rc(xi) :
(γ2.1) body(slm

i ) 6= {} and
(γ2.2) ∀β ∈ body(slm

i ): Ansβ = Y es (in n calls) and
(γ2.3) Stronger(SSrlm

i
, SSslm

i
, Ti) 6= SSrlm

i
⇒ ((27)(28), Theorems 3,8, Lemma 7)

(α) −∆xi and
(β) −∆¬xi and
(γ) ∀r ∈ Rsd[xi] either

(γ1) ∃α ∈ body(r) s.t. −∂α or
(γ2) ∃s ∈ Tυ(P ): s ∈ Rsd[¬xi] and

(γ2.1) body(s) 6= {} and
(γ2.2) ∀β ∈ body(s): +∂β and
(γ2.3) r ≯ s ⇒

−∂xi



4 1st Approach with DL Local Theories

In this version, we augment the local theories with defeasible rules and with
priority relations that are applied on pairs of defeasible local and mapping
rules. These features enable a peer to express uncertainty about part of its
local knowledge, and to express trust-based preferences not only in the level
of peers but also in the level of mapping rules.

To support these features, the algorithm steps are modified as follows:
The first step remains unchanged. During this step, a node (say Pi) attempts
to produce an answer for the queried literal (say xi) based on the strict local
rules. Even, if there are defeasible local rules that support or contradict xi,
they are not used in this phase.

The 2nd and 3d step involve building the supportive sets of the (lo-
cal/mapping) rules that support or contradict xi, in the same way with
the first version of the algorithm. The only difference here is, that in the
end, these steps do not produce a single supportive / conflicting set for xi,
but rather collect all the different rules that can be applied to support /
contradict xi.

The 4th step determines the truth value of the queried literal, based on
the supportive / conflicting sets of the rules, which are collected in steps
2 and 3, Pi’s trust level order, but also on the priorities in Pi’s theory.
Specifically, if for each of the rules that can be applied to contradict xi,
there is a superior (based on the priority relation) supportive rule, or a non-
inferior but stronger (based on Pi’s trust level order) supportive rule, the
algorithm returns a positive answer. In any other case, it returns a negative
answer for xi.

We should also note that the local alg procedure remains unchanged.
However, the Stronger function must be modified to support cases of empty
supportive sets.

4.1 The modified algorithm P2P DRdl

Some new symbolisms that we use in this version are:

rl
i: a local strict rule of Pi



rd
i : a local defeasible rule of Pi

rm
i : a mapping rule of Pi

rldm
i : a rule (local/mapping) of Pi

SRxi : the set of rules that can be applied to support xi

CRxi : the set of rules that can be applied to contradict xi

P2P DRdl(xi, P0, Pi, SSxi , CSxi , Histxi , Ansxi , Ti)
1: if ∃rl

i ∈ Rs(xi) then
2: localHistxi ← [xi]
3: run local alg(xi, localHistxi , localAnsxi)
4: if localAnsxi = Y es then
5: Ansxi ← localAnsxi

6: terminate
7: end if
8: end if
9: if ∃rl

i ∈ Rc(xi) then
10: localHistxi ← [xi]
11: run local alg(¬xi, localHistxi , localAns¬xi)
12: if localAns¬xi = Y es then
13: Ansxi ← ¬localAns¬xi

14: terminate
15: end if
16: end if
17: SRxi ← {}
18: for all rldm

i ∈ Rs(xi) do
19: SSri ← {}
20: for all bt ∈ body(rldm

i ) do
21: if bt ∈ Histxi then
22: stop and check the next rule
23: else
24: Histbt ← Histxi ∪ bt

25: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt , Tt)
26: if Ansbt = No then
27: stop and check the next rule
28: else if Ansbt = Y es and bt /∈ Vi then
29: SSri ← SSri ∪ bt

30: else



31: SSri ← SSri ∪ SSbt

32: end if
33: end if
34: end for
35: if SRxi = {} or Stronger(SSri , SSxi , Ti) = SSri then
36: SSxi ← SSri

37: end if
38: SRxi ← SRxi ∪ rldm

i

39: end for
40: if SRxi = {} then
41: return Ansxi = No and terminate
42: end if
43: CRxi ← {}
44: for all rldm

i ∈ Rc(xi) do
45: SSri ← {}
46: for all bt ∈ body(rldm

i ) do
47: if bt ∈ Histxi then
48: stop and check the next rule
49: else
50: Histbt ← Histxi ∪ bt

51: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt , Tt)
52: if Ansbt = No then
53: stop and check the next rule
54: else if Ansbt = Y es and bt /∈ Vi then
55: SSri ← SSri ∪ bt

56: else
57: SSri ← SSri ∪ SSbt

58: end if
59: end if
60: end for
61: CRxi ← CRxi ∪ rldm

i

62: end for
63: if CRxi = {} then
64: return Ansxi = Y es and terminate
65: end if
66: for all r′i ∈ CRxi do
67: if @ri ∈ SRxi : ri > r′i or (r′i ≯ ri and Stronger(SSri , SSr′i , Ti) =

SSri) then
68: return Ansxi = No and terminate
69: end if



70: end for
71: return Ansxi = Y es and SSxi

The Stronger function is modified as follows:

Stronger(S, C, Ti)
1: if S = {} and C = {} then
2: Stronger = None
3: end if
4: if S = {} and C 6= {} then
5: Stronger = S
6: end if
7: if S 6= {} and C = {} then
8: Stronger = C
9: end if

10: aw ← ak ∈ S s.t. for all ai ∈ S : Pk does not precede Pi in Ti)
11: bw ← al ∈ C s.t. for all bj ∈ C : Pl does not precede Pj in Ti)
12: if Pk precedes Pl in Ti then
13: Stronger = S
14: else if Pl precedes Pk in Ti then
15: Stronger = C
16: else
17: Stronger = None
18: end if

4.2 Properties of P2P DRdl

4.2.1 Termination and Number of Messages

P2P DRdl shares the same properties with P2P DR with regard to termi-
nation and the total number of messages that need to be exchanged between
the system peers for the computation of a single query.

Based on the facts that (α) P2P DRdl terminates either by detecting a
cycle or by returning an answer about the truth value of the queried literal,
and (β) there are a finite number of nodes, each one with a finite number of
literals, and consequently with a finite number of rules and priority relations,
P2P DRdl is guaranteed to terminate.



In the same way with P2P DR, P2P DRdl requires, in the worst case,
each node to check the truth value of all the remote literals that are involved
in its mapping rules at most once. We have already proved that this proce-
dure will result in a number of messages that is proportional to the square
of the maximum number of acquaintances a system node may have, and in
the worst case that each node has defined mappings which involve all the
other system nodes, the total number of messages is O(n2) (where n stands
for the node population).

4.2.2 Single Node Complexity

Adding defeasible local theories in the system adds an overhead to the com-
putational complexity of the algorithm on a single node. By comparing the
two versions, it is obvious that the additional overhead is imposed by build-
ing SRxi and CRxi (the collections of rules that can be applied to support
/ contradict xi) and by the module that checks the priority and strength
relations for each pair of conflicting rules. Building SRxi (CRxi) has an
overhead which is proportional to the total number of rules that support
(contradict) xi. Consequently, in the worst case that for the computation
of the truth value of xi, all rules in Pi are involved, building these two col-
lections has a total overhead which is proportional to the total number of
rules in Pi (O(nr)).

The second module requires for each pair of conflicting rules ri ∈ SRxi ,
r′i ∈ CRxi checking their priority relation and comparing their support-
ive sets (SSri , SSr′i) through the Stronger function. Considering that the
number of elements in a Supportive Set is in the worst case O(nACQ × nl),
where nACQ is the number of acquaintances a peer may have, and nl is the
number of literals a peer may define. So, the total overhead of this module
O(n2

r × nACQ × nl), where nr is the number of rules in a peer theory.

Considering that the second module replaces the part of the first version,
which compares SSxi and CSxi through the Stronger function to compute
the final answer for xi, and that all the other parts of the algorithm remain
unchanged, the computational complexity in this version is

O(nrloc × nrloc
l × nl + nr × nr

l × nACQ × nl + nr + n2
r × nACQ × nl)

nrloc is the number of local rules defined by a peer



nr is the number of (local and mapping) rules defined by a peer
nr

l is the number of literals in the body of a rule
nrloc

l is the number of literals in the body of a local rule
nl is the number of literals defined by one peer
nACQ is the number of a peer’s acquaintances

Assuming that (a) nr
l = O(nACQ×nl); and (b) nrloc

l = O(nl), the overall
complexity is

O(n2
ACQ × n2

l × nr + nACQ × nl × n2
r)

In the worst case, that that all peers have defined mappings that involve
all the other system nodes: nACQ = O(n), and the overall complexity is

O(n2 × n2
l × nr + n× nl × n2

r)

4.3 Equivalent Unified Defeasible Theory

The steps that we have to take to build an equivalent defeasible theory based
on the distributed local theories and the trust level orderings of each system
node are four. The second and third steps are exactly the same with the
respective steps followed in the case of non-defeasible local theories. The
first and fourth steps are modified as follows:

1. The strict local rules and the defeasible rules of each peer’s theory
are also part of the unified theory, Tυ(P ) (without any modification).

4. Each priority relation that is part of the local theories is also part of
the unified theory, Tυ(P ). For each pair of conflicting rules, for which there
is no priority relation in the local theories, we add a priority relation based
on the peers’ trust level ordering using the following procedure:

Prioritiesdl

The derivation of priorities between conflicting rules in Tυ(P ) is a fi-
nite sequence Pr = (Pr(1), ..., P r(n)), where each Pr(i) can be one of the
followings:

• The supportive set of a rule in Tυ(P ) (a set of literals).

• A priority relation between two conflicting rules in Tυ(P )



• The supportive set of a literal in Tυ(P ) (a set of literals).

Assuming that the first i steps of this derivation have computed Pr(1...i),
which is the initial part of the sequence Pr of length i, the next part of this
sequence (Pr(i + 1)) will be either the supportive set of a rule (Sri), or a
priority relation (ri > si), or the supportive set of a literal (Sai).

If Pr(i + 1) = Sri then either
(α) Sri ={s} (where s is the strongest possible element) and

ri ∈ Rs and ∀ai ∈ body(ri): Sai ∈ Pr(1...i) and Sai = s or
(β) Sri = (

⋃
Sai) ∪ (

⋃
aj), and

∀ai: ai ∈ Vi, ai ∈ body(ri), Sai ∈ Pr(1...i) and
∀aj : aj /∈ Vi, aj ∈ body(ri), Saj ∈ Pr(1...i), w /∈ Saj or

(γ) Sri = {w}, and
∃aj , s.t. aj /∈ Vi, aj ∈ body(ri), Saj ∈ Pr(1...i), w ∈ Saj

If Pr(i + 1) = ri > si then
Sri , Ssi ∈ Pr(1...i) and ri, si are conflicting and
w /∈ Sri and w /∈ Ssi and
ri > si, si > ri /∈ Pi and
Stronger(Sri , Ssi , Ti) = Sri

If Pr(i + 1) = Sai then either
(α) ∃ri ∈ R[ai]: Sri ∈ Pr(1...i) and Sai = Sri and either

(α1) Sri = {s} or
(α2) Sri 6= {s} and

(α2.1) ∀si ∈ R[¬ai] : ∃qi ∈ R[ai] s.t. Sqi ∈ Pr(1...i) and
(α2.1.1) w /∈ Sqi and qi > si ∈ Pi or
(α2.1.2) qi > si ∈ Pr(1...i) and

(α2.2) ∀ti ∈ R[ai]: Sti ∈ Pr(1...i) and Stronger(Sti , Sri , Ti) 6= Sti or
(β) Sai = {w} and

(β1) ∃si ∈ R[¬ai]:
(β1.1) Ssi ∈ Pr(1...i) and
(β1.2) ∀ri ∈ R[ai] either

(β1.2.1) Sri ∈ Pr(1...i) and w ∈ Sri or
(β1.2.2) ri > si /∈ Pi and either

Stronger(Sri , Ssi , Ti) 6= Sri or si > ri ∈ Pi or
(β2) S¬ai ∈ Pr(1...i) and S¬ai = {s}



Pr(1...n) will contain the supportive sets of all rules and literals in Tυ(P ),
and the required priority relations between all conflicting rules in Tυ(P ), for
which there is no priority relation in the original local theories.

It is now left to check if Theorems 3-6, Lemma 7, and Theorems 8-
9 hold for the relation between the distributed local theories (which are
now augmented with defeasible local rules and priorities) and the unified
defeasible theory that is constructed in the way that we describe above.

Theorem 3 holds with some small modifications. Specifically, for this
new version of the algorithm, it should be modified as follows:

Theorem 3 (P2P DRdl) For every literal xi,

(a) the set of strict rules in Tυ(P ) that support xi (Rs[xi]) is the same
with the set of local strict supportive rules rl

i used by P2P DR to compute
Ansxi.

(b) the set of defeasible rules in Tυ(P ) that support xi (Rd[xi]) derives
from the the unification of the sets of local defeasible supportive
rules rd

i and mapping supportive rules rm
i used by P2P DR to compute

Ansxi.

(c) (a) and (b) also hold for the rules that contradict xi

Proof.

(a). The local strict rules that support xi and are used by P2P DR to
compute Ansxi are those defined in Pi. These rules are also part of Tυ(P ).
No other peer theory may contain a local strict rule that supports xi, so
these rules are the only strict rules that support xi in Tυ(P ).

(b). The local defeasible rules that support xi and are used by P2P DR
to compute Ansxi are those defined in Pi. These rules are also part of Tυ(P ).
No other peer theory may contain a local strict rule that supports xi. The
mapping rules that support xi and are used by P2P DR to compute Ansxi

are those defined in Pi. These rules are also represented as defeasible rules
in Tυ(P ). No other peer theory may contain a local defeasible rule that
supports xi, and even if some other peer theory contains a mapping rule
that supports xi, this rule is eliminated during the construction of Tυ(P ),
so Pi’s local defeasible and mapping supportive rules are the only defeasible
rules that support xi in Tυ(P ).



(c) The rules that contradict xi are in fact the rules that support ¬xi.
So, (a) and (b) also hold for the rules that contradict xi.

Based on Theorem 3 for P2P DRdl, we can derive that Theorem 4 holds
also for this version (If there are no cycles in Tυ(P ), P2P DRdl will never
detect a cycle; and vice versa). The proof is exactly the same with the one
that we presented for the case of P2P DR.

Theorem 5 is modified as follows:

Theorem 5 (for P2P DRdl): For any literal xi,
localAnsxi = Y es (calculated by local alg) ⇔
Sxi ∈ Pr(1...n) and Sxi = {s}

Left to right proof : Induction on the number of calls of local alg.

Base Case. We will prove that:

(1) If localAnsxi = Y es derives at the first call of local alg in Pi then
Sxi = {s}

(1) localAnsxi = Y es derives at the first call of local alg in Pi ⇒
∃rl

i ∈ Rs(xi): body(rl
i) = {} ⇒ (using Theorem 3)

∃ri ∈ Tυ(P ): ri ∈ Rs[xi] and body(ri) = {} ⇒
∃ri ∈ Tυ(P ): ri ∈ Rs[xi] and Sri ∈ Pr(1...n) and Sri = {s} ⇒
Sxi ∈ Pr(1...n) and Sxi = {s}

Induction Step. Assume that

(2) localAnsxi = Y es derives during the first n calls of local alg in Pi ⇒
Sxi ∈ Pr(1...n) and Sxi = {s}

If localAnsxi = Y es derives in the first (n + 1) calls of local alg in Pi:

localAnsxi = Y es ⇒
∃rl

i ∈ Rs(xi):
(α) body(rl

i) 6= {} and
(β) ∀α ∈ body(rl

i): localAnsα = Y es (in n calls) ⇒ ((2), Theorem 3)



∃ri ∈ Tυ(P ):
(α) ri ∈ Rs[xi] and body(ri) 6= {} and Sri ∈ Pr(1...n) and
(β) ∀α ∈ body(ri): α ∈ Vi, Sα ∈ Pr(1...n) and Sα = {s} ⇒

Sxi ∈ Pr(1...n) and Sxi = Sri = {s}

Right to left proof : Induction on the derivation steps in Pr(1...n).

Base Case. We will prove that:

(3) P (2) = Sxi = {s} ⇒ localAnsxi = Y es
(The supportive set of a literal cannot derive in the first step of the derivation process,
unless it contains w)

(3) P (2) = Sxi = {s} ⇒
∃ri ∈ Tυ(P ): ri ∈ Rs[xi] and Sri ∈ P (1) and Sri = {s} ⇒
∃ri ∈ Tυ(P ): ri ∈ Rs[xi] and Sri ∈ P (1) and body(ri) = {} ⇒ (using Theorem 3)
∃rl

i ∈ Rs(xi): body(rl
i) = {} ⇒

localAnsxi = Y es

Induction Step. Assume that

(4) Sxi ∈ P (n) and Sxi = {s} ⇒ localAnsxi = Y es

Sxi ∈ P (n + 1) and Sxi = {s} ⇒
∃ri ∈ Rs[xi]: Sri ∈ Pr(1...n) and Sri = {s} ⇒
∃ri ∈ Rs[xi]: Sri ∈ Pr(1...n) and

∀α ∈ body(ri): α ∈ Vi, Sα ∈ Pr(1...n) and Sα = {s} ⇒ ((4), Theorem 3)
∃rl

i ∈ Rs(xi): ∀α ∈ body(rl
i): localAnsxi = Y es ⇒

localAnsxi = Y es

Theorem 6 also holds for this version but with some minor modifications.
Specifically:

Theorem 6 (for P2P DRdl): For any literal xi, for which localAnsxi = No,
(a) Ansxi = Y es and SSxi = Σ ⇔ Sxi ∈ Pr(1...n) and Sxi = Σ and w /∈ Sxi

(b) Ansxi = No ⇔ Sxi ∈ Pr(1...n) and w ∈ Sxi



Left to Right Proof : Induction on the number of calls of P2P DR.

Base Case. We will prove that for a literal xi for which localAnsxi = No:

(5) If Ansxi = Y es derives at the first call of P2P DRdl and SSxi = Σ then
Sxi ∈ Pr(1...n) and Sxi = Σ, and

(6) If Ansxi = No derives at the first call of P2P DRdl then
Sxi ∈ Pr(1...n) and w ∈ Sxi

(5) Ansxi = Y es derives at the first call of P2P DRdl and localAnsxi 6= Y es and SSxi = Σ ⇒
(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∃rd

i ∈ Rs(xi): body(rd
i ) = {} and Σ = SSxi = SSri and

(δ) @tldm
i ∈ Rs(xi): body(ti) 6= {} and

(ε) ∀sdm
i ∈ Rc(xi): body(si) = {} and ∃tldm

i ∈ Rs(xi): ti > si ⇒

(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∃rd

i ∈ Rs(xi): body(rd
i ) = {} and Σ = {} and

(δ) @tldm
i ∈ Rs(xi): body(ti) 6= {} and

(ε) ∀sdm
i ∈ Rc(xi): body(si) = {} and ∃tldm

i ∈ Rs(xi): ti > si ⇒ (Theorems 3,5)

(α) Sxi 6= {s} and
(β) S¬xi 6= {s} and
(γ) ∃r ∈ Tυ(P ): r ∈ Rd[xi] and body(r) = {} and
(δ) @t ∈ Tυ(P ): t ∈ R[xi] and body(t) 6= {} and
(ε) ∀s ∈ Tυ(P ) s.t. s ∈ Rd[¬xi]: body(s) = {} and ∃t ∈ R[xi]: t > s ⇒

Sxi = Sr = {} = SSxi = Σ

(6) Ansxi = No derives at the first call of P2P DRdl ⇒
(α) localAns¬xi = Y es or
(β) @rldm

i ∈ Rs(xi) or
(γ) (γ1) localAnsxi 6= Y es and

(γ2) localAns¬xi 6= Y es and
(γ3) ∀sldm

i ∈ Rc(xi): body(si) = {} and
(γ4) ∀rdm

i ∈ Rs(xi): body(ri) = {} and
(γ5) ∃qldm

i ∈ Rc(xi) s.t. ∀ri ∈ Rs(xi): ri ≯ qi ⇒ (Theorems 3,5)



(α) S¬xi = {s} or
(β) @r ∈ Tυ(P ): r ∈ R[xi] or
(γ) (γ1) Sxi 6= {s} and

(γ2) S¬xi 6= {s} and
(γ3) ∀s ∈ Tυ(P ) s.t. s ∈ Rd[¬xi]: body(s) = {} and
(γ4) ∀r ∈ Tυ(P ) s.t. r ∈ Rd[xi]: body(r) = {} and
(γ5) ∃q ∈ Tυ(P ) ∪Rc(xi) s.t. ∀r ∈ Tυ(P ) ∪R[xi]: r ≯ q ⇒

Sxi ∈ Pr(1...n) and w ∈ Sxi

Induction Step. Assume that

(7) Ansxi = Y es derives in the first n calls of P2P DRdl and SSxi = Σ ⇒
Sxi ∈ Pr(1...n) and Sxi = Σ, and

(8) Ansxi = No derives in the first n calls of P2P DRdl ⇒
Sxi ∈ Pr(1...n) and w ∈ Sxi

If Ansxi = Y es derives in (n + 1) calls of P2P DRdl and SSxi = Σ:

SSxi = Σ and Ansxi = Y es ⇒
(α) SSxi = Σ and
(β) localAnsxi 6= Y es and
(γ) localAns¬xi 6= Y es and
(δ) ∃rldm

i ∈ SRxi :
(δ1) SSrldm

i
= Σ and

(δ2) ∀tldm
i ∈ SRxi : Stronger(SSti , SSri , Ti) 6= SSti and

(ε) ∀sldm
i ∈ CRxi ∃tldm

i ∈ SRxi : Stronger(SSti , SSsi , Ti) = SSti ⇒

(α) SSxi = Σ and
(β) localAnsxi 6= Y es and
(γ) localAns¬xi 6= Y es and
(δ) ∃rldm

i ∈ Rs(xi) :
(δ1) SSrldm

i
= Σ and

(δ2) ∀α ∈ body(rldm
i ): Ansα = Y es (in at most n calls) and

(δ3) ∀tldm
i ∈ Rs(xi): either

(δ3.1) ∃γ ∈ body(tldm
i ) s.t. Ansγ = No or

(δ3.2) Stronger(SSti , SSri , Ti) 6= SSti and



(ε) ∀sldm
i ∈ Rc(xi) either

(ε1) ∃β ∈ body(sldm
i ) s.t. Ansβ = No or

(ε2)∃tldm
i ∈ Rs(xi):

(ε2.1) ∀γ ∈ body(tldm
i ): Ansγ = Y es (in at most n calls) and

(ε2.2) Stronger(SSti , SSsi , Ti) = SSti ⇒

(α) SSxi = Σ and
(β) localAnsxi 6= Y es and
(γ) localAns¬xi 6= Y es and
(δ) ∃rldm

i ∈ Rs(xi) :
(δ1) SSrldm

i
= Σ and

(δ2) ∀α ∈ body(rldm
i ): Ansα = Y es (in at most n calls) and

(δ3) ∀tldm
i ∈ Rs(xi): either

(δ3.1) ∃γ ∈ body(tldm
i ) s.t. Ansγ = No or

(δ3.2) (δ3.2.1) ∀γ ∈ body(tlmi ): Ansγ = Y es (in n calls) and
(δ3.2.2) Stronger((

⋃
SSγi) ∪ (

⋃
γj), (

⋃
SSαi) ∪ (

⋃
αj), Ti) 6= (

⋃
SSγi) ∪ (

⋃
γj)

(∀i, j: αi, αj ∈ body(rldm
i ), γi, γj ∈ body(tldm

i ), αi, γi ∈ Vi, αj , γj /∈ Vi)
(ε) ∀sldm

i ∈ Rc(xi) either
(ε1) ∃β ∈ body(sldm

i ) s.t. Ansβ = No or
(ε2)∃tldm

i ∈ Rs(xi):
(ε2.1) ∀γ ∈ body(tldm

i ): Ansγ = Y es (in at most n calls) and
(ε2.2) Stronger((

⋃
SSγi) ∪ (

⋃
γj), (

⋃
SSβi) ∪ (

⋃
βj), Ti) = (

⋃
SSγi) ∪ (

⋃
γj)

(∀i, j: γi, γj ∈ body(tldm
i ), βi, βj ∈ body(sldm

i ), γi, βi ∈ Vi, αj , βj /∈ Vi)
⇒ ((7)(8), Theorems 3 and 5)

(α) SSxi = Σ and
(β) Sxi 6= {} and
(γ) S¬xi 6= {} and
(δ) ∃ri ∈ Tυ(P ): ri ∈ Rsd[xi] and

(δ1) SSri = Σ and
(δ2) ∀α ∈ body(ri): Sα ∈ Pr(1...n) and Sα = SSα and
(δ3) ∀ti ∈ Rsd[xi]: either

(δ3.1) ∃γ ∈ body(ti) s.t. w ∈ Sγ or
(δ3.2) (δ3.2.1) ∀γ ∈ body(ti): Sγ ∈ Pr(1...n) and Sγ = SSγ and

(δ3.2.2) Stronger((
⋃

SSγi) ∪ (
⋃

γj), (
⋃

SSαi) ∪ (
⋃

αj), Ti) 6= (
⋃

SSγi) ∪ (
⋃

γj)
(∀i, j: αi, αj ∈ body(ri), γi, γj ∈ body(ti), αi, γi ∈ Vi, αj , γj /∈ Vi) and

(ε) ∀si ∈ Rsd[¬xi] either
(ε1) ∃β ∈ body(si) s.t. w ∈ Sβ or
(ε2)∃ti ∈ Rsd[xi]:



(ε2.1) ∀γ ∈ body(ti): Sγ ∈ Pr(1...n) and Sγ = SSγ and
(ε2.2) Stronger((

⋃
SSγi) ∪ (

⋃
γj), (

⋃
SSβi) ∪ (

⋃
βj), Ti) = (

⋃
SSγi) ∪ (

⋃
γj)

(∀i, j: γi, γj ∈ body(ti), βi, βj ∈ body(si), γi, βi ∈ Vi, αj , βj /∈ Vi) ⇒
Sxi = Sri = SSrlm

i
= Σ

If Ansxi = No derives in the first (n + 1) calls of P2P DRdl:

Ansxi = No ⇒
(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∃sldm

i ∈ Rc(xi) :
(γ1)∀β ∈ body(sldm

i ): Ansβ = Y es and
(γ2) ∀rldm

i ∈ Rs(xi) either
(γ2.1) ∃α ∈ body(rldm

i ) s.t. Ansα = No or
(γ2.2) sldm

i > rldm
i or

(γ2.3) Stronger(SSrldm
i

, SSsldm
i

, Ti) 6= SSrldm
i

and rldm
i ≯ sldm

i ⇒

(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∃sldm

i ∈ Rc(xi) :
(γ1)∀β ∈ body(sldm

i ): Ansβ = Y es and
(γ2) ∀rldm

i ∈ Rs(xi) either
(γ2.1) ∃α ∈ body(rldm

i ) s.t. Ansα = No or
(γ2.2) sldm

i > rldm
i or

(γ2.3) Stronger((
⋃

SSαi) ∪ (
⋃

αj), (
⋃

SSβi) ∪ (
⋃

βj), Ti) 6= (
⋃

SSαi) ∪ (
⋃

αj)
(∀i, j: αi, αj ∈ body(rldm

i ), βi, βj ∈ body(sldm
i ), αi, βi ∈ Vi, αj , βj /∈ Vi)

and rldm
i ≯ sldm

i

⇒ ((7)(8), Theorems 3 and 5)

(α) Sxi 6= {} and
(β) S¬xi 6= {} and
(γ) ∃si ∈ Tυ(P ): si ∈ Rsd[¬xi] and

(γ1) ∀β ∈ body(si): Sβ ∈ Pr(1...n) and Sβ = SSβ and
(γ2) ∀ri ∈ Rsd[xi] either

(γ2.1) ∃α ∈ body(ri) s.t. Sα ∈ Pr(1...n) and w ∈ Sα or
(γ2.2) sldm

i > rldm
i or

(γ2.3) Stronger((
⋃

SSαi) ∪ (
⋃

αj), (
⋃

SSβi) ∪ (
⋃

βj), Ti) 6= (
⋃

SSαi) ∪ (
⋃

αj)
(∀i, j: αi, αj ∈ body(ri), βi, βj ∈ body(si), αi, βi ∈ Vi, αj , βj /∈ Vi)
and ri ≯ si ⇒ w ∈ Sxi



Right to Left Proof : Induction on the derivation steps in Pr(1...n).

Base Case. We will prove that for a literal xi for which localAnsxi = No ⇔ Sxi 6= {s}:

(9) P (2) = Sxi = Σ and w /∈ Σ ⇒ Ansxi = Y es and SSxi = T , and

(10) P (1) = Sxi = Σ and w ∈ Σ ⇒ Ansxi = No

(The supportive set of a literal cannot derive in the first step of the derivation process,
unless it contains w)

(9) P (2) = Sxi = Σ and w /∈ Σ and Σ 6= {s} ⇒
(α) ∃ri ∈ R[xi]: Sri = Σ and w /∈ Σ and Σ 6= {s} and
(β) @si ∈ R[¬xi] and
(γ) @ti 6= ri: ti ∈ R[xi] ⇒

(α) ∃ri ∈ Rd[xi]: Sri = Σ and body(ri) = {} and Σ = {} and
(β) @si ∈ R[¬xi] and
(γ) @ti 6= ri: ti ∈ R[xi] ⇒ (Theorem 3)

(α) ∃rd
i ∈ Rs(xi): Srd

i
= Σ and body(rid) = {} and Σ = {} and

(β) @sldm
i ∈ Rc(xi) and

(γ) @tldm
i 6= rd

i : tldm
i ∈ Rs(xi) ⇒ (Theorem 3)

Ansxi = Y es and SSxi = {} = Σ

(10) P (1) = Sxi = Σ and w ∈ Σ ⇒
@ri ∈ Tυ(P ): ri ∈ Rs[xi] ⇒ (Theorem 3)
@rldm

i ∈ Rs(xi) ⇒
Ansxi = No

Induction Step. Assume that for a literal xi

(11) Σ = Sxi ∈ P (n) and w /∈ Σ and Σ 6= {s} ⇒
Ansxi = Y es and SSxi = Σ, and

(12) Σ = Sxi ∈ P (n) and w ∈ Σ ⇒
Ansxi = No



Sxi = Σ ∈ Pr(n + 1) and w /∈ Σ and Sxi 6= {s} ⇒

(α) ∃ri ∈ Tυ(P ): Sri = Σ ∈ Pr(1...n) and ri ∈ Rsd[xi] and w /∈ Σ and Σ 6= {s} and
(β) ∀si ∈ Rsd[¬xi]: ∃qi ∈ Rsd[xi] s.t. Sqi ∈ Pr(1...n)and

(β1) w /∈ Sqi and qi > si ∈ Pi or
(β2) qi > si ∈ Pr(1...n) and

(γ) ∀ti ∈ Rsd[xi]:
Sti ∈ Pr(1...n) and Stronger(Sti , Sri , Ti) 6= Sti ⇒

(α) ∃ri ∈ Tυ(P ): Sri = Σ ∈ Pr(1...n) and ri ∈ Rsd[xi] and Σ 6= {s} and
∀α ∈ body(ri): Sα ∈ Pr(1...n) and w /∈ Sα and

(β) ∀si ∈ Rsd[¬xi]: ∃qi ∈ Rsd[xi] s.t. Sqi ∈ Pr(1...n)and
∀δ ∈ body(qi): Sδ ∈ Pr(1...n) and w /∈ Sδ and

(β1) qi > si ∈ Pi or
(β2) Stronger(Sqi , Ssi , Ti) = Sqi and

(γ) ∀ti ∈ Rsd[xi]:
Sti ∈ Pr(1...n) and Stronger(Sti , Sri , Ti) 6= Sti ⇒

(α) ∃ri ∈ Tυ(P ): Sri = Σ ∈ Pr(1...n) and ri ∈ Rsd[xi] and Σ 6= {s} and
∀α ∈ body(ri): Sα ∈ Pr(1...n) and w /∈ Sα and

(β) ∀si ∈ Rsd[¬xi]: ∃qi ∈ Rsd[xi] s.t. Sqi ∈ Pr(1...n)and
∀δ ∈ body(qi): Sδ ∈ Pr(1...n) and w /∈ Sδ and

(β1) qi > si ∈ Pi or
(β2) ∃β ∈ body(si) s.t. Sβ ∈ Pr(1...n) and w ∈ Sβ or
(β3) ∀β ∈ body(si): Sβ ∈ Pr(1...n) and w /∈ Sβ and

Stronger((
⋃

Sδi) ∪ (
⋃

δj), (
⋃

Sβi) ∪ (
⋃

βj), Ti) = (
⋃

Sδi) ∪ (
⋃

δj)
(∀i, j: δi, δj ∈ body(qi), βi, βj ∈ body(si), δi, βi ∈ Vi, δj , βj /∈ Vi) and

(γ) ∀ti ∈ Rsd[xi]: Sti ∈ Pr(1...n) and either
(γ1) ∃γ: Sγ ∈ Pr(1...n) and w ∈ Sγ or
(γ2) (γ2.1) ∀γ ∈ body(ti): Sγ ∈ Pr(1...n) and w /∈ Sγ and

(γ2.2) Stronger((
⋃

SSγi) ∪ (
⋃

γj), (
⋃

Sαi) ∪ (
⋃

αj), Ti) 6= (
⋃

Sγi) ∪ (
⋃

γj)
(∀i, j: αi, αj ∈ body(ri), γi, γj ∈ body(ti), αi, γi ∈ Vi, αj , γj /∈ Vi)

⇒ ((11),(12), Theorems 3,5)

(α) ∃rldm
i : Srldm

i
= Σ ∈ Pr(1...n) and rldm

i ∈ Rs(xi) and
∀α ∈ body(rldm

i ): Ansα = Y es and SSα = Sα and
(β) ∀sldm

i ∈ Rc(xi): ∃qldm
i ∈ Rs(xi) s.t.

∀δ ∈ body(qldm
i ): Ansα = Y es and SSα = Sα and

(β1) qldm
i > sldm

i ∈ Pi or



(β2) ∃β ∈ body(sldm
i ) s.t. Ansβ = No or

(β3) Ansβ = Y es and SSβ = Sβ and
Stronger((

⋃
Sδi

) ∪ (
⋃

δj), (
⋃

Sβi
) ∪ (

⋃
βj), Ti) = (

⋃
Sδi

) ∪ (
⋃

δj)
(∀i, j: δi, δj ∈ body(qldm

i ), βi, βj ∈ body(sldm
i ), δi, βi ∈ Vi, δj , βj /∈ Vi) and

(γ) ∀tldm
i ∈ Rs(xi): either

(γ1) ∃γ ∈ body(tldm
i ) s.t. Ansγ = No or

(γ2) (γ2.1) ∀γ ∈ body(tldm
i ): Ansγ = Y es and SSγ = Sγ and

(γ2.2) Stronger((
⋃

SSγi) ∪ (
⋃

γj), (
⋃

Sαi) ∪ (
⋃

αj), Ti) 6= (
⋃

Sγi) ∪ (
⋃

γj)
(∀i, j: αi, αj ∈ body(rldm

i ), γi, γj ∈ body(tldm
i ), αi, γi ∈ Vi, αj , γj /∈ Vi) ⇒

Ansxi = Y es and SSxi = Sxi = Σ

Sxi= Σ ∈ Pr(n + 1) and w ∈ Σ ⇒

(α) ∀ri ∈ Rsd[xi]: Sri ∈ Pr(1...n) and w ∈ Sri or
(β) ∃si ∈ Rsd[¬xi]: Ssi = Σ ∈ Pr(1...n) and w /∈ Ssi and ∀ri ∈ Rsd[xi]: Sri ∈ Pr(1...n) and either

(α1) w ∈ Sri or
(α2) si > ri ∈ Pi or
(α3) ri > si /∈ Pi and Stronger(Sri , Ssi , Ti) 6= Sri or

(γ) S¬xi ∈ Pr(1...n) and S¬xi = {s} ⇒

(α) ∀ri ∈ Rsd[xi]: ∃α ∈ body(ri): w ∈ Sα or
(β) ∃si ∈ Rsd[¬xi]: Ssi = Σ ∈ Pr(1...n) and ∀ri ∈ Rsd[xi]: Sri ∈ Pr(1...n) and either

(β1) ∃α ∈ body(ri): w ∈ Sα or
(β2) si > ri ∈ Pi or
(β3) (β3.1) ri > si /∈ Pi and

(β3.2) ∀α ∈ body(ri): SαinPr(1...n) and w /∈ Sα and
(β3.3) Stronger((

⋃
Sαi) ∪ (

⋃
αj), (

⋃
Sβi) ∪ (

⋃
βj), Ti) 6= (

⋃
Sαi) ∪ (

⋃
αj)

(∀i, j: αi, αj ∈ body(ri), βi, βj ∈ body(si), αi, βi ∈ Vi, αj , βj /∈ Vi) or
(γ) S¬xi ∈ Pr(1...n) and S¬xi = {s} ⇒ ((11),(12), Theorems 3,5)

(α) ∀rldm
i ∈ Rs(xi): ∃α ∈ body(rldm

i ): Ansα = No or
(β) ∃sldm

i ∈ Rc(xi): Ssldm
i

= Σ and ∀rldm
i ∈ Rs(xi) either

(β1) ∃α ∈ body(rldm
i ): Ansα = No or

(β2) si > ri ∈ Pi or
(β3) (β3.1) ri > si /∈ Pi and

(β3.2) ∀α ∈ body(rldm
i ): Ansα = Y es and Sα = SSα and

(β3.3) Stronger((
⋃

Sαi) ∪ (
⋃

αj), (
⋃

Sβi) ∪ (
⋃

βj), Ti) 6= (
⋃

Sαi) ∪ (
⋃

αj)
(∀i, j: αi, αj ∈ body(rldm

i ), βi, βj ∈ body(sldm
i ), αi, βi ∈ Vi, αj , βj /∈ Vi) or



(γ) localAns¬xi = Y es ⇒

Ansxi = No

Following Theorem 6, it is straightforward to prove that Lemma 7 holds
here too, with some minor modifications:

Lemma 7: For any literal xi for which, localAnsxi = No and localAns¬xi = No
and for any two local or mapping rules rldm

i ∈ Rs(xi), sldm
i ∈ Rc(xi)

(for which there is no priority relation in Pi)
and their corresponding rules ri, si ∈ Tυ(P ):

Stronger(SSrlm
i

, SSslm
i

, Ti) = SSrlm
i
⇔ ri > si ∈ Pr(1...n)

Theorem 8, which states the equivalency between the local reasoning
process (local alg) of the distributed algorithm, and the derivation of definite
proofs in the unified defeasible theory Tυ(P ) holds as it is in this version as
well. The proof for it is exactly the same, with the one that we presented
for the first version of P2P DR.

Theorem 8: Tυ(P ) ` +∆xi is equivalent to localAnsxi = Y es and
Tυ(P ) ` −∆xi is equivalent to localAnsxi = No

Theorem 9, which describes the correlation between the answers re-
turned by the distributed reasoning algorithm, and the defeasible proofs
returned by Tυ(P ), holds also for this version. Below, we give the theorem
and its proof, which is slightly different from the one that we presented in
the previous chapter.

Theorem 9: Tυ(P ) ` +∂xi is equivalent to Ansxi = Y es and
Tυ(P ) ` −∂xi is equivalent to Ansxi = No

We will prove the left-to-right part of this theorem using Induction on
the number of proof derivation steps in Tυ(P ). A defeasible proof about a
literal q cannot derive in one step, as even if there is only one supportive
defeasible rule with empty body, in order to prove +∂q, we should priorly
derive −∆¬q. So the base of the induction will be the first two steps of the
derivation process.



Base Case. We will prove that:

(13) P (2) = +∂xi ⇒ Ansxi = Y es, and

(14) P (2) = −∂xi ⇒ Ansxi = No

(13) P (2) = +∂xi ⇒
(α) P (1) = +∆xi or
(β) (β1) ∃r ∈ Rsd[xi]: body(r) = {} and

(β2) P (1) = −∆¬xi and
(β3) @s ∈ R[¬xi] ⇒ (Theorems 3 and 8)

(α) localAnsxi = Y es or
(β) (β1) ∃rldm

i ∈ Rs(xi): body(rldm
i ) = {} and

(β2) localAns¬xi = No and
(β3) @sldm

i ∈ Rc(xi) ⇒

(α) Ansxi = Y es or
(β) (β1) ∃rldm

i ∈ Rs(xi): body(rldm
i ) = {} and

(β2) localAns¬xi = No and
(β3) CRxi = {} ⇒

Ansxi = Y es

(14) P (2) = −∂xi ⇒
(α) P (1) = −∆xi and
(β) (β1) @r ∈ Rsd[xi]or

(β2) P (1) = +∆¬xi ⇒ (Theorems 3 and 8)

(α) localAnsxi = No and
(β) (β1) @rldm

i ∈ Rs(xi) or
(β2) localAns¬xi = Y es ⇒

(α) localAnsxi = No and
(β) (β1) SRxi = {} or

(β2) localAns¬xi = Y es ⇒
Ansxi = No

Induction Step. Assume that



(15) +∂xi ∈ P (1...n) ⇒ Ansxi = Y es, and

(16) −∂xi ∈ P (1...n) ⇒ Ansxi = No

For i = n + 1

+∂xi∈ P (1...n + 1) ⇒
(α) +∆xi ∈ P (1...n) or
(β) (β1) ∃r ∈ Rsd[xi] s.t. ∀α ∈ body(r): +∂α ∈ P (1...n) and

(β2) −∆¬xi ∈ P (1...n) and
(β3) ∀s ∈ Rsd[¬xi]

(β3.1) ∃β ∈ body(s): −∂β ∈ P (1...n) or
(β3.2) ∃t ∈ Rsd[xi]:

∀γ ∈ body(t): +∂γ ∈ P (1...n) and t > s ⇒ ((15),(16), Theorems 3,8, Lemma 7)

(α) localAnsxi = Y es or
(β) (β1) ∃rldm

i ∈ Rs(xi) s.t. ∀α ∈ body(r): Ansα = Y es and
(β2) localAns¬xi = No and
(β3) ∀sldm

i ∈ Rc(xi)
(β3.1) ∃β ∈ body(sldm

i ): Ansβ = No or
(β3.2) ∃tldm

i ∈ Rs(xi):
∀γ ∈ body(tldm

i ): Ansγ = Y es and
tldm
i > sldm

i ∈ Pi or
sldm
i > tldm

i /∈ Pi and Stronger(SStldm
i

, SSsldm
i

, Ti) = SStldm
i

) ⇒

Ansxi = Y es

For negative provability:

−∂xi∈ P (1...n + 1) ⇒
(α) −∆xi ∈ P (1...n) and
(β) (β1) ∀r ∈ Rsd[xi]: ∃α ∈ body(r): −∂α ∈ P (1...n) or

(β2) +∆¬xi ∈ P (1...n) or
(β3) ∃s ∈ Rsd[¬xi] s.t.

(β3.1) ∀β ∈ body(s): +∂β ∈ P (1...n) and
(β3.2) ∀t ∈ Rsd[xi]:

∃γ ∈ body(t): −∂γ ∈ P (1...n) or t ≯ s ⇒ ((15),(16), Theorems 3,8, Lemma 7)



(α) localAnsxi = No and
(β) (β1) ∀rldm

i ∈ Rs(xi): ∃α ∈ body(rldm
i ): Ansα = No or

(β2) localAns¬xi = Y es or
(β3) ∃sldm

i ∈ Rc(xi):
(β3.1) ∀β ∈ body(sldm

i ): Ansβ = Y es and
(β3.2) ∀tldm

i ∈ Rs(xi):
∃γ ∈ body(tldm

i ): Ansγ = No or
sldm
i > tldm

i ∈ Pi or
tldm
i > sldm

i /∈ Pi and Stronger(SStldm
i

, SSsldm
i

, Ti) 6= SStldm
i

⇒

Ansxi = No

We will now prove the right-to-left part of Theorem 9 using Induction on
the number of calls of P2P DRdl that are required to compute an answer
for a literal xi.

Base Case. We will prove that:

(17) If Ansxi = Y es derives at the first call of P2P DRdl then
Tυ(P ) ` +∂xi, and

(18) If Ansxi = No derives at the first call of P2P DRdl then
Tυ(P ) ` −∂xi

(17) Ansxi = Y es derives at the first call of P2P DR ⇒

(α) localAnsxi = Y es or
(β) (β1) localAns¬xi = No and

(β2) ∀rdm
i ∈ Rs(xi): body(rdm

i ) = {} and
(β3) ∀sdm

i ∈ Rc(xi): body(sdm
i ) = {} and ∃rdm

i ∈ Rs(xi): tdm
i > sdm

i ∈ Pi ⇒ (Theorems 3,8)

(α) Tυ(P ) ` +∆xi or
(β) (β1) Tυ(P ) ` −∆¬xi and

(β2) ∀ri ∈ Tυ(P ) s.t. ri ∈ Rd[xi]: body(ri) = {} and
(β3) ∀si ∈ Tυ(P ) s.t. si ∈ Rd[¬xi]: body(si) = {} and ∃ti ∈ Rd[xi]: ti > si ⇒

Tυ(P ) ` +∂xi



(18) Ansxi = No derives at the first call of P2P DR ⇒

(α) localAns¬xi = Y es or
(β) (β1) localAnsxi = No and

(β2) ∀rdm
i ∈ Rs(xi): body(rdm

i ) = {} and
(β3) ∀sdm

i ∈ Rc(xi): body(sdm
i ) = {} and

(β4) ∃qdm
i ∈ Rc(xi): ∀tdm

i ∈ Rs(xi: tdm
i > sdm

i /∈ Pi ⇒ (Theorems 3,8)

(α) Tυ(P ) ` +∆¬xi or
(β) (β1) Tυ(P ) ` −∆¬xi and

(β2) ∀ri ∈ Tυ(P ) s.t. ri ∈ Rd[xi]: body(ri) = {} and
(β3) ∀si ∈ Tυ(P ) s.t. si ∈ Rd[¬xi]: body(si) = {} and
(β4) ∃qi ∈ Rd[¬xi]: ∀ri ∈ Rd[xi]: ti ≯ si ⇒

Tυ(P ) ` −∂xi

Induction Step. Assume that

(19) Ansxi = Y es derives in the first n calls of P2P DRdl ⇒
Tυ(P ) ` +∂xi, and

(20) Ansxi = No derives in the first n calls of P2P DRdl ⇒
Tυ(P ) ` −∂xi

If Ansxi = Y es derives in (n + 1) calls of P2P DRdl ⇒

(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and
(γ) ∃rldm

i ∈ Rs(xi) :
∀α ∈ body(rldm

i ): Ansα = Y es (in n calls) and
(δ) ∀sldm

i ∈ Rc(xi) either
(δ1) ∃β ∈ body(sldm

i ) s.t. Ansβ = No (in n calls) or
(δ2) ∃tldm

i ∈ Rs(xi):
(δ2.1) ∀γ ∈ body(tldm

i ): Ansγ = Y es (in n calls) or
(δ2.2) tldm

i > slm
i ∈ Pi or sldm

i > tldm
i /∈ Pi and Stronger(SStlmi

, SSslm
i

, Ti) = SStlmi
⇒ ((19)(20), Theorems 3,8, Lemma 7)

(α) −∆xi and
(β) −∆¬xi and



(γ) ∃r ∈ Tυ(P ): r ∈ Rsd[xi] and ∀α ∈ body(r): +∂α and
δ) ∀s ∈ Rsd[xi] either

(δ1) ∃β ∈ body(s) s.t. −∂β or
(δ2) ∃t ∈ Tυ(P ): t ∈ Rsd[xi] and

(δ2.1) ∀γ ∈ body(t): +∂γ or
(δ2.2) t > s ∈ Tυ(P ) ⇒

Tυ(P ) ` +∂xi

If Ansxi = No derives in (n + 1) calls of P2P DR ⇒

(α) localAnsxi 6= Y es and
(β) localAns¬xi 6= Y es and either
(γ) (γ1) ∀rldm

i ∈ Rs(xi): ∃α ∈ body(rldm
i ) s.t. Ansα = No (in at most n calls) or

(γ2) ∃sldm
i ∈ Rc(xi) :

(γ2.1) ∀β ∈ body(sldm
i ): Ansβ = Y es (in n calls) and

(γ2.2) ∀rldm
i ∈ Rs(xi): either

(γ2.2.1) ∃α ∈ body(rldm
i ) s.t. Ansα = No or

(γ2.2.2) sldm
i > rldm

i ∈ Pi or
rldm
i > sldm

i /∈ Pi and Stronger(SSrldm
i

, SSsldm
i

, Ti) 6= SSrldm
i

⇒ ((19)(20), Theorems 3,8, Lemma 7)

(α) −∆xi and
(β) −∆¬xi and
(γ) (γ1) ∀r ∈ Rsd[xi]: ∃α ∈ body(r) s.t. −∂α or

(γ2) ∃s ∈ Tυ(P ): s ∈ Rsd[¬xi] and
(γ2.1) ∀β ∈ body(s): +∂β and
(γ2.2) ∀r ∈ Rsd[xi]: either

(γ2.2.1) ∃α ∈ body(r) s.t. −∂α or
(γ2.2.2) rldm

i > slm
i /∈ Tυ(P ) ⇒

Tυ(P ) ` −∂xi



5 The 2nd Approach

The 1st approach, in both versions that we described, each queried peer is
required to return a single positive/negative answer for the queried literal.
When a conflict arises, a peer uses the trust information of the peers it
queried, to evaluate the quality of the answers that they returned. Each
answer is indirectly assigned with the trust value of the peer that returned
this answer.

In this second approach, we attempt to associate the quality of the
answer not only with the trust level of the queried peer, but also with the
confidence of the queried peer on the answer it returns. Specifically, we
define two levels of quality for each positive answer; (a) the strict answers,
which derive from the local rules of the queried peer theory; and (b)the
weak answers, which are based on the mappings that the queried literal has
established with other system nodes. In the case that the local theories
are augmented with defeasible rules, the answers that are based on local
defeasible rules fall into the second category. Below, we present P2P DR2,
a version of the P2P DR distributed algorithm that supports the features
that we described.

5.1 The P2P DR2 Algorithm

The only differences with the P2P DR algorithm are two:

• A peer (say Pi) may return three different answers for a queried literal
(say xi). These are: (a) Y ess, in case a positive answer for xi derives
from local alg in Pi, (b), (β) Y esw, in case Pi computes a positive
answer for xi, which does not derive from local alg, (γ) No, in any
other case.

• Comparing the strength of two supportive sets is not only based on the
trust value of the peers, which have defined the literals contained in
these sets, but also on the level of answer for these literals. Specifically,
a strict answer for one literal is considered stronger than a weak answer
for another literal, independently of the trust level of the peers that
have defined these two literals. Comparing the strength of two literals
with the same level of proof is again entirely based on the trust level
of the peers that define these literals.



For example, assume that in Pi there is one supportive mapping rule for
xi, m1: ak ⇒ xi, and one mapping rule that contradicts xi, m2: bl ⇒ ¬xi,
and Pl precedes Pk in Ti. Assume also, that ak is proved based on the
local rules of Pk, whereas Pl computes a positive answer for bl using its
mappings. The first version of the algorithm, P2P DR, would compute a
negative answer for xi, as it would compute SSxi = {ak}, and CSxi = {bl},
and ak is weaker than bl, based on Ti. On the other hand, P2P DR2 will
take into account that Pk provides a strict positive answer for ak, while Pl

provides a weak positive answer for bl, and will eventually return a positive
answer for xi, as it will not take into account the trust level of Pk and Pl.

The only lines of the code of P2P DR that we have to modify to support
the three levels of answer are:

Line 5: Ansxi ← strxi

Lines 27-28: else if Ansbt 6= No and bt /∈ Vi then SSri ← SSri∪Ansbt

Lines 51-52: else if Ansbt 6= No and bt /∈ Vi then SSri ← SSri∪Ansbt

Line 63: return Ansxi = weakxi and SSxi and terminate

Line 66: return Ansxi = weakxi and SSxi and terminate

The Stronger function is also modified as follows:

Stronger2(S, C, T )
1: if ∃α: Ansa = weaka ∈ S then
2: aw ← ak|Ansak

= weakak
∈ S and for all ai|Ansai = weakai ∈ S: Pk

does not precede Pi in T
3: else
4: aw ← ak|Ansak

∈ S and for all ai|Ansai ∈ S: Pk does not precede Pi

in T
5: end if
6: if ∃b: Ansb = weakb ∈ C then
7: bw ← bl|Ansbl

= weakbl
∈ C and for all bj |Ansbj = weakbj ∈ C: Pl

does not precede Pj in T
8: else
9: bw ← bl|Ansbl

∈ C and for all bj |Ansbj ∈ C: Pl does not precede Pj

in T
10: end if
11: if Ansaw = straw and Ansbw = weakbw then



12: Stronger ← S
13: else if Ansaw = weakaw and Ansbw = strbw then
14: Stronger ← C
15: else
16: if Pk precedes Pl in T then
17: Stronger ← S
18: else if Pl precedes Pk in T then
19: Stronger ← C
20: else
21: Stronger ← None
22: end if
23: end if

5.2 Properties of P2P DR2

In the same way with P2P DR, it is easy to prove the following properties
for P2P DR2:

• P2P DR2 always terminates.

• The total number of messages that need to be exchanged between the
system nodes for the computation of a single query with regard to the
total number of system nodes is in the worst case O(n2) (using the
same optimizations that we described for the case of P2P DR).

• The computational complexity of P2P DR2 for the computation of a
single query on one node is in the worst case O(n2 × n2

l × nr) (where
n is the number of system nodes, nl is the number of literals a node
may define, and nr is the number of rules a node may define.

The INC Q and OUT Q structures that are part of the optimizations
that we described have to be slightly modified for the needs of P2P DR2.
Specifically, for each queried literal xi, we can have four different values: (a)
strxi ; (b) weakxi ; (c) No; and (d) undetermined. For the first three cases,
the algorithm retrieves the stored answer. In the latter case, the algorithm
call is suspended, until the computation of the answer for xi is completed
by another algorithm call that is still pending.



5.3 Equivalent Defeasible Theory

The steps that are required to build an equivalent defeasible theory from
the unification of the distributed peer theories for the second version of the
distributed reasoning algorithm, P2P DR2, are similar with those that we
described for the case of P2P DR. In fact, we only have to modify the
Priorities procedure that adds priorities between conflicting rules in the
unified theory. The differences between the Priorities procedure and the
modified version, Priorities2 are:

• The derivation of the Supportive Set of a rule ri in the (i + 1)th step
of the derivation process Pr is modified to:

If Pr(i + 1) = Sri then either
(α) Sri =(

⋃
Sai) ∪ (

⋃
straj ) ∪ (

⋃
weakak

), and
∀ai: ai ∈ Vi, ai ∈ body(ri), Sai ∈ Pr(1...i) and
∀aj : aj /∈ Vi, aj ∈ body(ri), Saj ∈ Pr(1...i), Saj = {} and
∀ak: ak /∈ Vi, ak ∈ body(ri), Sak

∈ Pr(1...i), Saj 6= {}, w /∈ Sak
or

(β) Sri = w, and
∃aj , s.t. aj /∈ Vi, aj ∈ body(ri), Saj ∈ Pr(1...i), w ∈ Saj

• In the derivation of a priority relation or of the Supportive Set of a
literal, instead of the Stronger function, we use its modified version,
Stronger2

Theorems 3,4 and 5 hold for P2P DR2 and the proofs for these theorems
derive in exactly the same way with the proofs that we presented for the
case of the first version P2P DR. Using these three theorems, we can derive
Theorem 6 in a very similar way with the one that we presented for the case
of P2P DR. Lemma 7, and Theorems 8 and 9 derive also in exactly the
same way with the case of P2P DR, following Theorems 3-6.



6 The 3d Approach

The 2nd version of the distributed algorithm, which we presented in the pre-
vious section, extends the first version, P2P DR, by supporting two levels
for the positive answers, based on whether these answers derive from the
peer’s local theory or from its mappings. In this section, we describe a more
extended version, in which a peer does not return a single positive/negative
answer, but it augments it with its supportive set ; namely, the foreign lit-
erals that it has to prove to reach to a true/false truth value. This set of
foreign literals may not only contain literals that are involved in the local
peer’s mappings. For example, consider the case that P1 is queried about
literal x1. If in order to compute an answer for x1, P1 has to query P2 about
x2, and in order P2 to be able to find the truth value of x2, it has to query
P3 about x3, which is locally proved in P3, the answer returned by P1 will
contain both x2 and x3.

6.1 The P2P DR3 Algorithm

The steps of the third version of the algorithm, P2P DR3, differ from the
original version only in the process of building the supportive/conflicting set
of a literal. In this version, the supportive set of a literal, say xi, contains
all the foreign literals that all the recursive calls have to prove in order to
be able to derive a positive answer (in the absence of any contradictions).
Considering that some of these algorithm calls may be executed by different
peers than Pi, this set may contain literals that are not involved in Pi’s
mappings (but they are involved in mappings defined by other peers). If
there are more than one ways to support xi, P2P DR3 builds the supportive
sets of all the supportive rules, and keeps the one which is the strongest
based on the trust level order of Pi, Ti. The algorithm uses the same trust
information to compare the supportive set of xi, SSxi , with the conflicting
set, CSxi , to reach to the final answer.

To support these new features P2P DR algorithm is modified as follows:

Lines 27-28: else if Ansbt = Y es and bt /∈ Vi then SSri ← SSri∪SSbt∪bt

Lines 51-52: else if Ansbt = Y es and bt /∈ Vi then SSri ← SSri∪SSbt∪bt

The local alg algorithm and the Stronger function remain unchanged.



To clarify the difference between the two versions P2P DR and P2P DR3

consider the following example: A peer, say P1, is queried about x1 by one
of its acquaintances. Assume that x1 is supported by one mapping rule;
m11: x2 → x1, and is contradicted by one mapping rule; m12: x3 → ¬x1.
Assume also that in P2 there is one rule that supports x2; m21: x4 → x2

and no rule that contradicts it, and that x4 is locally proved in P4. Assume
that in P3 there is one rule that supports x3; m31: x5 → x3 and no rule that
contradicts it, and that x5 is locally proved in P5. Finally, assume that P1

has defined its trust level order as follows; T1 = [P3, P2, P4, P5]. The first
version, P2P DR would compute SSx1 = {x2} and CSx1 = {x3} and would
return Ansx1 = No, as P3 precedes P2 in T1. On the other hand, the new
version, P2P DR3, would compute SSx1 = {x2, x4} and CSx1 = {x3, x5}
and would return Ansx1 = Y es, as x4 is the weakest element of SSx1 and
x5 is the weakest element of CSx1 , and P4 precedes P5 in T1.

6.2 Properties of P2P DR3

Theorems 1 and 2 (regarding termination and total number of messages)
hold also for this version, P2P DR3 (the proof is exactly the same). The
computational complexity of this version on a single node is also in the worst
case the same. The worst case is, however, different in the two cases. In
general, for the case of P2P DR, the computational complexity is O(n2

ACQ×
n2

l × nr), where nACQ is the number of acquaintances a peer may have, nl

is the number of literals a peer may define, and nr is the number of rules a
peer may define. The worst case is that all peers have defined mappings that
involve all literals from all system nodes. In that case nACQ = n, where n
is the number of system nodes, and the complexity is O(n2 × n2

l × nr). For
the case of P2P DR3, the worst case is that computing the truth value of
every literal involves computing the truth value of all literals from all system
nodes. In that case the complexity is also O(n2 × n2

l × nr). However, the
requirement for the worst case in this version is rather more realistic than
in the case of P2P DR.

6.3 Equivalent Defeasible Theory

Building an equivalent defeasible theory from the distributed local peer the-
ories for the case of P2P DR3 is feasible following the same procedure with



the one that we described for the case of P2P DR. The only modification
we have to make is in the procedure that adds priorities between conflicting
rules in the unified theory. The difference between the Priorities procedure
and the modified version, Priorities3 is:

• The derivation of the Supportive Set of a rule ri in the (i + 1)th step
of the derivation process Pr is modified to:

If Pr(i + 1) = Sri then
Sri =(

⋃
Sai) ∪ (

⋃
aj) ∪ (

⋃
SSaj ), and

∀ai: ai ∈ Vi, ai ∈ body(ri), Sai ∈ Pr(1...i) and
∀aj : aj /∈ Vi, aj ∈ body(ri), Saj ∈ Pr(1...i)

The proofs for Theorems 3-9 are very similar with the case of P2P DR.
In fact, for Theorems 3-5, Lemma 7 and Theorems 8-9 the proofs are exactly
the same.



7 The 4th Approach

The main feature of P2P DR3 is that along with the truth value of the
queried literal, a peer also returns its Supportive Set. This set describes the
most trusted way to reach to the final answer. However, trust is subjective.
The most trusted between two or more different ways will be different if we
use the trust level orders of two different peers.

In this section, we describe another approach that addresses this issue;
when a peer is queried about one of its local literals, it returns its truth value
along with its Supportive Set, which in this case contains all the different
ways that can be applied to support this literal. In the new version of
the algorithm, P2P DR4, the Supportive Set of a literal is actually a set
of the Supportive Sets of all the rules that can be applied to support this
literal. The reason for retaining the supportive sets of all supportive rules is
that, although the queried peer (say Pj) may regard SSrj1 stronger (more
trusted) than SSrj2 based on its trust level order, Tj , (where ri1, ri2 are two
supportive rules for the queried literal, xj), the peer that issued the query,
say Pi may have a different opinion based on Ti.

7.1 The P2P DR4 Algorithm

P2P DR4 follows the four main steps of the original version, P2P DR,
with two modifications in the process of building the supportive sets, and
in the process of comparing two conflicting sets. In this version, whenever
the algorithm computes a positive truth value for the literals that lie in the
body of a supportive rule, it augments the Supportive Set of the queried
literal, with the Supportive Set of this rule. It also does the same thing with
the Conflicting Sets. To compare two conflicting sets, say SSxi and CSxi ,
it actually compares the strongest mapping sets of SSxi and CSxi using Ti

and the Stronger function.

P2P DR(xi, P0, Pi, SSxi , CSxi ,Histxi , Ansxi , Ti)
1: if ∃rl

i ∈ Rs(xi) then
2: localHistxi ← [xi]
3: run local alg(xi, localHistxi , localAnsxi)
4: if localAnsxi = Y es then
5: Ansxi ← localAnsxi



6: terminate
7: end if
8: end if
9: if ∃rl

i ∈ Rc(xi) then
10: localHistxi ← [xi]
11: run local alg(¬xi, localHistxi , localAns¬xi)
12: if localAns¬xi = Y es then
13: Ansxi ← ¬localAns¬xi

14: terminate
15: end if
16: end if
17: for all rlm

i ∈ Rs(xi) do
18: SSri ← {}
19: for all bt ∈ body(rlm

i ) do
20: if bt ∈ Histxi then
21: stop and check the next rule
22: else
23: Histbt ← Histxi ∪ bt

24: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt , Tt)
25: if Ansbt = No then
26: stop and check the next rule
27: else if Ansbt = Y es and bt /∈ Vi then
28: SSri ← SSri × (SSbt × {bt}) (× stands for Cartesian Product)
29: else
30: SSri ← SSri × SSbt

31: end if
32: end if
33: end for
34: SSxi ← SSxi ∪ SSri

35: end for
36: if SSxi = {} then
37: return Ansxi = No and terminate
38: end if
39: for all rlm

i ∈ Rc(xi) do
40: SSri ← {}
41: for all bt ∈ body(rlm

i ) do
42: if bt ∈ Histxi then
43: stop and check the next rule
44: else
45: Histbt ← Histxi ∪ bt



46: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt , Tt)
47: if Ansbt = No then
48: stop and check the next rule
49: else if Ansbt = Y es and bt /∈ Vi then
50: SSri ← SSri × (SSbt × {bt})
51: else
52: SSri ← SSri × SSbt

53: end if
54: end if
55: end for
56: CSxi ← CSxi ∪ SSri

57: end for
58: if CSxi = {} then
59: return Ansxi = Y es and SSxi and terminate
60: end if
61: SSstr

xi
← SSm

xi
∈ SSxi s.t.

62: for all SSj
xi ∈ SSxi : Stronger(SSm

xi
, SSj

xi , Ti) 6= SSj
xi

63: CSstr
xi
← CSm

xi
∈ CSxi s.t.

64: for all CSj
xi ∈ CSxi : Stronger(CSm

xi
, CSj

xi , Ti) 6= CSj
xi

65: if Stronger(SSstr
xi

, CSstr
xi

, Ti) = SSstr
xi

then
66: return Ansxi = Y es and SSxi

67: else
68: return Ansxi = No
69: end if

The local alg algorithm and the Stronger function remain unchanged.
To clarify the difference between the two versions P2P DR3 and P2P DR4

consider the following example: A peer, say P1, is queried about x1 by one of
its acquaintances. Assume that x1 is supported by one mapping rule; m11:
x2 → x1, and is contradicted by one mapping rule; m12: x3 → ¬x1. Assume
also that in P2 there are two rules that support x2; m21: x4 → x2 and
m22: x5 → x2 and no rule that contradicts it, and that x4 is locally proved
in P4 and x5 is locally proved in P5. Assume that in P3, x3 derives from
the local theory. Finally, assume that P1 has defined its trust level order as
follows; T1 = [P2, P4, P3, P5] and P2 has defined T2 = [P1, P5, P4]. P2P DR3,
would compute SSx1 = {x2, x5} (as P2 would return SSx2 = {x5}) and
CSx1 = {x3} and would return Ansx1 = No (as P3 precedes P5 in T1).
In the case of P2P DR4, P2 will return SSx2 = {{x4}, {x5}}), and P1

will compute SSx1 = {{x2, x4}, {x2, x5}}, and will return Ansx1 = Y es, as



{x2, x4} is the strongest mapping set in SSx1 and P4 precedes P3 in T1.

7.2 Properties of P2P DR4

Theorems 1 and 2 (regarding termination and total number of messages)
hold also for this version, P2P DR4 (the proof is exactly the same).

The main drawback of this approach is its too high computational com-
plexity, which is the result of retaining all the different ways (supportive
sets) that can be applied to support a literal. Specifically, the support-
ive set of a literal (SSxi) is the unification of the supportive sets of the
rules that support it (

⋃
SSri). The supportive set of each rule (SSri) de-

rives from the Cartesian Product of the Supportive Sets of the literals in
its body. This means that if l is the number of literals contained in the
body of a rule, and k1 is the number of mapping sets in each literal’s sup-
portive set, SSri will contain lk1 different mapping sets. Considering that
l is proportional to the number of literals a peer may define (nl) and the
number of acquaintances a peer may have (nACQ), the supportive set of a

literal will contain O(n(nl×nACQ)k1

r ) mapping sets. In the same way, k1 will

be O(n(nl×nACQ)k2

r ) and so on. Overall, the number of distinct mapping
sets that may be contained in the Supportive Set of a literal may be (in
the worst case) exponential to the number of peers (n), to the number of
rules a peer may define (nr) and to the number of literals a peer may define
(nl), rendering this approach non-scalable and inapplicable even for a small
number of peers.


